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CHAPTER 1

Analytical Background and Optimality Theory

Stefan Ulbrich
Fachbereich Mathematik

TU Darmstadt

1. Introduction and examples

1.1. Introduction. The modelling and numerical simulation of complex systems plays an impor-
tant role in physics, engineering, mechanics, chemistry, medicine, finance, and in other disciplines.
Very often, mathematical models of complex systems result in partial differential equations (PDEs).
For example heat flow, diffusion, wave propagation, fluid flow, elastic deformation, option prices and
many other phenomena can be modelled by using PDEs. Therefore, these notes could just as well
be entitled Optimization with partial differential equations. However, many of the techniques that we
will develop carry over to systems that are not necessarily described by PDEs.

In most applications, the ultimate goal is not only the mathematical modelling and numerical simula-
tion of the complex system, but rather the optimization or optimal control of the considered process.
Typical examples are the optimal control of a thermal treatment in cancer therapy and the optimal
shape design of an aircraft. The resulting optimization problems are very complex and a thorough
mathematical analysis is necessary to design efficient solution methods.

There exist many different types of partial differential equations. We will focus on linear and semi-
linear elliptic and parabolic PDEs. For these PDEs the existence and regularity of solutions is well
understood and we will be able to develop a fairly complete theory.

Abstractly speaking, we will consider problems of the following form

(1.1) min
w∈W

f(w) subject to E(w) = 0, C(w) ∈ K,

where f : W → R is the objective function, E : W → Z and C : W → V are operators between
Banach spaces, and K ⊂ V is a closed convex cone.
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6 1. ANALYTICAL BACKGROUND AND OPTIMALITY THEORY

In most cases, the spaces W , Z and V are (generalized) function spaces and the operator equation
E(w) = 0 represents a PDE or a system of coupled PDEs. The constraint

C(w) ∈ K
is considered as an abstract inequality constraint. Sometimes (e.g., in the case of bound constraints),
it will be convenient to replace the inequality constraint by a constraint of the form w ∈ S, where
S ⊂ W is a closed convex set:

(1.2) min
w∈W

f(w) s.t. E(w) = 0, w ∈ S.

Here “s.t.” abbreviates “subject to”.

To get the connection to finite dimensional optimization, consider the case

W = Rn, Z = Rp, V = Rm, K = (−∞, 0]m.

Then the problem (1.1) becomes a nonlinear optimization problem

(1.3) min
w∈W

f(w) s.t. E(w) = 0, C(w) ≤ 0.

Very often, we will have additional structure: The optimization variable w admits a natural splitting
into two parts, a state y ∈ Y and a control (or design) u ∈ U , where Y and U are Banach spaces.
Then W = Y × U , w = (y, u), and the problem reads

(1.4) min
y∈Y,u∈U

f(y, u) s.t. E(y, u) = 0, C(y, u) ∈ K.

Here, y ∈ Y describes the state (e.g., the velocity field of a fluid) of the considered system, which
is described by the equation E(y, u) = 0 (in our context usually a PDE). The control (or design,
depending on the application) u ∈ U is a parameter that shall be adapted in an optimal way.

The splitting of the optimization variable w = (y, u) into a state and a control is typical in the
optimization of complex systems. Problems with this structure are called optimal control problems.
In most cases we will consider, the state equation E(y, u) = 0 admits, for every u ∈ U , a unique
corresponding solution y(u), because the state equation is a well posed PDE for y in which u appears
as a parameter. Several examples will follow below.

We use the finite-dimensional problem (1.3) to give a teaser about important questions we will be
concerned with.

1. Existence of solutions.

Denote by f ∗ the optimal objective function value. First, we show, using the properties of the problem
at hand, that f ∗ is achievable and finite. Then, we consider a minimizing sequence (wk), i.e.,E(wk) =
0, C(wk) ≤ 0, f(wk) → f ∗. Next, we prove that (wk) is bounded (which has to be verified for the
problem at hand). Now we do something that only works in finite dimensions: We conclude that, due
to boundedness, (wk) contains a convergent subsequence (wk)K → w∗. Assuming the continuity of
f , E and C we see that

f(w∗) = lim
K3k→∞

f(wk) = f ∗, E(w∗) = lim
K3k→∞

E(wk) = 0, C(w∗) = lim
K3k→∞

C(wk) ≤ 0.
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Therefore, w∗ solves the problem.

We note that for doing the same in Banach space, we need a replacement for the compactness ar-
gument, which will lead us to weak convergence and weak compactness. Furthermore, we need the
continuity of the function f and of the operators E and C with respect to the norm topology and/or
the weak topology.

2. Uniqueness

Uniqueness usually relies on strict convexity of the problem, i.e., f strictly convex, E linear and Ci

convex. This approach can be easily transfered to the infinite-dimensional case.

3. Optimality conditions

Assuming continuous differentiability of the functions f , C, and E, and that the constraints satisfy
a regularity condition on the constraints, called constraint qualification (CQ) at the solution, the fol-
lowing first-order optimality conditions hold true at a solution w∗:

Karush-Kuhn-Tucker conditions:

There exist Lagrange multipliers λ∗ ∈ Rm and µ∗ ∈ Rp such that (w∗, λ∗, µ∗) solves the following
KKT-system:

∇f(w) + C ′(w)Tλ+ E ′(w)Tµ = 0,

E(w) = 0,

C(w) ≤ 0, λ ≥ 0, C(w)Tλ = 0.

Here, the column vector ∇f(w) = f ′(w)T ∈ Rn is the gradient of f and C ′(w) ∈ Rm×n, E ′(w) ∈
Rp×n are the Jacobian matrices of C and E.

All really efficient optimization algorithms for (1.3) build upon these KKT-conditions. Therefore, it
will be very important to derive first order optimality conditions for the infinite-dimensional problem
(1.1). Since the KKT-conditions involve derivatives, we have to extend the notion of differentiability
to operators between Banach spaces. This will lead us to the concept of Fréchet-differentiability. For
concrete problems, the appropriate choice of the underlying function spaces is not always obvious,
but it is crucial for being able to prove the Fréchet-differentiability of the function f and the operators
C, E and for verifying constraint qualifications.

4. Optimization algorithms

As already said, modern optimization algorithms are based on solving the KKT system. For instance,
for problems without inequality constraints, the KKT system reduces to the following (n+p)×(n+p)
system of equations:

(1.5) G(w, µ)
def
=

(
∇f(w) + E ′(w)Tµ

E(w)

)
= 0.

One of the most powerful algorithms for equality constrained optimization, the Lagrange-Newton
method, consists in applying Newton’s method to the equation (1.5):
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Lagrange-Newton method:

For k = 0, 1, 2, . . .:

1. STOP if G(wk, µk) = 0.
2. Compute sk = (skw, s

k
µ)T by solving

G′(wk, µk)sk = −G(wk, µk)

and set wk+1 := wk + skw, µk+1 := µk + skµ.

Since G involves first derivatives, the matrix G′(w, µ) involves second derivatives. For the develop-
ment of Lagrange-Newton methods for the problem class (1.1) we thus need second derivatives of f
and E.

There are many more aspects that will be covered, but for the time being we have given sufficient
motivation for the material to follow.

1.2. Examples for optimization problems with PDEs. We give several simple, but illustrative
examples for optimization problems with PDEs.

1.3. Optimization of a stationary heating process. Consider a solid body occupying the do-
main Ω ⊂ R3. Let y(x), x ∈ Ω denote the temperature of the body at the point x.

We want to heat or cool the body in such a way that the temperature distribution y coincides as good
as possible with a desired temperature distribution yd : Ω→ R.

Boundary control. If we apply a temperature distribution u : ∂Ω→ R to the boundary of Ω then
the temperature distribution y in the body is given by the Laplace equation

(1.6) −∆y(x) = 0, x ∈ Ω

together with the boundary condition of Robin type

κ
∂y

∂ν
(x) = β(x) (u(x)− y(x)), x ∈ ∂Ω,

where κ > 0 is the heat conduction coefficient of the material of the body and β : ∂Ω → (0,∞) is a
positive function modelling the heat transfer coefficient to the exterior.

Here, ∆y is the Laplace operator defined by

∆y(x) =

n∑

i=1

yxixi(x)

with the abbreviation

yxixi(x) =
∂2y

∂x2
i

(x)
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and ∂y
∂ν

(x) is the derivative in the direction of the outer unit normal ν(x) of ∂Ω at x, i.e.,

∂y

∂ν
(x) = ∇y(x) · ν(x), x ∈ ∂Ω.

As we will see, the Laplace equation (1.6) is an elliptic partial differential equation of second order.

In practice, the control u is restricted by additional constraints, for example by upper and lower bounds

a(x) ≤ u(x) ≤ b(x), x ∈ ∂Ω.

To minimize the distance of the actual and desired temperature y and yd, we consider the following
optimization problem.

min f(y, u)
def
=

1

2

∫

Ω

(y(x)− yd(x))2 dx+
α

2

∫

∂Ω

u(x)2 dS(x)

subject to −∆y = 0 on Ω, (State equation)
∂y

∂ν
=
β

κ
(u− y) on ∂Ω,

a ≤ u ≤ b on ∂Ω (Control constraints).

The first term in the objective functional f(y, u) measures the distance of y and yd, the second term
is a regularization term with parameter α ≥ 0 (typically α ∈ [10−5, 10−3]), which leads to improved
smoothness properties of the optimal control for α > 0.

If we set

E(y, u)
def
=

( −∆y
∂y
∂ν
− β

κ
(u− y)

)
, C(y, u)

def
=

(
a− u
u− b

)
,

where Y and U are appropriately chosen Banach spaces of functions

y : Ω→ R, u : ∂Ω→ R,
Z = Z1 × Z2 with appropriately chosen Banach spaces Z1, Z2 of functions

z1 : Ω→ R, z2 : ∂Ω→ R,
V = U × U , and

K = {(v1, v2) ∈ U × U : vi(x) ≤ 0, x ∈ ∂Ω} ,
then the above optimal control problem is of the form (1.1).

One of the crucial points will be to choose the above function spaces in such a way that f , E, and C
are continuous and sufficiently often differentiable, to ensure existence of solutions, the availability
of optimality conditions, etc.

Boundary control with radiation boundary. If we take heat radiation at the boundary of the
body into account, we obtain a nonlinear Stefan-Boltzmann boundary condition. This leads to the
semilinear state equation (i.e., the highest order term is still linear)

−∆y = 0 on Ω,

∂y

∂ν
=
β

κ
(u4 − y4) on ∂Ω.
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This is a problem of the form (1.1) with

E(y, u)
def
=

( −∆y
∂y
∂ν
− β

κ
(u4 − y4)

)

and the rest as before.

Distributed control. Instead of heating at the boundary it is in some applications also possible to
apply a distributed heat source as control. This can for example be achieved by using electro-magnetic
induction.

If the boundary temperature is zero then, similar as above, we obtain the problem

min f(y, u)
def
=

1

2

∫

Ω

(y(x)− yd(x))2 dx+
α

2

∫

Ω

u(x)2 dx

subject to −∆y = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω.

Here, the coefficient γ : Ω→ [0,∞) weights the control. The choice γ = 1Ωc for some control region
Ωc ⊂ Ω restricts the action of the control to the control region Ωc.

If we assume a surrounding temperature ya then the state equation changes to

−∆y = γ u on Ω,

∂y

∂ν
=
β

κ
(ya − y) on ∂Ω.

Problems with state constraints. In addition to control constraint also state constraints

l ≤ y ≤ r

with functions l < r are of practical interest. They are much harder to handle than control constraints.

1.4. Optimization of an unsteady heating processes. In most applications, heating processes
are time-dependent. Then the temperature y : Ω× [0, T ]→ R depends on space and time. We set

Q
def
= Ω× (0, T ), Σ = ∂Ω × (0, T ).

Boundary control. Let yd be a desired temperature distribution at the end time T and y0 be the
initial temperature of the body. To find a control u : Σ→ R that minimizes the distance of the actual
temperature y(·, T ) at the end time and the desired temperature yd, we consider similar as above the
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following optimization problem.

min f(y, u)
def
=

1

2

∫

Ω

(y(T, x)− yd(x))2 dx+
α

2

∫ T

0

∫

∂Ω

u(x, t)2 dS(x) dt

subject to yt −∆y = 0 on Q,
∂y

∂ν
=
β

κ
(u− y),

y(x, 0) = y0(x) on Ω

a ≤ u ≤ b on Σ.

Here, yt denotes the partial derivative with respect to time and ∆y is the Laplace operator in space.
The PDE

yt −∆y = 0

is called heat equation and is the prototype of a parabolic partial differential equation.

Similarly, unsteady boundary control with radiation and unsteady distributed control can be derived
from the steady counterparts.

Optimal control problems with linear state equation and quadratic objective function are called linear-
quadratic. If the PDE is nonlinear in lower order terms then the PDE is called semilinear.

1.5. Optimal design. A very important dscipline is optimal design. Here, the objective is to
optimize the shape of some object. A typical example is the optimal design of a wing or a whole
airplane with respect to certain objective, e.g., minimal drag, maximum lift or a combination of both.

Depending on the quality of the mathematical model employed, the flow around a wing is described
by the Euler equations or (better) by the compressible Navier-Stokes equations. Both are systems of
PDEs. A change of the wing shape would then result in a change of the spatial flow domain Ω and
thus, the design parameter is the domain Ω itself or a description of it (e.g. a surface describing the
shape of the wing). Optimization problems of this type are very challenging.

Therefore, we look here at a much simpler example:

Consider a very thin elastic membrane spanned over the domain Ω ⊂ R2. Its thickness u(x) > 0,
x ∈ Ω, varies (but is very small). At the boundary of Ω, the membrane is clamped at the level x3 = 0.

Given a vertical force distribution g : Ω→ R acting from below, the membrane takes the equilibrium
position described by the graph of the function y : Ω→ R (we assume that the thickness is negligibly
compared to the displacement). For small displacement, the mathematical model for this membrane
then is given by the following elliptic PDE:

−div(u∇y) = g on Ω,

y = 0 on ∂Ω,

Here, div v =
∑

i(vi)xi denotes the divergence of v : Ω→ R2.
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The design goal consists in finding an optimal thickness u subject to the thickness constraints

a(x) ≤ u(x) ≤ b(x) x ∈ Ω

and the volume constraint ∫

Ω

u(x) dx ≤ V

such that the compliance

f(y) =

∫

Ω

g(x)y(x) dx

of the membrane is as small as possible. The smaller the compliance, the stiffer the membrane with
respect to the load g. We obtain the following optimal design problem

min f(y)
def
=

∫

Ω

g(x)y(x)dx

subject to − div(u∇y) = g on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,∫

Ω

u(x) dx ≤ V.

2. Linear functional analysis and Sobolev spaces

We have already seen that PDEs do in practical relevant situations not necessarily have classical
solutions. A satisfactory solution theory can be developed by using Sobolev spaces and functional
analysis.

We recall first several basics on Banach and Hilbert spaces. Details can be found in any book on linear
functional analysis, e.g., [3], [46], [65], [80], [81].

2.1. Banach and Hilbert spaces.

2.2. Basic definitions.

DEFINITION 2.1. (Norm, Banach space)
Let X be a real vector space.

i) A mapping ‖ · ‖ : X 7→ [0,∞) is a norm on X , if
1) ‖u‖ = 0 ⇐⇒ u = 0,
2) ‖λu‖ = |λ|u ∀ u ∈ X, λ ∈ R,
3) ‖u+ v‖ ≤ ‖u‖ + ‖v‖ ∀ u, v ∈ X .

ii) A normed real vector space X is called (real) Banach space if it is complete, i.e., if any
Cauchy sequence (un) has a limit u ∈ X , more precisely, if limm,n→∞ ‖um − un‖ = 0 then
there is u ∈ X with limn→∞ ‖un − u‖ = 0.
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EXAMPLE 2.2.
(1) The function space

C(Ω̄) =
{
u : Ω̄→ R : u continuous

}

is a Banach space with the sup-norm

‖u‖C(Ω̄) = sup
x∈Ω̄

|u(x)|.

(2) For a multiindex α = (α1, . . . , αn) ∈ Nn0 we define its order by |α| def
=
∑n

i=1 αi and associate
the |α|-th order partial derivative at x

Dαu(x)
def
=

∂|α|u

∂xα1
1 · · ·∂xαnn

(x).

The spaces

Ck(Ω̄) =
{
u ∈ C(Ω̄) : Dαu ∈ C(Ω̄) for |α| ≤ k

}

are Banach spaces with the norm

‖u‖Ck(Ω̄)

def
=
∑

|α|≤k
‖Dαu‖C(Ω̄).

DEFINITION 2.3. (Inner product, Hilbert space)
Let H be a real vector space.

i) A mapping (·, ·) : H ×H 7→ R is an inner product on X , if
1) (u, v) = (v, u) ∀ u, v ∈ H ,
2) For every v ∈ H the mapping u ∈ H 7→ (u, v) is linear,
3) (u, u) ≥ 0 ∀ u ∈ H and (u, u) = 0 ⇐⇒ u = 0.

ii) A vector space H with inner product (·, ·) and associated norm

‖u‖ def
=
√

(u, u)

is called Pre-Hilbert space.
iii) A Pre-Hilbert space (H, (·, ·)) is called Hilbert space if it is complete under its norm ‖u‖ def

=
√

(u, u).

EXAMPLE 2.4. Let ∅ 6= Ω ⊂ Rn be open and bounded. Then (C(Ω̄), (·, ·)L2) is a Pre-Hilbert space
with the L2-inner product

(u, v)L2 =

∫

Ω

u(x) v(x) dx.

Note that (C(Ω̄), (·, ·)L2) is not complete (why?).

THEOREM 2.5. Let H be a Pre-Hilbert space. Then the Cauchy-Schwarz inequality holds

|(u, v)| ≤ ‖u‖‖v‖ ∀ u, v ∈ H.

Many spaces arising in applications have the important property that they contain a countable dense
subset.
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DEFINITION 2.6. A Banach space X is called separable if it contains a countable dense subset. I.e.,
there exists Y = {xi ∈ X : i ∈ N} ⊂ X such that

∀ x ∈ X, ∀ ε > 0 : ∃ y ∈ Y : ‖x− y‖X < ε.

EXAMPLE 2.7. For bounded Ω the spaceC(Ω̄) is separable (the polynomials with rational coefficients
are dense by Weierstraß’s approximation theorem).

2.3. Linear operators and dual space. Obviously, linear partial differential operators define
linear mappings between function spaces. We recall the following definition.

DEFINITION 2.8. (Linear operator)
Let X, Y be normed vector spaces with norms ‖ · ‖X , ‖ · ‖Y .

i) A mapping A : X → Y is called linear operator if it satisfies

A(λu+ µv) = λAu+ µAv ∀ u, v ∈ X, λ, µ ∈ R.
The range of A is defined by

R(A)
def
= {y ∈ Y : ∃ x ∈ X : y = Ax}

and the null space of A by

N(A)
def
= {x ∈ X : Ax = 0} .

ii) By L(X, Y ) we denote the space of all linear operators A : X → Y that are bounded in the
sense that

‖A‖X,Y
def
= sup
‖u‖X=1

‖Au‖Y <∞.

L(X, Y ) is a normed space with the operator norm ‖ · ‖X,Y .

THEOREM 2.9. If Y is a Banach space then L(X, Y ) is a Banach space.

The following theorem tells us, as a corollary, that if Y is a Banach space, any operator A ∈ L(X, Y )
is determined uniquely by its action on a dense subspace.

THEOREM 2.10. Let X be a normed space, Y be a Banach space and let U ⊂ X be a dense subspace
(carrying the same norm as X). Then for all A ∈ L(U, Y ), there exists a unique extension Ã ∈
L(X, Y ) with Ã|U = A. For this extension, there holds ‖Ã‖X,Y = ‖A‖U,Y .

DEFINITION 2.11. (Linear functionals, dual space)

i) Let X be a Banach space. A bounded linear operator u∗ : X → R, i.e., u∗ ∈ L(X,R) is
called a bounded linear functional on X .

ii) The space X∗ def
= L(X,R) of linear functionals on X is called dual space of X and is (by

Theorem 2.9) a Banach space with the operator norm

‖u∗‖ def
= sup
‖u‖X=1

|u∗(u)|.
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iii) We use the notation
〈u∗, u〉X∗,X def

= u∗(u).

〈·, ·〉X∗,X is called the dual pairing of X∗ and X .

Of essential importance is the following

THEOREM 2.12. (Riesz representation theorem)
The dual space H∗ of a Hilbert space H is isometric to H itself. More precisely, for every v ∈ H the
linear functional u∗ defined by

〈u∗, u〉H∗,H def
= (v, u)H ∀ u ∈ H

is in H∗ with norm ‖u∗‖H∗ = ‖v‖H . Vice versa, for any u∗ ∈ H∗ there exists a unique v ∈ H such
that

〈u∗, u〉H∗,H = (v, u)H ∀ u ∈ H
and ‖u∗‖H∗ = ‖v‖H .

In particular, a Hilbert space is reflexive.

DEFINITION 2.13. Let X, Y be Banach spaces. Then for an operatorA ∈ L(X, Y ) the dual operator
A∗ ∈ L(Y ∗, X∗) is defined by

〈A∗u, v〉X∗,X = 〈u,Av〉Y ∗,Y ∀ u ∈ Y ∗, v ∈ X.
It is easy to check that ‖A∗‖Y ∗,X∗ = ‖A‖X,Y .

2.4. Sobolev spaces. To develop a satisfactory theory for PDEs, it is necessary to replace the
classical function spaces Ck(Ω̄) by Sobolev spaces W k,p(Ω). Roughly speaking, the space W k,p(Ω)
consists of all functions u ∈ Lp(Ω) that possess (weak) partial derivatives Dαu ∈ Lp(Ω) for |α| ≤ k.

We recall

2.5. Lebesgue spaces. Our aim is to characterize the function space Lp(Ω) that is complete under
the Lp-norm, where

‖u‖Lp(Ω) =

(∫

Ω

|u(x)|p dx
)1/p

, p ∈ [1,∞),

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)|(= sup
x∈Ω
|u(x)| for u ∈ C(Ω̄)).

2.6. Lebesgue measurable functions and Lebesgue integral.

DEFINITION 2.14. A collection S ⊂ P(Rn) of subsets of Rn is called σ-algebra on Rn if

i) ∅,Rn ∈ S,
ii) A ∈ S implies Rn \ A ∈ S,

iii) if (Ak)k∈N ⊂ S then
⋃∞
k=1 Ak ∈ S.

A measure µ : S → [0,∞] is a mapping with the following properties:
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i) µ(∅) = 0.
ii) If (Ak)k∈N ⊂ S is a sequence of pairwise disjoint sets then

µ

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

µ(Ak) (σ-additivity).

Of essential importance is the σ-algebra of Lebesgue measurable sets with corresponding Lebesgue
measure.

THEOREM 2.15. There exists the σ-algebra Bn of Lebesgue measurable sets on Rn and the Lebesgue
measure µ : Bn → [0,∞] with the properties:

i) Bn contains all open sets (and thus all closed sets).
ii) µ is a measure on Bn.

iii) If B is any ball in Rn then µ(B) = |B|.
iv) If A ⊂ B with B ∈ Bn and µ(B) = 0 then A ∈ Bn and µ(A) = 0 ((Rn,Bn, µ) is a complete

measure space).

The sets A ∈ Bn are called Lebesgue measurable.

Notation: If some property holds for all x ∈ R \ N with N ⊂ Bn, µ(N) = 0, then we say that it
holds almost everywhere (a.e.). �

DEFINITION 2.16. We say that f : Rn → [−∞,∞] is Lebesgue measurable if

{x ∈ Rn : f(x) > α} ∈ Bn ∀ α ∈ R.
If A ∈ Bn and f : A → [−∞,∞] then we call f Lebesgue measurable on A if f1A is Lebesgue
measurable. Here, we use the convention f1A = f on A and f1A = 0 otherwise.

Remark For open Ω ⊂ Rn any function f ∈ C(Ω) is measurable, since {f > α} is relatively open in
Ω (and thus open). �
We now extend the classical integral to Lebesgue measurable functions.

DEFINITION 2.17. The set of nonnegative elementary functions is defined by

E+(Rn)
def
=

{
f =

m∑

k=1

αk1Ak : (Ak)1≤k≤m ⊂ Bn pairwise disjoint, αk ≥ 0, m ∈ N
}
.

The Lebesgue integral of f =
∑m

k=1 αk1Ak ∈ E+(Rn) is defined by
∫

Rn
f(x) dµ(x)

def
=

m∑

k=1

αkµ(Ak).

An extension to general Lebesgue measurable functions is obtained by the following fact.
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LEMMA 2.18. For any sequence (fk) of Lebesgue measurable functions also

sup
k
fk, inf

k
fk, lim sup

k→∞
fk, lim inf

k→∞
fk

are Lebesgue measurable.

For any Lebesgue measurable function f ≥ 0 there exists a monotone increasing sequence (fk)k∈N ⊂
E+(Rn) with f = supk fk.

This motivates the following definition of the Lebesgue integral.

DEFINITION 2.19. (Lebesgue integral)

i) For a nonnegative Lebesgue measurable function f : Rn → [0,∞] we define the Lebesgue
integral of f by ∫

Rn
f(x) dµ(x)

def
= sup

k

∫

Rn
fk(x) dµ(x),

where (fk)k∈N ⊂ E+(Rn) is a monotone increasing sequence with f = supk fk.
ii) For a Lebesgue measurable function f : Rn → [−∞,∞] we define the Lebesgue integral by

∫

Rn
f(x) dµ(x)

def
=

∫

Rn
f+(x) dµ(x)−

∫

Rn
f−(x) dµ(x)

with f+ = max(f, 0), f− = max(−f, 0) if one of the terms on the right hand side is finite.
In this case f is called integrable.

iii) If A ∈ Bn and f : A→ [−∞,∞] is a function such that f1A is integrable then we define
∫

A

f(x) dµ(x)
def
=

∫

Rn
f(x)1A(x) dµ(x).

Notation: In the sequel we will write dx instead of dµ(x). �

2.7. Definition of Lebesgue spaces. Clearly, we can extend theLp-norm to Lebesgue measurable
functions.

DEFINITION 2.20. Let Ω ∈ Bn. We define for p ∈ [1,∞) the seminorm

‖u‖Lp(Ω)

def
=

(∫

Rn
|u(x)|p

)1/p

.

and
‖u‖L∞(Ω)

def
= ess sup

x∈Ω
|u(x)| def

= inf {α ≥ 0 : µ({|u| > α}) = 0} .

Now, for 1 ≤ p ≤ ∞ we define the spaces

Lp(Ω)
def
=
{
u : Ω→ R Lebesgue measurable : ‖u‖Lp(Ω) <∞

}
.

These are not normed space since there exist mesurable functions u : Ω→ R, u 6= 0, with ‖u‖Lp = 0.
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We use the equivalence relation

u∼v in Lp(Ω) :⇐⇒ ‖u− v‖Lp(Ω) = 0
by Lemma 2.21⇐⇒ u = v a.e.

to define Lp(Ω) = Lp(Ω)/∼ as the space of equivalence classes of a.e. identical functions, equipped
with the norm ‖ · ‖Lp .
Finally we define

Lploc(Ω)
def
= {u : Ω→ R Lebesgue measurable : u ∈ Lp(K) for all K ⊂ Ω compact}

and set Lploc(Ω)
def
= Lploc(Ω)/∼.

In the following we will consider elements of Lp and Lploc as functions that are known up to a set of
measure zero.

Remark It is easy to see that Lp(Ω) ⊂ L1
loc(Ω) for all p ∈ [1,∞]. �

We collect several important facts of Lebesgue spaces.

LEMMA 2.21. For all u, v ∈ Lp(Ω), p ∈ [1,∞] we have

‖u− v‖Lp = 0 ⇐⇒ u = v a.e..

Proof. The assertion is obvious for p =∞. For p ∈ [1,∞) let w = u− v.

”=⇒:” We have for all k ∈ N
0 = ‖w‖Lp ≥

1

k
µ({|w| ≥ 1/k})1/p.

Hence µ({w ≥ 1/k}) = 0 and consequently

µ(w 6= 0) = µ

( ∞⋃

k=1

{|w| ≥ 1/k}
)
≤
∞∑

k=1

µ {|w| ≥ 1/k}) = 0.

”⇐=:” If w = 0 a.e. then |w|p = 0 onRn\N for someN with µ(N) = 0. Hence, |w|p = supk wk with
(wk) ⊂ E+(Rn), where without restrictionwk = 0 onRn\N . Hence

∫
Rn wk dx = 0 and consequently∫

Rn |w|pdx = 0. �

THEOREM 2.22. (Fischer-Riesz) The spaces Lp(Ω), p ∈ [1,∞], are Banach spaces. The space L2(Ω)
is a Hilbert space with inner product

(u, v)
def
=

∫

Ω

uv dx.

LEMMA 2.23. (Hölder inequality)
Let Ω ∈ Bn. Then for all p ∈ [1,∞] we have with the dual exponent q ∈ [1,∞] satisfying 1

p
+ 1

q
= 1

for all u ∈ Lp(Ω) and v ∈ Lq(Ω) the Hölder inequality

uv ∈ L1(Ω) and ‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq .
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Now we can characterize the dual space of Lp-spaces.

THEOREM 2.24. Let Ω ∈ Bn, p ∈ [1,∞) and q ∈ (1,∞] the dual exponent satisfying 1
p

+ 1
q

= 1.
Then the dual space (Lp(Ω))∗ can be identified with Lq(Ω) by means of the isometric isomorphism

v ∈ Lq(Ω) 7→ u∗ ∈ (Lp(Ω))∗, where 〈u∗, u〉(Lp)∗,Lp
def
=

∫

Ω

u(x)v(x) dx.

Remark Note however that L1 is only a subspace of (L∞)∗. �

2.8. Density results and convergence theorems. A fundamental result is the following:

THEOREM 2.25 (Dominated convergence theorem). Let Ω ∈ Bn. Assume that fk : Ω → R are
measurable with

fk → f a.e. and |fk| ≤ g a.e.
with a function g ∈ L1(Ω). Then fk, f ∈ L1(Ω) and∫

Ω

fk dx→
∫

Ω

f dx, fk → f in L1(Ω).

Next we state the important fact that the set of ”nice” functions

C∞c (Ω)
def
=
{
u ∈ C∞(Ω̄) : supp(u) ⊂ Ω compact

}

is actually dense in Lp(Ω) for all p ∈ [1,∞).

LEMMA 2.26. Let Ω ⊂ Rn be open. Then C∞c (Ω) is dense in Lp(Ω) for all p ∈ [1,∞).

A quite immediate consequence is the following useful result.

LEMMA 2.27. Let Ω ⊂ Rn be open and f ∈ L1
loc(Ω) with∫

Ω

f(x)ϕ(x) dx = 0 ∀ ϕ ∈ C∞c (Ω).

Then f = 0 a.e.

2.9. Weak derivatives. The definition of weak derivatives is motivated by the fact that for any
function u ∈ Ck(Ω̄) and any multiindex α ∈ Nn0 , |α ≤ k, the identity holds (integrate |α|-times by
parts)

(2.1)
∫

Ω

Dαuϕ dx = (−1)|α|
∫

Ω

uDαϕdx, ∀ ϕ ∈ C∞c (Ω).

This motivates the definition

DEFINITION 2.28. Let Ω ⊂ Rn be open and let u ∈ L1
loc(Ω). If there exists a function w ∈ L1

loc(Ω)
such that

(2.2)
∫

Ω

wϕdx = (−1)|α|
∫

Ω

uDαϕdx, ∀ ϕ ∈ C∞c (Ω)

then Dαu := w is called the α-th weak partial derivative of u.
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Remark

(1) By Lemma 2.27, (2.2) determines the weak derivative Dαu ∈ L1
loc(Ω) uniquely.

(2) For u ∈ Ck(Ω̄) and α ∈ Nn0 , |α| ≤ k, the classical derivative w = Dαu satisfies (2.1) and
thus (2.2). Hence, the weak derivative is consistent with the classical derivative. �

2.10. Regular domains and integration by parts. For k ∈ N0 and β ∈ (0, 1] let

Ck,β(Rn) =
{
u ∈ Ck(Rn) : Dαu β-Hölder continuous for |α| = k

}
.

Here, f is β-Hölder continuous if there exists a constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y|β ∀ x, y.
Of course, 1-Hölder continuity is Lipschitz continuity.

We set Ck,0(Rn) = Ck(Rn) =.

DEFINITION 2.29. (Ck,β-boundary, unit normal field)
Let Ω ⊂ Rn be open and bounded.

a) We say that Ω has a Ck,β-boundary, k ∈ N0 ∪ {∞}, 0 ≤ β ≤ 1, if for any x ∈ ∂U there
exists r > 0, k ∈ {1, . . . , n}, and a function γ ∈ Ck(Rn−1) such that

Ω ∩B(x; r) = {y ∈ B(x; r) : yk < γ(y1, . . . yk−1, yk+1, . . . , yn)} .
Instead of C0,1-boundary we say also Lipschitz-boundary.

b) If ∂Ω is C0,1 then we can define a.e. the unit outer normal field ν : ∂Ω → Rn, where ν(x),
‖ν(x)‖2 = 1, is the outward pointing unit normal of ∂Ω at x.

c) Let ∂Ω be C0,1. We call the directional derivative

∂u

∂ν
(x)

def
= ν(x) · ∇u(x), x ∈ ∂Ω,

the normal derivative of u.

We recall the Gauß-Green theorem (integration by parts formula).

THEOREM 2.30. Let Ω ⊂ Rn be open and bounded with C1-boundary. Then for all u, v ∈ C1(Ω̄)
∫

Ω

uxi(x)v(x) dx = −
∫

Ω

u(x)vxi(x) dx+

∫

∂Ω

u(x)v(x)νi(x) dS(x).

2.11. Sobolev spaces. We will now introduce subspaces W k,p(Ω) of functions u ∈ Lp(Ω), for
which the weak derivatives Dαu, |α| ≤ k, are in Lp(Ω).

DEFINITION 2.31. Let Ω ⊂ Rn be open. For k ∈ N0, p ∈ [1,∞], we define the Sobolev space
W k,p(Ω) by

(2.3) W k,p(Ω) = {u ∈ Lp(Ω) : u has weak derivatives Dαu ∈ Lp(Ω) for all |α| ≤ k}



2. LINEAR FUNCTIONAL ANALYSIS AND SOBOLEV SPACES 21

equipped with the norm

‖u‖W k,p(Ω)

def
=


∑

|α|≤k
‖Dαu‖pLp




1/p

, p ∈ [1,∞),

‖u‖W k,∞(Ω)

def
=
∑

|α|≤k
‖Dαu‖L∞(Ω).

REMARK 2.32. • The set C∞(Ω) ∩W k,p(Ω), k ∈ N0, 1 ≤ p < ∞, is dense in W k,p(Ω). Hence,
W k,p(Ω) is the completion of {u ∈ C∞(Ω) : ‖u‖W k,p <∞} with respect to the norm ‖ · ‖W k,p.

• If Ω is a bounded Lipschitz-domain then C∞(Ω̄) is dense in W k,p(Ω), k ∈ N0, 1 ≤ p <∞.

Notations:

(1) In the case p = 2 one writes Hk(Ω)
def
= W k,2(Ω). We note that W 0,p(Ω) = Lp(Ω) for p ∈

[1,∞].
(2) For weak partial derivatives we use also the notation uxi, uxixj , uxixjxk , . . .
(3) For u ∈ H1(Ω) we set

∇u(x) =




ux1(x)
...

uxn(x)


 .

�
Remark Simple examples show that weak differentiability does not necessarily ensures continuity.
We have for example with Ω

def
= B(0; 1) and u(x)

def
= ‖x‖−β that

u ∈ W 1,p(Ω) ⇐⇒ β <
n− p
p

.

�

THEOREM 2.33. Let Ω ⊂ Rn be open, k ∈ N0, and p ∈ [1,∞]. Then W k,p(Ω) is a Banach space.

Moreover, the space Hk(Ω) = W k,2(Ω) is a Hilbert space with inner product

(u, v)Hk(Ω) =
∑

|α|≤k
(Dαu,Dαv)L2(Ω).

To incorporate homogeneous boundary conditions already in the function space we define the follow-
ing subspace.

DEFINITION 2.34. Let Ω ⊂ Rn be open. For k ∈ N0, p ∈ [1,∞], we denote by

W k,p
0 (Ω)
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the closure of C∞c (Ω) in W k,p(Ω) (i.e., for any u ∈ W k,p
0 (Ω) there exists a sequence (ϕi) ⊂ C∞c (Ω)

with limi→∞ ‖u− ϕi‖W k,p(Ω) = 0). The space is equipped with the same norm as W k,p(Ω) and is a
Banach space. The space Hk

0 (Ω) = W k,2
0 (Ω) is a Hilbert space.

REMARK 2.35. W k,p
0 (Ω) contains exactly all u ∈ W 1,p(Ω) such that Dαu = 0 for |α| ≤ k− 1 on ∂Ω

with an appropriate interpretation of the traces Dαu|∂Ω. �

We consider next the appropriate assignment of boundary values (so called boundary traces) for
functions u ∈ W k,p(Ω) if Ω has Lipschitz-boundary.

If u ∈ W k,p(Ω) ∩ C(Ω̄) then the boundary values can be defined in the classical sense by using the
continuous extension. However, since ∂Ω is a set of measure zero and functions u ∈ W k,p(Ω) are only
determinded up to a set of measure zero, the definition of boundary values requires care. We resolve
the problem by defining a trace operator.

THEOREM 2.36. Assume that Ω ⊂ Rn is open and bounded with Lipschitz-boundary. Then for all
p ∈ [1,∞] there exists a unique bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that

Tu = u|∂Ω ∀ u ∈ W 1,p(Ω) ∩ C(Ω̄).

Here, ‖T‖W 1,p(Ω),Lp(∂Ω) depends only on Ω and p. Tu is called the trace of u on ∂Ω.

2.12. Poincaré’s inequality. We have seen that the trace of functions inHk
0 (Ω), k ≥ 0, vanishes.

For the treatment of boundary value problems it will be useful that the semi-norm

(2.4) |u|Hk(Ω)

def
=


∑

|α|=k
‖Dαu‖2

L2




1/2

defines an equivalent norm on the Hilbert space Hk
0 (Ω). It is obvious that

|u|Hk(Ω) ≤ ‖u‖Hk(Ω).

We will now show that also

(2.5) ‖u‖Hk(Ω) ≤ C |u|Hk(Ω) ∀ u ∈ Hk
0 (Ω).

THEOREM 2.37. (Poincaré’s inequality)
Let Ω ⊂ Rn be open and bounded. Then there exists a constant C > 0 with

(2.5) |u|Hk(Ω) ≤ ‖u‖Hk(Ω) ≤ C |u|Hk(Ω) ∀ u ∈ Hk
0 (Ω).
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2.13. Sobolev imbedding theorem. Sobolev spaces are embedded in classical spaces:

THEOREM 2.38. Let Ω ⊂ Rn be open, bounded with Lipschitz-boundary. Let m ∈ N, 1 ≤ p <∞.
i) For all k ∈ N0, 0 < β < 1 with

m− n

p
≥ k + β

one has the continuous embedding

Wm,p(Ω) ⊂ Ck,β(Ω̄).

More precisely, there exists a constant C > 0 such that for all u ∈ Wm,p(Ω) possibly after
modification on a set of measure zero u ∈ Ck,β(Ω̄) and

‖u‖Ck,β(Ω̄) ≤ C‖u‖Wm,p(Ω).

ii) For all k ∈ N0, 0 ≤ β ≤ 1 with

m− n

p
> k + β

one has the compact embedding

Wm,p(Ω) ⊂⊂ Ck,β(Ω̄),

i.e., closed balls in Wm,p(Ω) are relatively compact in Ck,β(Ω̄).
iii) For q ≥ 1 and l ∈ N0 with m− n/p ≥ l − n/q one has the continuous embedding

Wm,p(Ω) ⊂ W l,q(Ω).

The embedding is compact if m− n/p > l − n/q and for l = 0 we have W 0,q(Ω) = Lq(Ω).

For arbitrary open bounded Ω ⊂ Rn i), ii), iii) hold for Wm,p
0 (Ω) instead of Wm,p(Ω).

Proof. See for example [3], [1], [28]. �
EXAMPLE 2.39. For n ≤ 3 we have the continuous imbedding H 1(Ω) ⊂ L6(Ω) and the compact
imbedding H2(Ω) ⊂⊂ C(Ω̄) for n ≤ 3.

2.14. The dual space H−1 of H1
0 . The dual space of the Hilbert space H1

0 (Ω) is denoted by
H−1(Ω). This space can be characterized as follows:

THEOREM 2.40. For the space H−1(Ω), Ω ⊂ Rn open, the following holds:

H−1(Ω) =

{
v ∈ H1

0 (Ω) 7→ (f 0, v)L2 +
n∑

j=1

(f j, vxj)L2 : fj ∈ L2(Ω)

}
.

Furthermore,

‖f‖H−1 = min

{( n∑

j=0

‖f j‖2

L2

)1/2

: 〈f, v〉H−1,H1
0

= (f 0, v)L2 +
n∑

j=1

(f j, vxj)L2 , f j ∈ L2(Ω)

}
.
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Proof. “⊂”: Let f ∈ H−1(Ω). By the Riesz representation theorem, there exists a unique u ∈
H1

0 (Ω) with
(u, v)H1 = 〈f, v〉H−1,H1

0
∀ v ∈ H1

0 (Ω).

Set f 0 = u, f j = uxj , j ≥ 1.

Then

(f 0, v)L2 +
n∑

j=1

(f j, vxj)L2 = (u, v)L2 +
n∑

j=1

(uxj , vxj )L2 = (u, v)H1 = 〈f, v〉H−1,H1
0
∀ v ∈ H1

0 (Ω).

“⊃”: For g0, . . . , gn ∈ L2(Ω), consider

g : v ∈ H1
0 (Ω) 7→ (g0, v)L2 +

n∑

j=1

(gj, vxj)L2 .

Obviously, g is linear. Furthermore, for all v ∈ H1
0 (Ω), there holds

|(g0, v)L2 +
n∑

j=1

(gj, vxj)L2 | ≤ ‖g0‖L2‖v‖L2 +
n∑

j=1

‖gj‖L2‖vxj‖L2

≤
(

n∑

j=0

‖gj‖2L2

)1/2(
‖v‖2

L2 +

n∑

j=1

‖vxj‖L2

)1/2

=

(
n∑

j=0

‖gj‖2

L2

)1/2

‖v‖H1 .

This shows g ∈ H−1(Ω) and

‖g‖H−1 ≤
(

n∑

j=0

‖gj‖2

L2

)1/2

.

Now let f = g, let u be the Riesz representation, and choose

(f 0, . . . , fn) = (u, ux1, . . . , uxn)

as above. Then by the Riesz representation theorem

‖g‖2H−1 = ‖f‖2H−1 = ‖u‖2H1 = ‖u‖2L2 +

n∑

j=1

‖uxj‖2
L2 =

n∑

j=0

‖f j‖2L2 .

�
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2.15. Weak solutions of elliptic PDEs. In this section we sketch the theory of weak solutions
for elliptic second order partial differential equations. For more details we refer, e.g., to [3], [28], [65],
[74], [80].

2.16. Weak solutions of the Poisson equation.

2.16.1. Dirichlet boundary conditions. We start with the elliptic boundary value problem

−∆y = f on Ω,(2.6)
y = 0 on ∂Ω, (Dirichlet condition)(2.7)

where Ω ⊂ Rn is an open, bounded set and f ∈ L2(Ω). This admits discontinuous right hand sides
f , e.g. source terms f that act only on a subset of Ω. Since a classical solution y ∈ C 2(Ω) ∩ C1(Ω̄)
exists at best for continuous right hand sides, we need a generalized solution concept. It is based on a
variational formulation of (2.6)–(2.7).

To this end let us assume that y ∈ C2(Ω)∩C1(Ω̄) is a classical solution of (2.6)–(2.7). Then we have
y ∈ H1

0 (Ω) by Remark 2.35. Multiplying by v ∈ C∞c (Ω) and integrating over Ω yields

(2.8) −
∫

Ω

∆y v dx =

∫

Ω

fv dx ∀ v ∈ C∞c (Ω).

It is easy to see that (2.6) and (2.8) are equivalent for classical solutions. Now integration by parts
gives

(2.9) −
∫

Ω

yxixi v dx =

∫

Ω

yxivxi dx−
∫

∂Ω

yxi v νi dS(x) =

∫

Ω

yxivxi dx.

Note that the boundary integral vanishes, since v|∂Ω = 0. Thus, (2.8) is equivalent to

(2.10)
∫

Ω

∇y · ∇v dx =

∫

Ω

fv dx ∀ v ∈ C∞c (Ω).

We note that this variational equation makes already perfect sense in a larger space:

LEMMA 2.41. The mapping

(y, v) ∈ H1
0 (Ω)2 7→ a(u, v)

def
=

∫

Ω

∇y · ∇v dx ∈ R

is bilinear and bounded:

(2.11) |a(y, v)| ≤ ‖y‖H1‖v‖H1 .

For f ∈ L2(Ω), the mapping

v ∈ H1
0 (Ω) 7→

∫

Ω

fv dx ∈ R

is linear and bounded:

(2.12)
∣∣∣∣
∫

Ω

fv dx

∣∣∣∣ = (f, v)L2 ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1
0
.
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Proof. Clearly, a(y, v) is bilinear. The boundedness follows from

|a(y, v)| ≤
∫

Ω

|∇y(x)T∇v(x)| dx ≤
∫

Ω

‖∇y(x)‖2‖∇v(x)‖2 dx

≤ ‖‖∇y‖2‖L2‖‖∇v‖2‖L2 = |y|H1|v|H1 ≤ ‖y‖H1‖v‖H1 = ‖y‖V ‖v‖V ,
where we have applied the Cauchy-Schwarz inequality.

The second assertion is trivial. �

By density and continuity, we can extend (2.10) to y ∈ H 1
0 (Ω) and v ∈ H1

0 (Ω). We arrive at the
variational formulation

(2.13)
∫

Ω

∇y · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω).

We summarize: (2.6) and (2.13) are equivalent for a classical solution y ∈ C 2(Ω) ∩ C1(Ω̄). But the
variational formulation (2.13) makes already perfectly sense for y ∈ H 1

0 (Ω) and f ∈ L2(Ω). This
motivates the following definition.

DEFINITION 2.42. A function y ∈ H1
0 (Ω) is called weak solution of the boundary value problem

(2.6)–(2.7) if it satisfies the variational formulation or weak formulation

(2.13)
∫

Ω

∇y · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω).

In order to allow a uniform treatment of more general equations than (2.6)–(2.7), we introduce the
following abstract notation. Let

V = H1
0(Ω),

a(y, v) =

∫

Ω

∇y · ∇v dx, y, v ∈ V,(2.14)

F (v) = (f, v)L2(Ω), v ∈ V.(2.15)

Then a : V × V → R is a bilinear form, F ∈ V ∗ is a linear functional on V and (2.13) can be written
as

(2.16) Find y ∈ V : a(y, v) = F (v) ∀ v ∈ V.
Remark Since a(y, ·) ∈ V ∗ for all y ∈ V and y ∈ V 7→ a(y, ·) ∈ V ∗ is conitnuous and linear, there
exists a bounded linear operator A : V → V ∗ with

(2.17) a(y, v) = 〈Ay, v〉V ∗,V ∀ y, v ∈ V.
Then (2.16) can be written in the form

(2.18) Find y ∈ V : Ay = F.

�
We have the following important existence and uniqueness result for solutions of (2.16).



2. LINEAR FUNCTIONAL ANALYSIS AND SOBOLEV SPACES 27

LEMMA 2.43. (Lax-Milgram lemma)
Let V be a real Hilbert space with inner product (·, ·)V and let a : V × V → R be a bilinear form
that satisfies with constants α0, β0 > 0

|a(y, v)| ≤ α0‖y‖V ‖v‖V ∀ y, v ∈ V, (boundedness)(2.19)

a(y, y) ≥ β0‖y‖2V ∀ y ∈ V (V -coercivity).(2.20)

Then for any bounded linear functional F ∈ V ∗ the variational equation (2.16) has a unique solution
y ∈ V . Moreover, u satisfies

(2.21) ‖y‖V ≤
1

β0
‖F‖V ∗.

In particular the operator A defined in (2.17) satisfies

A ∈ L(V, V ∗), A−1 ∈ L(V ∗, V ), ‖A−1‖V ∗,V ≤
1

β0

.

Remark If a(·, ·) is symmetric, i.e., if a(y, v) = a(v, y) for all y, v ∈ V , then the Lax-Milgram lemma
is an immediate consequence of the Riesz representation theorem. In fact, in this case (u, v) := a(u, v)
defines a new inner product on V and the existence of a unique solution of (2.16) follows directly from
the Riesz representation theorem. �
Application of the Lax-Milgram lemma to (2.13) yields

THEOREM 2.44. Let Ω ⊂ Rn be open and bounded with Lipschitz-boundary.

Then the bilinear form a in (2.14) is bounded and V -coercive for V = H 1
0 (Ω) and the associated

operator A ∈ L(V, V ∗) in (2.17) has a bounded inverse. In particular, (2.6)–(2.7) has for all f ∈
L2(Ω) a unique weak solution y ∈ H1

0 (Ω) given by (2.13) and satisfies

‖y‖H1(Ω) ≤ CP‖f‖L2(Ω),

where CP depends on Ω but not on f .

Proof. We verify the hypotheses of Lemma 2.43. Clearly, a(y, u) in (2.14) is bilinear. The bound-
edness 2.19 follows from (2.11) Using the Poincaré’s inequality (2.5) we obtain

a(y, y) =

∫

Ω

∇y · ∇y dx = |y|2H1
0(Ω) ≥

1

C2
‖y‖2H1

0 (Ω) =
1

C2
‖y‖2V

which shows the V -coercivity (2.20).

Finally, the definition of F in (2.15) yields

‖F‖V ∗ = sup
‖v‖V =1

F (v) = sup
‖v‖V =1

(f, v)L2(Ω) ≤ sup
‖v‖V =1

‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω).

Thus, the assertion holds with CP = C2 by the Lax-Milgram lemma. �
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2.16.2. Boundary conditions of Robin type. We have seen that in heating applications the bound-
ary condition is sometimes of Robin type. We consider now problems of the form

−∆y + c0y = f on Ω,(2.22)
∂y

∂ν
+ αy = g on ∂Ω, (Robin condition)(2.23)

where f ∈ L2(Ω) and g ∈ L2(∂Ω) are given and c0 ∈ L∞(Ω), α ∈ L∞(∂Ω) are nonnegative
coefficients.

Weak solutions can be defined similarly as above. If y is a classical solution of (2.22)–(2.23) then for
any test function v ∈ C1(Ω̄) integration by parts, see (2.9), yields as above

∫

Ω

(−∆y + c0y) v dx =

=

∫

Ω

∇y · ∇v dx+ (c0y, v)L2(Ω) −
∫

∂Ω

∂y

∂ν
v dS(x) =

∫

Ω

fv dx ∀ v ∈ C1(Ω̄).

Inserting the boundary condition ∂y
∂ν

= −αy + g we arrive at

(2.24)
∫

Ω

∇y · ∇v dx+ (c0y, v)L2(Ω) + (αy, v)L2(∂Ω) = (f, v)L2(Ω) + (g, v)L2(∂Ω) ∀ v ∈ H1(Ω).

The extension to v ∈ H1(Ω) is possible, since for y ∈ H1(Ω) both sides are continuous with respect
to v ∈ H1(Ω) and since C1(Ω̄) is dense in H1(Ω).

DEFINITION 2.45. A function y ∈ H1(Ω) is called weak solution of the boundary value problem
(2.22)–(2.23) if it satisfies the variational formulation or weak formulation (2.24).

To apply the general theory, we set

V = H1(Ω),

a(y, v) =

∫

Ω

∇y · ∇v dx + (c0y, v)L2(Ω) + (αy, v)L2(∂Ω), y, v ∈ V,(2.25)

F (v) = (f, v)L2(Ω) + (g, v)L2(∂Ω), v ∈ V.
The Lax-Milgram lemma yields similarly as above

THEOREM 2.46. Let Ω ⊂ Rn be open and bounded with Lipschitz-boundary and let c0 ∈ L∞(Ω),
α ∈ L∞(∂Ω) be nonnegative with ‖c0‖L2(Ω) + ‖α‖L2(∂Ω) > 0.

Then the bilinear form a in (2.25) is bounded and V -coercive for V = H 1(Ω) and the associated
operator A ∈ L(V, V ∗) in (2.17) has a bounded inverse. In particular, (2.6)–(2.7) has for all f ∈
L2(Ω) and g ∈ L2(∂Ω) a unique weak solution y ∈ H1(Ω) given by (2.24) and satisfies

‖y‖H1(Ω) ≤ CR(‖f‖L2(Ω) + ‖g‖L2(∂Ω)),

where CR depends on Ω, α, c0 but not on f, g.
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Proof. The proof is an application of the Lax-Milgram lemma. The boundedness of a(y, v) and
of F (v) follows by the trace theorem. The V -coercivity is a consequence of a generalized Poincaré
inequality. �

A refined analysis yields the following result [74].

THEOREM 2.47. Let the assumptions of the previous theorem hold and let r > n/2, s > n−1, n ≥ 2.
Then for any f ∈ Lr(Ω) and g ∈ Ls(∂Ω) there exists a unique weak solution y ∈ H1(Ω) ∩ C(Ω̄) of
(2.6)–(2.7). There exists a constant C∞ > 0 with

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ CR(‖f‖Lr(Ω) + ‖g‖Ls(∂Ω)),

where C∞ depends on Ω, α, c0 but not on f, g.

An analogous result holds for homogeneous Dirichlet boundary conditions instead of Robin boundary
conditions [49].

2.17. Weak solutions of uniformly elliptic equations. More generally, we can consider general
second order elliptic PDEs of the form

(2.26) Lu = f on Ω

with

(2.27) Ly
def
= −

n∑

i,j=1

(aijyxi)xj + c0y, aij, c0 ∈ L∞, c0 ≥ 0, aij = aji

and L is assumed to be uniformly elliptic in the sense that there is a constant θ > 0 such that

(2.28)
n∑

i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2 for almost all x ∈ Ω and all ξ ∈ Rn.

For example in the case of Dirichlet boundary conditions

y|∂Ω = 0

the weak formulation of (2.26) is given by

Find y ∈ V := H1
0(Ω): a(y, v) = (f, v)L2(Ω) ∀ v ∈ V

with the bilinear form

a(y, v) =

∫

Ω

n∑

i,j=1

(aij yxivxj + c y v) dx.

Our previous results remain true, if in the case of the Robin boundary condition the normal derivative
is replaced by the conormal derivative

(2.29)
∂y

∂νA
(x)

def
= ∇y(x) · A(x)ν(x), A(x) = (aij(x)),

For continuous solutions, we have to assume
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2.18. An existence and uniqueness result for semilinear elliptic equations. We finally state an
existence and uniqueness result for a uniformly elliptic semilinear equation

Ly + d(x, y) = f on Ω

∂y

∂ν
+ αy + b(x, y) = g on ∂Ω

(2.30)

where the operator L is given by

(2.27) Ly := −
n∑

i,j=1

(aijyxi)xj + c0y, aij, c0 ∈ L∞, c0 ≥ 0, aij = aji

and L is assumed to be uniformly elliptic in the sense that there is a constant θ > 0 such that

(2.28)
n∑

i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2 for almost all x ∈ Ω and all ξ ∈ Rn.

Moreover, we assume that 0 ≤ α ∈ L∞(∂Ω) and that the functions d : Ω×R→ R, and b : ∂Ω×R→
R satisfy

d(x, ·) is continuous and monotone increasing for a.a. x ∈ Ω,

b(x, ·) is continuous and monotone increasing for a.a. x ∈ ∂Ω,

d(·, y), b(·, y) measurable for all y ∈ R.
(2.31)

Under these assumptions the theory of maximal monotone operators and a technique of Stampacchia
can be applied to extend Theorem 2.47 to the semilinear elliptic equation (2.30), see for example [74].

THEOREM 2.48. Let Ω ⊂ Rn be open and bounded with Lipschitz-boundary, let c0 ∈ L∞(Ω), α ∈
L∞(∂Ω) be nonnegative with ‖c0‖L2(Ω) + ‖α‖L2(∂Ω) > 0 and let (2.28), (2.31) be satisfied. Moreover,
let r > n/2, s > n − 1, 2 ≤ n ≤ 3. Then (2.30), (2.27) has for any f ∈ Lr(Ω) and g ∈ Ls(∂Ω) a
unique weak solution y ∈ H1(Ω) ∩ C(Ω̄). There exists a constant C∞ > 0 with

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ CR(‖f‖Lr(Ω) + ‖g‖Ls(∂Ω) + 1),

where C∞ depends on Ω, α, c0 but not on f, g, b, d.

2.19. Gâteaux- and Fréchet Differentiability. We extend the notion of differentiability to oper-
ators between Banach spaces.

DEFINITION 2.49. Let F : U ⊂ X → Y be an operator with X, Y Banach spaces and U 6= ∅ open.

a) F is called directionally differentiable at x ∈ U if the limit

dF (x, h) = lim
t→0+

F (x+ th)− F (x)

t
∈ Y

exists for all h ∈ X . In this case, dF (x, h) is called directional derivative of F in the direction h.

b) F is called Gâteaux differentiable at x ∈ U if F is directionally differentiable at x and the
directional derivative F ′(x) : X 3 h 7→ dF (x, h) ∈ Y is bounded and linear, i.e., F ′(x) ∈
L(X, Y ).
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c) F is called Fréchet differentiable at x ∈ U if F is Gâteaux differentiable at x and if the following
approximation condition holds:

‖F (x+ h)− F (x)− F ′(x)h‖Y = o(‖h‖X) for ‖h‖X → 0.

d) If F is directionally-/G-/F-differentiable at every x ∈ V , V ⊂ U open, then F is called directionally-
/G-/F-differentiable on V .

Higher derivatives can be defined as follows:

If F is G-differentiable in a neighborhood V of x, and F ′ : V → L(X, Y ) is itself G-differentiable
at x, then F is called twice G-differentiable at x. We write F ′′(x) ∈ L(X,L(X, Y )) for the second
G-derivative of F at x. It should be clear now how the kth derivative is defined.

In the same way, we define F-differentiability of order k.

It is easy to see that F-differentiablity of F at x implies continuity of F at x. We say that F is k-times
continuously F-differentiable if F is k-times F-differentiable and F (k) is continuous.

We collect a couple of facts:

a) The chain rule holds for F-differentiable operators:

H(x) = G(F (x)), F, G F-differentiable at x and F (x), respectively

=⇒ H F-differentiable at x with H ′(x) = G′(F (x))F ′(x).

Moreover, if F is G-differentiable at x andG is F-differentiable at F (x), then H is G-differentiable
and the chain rule holds. As a consequence, also the sum rule holds for F- and G-differentials.

b) If F is G-differentiable on a neighborhood of x and F ′ is continuous at x then F is F-differentiable
at x.

c) If F : X × Y → Z is F-differentiable at (x, y) then F (·, y) and F (x, ·) are F-differentiable at x
and y, respectively. These derivatives are called partial derivatives and denoted by F ′x(x, y) and
F ′y(x, y), respectively. There holds (since F is F-differentiable)

F ′(x, y)(hx, hy) = F ′x(x, y)hx + F ′y(x, y)hy.

d) If F is G-differentiable in a neighborhood V of x, then for all h ∈ X with {x + th : 0 ≤ t ≤ 1} ⊂
V , the following holds:

‖F (x+ h)− F (x)‖Y ≤ sup
0<t<1

‖F ′(x+ th)h‖Y

If t ∈ [0, 1] 7→ F ′(x+ th)h ∈ Y is continuous, then

F (x+ h)− F (x) =

∫ 1

0

F ′(x+ th)h dx,

where the Y -valued integral is defined as a Riemann integral.
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We only prove the last assertion: As a corollary of the Hahn-Banach theorem, we obtain that for all
y ∈ Y there exists a y∗ ∈ Y ∗ with ‖y∗‖Y ∗ = 1 and

‖y‖Y = 〈y∗, y〉Y ∗,Y .
Hence,

‖F (x+ h)− F (x)‖Y = max
‖y∗‖Y ∗=1

d(1) with dy∗(t) = 〈y∗, F (x+ th)− F (x)〉Y ∗,Y .

By the chain rule for G-derivatives, we obtain that d is G-differentiable in a neighborhood of [0, 1]
with

d′y∗(t) = 〈y∗, F ′(x + th)h〉Y ∗,Y .
G-differentiability of d : (−ε, 1 + ε) → R means that d is differentiable in the classical sense. The
mean value theorem yields

〈y∗, F (x+ h)− F (x)〉Y ∗,Y = d(1) = dy∗(1)− dy∗(0) = d′y∗(τ) ≤ sup
0<t<1

d′y∗(t)

for appropriate τ ∈ (0, 1). Therefore,

‖F (x+ h)− F (x)‖Y = max
‖y∗‖Y ∗=1

dy∗(1) ≤ sup
‖y∗‖Y ∗=1

sup
0<t<1

〈y∗, F ′(x+ th)h〉Y ∗,Y

= sup
0<t<1

sup
‖y∗‖Y ∗=1

〈y∗, F ′(x + th)h〉Y ∗,Y = sup
0<t<1

‖F ′(x + th)h‖Y .

3. Existence of optimal controls

In the introduction we have discussed several examples of optimal control problems. We will now
consider the question whether there exists an optimal solution. To this purpose, we need a further
ingredient from functional analysis, the concept of weak convergence.

3.1. Weak convergence. In infinite dimensional spaces bounded, closed sets are no longer com-
pact. In order to obtain compactness results, one has to use the concept of weak convergence.

DEFINITION 3.1. Let X be a Banach space. We say that a sequence (xk) ⊂ X converges weakly to
x ∈ X , written

xk −⇀ x,

if
〈x∗, xk〉X∗,X → 〈x∗, x〉X∗,X as k →∞ ∀ x∗ ∈ X∗.

It is easy to check that strong convergence xk → x implies weak convergence xk −⇀ x. Moreover,
one can show:

THEOREM 3.2. i) Let X be a normed space and let (xk) ⊂ X be weakly convergent to x ∈ X . Then
(xk) is bounded.

ii) Let C ⊂ X be a closed convex subset of the normed space X . Then C is weakly closed.
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DEFINITION 3.3. A Banach space X is called reflexive if the mapping x ∈ X 7→ 〈·, x〉X∗,X ∈ (X∗)∗

is surjective, i.e., if for any x∗∗ ∈ (X∗)∗ there exists x ∈ X with

〈x∗∗, x∗〉(X∗)∗,X∗ = 〈x∗, x〉X∗,X ∀ x∗ ∈ X∗.

Remark: Note that for any x ∈ X the mapping x∗∗ := 〈·, x〉X∗,X is in (X∗)∗ with ‖x∗∗‖(X∗)∗ ≤ ‖x‖X ,
since

|〈x∗, x〉X∗,X| ≤ ‖x∗‖X∗‖x‖X .
One can show that actually ‖x∗∗‖(X∗)∗ = ‖x‖X . �

Remark: Lp is for 1 < p < ∞ reflexive, since we have the isometric isomorphisms (Lp)∗ = Lq,
1/p + 1/q = 1, and thus ((Lp)∗)∗ = (Lq)∗ = Lp. Moreover, any Hilbert space is reflexive by the
Riesz representation theorem. �
The following result is important.

THEOREM 3.4. (Weak sequential compactness) LetX be a reflexive Banach space. Then the following
holds

i) Every bounded sequence (xk) ⊂ X contains a weakly convergent subsequence, i.e., there
are (xki) ⊂ (xk) and x ∈ X with xki −⇀ x.

ii) Every bounded, closed and convex subset C ⊂ X is weakly sequentially compact, i.e., every
sequence (xk) ⊂ C contains a weakly convergent subsequence (xki) ⊂ (xk) with xki −⇀ x,
where x ∈ C.

For a proof see for example [3], [81].

THEOREM 3.5. (Lower semicontinuity) Let X be a Banach space. Then any continuous, convex
functional F : X → R is weakly lower semicontinuous, i.e.

xk −⇀ x =⇒ lim inf
k→∞

F (xk) ≥ F (x).

Finally, it is valuable to have mappings that map weakly convergent sequences to strongly convergent
ones.

DEFINITION 3.6. A linear operator A : X → Y between normed spaces is called compact if it maps
bounded sets to relatively compact sets, i.e.,

M ⊂ X bounded =⇒ AM ⊂ Y compact.

Since compact sets are bounded (why?), compact operators are automatically bounded and thus con-
tinuous. The connection to weak/strong convergence is as follows.

LEMMA 3.7. Let A : X → Y be a compact operator between normed spaces. Then, for all (xk) ⊂ X ,
xk −⇀ x, there holds

Axk → Ax.
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Proof. From xk −⇀ x and A ∈ L(X, Y ) we see that Axk −⇀ Ax. Since (xk) is bounded
(Theorem 3.2), there exists a bounded set M ⊂ X with x ∈ M and (xk) ⊂ M . Now assume
Axk 6→ Ax. Then there exist ε > 0 and a subsequence (Axk)K with ‖Axk − Ax‖Y ≥ ε for all k ∈ K.
Since AM is compact, the sequence (Axk)K possesses a convergent subsequence (Axk)K′ → y. The
continuity of the norm implies

‖y − Ax‖Y ≥ ε.

But since (Axk)K′ −⇀ Ax and (Axk)K′ → y we must have y = Ax, which is a contradiction. �

3.2. Existence result for a general problem. All linear-quadratic optimization problems in the
introduction can be converted to a linear-quadratic optimization problem of the form

min
(y,u)∈Y ×U

f(y, u)
def
=

1

2
‖Qy − qd‖2

H +
α

2
‖u‖2U

subject to Ay +Bu = g, u ∈ Uad, y ∈ Yad
(3.1)

where H,U are Hilbert spaces, Y, Z are Banach spaces and qd ∈ H , g ∈ Z, Y is reflexive, A ∈
L(Y, Z), B ∈ L(U,Z), Q ∈ L(Y,H) and the the following assumption holds.

ASSUMPTION 1.
(1) α ≥ 0, Uad ⊂ U is convex, closed and in the case α = 0 bounded.
(2) Yad ⊂ Y is convex and closed, such that (3.1) has a feasible point.
(3) A ∈ L(Y, Z) has a bounded inverse.

DEFINITION 3.8. A state-control pair (ȳ, ū) ∈ Yad × Uad is called optimal for (3.1), if Aȳ +Bū = g
and

f(ȳ, ū) ≤ f(y, u) ∀ (y, u) ∈ Yad × Uad, Ay +Bu = g.

We prove first the following existence result for (3.1).

THEOREM 3.9. Let assumption 1 hold. Then problem (3.1) has an optimal solution (ȳ, ū). If α > 0
then the solution is unique.

Proof. Denote the feasible set by

Wad := {(y, u) ∈ Y × U : (y, u) ∈ Yad × Uad, Ay +Bu = g} .
Since f ≥ 0 and Wad is nonempty, the infimum

f ∗ := inf
(y,u)∈Wad

f(y, u)

exists and hence we find a minimizing sequence (yk, uk) ⊂ Wad with

lim
k→∞

f(yk, uk) = f ∗.

The sequence (uk) is bounded, since by assumption either Uad is bounded or α > 0. In the latter case
the boundedness follows from

f(yk, uk) ≥
α

2
‖uk‖2U .
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Since, A ∈ L(Y, Z), B ∈ L(U,Z), and A−1 ∈ L(Z, Y ), this implies that also the state sequence (yk)
given by yk = A−1(g −Buk) is bounded. Hence,

(yk, uk) ⊂ Wad ∩ (B̄Y (r)× B̄U(r)) =: M

for r > 0 large enough, where B̄Y (r), B̄U(r) denote the closed balls of radius r in Y, U . By assumption
Yad×Uad is closed, convex and thus alsoWad is closed and convex. Thus, the setM is bounded, closed
and convex and consequently by Theorem 3.4 weakly sequentially compact. Therefore, there exists
a weakly convergent subsequence (yki, uki) ⊂ (yk, uk) and some (ȳ, ū) ∈ Wad with (yki, uki) −⇀
(ȳ, ū) as i→∞. Finally, (y, u) ∈ Y ×U → f(y, u) is obviously continuous and convex. We conclude
by Theorem 3.5 that

f ∗ = lim
i→∞

f(yki, uki) ≥ f(ȳ, ū) ≥ f ∗,

where the last inequality follows from (ȳ, ū) ∈ Wad. Therefore, (ȳ, ū) is the optimal solution of (3.1).
If α > 0 then u 7→ f(A−1(g − Bu), u) is strictly convex, which contradicts the existence of more
than one minimizer. �

Remark Actually, the reflexivity of Y is not needed. In fact, We can use that Ay + Bu = g implies
y = A−1(g − Bu) and thus the problem (3.1) is equivalent to

min
u∈U

f̂(u) s.t. u ∈ Ûad

with
f̂(u) = f(A−1(g − Bu), u), Ûad =

{
u ∈ U : u ∈ Uad, A−1(g −Bu) ∈ Yad

}
.

It is easy to see that f̂ is continuous and convex and Ûad is closed and convex. An argumentation
as before shows that a minimizing sequence is bounded and thus contains a weakly convergent sub-
sequence convergent to some ū ∈ Ûad. Lower semicontinuity implies the optimality of ū. Setting
ȳ = A−1(g − Bū), we obtain a solution (ȳ, ū) of (3.1).

3.3. Existence results for nonlinear problems. The existence result can be extended to nonlin-
ear problems

min
(y,u)∈Y×U

f(y, u) subject to E(y, u) = 0, u ∈ Uad, y ∈ Yad,(3.2)

f : Y × U → R, E : Y × U → Z continuous, U and Y reflexive Banach spaces.

Similarly as above, existence can be shown under the following assumptions.

ASSUMPTION 2.
(1) Uad ⊂ U is convex, bounded and closed.
(2) Yad ⊂ Y is convex and closed, such that (3.2) has a feasible point.
(3) The state equation E(y, u) = 0 has a continuous, bounded solution operator u ∈ Uad 7→

y(u) ∈ Y .
(4) (y, u) ∈ Y × U 7→ E(y, u) ∈ Z is continuous under weak convergence.
(5) f is sequentially weakly lower semicontinuous.
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To show 4., one uses usually compact embeddings Y ⊂⊂ Ỹ to convert weak convergence in Y to
strong convergence in Ỹ .

EXAMPLE 3.10. To show 4. for the semilinear state equation

y ∈ Y := H1(Ω) 7→ E(y, u) := −∆y + y3 − u ∈ Y ∗,
one can proceed as follows. Let Ω ⊂ Rn open and bounded with Lipschitz boundary. Then the imbed-
ding Y := H1(Ω) ⊂⊂ L5(Ω) is compact for n = 2, 3. Therefore, yk −⇀ y weakly in Y implies
yk → y strongly in L5(Ω) and thus y3

k → y3 strongly in L5/3(Ω) = L5/2(Ω)∗ ⊂ Y ∗ (see below), and
thus strongly in Y ∗.

To prove y3
k → y3 in L5/3(Ω), we first observe that y3

k, y
3 ∈ L5/3(Ω) obviously holds. Next, we prove

|b3 − a3| ≤ 3(|a|2 + |b|2)|b− a|.
In fact, b3 − a3 = φ(1)− φ(0) with φ(t) = (a+ t(b− a))3. Hence,

|b3 − a3| =
∣∣∣∣
∫ 1

0

φ′(t) dt

∣∣∣∣ ≤
∫ 1

0

|φ′(t)| dt.

Now
|φ′(t)| = 3|(a+ t(b− a))2(b− a)| ≤ 3 max(a2, b2)|b− a| ≤ 3(a2 + b2)|b− a|.

Therefore,

‖y3
k − y3‖L5/3 ≤ 3‖(y2

k + y2)|yk − y|‖L5/3 ≤ ‖y2
k|yk − y|‖L5/3 + ‖y2|yk − y|‖L5/3 .

We estimate, using the Hölder inequality with p = 3/2 and q = 3,

‖v2w‖L5/3 = ‖|v|10/3|w|5/3‖3/5

L1 ≤ ‖|v|10/3‖3/5

L3/2‖|w|5/3‖3/5L3 = ‖|v|5‖2/5

L1 ‖|w|5‖1/5

L1 = ‖v‖2L5‖w‖L5 .

This shows

‖y3
k − y3‖L5/3 ≤ ‖y2

k|yk − y|‖L5/3+‖y2|yk − y|‖L5/3 . ≤ (‖yk‖2
L5+‖y‖2L5)‖yk − y‖L5 → 2‖y‖2L5 ·0 = 0.

3.4. Applications.

3.5. Distributed control of elliptic equations. We apply the result first to the distributed optimal
control of a steady temperature distribution with boundary temperature zero.

min f(y, u)
def
=

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,

(3.3)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

The form of f and the assumptions on a, b suggest the choice U = L2(Ω) and

Uad = {u ∈ U : a ≤ u ≤ b} .
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Then Uad ⊂ U is bounded, closed and convex.

We know from Theorem 2.44 that the weak formulation of the boundary value problem

−∆y = γ u on Ω,

y = 0 on ∂Ω,

can be written in the form

Find y ∈ Y := H1
0 (Ω) : a(y, v) = (γu, v)L2(Ω) ∀ v ∈ Y.

with a(y, v) =
∫

Ω
∇y · ∇v dx, or short

Ay +Bu = 0,

where A ∈ L(Y, Y ∗), is the operator representing a, see (2.17), and B ∈ L(U, Y ∗) is defined through
Bu = −(γu, ·)L2(Ω). By Theorem 2.44, A ∈ L(Y, Y ∗) has a bounded inverse. Therefore, Assumption
1 is satisfied with the choice Z = Y ∗. Finally, setting g = 0 and Q = IY,U with the trivial, continuous
imbedding IY,U : y ∈ Y → y ∈ U , (3.3) is equivalent to (3.1).

4. Reduced problem, sensitivities and adjoints

We consider again optimal control problems of the form

(4.1) min
y∈Y,u∈U

f(y, u) subject to E(y, u) = 0, (y, u) ∈ Wad,

where f : Y × U → R is the objective function, E : Y × U → Z is an operator between Banach
spaces, and Wad ⊂ W := Y × Z is a nonempty closed set.

We assume that f and E are continuously F-differentiable and that the state equation

E(y, u) = 0

possesses for each (“reasonable”) u ∈ U a unique corresponding solution y(u) ∈ Y . Thus, we have a
solution operator u ∈ U 7→ y(u) ∈ Y . Furthermore, we assume that E ′y(y(u), u) ∈ L(Y, Z) is contin-
uously invertible. Then the implicit function theorem ensures that y(u) is continuously differentiable.
An equation for the derivative y′(u) is obtained by differentiating the equation E(y(u), u) = 0 with
respect to u:

E ′y(y(u), u)y′(u) + E ′u(y(u), u) = 0.

Inserting y(u) in (4.1), we obtain the reduced problem

(4.2) min
u∈U

f̂(u)
def
= f(y(u), u) subject to u ∈ Ûad def

= {u ∈ U : (y(u), u) ∈ Wad} .

It will be important to investigate the possibilities of computing the derivative of the reduced objective
function f̂ .

Essentially, there are two methods to do this:

• The sensitivity approach,

• The adjoint approach.
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4.1. Sensitivity approach. Sensitivities are directional derivatives. For u ∈ U and a direction
s ∈ U , the chain rule yields for the sensitivity of f̂ :

df̂(u, s) = 〈f̂(u), s〉U∗,U = 〈f ′y(y(u), u), y′(u)s〉Y ∗,Y + 〈f ′u(y(u), u), s〉U∗,U .
In this expression, the sensitivity dy(u, s) = y ′(u)s appears. Differentiating E(y(u), u) = 0 in the
direction s yields

E ′y(y(u), u)y′(u)s+ E ′u(y(u), u)s = 0.

Hence, the sensitivity δsy = dy(u, s) is given as the solution of the linearized state equation

E ′y(y(u), u)δsy = −E ′u(y(u), u)s.

Therefore, to compute the directional derivative df̂(u, s) = 〈f̂(u), s〉U∗,U via the sensitivity approach,
the following steps are required:

1. Compute the sensitivity δsy = dy(u, s) by solving

(4.3) E ′y(y(u), u)δsy = −E ′u(y(u), u)s.

2. Compute df̂(u, s) = 〈f̂ ′(u), s〉U∗,U via

df̂(u, s) = 〈f ′y(y(u), u), δsy〉Y ∗,Y + 〈f ′u(y(u), u), s〉U∗,U .

This procedure is expensive if the whole derivative f̂ ′(u) is required, since this means that for a basis
B of U , all the directional derivatives

df̂(u, b), b ∈ B,
have to be computed. Each of them requires the solution of one linearized state equation (4.3) with
s = b.

This is a effort that grows linearly in the dimension of U .

Actually, computing all sensitivities of δby = y′(u)b, b ∈ B, is equivalent to computing the whole
operator y′(u). As we will see now, much less is needed for the derivative of f̂ .

4.2. Adjoint approach. We now derive a more efficient way of representing the derivative of f̂ .
From

〈f̂ ′(u), s〉U∗,U = 〈f ′y(y(u), u), y′(u)s〉Y ∗,Y + 〈f ′u(y(u), u), s〉U∗,U
= 〈y′(u)∗f ′y(y(u), u), s〉U∗,U + 〈f ′u(y(u), u), s〉U∗,U

we see that
f̂ ′(u) = y′(u)∗f ′y(y(u), u) + f ′u(y(u), u).

Therefore, not the operator y′(u) ∈ L(U, Y ), but only the vector y′(u)∗f ′y(y(u), u) ∈ U∗ is really
required.

Since
y′(u)∗f ′y(y(u), u) = −E ′u(y(u), u)∗E ′y(y(u), u)−∗f ′y(y(u), u),
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it follows that

y′(u)∗f ′y(y(u), u) = E ′u(y(u), u)∗p(u),

where the adjoint state p = p(u) ∈ Z∗ solves the

Adjoint Equation:

(4.4) E ′y(y(u), u)∗p = −f ′y(y(u), u).

We thus have

f̂ ′(u) = E ′u(y(u), u)∗p(u) + f ′u(y(u), u).

The derivative f̂ ′(u) can thus be computed via the adjoint approach as follows:

1. Compute the adjoint state by solving the adjoint equation

E ′y(y(u), u)∗p = −f ′y(y(u), u).

2 Compute f̂ ′(u) via

f̂ ′(u) = E ′u(y(u), u)∗p(u) + f ′u(y(u), u).

4.3. Application to a linear-quadratic optimal control problem. We consider the linear-quadratic
optimal control problem

min
(y,u)∈Y×U

f(y, u)
def
=

1

2
‖Qy − qd‖2

H +
α

2
‖u‖2U

subject to Ay +Bu = g, u ∈ Uad, y ∈ Yad
(4.5)

where H,U are Hilbert spaces, Y, Z are Banach spaces and qd ∈ H , g ∈ Z, A ∈ L(Y, Z), B ∈
L(U,Z), Q ∈ L(Y,H) andlet Assumption 1 hold.

E(y, u) = Ay +Bu− g,Wad = Yad × Uad.

By assumption, there exists a continuous affine linear solution operator

U 3 u 7→ y(u) = A−1(g − Bu) ∈ Y.

For the derivatives we have

〈f ′y(y, u), sy〉Y ∗,Y = (Qy − qd, Qsy)H ,= 〈Q∗(Qy − qd), sy〉Y ∗,Y
〈f ′u(y, u), su〉U∗,U = α(u, su)U ,

E ′y(y, u)sy = Asy,

E ′u(y, u)sy = Bsu,
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Therefore,

f ′y(y, u) = (Qy − qd, Q·)H
f ′u(y, u) = α(u, ·)U ,
E ′y(y, u) = A,

E ′u(y, u) = B.

If we choose the Riesz representations U ∗ = U , H∗ = H , then

f ′y(y, u) = (Qy − qd, Q·)H = 〈Qy − qd, Q·〉H∗,H = 〈Q∗(Qy − qd), ·〉Y ∗,Y = Q∗(Qy − qd),
f ′u(y, u) = α(u, ·)U = αu.

The reduced objective function is

f̂(u) = f(y(u), u) =
1

2
‖Q(A−1(g − Bu))− qd‖2

H +
α

2
‖u‖2U .

For evaluation of f̂ , we first solve the state equation

Ay +Bu = g

to obtain y = y(u) and then we evaluate f(y, u). In the following, let y = y(u).

Sensitivity Approach:

For s ∈ U , we obtain df̂(u, s) = 〈f̂ ′(u), s〉U∗,U by first solving the linearized state equation

Aδsy = −Bs
for δsy and then setting

df̂(u, s) = ((Qy − qd), Qδsy)H + α(u, s)U .

Adjoint Approach:

We obtain f̂ ′(u) by first solving the adjoint equation

A∗p = −((Qy − qd);Q·)H (= −Q∗(Qy − qd) if H∗ = H)

for the adjoint state p = p(u) ∈ Z∗ and then setting

f̂ ′(u) = B∗p+ α(u, ·)U (= B∗p+ αu if U∗ = U).

Next, let us consider the concrete example of the elliptic control problem

min f(y, u)
def
=

1

2

∫

Ω

(y(x)− yd(x))2 dx+
α

2

∫

Ω

u(x)2 dx

subject to −∆y = γ u on Ω,

∂y

∂ν
=
β

κ
(ya − y) on ∂Ω,

a ≤ u ≤ b on Ω.

The appropriate spaces are
U = L2(Ω), Y = H1(Ω)
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and we assume

a, b ∈ U, yd ∈ L2(Ω), α > 0, ya ∈ L2(∂Ω), γ ∈ L∞(Ω) \ {0}, γ ≥ 0.

The coefficient γ weights the control and ya can be interpreted as the surrounding temperature in the
case of the heat equation. β > 0 and κ > 0 are coefficients.

The weak formulation of the state equation is

y ∈ Y, a(y, v) = (γu, v)L2(Ω) + ((β/κ)ya, v)L2(∂Ω) ∀ v ∈ Y = H1(Ω)

with

a(y, v) =

∫

Ω

∇yT∇v dx+ ((β/κ)y, v)L2(∂Ω).

Now let Z = Y ∗, H = L2(Ω) and

• A ∈ L(Y, Y ∗) the operator induced by a, i.e., Ay = a(y, ·),

• B ∈ L(U, Y ∗), Bu = −(γu, ·)L2(Ω),

• g ∈ Y ∗, g = ((β/κ)ya, ·)L2(∂Ω),

• Uad = {u ∈ U : a ≤ u ≤ b on Ω},
• Q ∈ L(Y,H), Qy = y.

Then, we arrive at a linear quadratic problem of the form (4.5).

We compute the adjoints. Note that all spaces are Hilbert spaces and thus reflexive. In particular, we
identify the dual of U = L2 with U by working with 〈·, ·〉U∗,U = (·, ·)L2(Ω). We do the same with
H = L2 We thus have

A∗ ∈ L(Z∗, Y ∗) = L(Y ∗∗, Y ∗) = L(Y, Y ∗),

B∗ ∈ L(Z∗, U∗) = L(Y ∗∗, U) = L(Y, U),

Q∗ ∈ L(H∗, Y ∗) = L(H, Y ∗).

For A∗ we obtain

〈A∗v, w〉Y ∗,Y = 〈v, Aw〉Z∗,Z = 〈Aw, v〉Y ∗,Y = a(w, v) = a(v, w) = 〈Av,w〉Y ∗,Y ∀ v, w ∈ Y.
Here, we have used that obviuously a is a symmetric bilinear form. Therefore, A∗ = A.

For B∗ we have

(B∗v, w)U = 〈B∗v, w〉U∗,U = 〈v, Bw〉Z∗,Z = 〈v, Bw〉Y,Y ∗ = (v,−γw)L2

= −(γv, w)U ∀ v ∈ Y, w ∈ U.
Hence B∗v = −γv. Finally, for Q∗ we obtain

〈Q∗v, w〉Y ∗,Y = 〈v,Qw〉H∗,H = (v, w)L2(Ω).

Therefore, Q∗v = (v, ·)L2(Ω).
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This means that

f ′y(y, u) = (Q∗(Qy − yd), ·)L2(Ω) = (y − yd, ·)L2(Ω).

Taking all together, the adjoint equation thus reads

Ap = −(y − yd, ·)L2(Ω),

which is the weak form of

−∆p = −(y − yd) on Ω,

∂p

∂ν
+
β

κ
p = 0 on ∂Ω,

The adjoint gradient representation then is

f̂ ′(u) = B∗p(u) + f ′u(y(u), u) = −γp + αu.

4.4. A different view of the adjoint approach. The adjoint gradient representation can also be
derived in a different way. Consider (4.1) and define the Lagrange function L : Y × U × Z ∗ → R,

L(y, u, p) = f(y, u) + 〈p, E(y, u)〉Z∗,Z.

Inserting y = y(u) gives, for arbitrary p ∈ Z∗,

f̂(u) = f(y(u), u) = f(y(u), u) + 〈p, E(y(u), u)〉Z∗,Z = L(y(u), u, p).

Differentaiting this, we obtain

(4.6) 〈f̂ ′(u), s〉U∗,U = 〈L′y(y(u), u, p), y′(u)s〉Y ∗,Y + 〈L′u(y(u), u, p), s〉U∗,U .

Now we choose a special p = p(u), namely such that

(4.7) L′y(y(u), u, p) = 0.

This is nothing else but the adjoint equation. In fact,

〈L′y(y, u, p), d〉Y ∗,Y = 〈f ′y(y, u), d〉Y ∗,Y + 〈p, E ′y(y, u)d〉Z∗,Z = 〈f ′y(y, u) + E ′y(y, u)∗p, d〉Y ∗,Y .

Therefore,

L′y(y(u), u, p) = f ′y(y(u), u) + E ′y(y(u), u)∗p.

Now, choosing p = p(u) according to (4.7), we obtain from (4.6) that

(4.8) f̂ ′(u) = L′u(y(u), u, p(u)) = f ′u(y(u), u) + E ′u(y(u), u)∗p(u).

This is exactly the adjoint gradient representation.
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4.5. Second derivatives. We can use the Lagrange function based approach to derive the second
derivative of f̂ .

To this end, assume that f and E are twice continuously differentiable. As already noted, for all
p ∈ Z∗ we have the identity

f̂(u) = f(y(u), u) = L(y(u), u, p).

Differentiating this in the direction s1 ∈ U yields (see above)

〈f̂ ′(u), s1〉U∗,U = 〈L′y(y(u), u, p), y′(u)s1〉Y ∗,Y + 〈L′u(y(u), u, p), s1〉U∗,U .
Differentiating this once again in the direction s2 ∈ U gives

〈f̂ ′′(u)s2, s1〉U∗,U = 〈L′y(y(u), u, p), y′′(u)(s1, s2)〉Y ∗,Y
+ 〈L′′yy(y(u), u, p)y′(u)s2, y

′(u)s1〉Y ∗,Y
+ 〈L′′yu(y(u), u, p)s2, y

′(u)s1〉Y ∗,Y
+ 〈L′′uy(y(u), u, p)y′(u)s2, s1〉U∗,U
+ 〈L′uu(y(u), u, p)s2, s1〉U∗,U .

Now we choose p = p(u), i.e., L′y(y(u), u, p(u)) = 0. Then the term containing y ′′(u) drops out and
we arrive at

〈f̂ ′′(u)s2, s1〉U∗,U = 〈L′′yy(y(u), u, p(u))y′(u)s2, y
′(u)s1〉Y ∗,Y

+ 〈L′′yu(y(u), u, p(u))s2, y
′(u)s1〉Y ∗,Y

+ 〈L′′uy(y(u), u, p(u))y′(u)s2, s1〉U∗,U
+ 〈L′uu(y(u), u, p(u))s2, s1〉U∗,U .

This shows

f̂ ′′(u) = y′(u)∗L′′yy(y(u), u, p(u))y′(u) + y′(u)∗L′′yu(y(u), u, p(u))

+ L′′uy(y(u), u, p(u))y′(u) + L′′uu(y(u), u, p(u))(4.9)

= T (u)∗L′′ww(y(u), u, p(u))T (u)

with

T (u) =

(
y′(u)

IU

)
∈ L(U, Y × U), L′′ww =

(
L′′yy L′′yu
L′′uy L′′uu

)
.

Here IU ∈ L(U, U) is the identity.

Note that y′(u) = −E ′y(y(u), u)−1E ′u(y(u), u) and thus

(4.10) T (u) =

(
y′(u)

IU

)
=

(−E ′y(y(u), u)−1E ′u(y(u), u)

IU

)
.

Usually, the Hessian representation (4.9) is not used to compute the whole operator f̂ ′′(u). Rather, it
is used to compute operator-vector-products f̂ ′′(u)s as follows:
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1. Compute the sensitivity

δsy = y′(u)s = −E ′y(y(u), u)−1E ′u(y(u), u)s.

This requires one linearized state equation solve.

2. Compute (
h1

h2

)
=

(
L′′yy(y(u), u, p(u))δsy + L′′yu(y(u), u, p(u))s

L′′uy(y(u), u, p(u))δsy + L′′uu(y(u), u, p(u))s

)
.

3. Compute
h3 = y′(u)∗h1 = −E ′u(y(u), u)∗E ′y(y(u), u)−∗h1.

This requires and adjoint equation solve.

4. Set f̂ ′′(u)s = h2 + h3.

This procedure can be used to apply iterative solvers to the Newton equation

f̂ ′′(uk)sk = −f̂ ′(uk).
Example:

For the linear-quadratic optimal control problem (4.5) with U ∗ = U and H∗ = H we have

L(y, u, p) = f(y, u) + 〈p, Ay +Bu〉Z∗,Z ,
L′y(y, u, p) = Q∗(Qy − qd) + A∗p,

L′u(y, u, p) = αu+B∗p,

L′′yy(y, u, p) = Q∗Q,

L′′yu(y, u, p) = 0,

L′′yu(u, y, p) = 0,

L′′uu(y, u, p) = αIU .

From this, all the steps in the above algorithm can be derived easily.

5. Optimality conditions

5.1. Optimality conditions for simply constrained problems. We consider the problem

(5.1) min
w∈W

f(w) s.t. w ∈ S,

where W is a Banach space, f : W → R is Gâteaux-differentiable and S ⊂ W is nonempty, closed,
and convex.

THEOREM 5.1. Let W be a Banach space and S ⊂ W be nonempty and convex. Furthermore, let
f : V → R be defined on an open neighborhood of S. Let w̄ be a local solution of (5.1) at which f is
Gâteaux-differentiable. Then the following optimality condition holds:

(5.2) w̄ ∈ S, 〈f ′(w̄), w − w̄〉W ∗,W ≥ 0 ∀ w ∈ S.
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If f is convex on S, the condition (5.2) is necessary and sufficient for global optimality.

If, in addition, f is strictly convex on S, then there exists at most one solution of (5.1), or, equivalently,
of (5.2).

If W is reflexive, S is closed and convex, and f is convex and continuous with

lim
w∈S,‖w‖W→∞

f(w) =∞,

then there exists a (global = local) solution of (5.1).

Remark: A condition of the form (5.2) is called variational inequality.

Proof. Let w ∈ S be arbitrary. By the convexity of S we have w(t) = w̄ + t(w − w̄) ∈ S for all
t ∈ [0, 1]. Now the optimality of w̄ yields

f(w̄ + t(w − w̄))− f(w̄) ≥ 0 ∀ t ∈ [0, 1]

and thus

〈f ′(w̄), w − w̄〉W ∗,W = lim
t→0+

f(w̄ + t(w − w̄))− f(w̄)

t
≥ 0.

Since w ∈ S was arbitrary, the proof is complete.

Now let f be convex. Then

(5.3) f(w)− f(w̄) ≥ 〈f ′(w̄), w − w̄〉W ∗,W ∀ w ∈ S.
In fact, for all t ∈ (0, 1],

f(w̄ + t(w − w̄)) ≤ (1− t)f(w̄) + tf(w).

Hence,

f(w)− f(w̄) =
f(w̄ + t(w − w̄))− f(w̄)

t

t→0+

−→ 〈f ′(w̄), w − w̄〉W ∗,W .

Now from (5.2) and (5.3) it follows that

f(w)− f(w̄) ≥ 〈f ′(w̄), w − w̄〉W ∗,W ≥ 0 ∀ w ∈ S.
Thus, w̄ is optimal.

If f is strictly convex and w̄1, w̄2 are two global solutions, the point (w̄1 + w̄2)/2 ∈ S would be a
better solution, unless w̄1 = w̄2.

Now let the assumptions of the last assertion hold and let (wk) ∈ S be a minimizing sequence. Then
(wk) is bounded (otherwise f(wk) → ∞) and thus (wk) contains a weakly convergent subsequence
(wk)K −⇀ w̄. Since S is convex and closed, it is weakly closed and thus w̄ ∈ S. From the continuity
and convexity of f we conclude that f is weakly sequentially lower semicontinuous and thus

f(w̄) ≤ lim
K3k→∞

f(wk) = inf
w∈S

f(w).

Thus, w̄ solves the minimization problem. �
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In the case of a closed convex set S in a Hilbert space W , we can rewrite the variational inequality in
the form

w̄ − P (w̄ − γ∇f(w)) = 0

where γ > 0 is a fixed parameter and ∇f(w) ∈ W is the Riesz representation of f ′(w) ∈ W ∗.

To prove this, we need some knowledge about the projection onto closed convex sets.

LEMMA 5.2. Let S ⊂ W be a nonempty closed convex subset of the Hilbert space W and denote by
P : W → S the projection onto S, i.e.,

P (w) ∈ S, ‖P (w)− w‖W = min
v∈S
‖v − w‖W ∀ w ∈ W.

Then:

a) P is well-defined.

b) For all w, z ∈ W there holds:

z = P (w) ⇐⇒
z ∈ S, (w − z, v − z)W ≤ 0 ∀ v ∈ S.

c) P is nonexpansive, i.e.,

‖P (v)− P (w)‖W ≤ ‖v − w‖W ∀ v, w ∈ W.

d) P is monotone, i.e.,
(P (v)− P (w), v − w)W ≥ 0 ∀ v, w ∈ W.

Furthermore, equality holds if and only if P (v) = P (w).

e) For all w ∈ S and d ∈ W , the function

φ(t)
def
=

1

t
‖P (w + td)− w‖W , t > 0,

is nonincreasing.

Proof. a):

The function W 3 w 7→ ‖w‖2
W is strictly convex: For all w1, w2 ∈ W , w1 6= w2, and all t ∈ (0, 1);

‖w1 + t(w2 − w1)‖2
W = ‖w1‖2

W + 2t(w1, w2 − w1)W + t2‖w2 − w1‖2
W =: p(t).

The function on the right is a strictly convex parabola. Hence,

‖w1 + t(w2 − w1)‖2
W = p(t) < (1− t)p(0) + tp(1) = (1− t)‖w1‖2

2 + t‖w2‖2
2.

Therefore, for all w ∈ W , the function

f(v) =
1

2
‖v − w‖2W
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is strictly convex. Furthermore, it tends to∞ as ‖v‖W →∞. Hence, by Theorem 5.1, the problem

min
v∈S

f(v)

possesses a unique solution v̄, and thus P (w) = v̄ is uniquely defined.

b):

The function f defined above is obviously F-differentiable with

〈f ′(v), s〉W ∗,W = (v − w, s)W ∀ s ∈ W.

Since P (w) = v̄ minimizes f on S, we have by Theorem 5.1 that z = P (w) if and only if z ∈ S and

z ∈ S, 〈f ′(z), v − z〉W ∗,W = (z − w, v − z)W ≥ 0 ∀ v ∈ S.

c):

We use b):

(v − P (v), P (w)− P (v))W ≤ 0,

(w − P (w), P (v)− P (w))W ≤ 0.

Adding these two inequalities gives

(w − v + P (v)− P (w), P (v)− P (w)) = (w − v, P (v)− P (w))W + ‖P (v)− P (w)‖2W ≤ 0.

Hence, by the Cauchy-Schwarz inequality

(5.4) ‖P (v)− P (w)‖2W ≤ (v − w, P (v)− P (w))W ≤ ‖v − w‖W‖P (v)− P (w)‖W .

d):

The assertion follows immediately from the first inequality in (5.4).

e):

We follow [CM87]. Let t > s > 0. If ‖P (w + td)− w‖W ≤ ‖P (w + sd)− w‖W then obviously
φ(s) > φ(t).

Now let ‖P (w + td)− w‖W > ‖P (w + sd)− w‖W .

Using the Cauchy-Schwarz inequality, for any u, v ∈ W we have

‖v‖W (u, u− v)W − ‖u‖W (v, u− v)W

= ‖v‖W‖u‖
2
W − ‖v‖W (u, v)W − ‖u‖W (v, u)W + ‖u‖W‖v‖

2
W

≥ ‖v‖W‖u‖2W − ‖v‖W‖u‖W‖v‖W − ‖u‖W‖v‖W‖u‖W + ‖u‖W‖v‖2W = 0.



48 1. ANALYTICAL BACKGROUND AND OPTIMALITY THEORY

Now, set u := P (w + td)− w, v := P (w + sd)− w, and wτ = w + τd. Then

(u, u− v)W − (td, P (wt)− P (ws))W = (P (wt)− w − td, P (wt)− P (ws))W

= (P (wt)− wt, P (wt)− P (ws))W ≤ 0,

(v, u− v)W − (sd, P (wt)− P (ws))W = (P (ws)− w − sd, P (wt)− P (ws))W

= (P (ws)− ws, P (wt)− P (ws))W ≥ 0.

Thus,

0 ≤ ‖v‖W (u, u− v)W − ‖u‖W (v, u− v)W

≤ ‖v‖W (td, P (wt)− P (ws))W − ‖u‖W (sd, P (wt)− P (ws))W

= (t‖v‖W − s‖u‖W )(d, P (wt)− P (ws))W .

Now, due to the monotonicity of P ,

(d, P (wt)− P (ws))W =
1

t− s(wt − ws, P (wt)− P (ws))W > 0,

since P (wt) 6= P (ws). Therefore,

0 ≤ t‖v‖W − s‖u‖W = ts(φ(s)− φ(t)).

�
LEMMA 5.3. Let W be a Hilbert space, S ⊂ W be nonempty, closed, and convex. Furthermore, let
P denote the projection onto S. Then, for all y ∈ W and all γ > 0, the following conditions are
equivalent:

w ∈ S, (y, v − w)W ≥ 0 ∀ v ∈ S.(5.5)

w − P (w − γy) = 0.(5.6)

Proof. Let (5.5) hold. Then with wγ = w − γy we have

(wγ − w, v − w)W = −γ(y, v − w)W ≤ 0 ∀ v ∈ S.
By Lemma 5.2 b), this implies w = P (wγ) as asserted in (5.6).

Conversely, let (5.6) hold. Then with the same notation as above we obtain w = P (wγ) ∈ S. Further-
more, Lemma 5.2 b) yields

(y, v − w)W = −1

γ
(wγ − w, v − w) ≥ 0 ∀ v ∈ S.

�
COROLLARY 5.4. Let W be a Hilbert space and S ⊂ W be nonempty, closed, and convex. Further-
more, let f : V → R be defined on an open neighborhood of S. Let w̄ be a local solution of (5.1) at
which f is Gâteaux-differentiable. Then the following optimality condition holds:

(5.7) w̄ = P (w̄ − γ∇f(w̄))

Here, γ > 0 is arbitrary but fixed and∇f(w) ∈ W denotes the Riesz-representation of f ′(w) ∈ W ∗.
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5.2. Optimality conditions for control-constrained problems. We consider a general possibly
nonlinear problem of the form

min
(y,u)∈Y×U

f(y, u) subject to E(y, u) = 0, u ∈ Uad.(5.8)

We make the

ASSUMPTION 3.
(1) Uad ⊂ U is nonempty and convex.
(2) f : Y × U → Rand E : Y × U → Z are continuously Fréchet differentiable and U , Y , Z

are Banach spaces.
(3) For all u ∈ V in a neighborhood V ⊂ U of Uad, the state equationE(y, u) = 0 has a unique

solution y = y(u) ∈ Y .
(4) E ′y(y(u), u) ∈ L(Y, Z) has a bounded inverse for all u ∈ Uad.

Obviously, the general linear-quadratic optimization problem

min
(y,u)∈Y ×U

f(y, u)
def
=

1

2
‖Qy − qd‖2

H +
α

2
‖u‖2U

subject to Ay +Bu = g, u ∈ Uad,
(5.9)

is a special case of (5.8), where H,U are Hilbert spaces, Y, Z are Banach spaces and qd ∈ H , g ∈ Z,
A ∈ L(Y, Z), B ∈ L(U,Z), Q ∈ L(Y,H). Moreover, Assumption 1 ensures Assumption 3, since
E ′y(y, u) = A.

5.3. A general first order optimality condition. Now consider problem (5.8) and let Assump-
tion 3 hold. Then we can formulate the reduced problem

(5.10) min
u∈U

f̂(u) s.t. u ∈ Uad

with the reduced objective functional

f̂(u) := f(y(u), u),

where V 3 u 7→ y(u) ∈ Y is the solution operator of the state equation. We have the following
general result.

THEOREM 5.5. Let Assumption 3 hold. If ū is a local solution of the reduced problem (5.10) then
ū ∈ Uad and ū satisfies the variational inequality

(5.11) 〈f̂ ′(ū), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad.

Proof. We can directly apply Theorem 5.1. �

Depending on the structure of Uad the variational inequality (5.11) can be expressed in a more conve-
nient form. We show this for the case of box constraints.
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LEMMA 5.6. Let U = L2(Ω), a, b ∈ L2(Ω), a ≤ b, and Uad be given by

Uad =
{
u ∈ L2(Ω) : a ≤ u ≤ b

}

We work with U ∗ = U write ∇f̂(u) for the derivative to emphasize that this is the Riesz representa-
tion. Then the following conditions are equivalent:

i) ū ∈ Uad, (∇f̂(ū), u− ū)U ≥ 0 ∀ u ∈ Uad.

ii) ū ∈ Uad, ∇f̂(ū)(x)





= 0, if a(x) < ū(x) < b(x),

≥ 0, if a(x) = ū(x) < b(x),

≤ 0, if a(x) < ū(x) = b(x),

for a.a. x ∈ Ω.

iii) There are z̄a, z̄b ∈ U∗ = L2(Ω) with

∇f̂(ū) + z̄b − z̄a = 0,

ū ≥ a, z̄a ≥ 0, z̄a (ū− a) = 0,

ū ≤ b, z̄b ≥ 0, z̄b (b− ū) = 0.

iv) For any γ > 0: ū = PUad(ū− γ∇f̂(ū)), with PUad(u) = min(max(a, u), b).

Proof. ii) =⇒ i): If ∇f̂(ū) satisfies ii) then it is obvious that ∇f̂(ū) (u − ū) ≥ 0 a.e. for all
u ∈ Uad and thus

(∇f̂(ū), u− ū)U =

∫

Ω

∇f̂(ū)(u− ū) dx ≥ 0 ∀ u ∈ Uad.

i) =⇒ ii): Clearly, ii) is the same as

∇f̂(ū)(x)

{
≥ 0 a.e. on Ia = {x : a(x) ≤ ū(x) < b(x)}
≤ 0 a.e. on Ib = {x : a(x) < ū(x) ≤ b(x)}

Assume this is not true. Then, without loss of generality, there exists a setM ⊂ Ia of positive measure
with ∇f̂(ū)(x) < 0 on M . Now choose u = ū + 1M (b − ū). Then u ∈ Uad, u − ū > 0 on M and
u− ū = 0 elsewhere. Hence, we get the contradiction

(∇f̂(ū), u− ū)U =

∫

M

∇f̂(ū)︸ ︷︷ ︸
<0

(b− ū)︸ ︷︷ ︸
>0

dx < 0.

ii) =⇒ iii): Let z̄a = max(∇f̂(ū), 0), z̄b = max(−∇f̂(ū), 0). Then a ≤ ū ≤ b and z̄a, z̄b ≥ 0 hold
trivially. Furthermore,

ū(x) > a(x) =⇒ ∇f̂(ū)(x) ≤ 0 =⇒ z̄a(x) = 0,

ū(x) < b(x) =⇒∇f̂(ū)(x) ≥ 0 =⇒ z̄b(x) = 0.
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iii) =⇒ ii):

a(x) < ū(x) < b(x) =⇒ z̄a = z̄b = 0 =⇒ ∇f̂(ū) = 0,

a(x) = ū(x) < b(x) =⇒ z̄b = 0 =⇒ ∇f̂(ū) = z̄a ≥ 0,

a(x) < ū(x) = b(x) =⇒ z̄a = 0 =⇒ ∇f̂(ū) = −z̄b ≤ 0.

ii)⇐⇒ iv): This is easily verified.

Alternatively, we can use Lemma 5.3 to prove the equivalence of i) and iv). �

5.4. Necessary first order optimality conditions. Next, we use the adjoint representation of the
derivative

(5.12) f̂ ′(u) = E ′u(y(u), u)∗p(u) + f ′u(y(u), u),

where the adjoint state p(u) ∈ Z∗ solves the adjoint equation

(5.13) E ′y(y(u), u)∗p = −f ′y(y(u), u).

For compact notation, we recall the definition of the Lagrange function associated with (5.8)

L : Y × U × Z∗ → R, L(y, u, p) = f(y, u) + 〈p, E(y, u)〉Z∗,Z.
The representation (5.12) of f̂ ′(ū) yields the following corollary of Theorem 5.5.

COROLLARY 5.7. Let (ȳ, ū) an optimal solution of the problem (5.8) and let Assumption 3 hold.
Then there exists an adjoint state (or Lagrange multiplier) p̄ ∈ Z∗ such that the following optimality
conditions hold

E(ȳ, ū) = 0,(5.14)

E ′y(ȳ, ū)∗p̄ = −f ′y(ȳ, ū),(5.15)

ū ∈ Uad, 〈f ′u(ȳ, ū) + E ′u(ȳ, ū)∗p̄, u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad,(5.16)
(5.17)

Using the Lagrange function we can write (5.14)–(5.16) in the compact form

L′p(ȳ, ū, p̄) = E(ȳ, ū) = 0,(5.14)

L′y(ȳ, ū, p̄) = 0,(5.15)

ū ∈ Uad, 〈L′u(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad.(5.16)

Proof. We have only to combine (5.11), (5.13), and (5.12). �

To avoid dual operators, one can also use the equivalent form

E(ȳ, ū) = 0,(5.18)

〈L′y(ȳ, ū, p̄), v〉Y ∗,Y = 0 ∀ v ∈ Y(5.19)

ū ∈ Uad, 〈L′u(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad.(5.20)
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5.5. Applications.

5.5.1. General linear-quadratic problem. We apply the result to the linear-quadratic problem

min
(y,u)∈Y×U

f(y, u) :=
1

2
‖Qy − qd‖2

H +
α

2
‖u‖2U

subject to Ay +Bu = g, u ∈ Uad
(5.21)

under Assumption 1. Then

E(y, u) = Ay +Bu− g, E ′y(y, u) = A, E ′u(y, u) = B

and Corollary 5.7 is applicable. We only have to compute L′y and L′u for the Lagrange function

L(y, u, p) = f(y, u) + 〈p, Ay +Bu− g〉Z∗,Z
=

1

2
(Qy − qd, Qy − qd)H +

α

2
(u, u)U + 〈p, Ay +Bu− q〉Z∗,Z.

We have with the identification H∗ = H and U∗ = U

〈L′y(ȳ, ū, p̄), v〉Y ∗,Y = (Qȳ − qd, Qv)H + 〈p̄, Av〉Z∗,Z
= 〈Q∗(Qȳ − qd) + A∗p̄, v〉Y ∗,Y ∀ v ∈ Y(5.22)

and

(L′u(ȳ, ū, p̄), w)U = α(ū, w)U + 〈p̄, Bw〉Z∗,Z
= (αū+B∗p̄, w)U ∀ w ∈ U.(5.23)

Thus (5.14)–(5.16) take the form

Aȳ +Bū = g,(5.24)

A∗p̄ = −Q∗(Qȳ − qd),(5.25)

ū ∈ Uad, (αū+ B∗p̄, u− ū)U ≥ 0 ∀ u ∈ Uad.(5.26)

5.5.2. Distributed control of elliptic equations. We consider next the distributed optimal control
of a steady temperature distribution with boundary temperature zero

min f(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2L2(Ω)

subject to −∆y = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,

(5.27)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

We have already observed that (5.27) has the form (5.21) with

U = H = L2(Ω), Y = H1
0 (Ω), Z = Y ∗, g = 0, Q = IY,H,
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and

A ∈ L(Y, Y ∗), 〈Ay, v〉Y ∗,Y = a(y, v) =

∫

Ω

∇y · ∇v dx,

B ∈ L(U, Y ∗), 〈Bu, v〉Y ∗,Y = −(γu, v)L2(Ω).

As a Hilbert space, Y is reflexive and Z∗ = Y ∗∗ can be identified with Y through

〈p, y∗〉Y ∗∗,Y ∗ = 〈y∗, p〉Y ∗,Y ∀ y∗ ∈ Y ∗, p ∈ Y = Y ∗∗.

This yields
〈p, Ay〉Z∗,Z = 〈Ay, p〉Y ∗,Y = a(y, p) = a(p, y).

Let (ȳ, ū) ∈ Y × U be an optimal solution. Then by Corollary 5.7 and (5.22), (5.23) the optimality
system in the form (5.18)–(5.20) reads

a(ȳ, v)− (γū, v)L2(Ω) = 0 ∀ v ∈ Y,(5.28)

(ȳ − yd, v)L2Ω + a(p̄, v) = 0 ∀ v ∈ Y,(5.29)

a ≤ ū ≤ b, (αū− γp̄, u− ū)2
L(Ω) ≥ 0, ∀ u ∈ U, a ≤ u ≤ b.(5.30)

Now the adjoint equation (5.28) is just the weak formulation of

−∆p̄ = −(ȳ − yd), p̄|∂Ω = 0.

Applying Lemma 5.6 we can summarize

THEOREM 5.8. If (ȳ, ū) is an optimal solution of (5.27) then there exist p̄ ∈ H 1
0 (Ω), z̄a, z̄b ∈ L2(Ω)

such that the following optimality conditions hold in the weak sense.

−∆ȳ = γū, ȳ|∂Ω = 0,

−∆p̄ = −(ȳ − yd), p̄|∂Ω = 0,

αū− γp̄+ z̄b − z̄a = 0,

ū ≥ a, z̄a ≥ 0, z̄a (ū− a) = 0,

ū ≤ b, z̄b ≥ 0, z̄b (b− ū) = 0.

5.5.3. Distributed control of semilinear elliptic equations. We consider next the distributed opti-
mal control of a semilinear elliptic PDE:

min f(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2L2(Ω)

subject to −∆y + y3 = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,

(5.31)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L∞(Ω), a ≤ b.
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Let n ≤ 3. By the theory of monotone operators one can show that there exists a continuous solution
operator of the state equation

u ∈ U := L2(Ω)→ y ∈ Y := H1
0 (Ω).

Let A : H1
0 (Ω)→ H1

0 (Ω)∗ be the operator associated with the bilinear form a(y, v) =
∫

Ω
∇y · ∇v dx

for the Laplace operator −∆y and let
N : y → y3.

Then the weak formulation of the state equation can be written in the form

E(y, u) := Ay +N(y)− γu = 0.

By the Sobolev imbedding theorem [] one has for n ≤ 3 the continuous imbedding

H1
0 (Ω) ⊂ L6(Ω).

Moreover, the mapping N : y ∈ L6(Ω)→ y3 ∈ L2(Ω) is continuously Fréchet differentiable with

N ′(y)v = 2y2v.

At this point, it is convenient to prove first the following extension of H’̈older’s inequality:

LEMMA 5.9. Let ω ⊂ Rn be measurable. Then, for all pi, p ∈ [1,∞] with 1/p1 + · · ·+ 1/pk = 1/p
and all ui ∈ Lpi(Ω), there holds u1 · · ·uk ∈ Lp(Ω) and

‖u1 · · ·uk‖Lp ≤ ‖u1‖Lp1 · · · ‖uk‖Lpk .

Proof. We use induction. For k = 1 the assertion is trivial and for k = 2 we obtain it from
Hölder’s inequality: From 1/p1 + 1/p2 = 1/p we see that 1/q1 + 1/q2 = 1 holds for qi = pi/p and
thus

‖u1u2‖Lp = ‖|u1|p|u2|p‖1/pL1 ≤ ‖|u1|p‖1/p
Lq1‖|u2|p‖1/p

Lq2

= ‖|u1|pq1‖1/p1

L1 ‖|u2|pq2‖1/p2

L1 = ‖u1‖Lp1‖u2‖Lp2 .
As a consequence, u1u2 ∈ Lp(Ω) and the assertion is shown for k = 2.

For 1, . . . , k − 1→ k, let q ∈ [1,∞] be such that

1

q
+

1

pk
=

1

p
.

Then we have 1/p1 + · · · + 1/pk−1 = 1/q and thus (using the assertion for k − 1), we obtain
u1 · · ·uk−1 ∈ Lq(Ω) and

‖u1 · · ·uk−1‖Lq ≤ ‖u1‖Lp1 · · · ‖uk−1‖Lpk−1 .

Therefore, using the assertion for k = 2,

‖u1 · · ·uk‖Lp ≤ ‖u1 · · ·uk−1‖Lq‖uk‖Lpk = ‖u1‖Lp1 · · · ‖uk‖Lpk .
�
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We now return to the proof of the F-differentiabilty of N : We just have to apply the Lemma with
p1 = p2 = p3 = 6 and p = 2:

‖(y + h)3 − y3 − 3y2h‖L2 = ‖3yh2 + h3‖L2 = 3‖y‖L6‖h‖2L6 + ‖h‖3
L6

= O(‖h‖2L6) = o(‖h‖L6).

This shows the F-differentiability of N with derivative N ′. Furthermore, to prove the continuity of
N ′, we estimate

‖(N ′(y + h)−N ′(y))v‖L2 = 3‖((y + h)2 − y2)v‖L2 = 3‖(y + h)hv‖L2

= 3‖y + h‖L6‖h‖L6‖v‖L6 .

Hence,

‖N ′(y + h)−N ′(y)‖L2,L6 ≤ 3‖y + h‖L6‖h‖L6

‖h‖L6→0−→ 0.

Therefore, E : Y × U → Y ∗ =: Z is continuously Fréchet differentiable with

E ′y(y, u)v = Av + 3y2v, E ′u(y, u)w = −γw.
Finally, E ′y(y, u) ∈ L(Y, Z) has a bounded inverse, since for any y ∈ Y the equation

Av + 3y2v = f

has a bounded solution operator f ∈ Z → v ∈ Y . Hence, Assumption (OPT) is satisfied. The opti-
mality conditions are now very similar to the linear-quadratic problem (5.27) with the only difference
that now E ′y(y, u)v = Av + 2y2v: Let (ȳ, ū) ∈ Y × U be an optimal solution. Then by Corollary 5.7
the optimality system in the form (5.18)–(5.20) reads

Aȳ + ȳ3 − γū = 0,(5.32)

(ȳ − yd, v)2
LΩ + a(p̄, v) + (3ȳ2p̄, v)2

L(Ω) = 0 ∀ v ∈ Y,(5.33)

a ≤ ū ≤ b, (αū− γp̄, u− ū)2
L(Ω) ≥ 0, ∀ a ≤ u ≤ b.(5.34)

Now the adjoint equation (5.33) is just the weak formulation of

−∆p̄ + 3ȳ2p̄ = −(ȳ − yd), p̄|∂Ω = 0.

Applying Lemma 5.6 we can summarize

THEOREM 5.10. If (ȳ, ū) is an optimal solution of (5.31) then there exist p̄ ∈ H 1
0 (Ω), z̄a, z̄b ∈ L2(Ω)

such that the following optimality system holds in the weak sense.

−∆ȳ = γū, ȳ|∂Ω = 0,

−∆p̄+ 3ȳ2p̄ = −(ȳ − yd), p̄|∂Ω = 0,

αū− γp̄+ z̄b − z̄a = 0,

ū ≥ a, z̄a ≥ 0, z̄a (ū− a) = 0,

ū ≤ b, z̄b ≥ 0, z̄b (b− ū) = 0.
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5.6. Optimality conditions for problems with general constraints. We sketch now the theory
of optimality conditions for general problems of the form

(5.35) min
w∈W

f(w) subject to G(w) ∈ K, w ∈ C.

Here, f : W → R, G : W → V are continuously Fréchet differentiable with Banach spaces W,V ,
C ⊂ V is non-empty, closed and convex, and K ⊂ V is a closed convex cone. Here, K is a cone if

∀ λ > 0 : v ∈ K =⇒ λv ∈ K.

We denote the feasible set by

Wad := {w ∈ W : G(w) ∈ K, w ∈ C} .

Remark It is no restriction not to include equality constraints. In fact

E(w) = 0, C(w) ∈ KC

is equivalent to

G(w) :=

(
E(w)

C(w)

)
∈ {0} × KC =: K.

5.7. A basic first order optimality condition. Let w̄ be a local solution of (5.35). To develop an
extension of Theorem 5.5, we define the cone of feasible directions as follows.

DEFINITION 5.11. Let Wad ⊂ W be nonempty. The tangent cone of Wad at w ∈ Wad is defined by

T (Wad;w) =
{
s ∈ W : ∃ ηk > 0, wk ∈ Wad : lim

k→∞
wk = w, lim

k→∞
ηk(wk − w) = s

}
.

Then we have the following optimality condition.

THEOREM 5.12. Let f : W → R be continuously Fréchet differentiable. Then for any local solution
w̄ of (5.35) the following optimality condition holds.

(5.36) w̄ ∈ Wad and 〈f ′(w̄), s〉W ∗,W ≥ 0 ∀ s ∈ T (Wad; w̄).

Proof. w̄ ∈ Wad is obvious. Let s ∈ T (Wad; w̄) be arbitrary. Then there exist (wk) ⊂ Wad and
ηk > 0 with wk → w̄ und ηk(wk − w̄)→ s. This yields for all sufficiently large k

0 ≤ ηk(f(wk)− f(w̄)) = 〈f ′(w̄), ηk(wk − w̄)〉W ∗,W + ηko(‖wk − w̄‖W )→ 〈f ′(w̄), s〉W ∗,W

since ηko(‖wk − w̄‖W )→ 0, which follows from ηk(wk − w̄)→ s. �
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5.8. Constraint qualification and Robinsons’s regularity condition. We want to replace the
tangent cone by a cone with a less complicated representation. Linearization of the constraints (as-
sumingG is continuously differentiable) leads us to the linearization cone at a point w̄ ∈ Wad defined
by

L(Wad, G,K, C; w̄) = {η d : η > 0, d ∈ W, G(w̄) +G′(w̄)d ∈ K, w̄ + d ∈ C} .
Assume now that the a local solution w̄ of (5.35) satisfies the

Constraint Qualification:

(5.37) L(Wad, G, C,K; w̄) ⊂ T (Wad; w̄)

Then the following result is obvious.

THEOREM 5.13. Let f : W → R, G : W → V be continuously Fréchet differentiable, with Banach-
spaces W , V . Further let C ⊂ V be non-empty, closed and convex, and let K ⊂ V be a closed convex
cone. Then at every local solution w̄ of (5.35) satisfying (5.37) the following optimality condition
holds.

(5.38) w̄ ∈ Wad and 〈f ′(w̄), s〉W ∗,W ≥ 0 ∀ s ∈ L(Wad, G, C,K; w̄).

Remark If G is affine linear, then (5.37) is satisfied. In fact, let s ∈ L(Wad, G, C,K; w̄). Then s = ηd
with η > 0 and d ∈ W ,

G(w̄ + d) = G(w̄) +G′(w̄)d ∈ K, w̄ + d ∈ C.
Since G(w̄) ∈ K and w̄ ∈ C, the convexity of K and C yields wk := w̄ + η

k
d ∈ Wad. Choosing

ηk = 1/k shows that s ∈ T (Wad; w̄). �
In general, (5.37) can be ensured if w̄ satisfies the

Regularity Condition of Robinson:

(5.39) 0 ∈ int (G(w̄) +G′(w̄) (C − w̄)− K) .

We have the following important and deep result by Robinson [66].

THEOREM 5.14. Robinson’s regularity condition (5.39) implies the constraint qualification (5.37).

Proof. See [66, Thm. 1, Cor. 2]. �

5.9. Karush-Kuhn-Tucker conditions. Using Robinson’s regularity condition, we can write the
optimality condition (5.38) in a more explicit form.

THEOREM 5.15. (Zowe and Kurcyusz [82])
Let f : W → R, G : W → V be continuously Fréchet differentiable, with Banach-spaces W , V .
Further let C ⊂ V be non-empty, closed and convex, and let K ⊂ V be a closed convex cone. Then
for any local solution w̄ of (5.35) at which Robinson’s regularity condition (5.39) is satisfied, the
following optimality condition holds:
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There exists a Lagrange multiplier q̄ ∈ V ∗ with

G(w̄) ∈ K,(5.40)

q̄ ∈ K◦ := {q ∈ V ∗ : 〈q, v〉V ∗,V ≤ 0 ∀ v ∈ K} ,(5.41)

〈q̄, G(w̄)〉V ∗,V = 0,(5.42)

w̄ ∈ C, 〈f ′(w̄) +G′(w̄)∗q̄, w − w̄〉W ∗,W ≥ 0 ∀ w ∈ C.(5.43)

Using the Lagrangian function

L(w, q) := f(w) + 〈q, G(w)〉V ∗,V
we can write (5.43) in the compact form

w̄ ∈ C, 〈L′w(w̄, q̄), w − w̄〉W ∗,W ≥ 0 ∀ w ∈ C.(5.43)

Proof. Under Robinson’s regularity condition (5.39), a separation argument can be used to derive
(5.41)–(5.43), see [82]. �

A similar result can be shown if K is a closed convex set instead of a closed convex cone, see [11],
but then (5.41), (5.42) have a more complicated structure.

5.10. Application to PDE-constrained optimization. In PDE-constrained optimization, we have
usually a state equation and constraints on control and/or state. Therefore, we consider as a special
case the problem

(5.44) min
(y,u)∈Y×U

f(y, u) subject to E(y, u) = 0, C(y) ∈ KC , u ∈ Uad,

where E : Y × U → Z and C : Y → V are continuously Fréchet differentiable, KC ⊂ V is a closed
convex cone in a Banach space Ỹ ⊃ Y and Uad ⊂ U is a closed convex set. We set

G :

(
y

u

)
∈ W := Y × U 7→

(
E(y, u)

C(y)

)
∈ Z × V, K = {0} × KC , C = Y × Uad.

Then (5.44) has the form (5.35) and Robinson’s regularity condition at a feasible point w̄ = (ȳ, ū)
reads

(5.45) 0 ∈ int
((

0

C(ȳ)

)
+

(
E ′y(w̄) E ′u(w̄)
C ′(ȳ) 0

)(
Y

Uad − ū

)
−
(

0

KC

))
.

We rewrite now (5.40)–(5.43) for our problem. The multiplier has the form q = (p, λ) ∈ Z ∗×V ∗ and
the Lagrangian function is given by

L(y, u, q, λ) = f(y, u) + 〈p, E(y, u)〉Z∗,Z + 〈λ, C(y)〉V ∗,V = L(y, u, p) + 〈λ, C(y)〉V ∗,V
with the Lagrangian

L(y, u, p) = f(y, u) + 〈p, E(y, u)〉Z∗,Z
for the equality constraints.

Since K = {0} × KC , we have
K◦ = V ∗ × K◦C
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and thus (5.40)–(5.43) read

E(ȳ, ū) = 0, C(ȳ) ∈ KC ,
λ̄ ∈ K◦C , 〈λ̄, C(ȳ)〉V ∗,V = 0,

〈L′y(ȳ, ū, p̄) + C ′(ȳ)∗λ̄, y − ȳ〉Y ∗,Y ≥ 0 ∀ y ∈ Y,
ū ∈ Uad, 〈L′u(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad.

This yields finally

E(ȳ, ū) = 0, C(ȳ) ∈ KC ,(5.46)

λ̄ ∈ K◦C , 〈λ̄, C(ȳ)〉V ∗,V = 0,(5.47)

Ly(ȳ, ū, p̄) + C ′(ȳ)∗λ̄ = 0,(5.48)

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad.(5.49)

Remark Without the state constraint C(y) ∈ KC (which can formally be removed by omitting every-
thing involving C or by making the constraint trivial, e.g, C(y) = y, V = Y , KC = Y ), we recover
exactly the optimality conditions (5.14)–(5.16) of Corollary 5.7. �
We show next that the following Slater-type condition implies Robinson’s regularity condition (5.45).

LEMMA 5.16. Let w̄ ∈ Wad. If E ′y(w̄) ∈ L(Y, Z) is surjective and if there exist ũ ∈ Uad and ỹ ∈ Y
with

E ′y(w̄)(ỹ − ȳ) + E ′u(w̄)(ũ− ū) = 0,

C(ȳ) + C ′(ȳ)(ỹ − ȳ) ∈ int(KC)

then Robinson’s regularity condition (5.45) is satisfied.

Proof. Let
ṽ := C(ȳ) + C ′(ȳ)(ỹ − ȳ).

Then there exists ε > 0 with
ṽ +BV (2ε) ⊂ KC .

Here BV (ε) is the open ε-ball in V . Furthermore, there exists δ > 0 with

C ′(ȳ)BY (δ) ⊂ BV (ε).

Using that ũ ∈ Uad and ỹ − ȳ +BY (δ) ⊂ Y we have
(

0

C(ȳ)

)
+

(
E ′y(w̄) E ′u(w̄)
C ′(ȳ) 0

)(
Y

Uad − ū

)
−
(

0

KC

)

⊃
(

0

C(ȳ)

)
+

(
E ′y(w̄) E ′u(w̄)
C ′(ȳ) 0

)(
ỹ − ȳ +BY (δ)

ũ− ū

)
−
(

0

ṽ +BV (2ε)

)

=

(
E ′y(w̄)

C ′(ȳ)

)
BY (δ) +

(
0

BV (2ε)

)
⊃
(
E ′y(w̄)BY (δ)

BV (ε)

)
.
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In the last step we have used C ′(ȳ)BY (δ) ⊂ BV (ε) and that, for all v ∈ BV (ε), therte holds
v + BV (2ε) ⊃ BV (ε). By the open mapping theorem E ′y(w̄)BY (ε) is open in Z and contains 0.
Thererefore, the set on the left hand side is an open neighborhood of 0 in Z × V . �

5.11. Applications.

5.11.1. Elliptic problem with state constraints. We consider the problem

min f(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2L2(Ω)

subject to −∆y + y = γ u on Ω,

∂y

∂ν
= 0 on ∂Ω,

y ≥ 0 on Ω.

(5.50)

Let n ≤ 3. We know from Theorem 2.47 that for u ∈ U := L2(Ω) there exists a unique weak solution
y ∈ H1(Ω) ∩ C(Ω̄) of the state equation. We can write the problem in the form

min f(y, u) subject to Ay +Bu = 0, y ≥ 0.

where Bu = −γu, and A is induced by the bilinear form a(y, v) =
∫

Ω
∇y · ∇v dx+ (y, v)L2(Ω).

With appropriate spaces Y ⊂ H1(Ω), Z ⊂ H1(Ω)∗ and V ⊃ Y we set

E :

(
y

u

)
∈ Y × U 7→ Ay +Bu ∈ Z, C(y) = y, KC = {v ∈ V : v ≥ 0} , Uad = U

and arrive at a problem of the form (5.44). For the naive choice V = Y = H 1(Ω), Z = Y ∗, the cone
KC has no interior point. But since Bu = −γu ∈ L2(Ω), we know that all solutions y of the state
equation live in the space

Y =
{
y ∈ H1(Ω) ∩ C(Ω̄) : Ay ∈ U∗ = L2(Ω)

}

and Y is a Banach space with the norm ‖y‖H1(Ω) + ‖y‖C(Ω̄) + ‖Ay‖L2(Ω) (why?). Then A : Y 7→
L2(Ω) =: Z is bounded and by Theorem 2.47 also surjective. Finally, we choose V = C(Ω̄), then
V ⊃ Y and KC ⊂ V has an interior point.

Now assume that there exists ỹ ∈ Y , ỹ > 0 and ũ ∈ U with (note that E ′y = A,E ′u = B)

A(ỹ − ȳ) +B(ũ− ū) = 0.

For example in the case γ ≡ 1 the choice ỹ = ȳ + 1, ũ = ū + 1 works. Then by Lemma 5.16
Robinson’s regularity assumption is satisfied. Therefore, at a solution (ȳ, ū) the necessary conditions
(5.46)–(5.49) are satisfied: Using that

L(y, u, p) =
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2L2(Ω) + (p, Ay +Bu)L2(Ω)
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we obtain

Aȳ +Bū = 0, ȳ ≥ 0,

λ̄ ∈ K◦C , 〈λ̄, ȳ〉C(Ω̄)∗,C(Ω̄) = 0,

(ȳ − yd, v)L2(Ω) + (p̄, Av)L2(Ω) + 〈λ̄, v〉C(Ω̄)∗,C(Ω̄) = 0,

(αū− γp̄, u− ū)L2(Ω) ≥ 0 ∀ u ∈ U.
One can show that the set K◦C ⊂ C(Ω̄)∗ of nonpositive functionals on C(Ω̄) can be identified with
nonpositive regular Borel measures, i.e.

λ ∈ K◦C ⇐⇒

〈λ, v〉C(Ω̄)∗,C(Ω̄) = −
∫

Ω

v(x) dµΩ(x)−
∫

∂Ω

v(x) dµ∂Ω(x) with nonneg. measures µΩ, µ∂Ω.

Therefore, the optimality system is formally a weak formulation of the following system.

−∆ȳ + ȳ = γū on Ω,
∂y

∂ν
= 0 on ∂Ω,

ȳ ≥ 0, µ̄Ω, µ̄∂Ω nonnegative regular Borel measures,∫

Ω

ȳ(x) dµΩ(x) +

∫

∂Ω

ȳ(x) dµ∂Ω(x) = 0,

−∆p̄+ p̄ = −(ȳ − yd) + µ̄Ω on Ω,
∂p

∂ν
= µ̄∂Ω on ∂Ω,

αū+ γp̄ = 0.
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1. Synopsis

The aim of this chapter is to give an introduction to selected optimization algorithms that are well-
suited for PDE-constrained optimization. For the development and analysis of such algorithms, a
functional analytic setting is the framework of choice. Therefore, we will develop optimization meth-
ods in this abstract setting and then return to concrete problems later.

Optimization methods are iterative algorithms for finding (global or local) solutions of minimization
problems. Usually, we are already satisified if the method can be proved to converge to stationary
points. These are points that satisfy the first-order optimality conditions. Besides global convergence,
which will not be the main focus of this chapter, fast local convergence is desired. All fast converging
optimization methods use the idea of Newton’s method in some sense. Therefore, our main focus will
be on Newton-type methods for optimization problems in Banach spaces.

Optimization methods generate a sequence (wk) of iterates. Essentially, as already indicated, there are
two desirable properties an optimization algorithm should have:

1. Global convergence:

There are different flavors to formulate global convergence; here is a selection:

a) Every accumluation point of wk is a stationary point.

b) For some continuous stationarity measure Σ(w), e.g., Σ(w) := ‖f ′(w)‖W ∗ in the uncon-
strained case, there holds

lim
k→∞

Σ(wk) = 0.

c) There exists an accumluation point of (wk) that is stationary.
63
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d) For the continuous stationarity measure Σ(w) there holds

lim inf
k→∞

Σ(wk) = 0.

Note that b) implies a) and c) implies d).

2. Fast local convergence.

These are local results in a neighborhood of a stationary point w∗:
There exists δ > 0 such that, for all w0 ∈ W with ‖w0 − w∗‖W < δ, we have wk → w∗ and

‖wk+1 − w∗‖W = o(‖wk − w∗‖W ), (q-superlinear convergence)

or even, for α > 0,

‖wk+1 − w∗‖W = O(‖wk − w∗‖1+α

W ). (q-superlinear convergence with order 1 + α)

The case 1 + α = 2 is called q-quadratic convergence.

We begin with a discussion of globalization concepts. Then, in the rest of this chapter, we present
locally fast convergent methods that all can be viewed as Newton-type methods.

Notation. If W is a Banach space, we denote by W ∗ its dual space. The Frechet-derivative (F-
derivative) of an operator G : X → Y between Banach spaces is denoted by G′ : X → L(X, Y ),
where L(X, Y ) are the bounded linear operators A : X → Y . In particular, the derivative of a real-
valued function f : W → R is denoted by f ′ : W → W ∗. In case of a Hilbert space W , the gradient
∇f : W →W is the Riesz representation of f ′, i.e.,

(∇f(w), v)W = 〈f ′(w), v〉W ∗,W ∀ v ∈ W.
Here 〈f ′(w), v〉W ∗,W denotes the dual pairing between the dual space W ∗ = L(W,R) and W and
(·, ·)W is the inner product. Note that in Hilbert space we can do the identification W ∗ = W via
〈·, ·〉W ∗,W = (·, ·)W , but this is not always done.

2. Globally convergent methods in Banach spaces

2.1. Unconstrained optimization. For understanding how global convergence can be achieved,
it is important to look at unconstrained optimization first:

min
w∈W

f(w)

with W a real Banach space and f : W → R continuously F-differentiable.

The first-order optimality conditions for a local minimum w∗ ∈ W are well-known:

w∗ ∈ W satisfies
f ′(w) = 0.

We develop a general class of methods that is globally convergent: Descent methods.
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The idea of descent methods is to find, at the current (kth) iterate wk ∈ W , a direction sk ∈ W such
that φk(t)

def
= f(wk + tsk) is decreasing at t = 0:

φ′k(0) = 〈f ′(wk), sk〉W ∗,W < 0.

Of course, this descent can be very small. However, from the (sharp) estimate

φ′k(0) = 〈f ′(wk), sk〉W ∗,W ≥ −‖f ′(wk)‖W ∗‖sk‖W
it is natural to derive the following quality requirement (“angle” condition)

(2.1) 〈f ′(wk), sk〉W ∗,W ≤ −η‖f ′(wk)‖W ∗‖sk‖W
for the descent direction. Here η ∈ (0, 1) is fixed.

A second ingredient of a descent method is a step size rule to obtain a step size σk > 0 such that

φk(σk) < φk(0).

Then, the new iterate is computed as wk+1 := wk + σks
k. Overall, we obtain:

ALGORITHM 2.1 (General descent method).

0. Choose an initial point w0 ∈ W .

For k = 0, 1, 2, . . .:

1. If f ′(wk) = 0, STOP.

2. Choose a descent direction sk ∈ W : 〈f ′(wk), sk〉W ∗,W < 0.

3. Choose a step size σk > 0.

4. Set wk+1 := wk + σks
k.

In this generality, it is not possible to prove global convergence. We need additional requirements on
the quality of the descent direction and the step sizes:

1. Admissibility of the search directions:

〈f ′(wk), sk〉W ∗,W
‖sk‖W

k→∞−→ 0 =⇒ ‖f ′(wk)‖W ∗
k→∞−→ 0.

2. Admissibility of the step sizes:

f(wk + σks
k)− f(wk)

k→∞−→ 0 =⇒ 〈f ′(wk), sk〉W ∗,W
‖sk‖W

k→∞−→ 0.

These conditions become more intuitive by realizing that the expression
〈f ′(wk), sk〉W ∗,W

‖sk‖W
is the slope

of f at wk in the direction sk:

d

dt
f

(
wk +

sk

‖sk‖W

)∣∣∣∣
t=0

=
〈f ′(wk), sk〉W ∗,W

‖sk‖W
.
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Therefore, admissible step sizes means that if the f -decrease become smaller and smaller then the
slopes along the sk have to become smaller and smaller. And admissible search directions means that
if the slopes along the sk become smaller and smaller then the steepest possible slope has to become
smaller and smaller.

With these two conditions at hand, we can prove global convergence.

THEOREM 2.2. Let f be continuously F-differentiable and (wk), (sk), (σk) be generated by Algorithm
2.1. Assume that (σk) and (sk) are admissible and that (f(wk)) is bounded below. Then

lim
k→∞

f ′(wk) = 0.

In particular, every accumulation point of (wk) is a stationary point.

Proof. Let (f(wk)) be bounded below by f ∗ ∈ R. Then

f(w0)− f ∗ =

∞∑

k=0

(f(wk)− f(wk+1)) =

∞∑

k=0

|f(wk + σks
k)− f(wk)|

and thus f(wk + σks
k)− f(wk)→ 0. By the admissibility of (σk), this implies

〈f ′(wk), sk〉W ∗,W
‖sk‖W

k→∞−→ 0.

Now the admissibility of (sk) yields

‖f ′(wk)‖W ∗
k→∞−→ 0.

If w∗ is an accumulation point of (wk), then there exists a subsequence (wk)K → w∗ and due to
monotonicity of f(wk) we conclude f(wk) ≥ f(w∗) for all k. Hence, by continuity,

f ′(w∗) = lim
k→∞

f ′(wk) = 0

�
There are two questions open:

a) How can we check in practice if a search direction is admissible or not?

b) How can we compute admissible step sizes?

An answer to question a) is provided by the following Lemma:

LEMMA 2.3. If the search directions (sk) satisfy the angle condition (2.1) then they are admissible.

Proof. The angle condition yields

‖f ′(wk)‖W ∗ ≤ −
1

η

〈f ′(wk), sk〉W ∗,W
‖sk‖W

.

�
The mother of all step size rules is the
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2.1.1. Armijo rule: Choose the maximum σk ∈ {1, 1/2, 1/4, . . .} for which

f(wk + σks
k)− f(wk) ≤ γσk〈f ′(wk), sk〉W ∗,W .

Here γ ∈ (0, 1) is a constant. The next result shows that Armijo step sizes exist.

LEMMA 2.4. Let f ′ be uniformly continuous on N ρ
0 = {w + s : f(w) ≤ f(w0), ‖s‖W ≤ ρ} for

some ρ > 0. Then, for every ε > 0, there exists δ > 0 such that for all wk ∈ W with f(wk) ≤ f(w0)
and all sk ∈ W that satisfy

〈f ′(wk), sk〉W ∗,W
‖sk‖W

≤ −ε,

there holds
f(wk + σsk)− f(wk) ≤ γσ〈f ′(wk), sk〉W ∗,W ∀ σ ∈ [0, δ/‖sk‖W ].

Proof. We have, with appropriate τσ ∈ [0, σ],

f(wk + σsk)− f(wk) = σ〈f ′(wk + τσs
k), sk〉W ∗,W

≤ σ〈f ′(wk), sk〉W ∗,W + σ‖f ′(wk + τσs
k)− f ′(wk)‖W ∗‖sk‖W

= γσ〈f ′(wk), sk〉W ∗,W + ρk(σ),

where
ρk(σ) := (1− γ)σ〈f ′(wk), sk〉W ∗,W + σ‖f ′(wk + τσs

k)− f ′(wk)‖W ∗‖sk‖W .
Now we use the uniform continuity of f ′ to choose δ ∈ (0, ρ) so small that

‖f ′(wk + τσs
k)− f ′(wk)‖W ∗ < (1− γ)ε ∀ σ ∈ [0, δ/‖sk‖W ].

This is possible since
‖τσsk‖W ≤ σ‖sk‖W ≤ δ.

Then

ρk(σ) = (1− γ)σ〈f ′(wk), sk〉W ∗,W + σ‖f ′(wk + τσs
k)− f ′(wk)‖W ∗‖sk‖W

≤ −(1− γ)εσ‖sk‖W ∗,W + (1− γ)εσ‖sk‖W = 0.

�
Next, we prove the admissibility of Armijo step sizes under mild conditions.

LEMMA 2.5. Let f ′ be uniformly continuous on N ρ
0 = {w + s : f(w) ≤ f(w0), ‖s‖W ≤ ρ} for

some ρ. We consider Algorithm 2.1, where (σk) is generated by the Armijo rule and the sk are chosen
such that they are not too short in the following sense:

‖sk‖W ≥ φ

(
−〈f

′(wk), sk〉W ∗,W
‖sk‖W

)
,

where φ : [0,∞)→ [0,∞) is monotonically increasing and satisfies φ(t) > 0 for all t > 0. Then the
step sizes (σk) are admissible.



68 2. OPTIMIZATION METHODS IN BANACH SPACES

Proof. Assume that there exist an infinite set K and ε > 0 such that
〈f ′(wk), sk〉W ∗,W

‖sk‖W
≤ −ε ∀ k ∈ K.

Then

‖sk‖W ≥ φ

(
−〈f

′(wk), sk〉W ∗,W
‖sk‖W

)
≥ φ(ε) =: η > 0 ∀ k ∈ K.

By Lemma 2.4, for k ∈ K we have either σk = 1 or σk ≥ δ/(2‖sk‖). Hence,

σk‖sk‖W ≥ min{δ/2, η} ∀ k ∈ K.
This shows

f(wk + σks
k)− f(wk) ≤ γσk〈f ′(wk), sk〉W ∗,W = γσk‖sk‖W

〈f ′(wk), sk〉W ∗,W
‖sk‖W

≤ −γmin{δ/2, η}ε ∀ k ∈ K.
Therefore

f(wk + σks
k)− f(wk) 6→ 0.

�
In the Banach space setting, the computation of descent directions is not straightforward. Note that
the negative derivative of f is not suitable, since W ∗ 3 f ′(wk) /∈ W .

In the Hilbert space setting, however, we can choose W ∗ = W and 〈·, ·〉W ∗,W = (·, ·)W by the Riesz
representation theorem. Then we have f ′(wk) = ∇f(wk) ∈ W and −∇f(wk) is the direction of
steepest descent, as we will show below.

Certainly the most well-known descent method is the steepest descent method. In Banach space, the
steepest descent directions of f at w are defined by s = tdsd, t > 0, where dsd solves

min
‖d‖W=1

〈f ′(w), d〉W ∗,W .

Now consider the case where W = W ∗ is a Hilbert space. Then

dsd = − ∇f(w)

‖∇f(w)‖W
In fact, by the Cauchy-Schwarz inequality,

min
‖d‖W=1

〈f ′(w), d〉W ∗,W = min
‖d‖W=1

(∇f(w), d)W ≤ −‖∇f(w)‖W

=

(
∇f(w),− ∇f(w)

‖∇f(w)‖W

)

W

Therefore,−∇f(w) is a steepest descent direction. This is the reason why the steepest descent method
is also called gradient method.

It should be mentioned that the steepest descent method is usually very inefficient. Therefore, the
design of efficient globally convergent methods works as follows: A locally fast convergent method
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(e.g., Newton’s method) is used to generate trial steps. If the generated step satisfies a (generalized)
angle test ensuring admissibility of the step, the step is selected. Otherwise, another search direction
is chosen, e.g., the steepest descent direction.

2.2. Optimization with simple constraints. We now develop descent methods for simply con-
strained problems of the form

(2.2) min f(w) s.t. w ∈ S
with W a Hilbert space, f : W → R continuously F-differentiable, and S ⊂ W closed and convex.

EXAMPLE 2.6. A scenarion frequently found in practice is

W = L2(Ω), S =
{
u ∈ L2(Ω) : a(x) ≤ u(x) ≤ b(x) a.e. on Ω

}

with L∞-functions a, b. It is then very easy to compute the projection PS onto S, which will be needed
in the following:

PS(w)(x) = P[a(x),b(x)](w(x)) = max(a(x),min(w(x), b(x))).

The presence of the constraint set S requires to take care that we stay feasible with respect to S, or,
(if we think of an infeasible method) that we converge to feasibility. In the following, we consider a
feasible algorithm, i.e., wk ∈ S for all k.

If wk is feasible and we try to apply the unconstrained descent method, we have the difficulty that
already very small step sizes σ > 0 can result in points wk +σsk that are infeasible. The backtracking
idea of considering only those σ ≥ 0 for which wk + σsk is feasible is not viable, since very small
step sizes or even σk = 0 might be the result.

Therefore, instead of performing a line search along the ray
{
wk + σsk : σ ≥ 0

}
, we perform a line

search along the projected path {
PS(wk + σsk) : σ ≥ 0

}
,

where PS is the projection onto S. Of course, we have to ensure that along this path we achieve
sufficient descent as long as wk is not a stationary point. Unfortunately, not any descent direction is
suitable here.

EXAMPLE 2.7. Consider

S =
{
w ∈ R2 : w1 ≥ 0, w1 + w2 ≥ 3

}
, f(w) = 5w2

1 + w2
2.

Then, at wk = (1, 2)T , we have ∇f(wk) = (10, 4)T . Since f is convex quadratic with minimum
w∗ = 0, the Newton step is

dk = −wk = −(1, 2)T .

This is a descent direction, since
∇f(wk)Tdk = −18.

But, for σ ≥ 0, there holds

PS(wk − σdk) = PS((1− σ)(1, 2)T ) = (1− σ)

(
1

2

)
+ σ

(
3/2

3/2

)
=

(
1

2

)
+
σ

2

(
1

−1

)
.
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From

∇f(wk)T
(

1

−1

)
= 6

we see that we are getting ascent, not descent, along the projected path, although dk is a descent
direction.

The example shows that care must be taken in choosing appropriate search directions for projected
methods. Since the projected descent properties of a search direction are more complicated to judge
than in the unconstrained case, it is out of the scope of this chapter to give a general presentation of
this topic. In the finite dimensional setting, we refer to [47] for a detailed discussion. Here, we only
consider the projected gradient method.

ALGORITHM 2.8 (Projected gradient method).

0. Choose w0 ∈ S.

For k = 0, 1, 2, 3, . . .:

1. Set sk = −∇f(wk).

2. Choose σk by a projected step size rule.

3. Set wk+1 := PS(wk + σks
k).

For abbreviation, let
wkσ = wk − σ∇f(wk).

We will prove global convergence of this method. To do this, we need to collect some facts about the
projection operator PS .

The following result shows that along the projected steepest descent path we achieve a certain amount
of descent:

LEMMA 2.9. Let W be a Hilbert space and let f : W → R be continuously F-differentiable on
a neighborhood of the closed convex set S. Let wk ∈ S and assume that ∇f is α-order Hölder-
continuous with modulus L > 0 on

{
(1− t)wk + tPS(wkσ) : 0 ≤ t ≤ 1

}
.

for some α ∈ (0, 1]. Then there holds

f(PS(wkσ))− f(wk) ≤ − 1

σ
‖PS(wkσ)− wk‖2

W + L‖PS(wkσ)− wk‖1+α

W

Proof.
f(PS(wkσ))− f(wk) = (∇f(vkσ), PS(wkσ)− wk)W

= (∇f(wk), PS(wkσ)− wk)W + (∇f(vkσ)−∇f(wk), PS(wkσ)− wk)W
with appropriate vkσ ∈

{
(1− t)wk + tPS(wkσ) : 0 ≤ t ≤ 1

}
.
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Now, since wk
σ − wk = σsk = −σ∇f(wk) and wk = PS(wk), we obtain

−σ(∇f(wk), PS(wkσ)− wk)W = (wkσ − wk, PS(wkσ)− wk)W
= (wkσ − PS(wk), PS(wkσ)− PS(wk))W

= (PS(wkσ)− PS(wk), PS(wkσ)− PS(wk))W

+ (wkσ − PS(wkσ), PS(wkσ)− PS(wk))W︸ ︷︷ ︸
≥0

≥ (PS(wkσ)− PS(wk), PS(wkσ)− PS(wk))W

= ‖PS(wkσ)− wk‖2

W .

Next, we use
‖vkσ − wk‖W ≤ ‖PS(wkσ)− wk‖W .

Hence,

(∇f(vkσ)−∇f(wk), PS(wkσ)− wk)W ≤ ‖∇f(vkσ)−∇f(wk)‖W‖PS(wkσ)− wk‖W
≤ L‖vkσ − wk‖

α

W‖PS(wkσ)− wk‖W
≤ L‖PS(wkσ)− wk‖1+α

W .

�
We now consider the following

2.2.1. Projected Armijo rule: Choose the maximum σk ∈ {1, 1/2, 1/4, . . .} for which

f(PS(wk + σks
k))− f(wk) ≤ − γ

σk
‖PS(wk + σks

k)− wk‖2

W .

Here γ ∈ (0, 1) is a constant.

In the unconstrained case, we recover the ordinary Armijo rule:

f(PS(wk + σks
k))− f(wk) = f(wk + σks

k)− f(wk),

− γ

σk
‖PS(wk + σks

k)− wk‖2

W = − γ

σk
‖σksk‖2W = −γσk‖sk‖2

W = γσk(∇f(wk), sk)W .

As a stationarity measure Σ(w) = ‖p(w)‖W we use the norm of the projected gradient

p(w)
def
= w − PS(w −∇f(w)).

In fact, the first-order optimality conditions for (2.2) are

w ∈ S, (∇f(w), v − w)W ≥ 0 ∀ v ∈ S.
By Lemma 5.2, this is equivalent to

w − PS(w −∇f(w)) = 0.

As a next result we show that projected Armijo step sizes exist.
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LEMMA 2.10. Let W be a Hilbert space and let f : W → R be continuously F-differentiable on a
neighborhood of the closed convex set S. Then, for all wk ∈ S with p(wk) 6= 0, the projected Armijo
rule terminates sucessfully.

Proof. We proceed as in the proof of Lemma 2.9 and obtain (we have not assumed Hölder conti-
nuity of ∇f here)

f(PS(wkσ))− f(wk) ≤ −1

σ
‖PS(wkσ)− wk‖2

W + o(‖PS(wkσ)− wk‖W ).

It remains to show that, for all small σ > 0,
γ − 1

σ
‖PS(wkσ)− wk‖2

W + o(‖PS(wkσ)− wk‖W ) ≤ 0

But this follows easily from (Lemma 5.2 e)):
γ − 1

σ
‖PS(wkσ)− wk‖2

W ≤ (γ − 1)‖p(wk)‖W︸ ︷︷ ︸
<0

‖PS(wkσ)− wk‖W .

�
THEOREM 2.11. LetW be a Hilbert space, f : W → R be continuously F-differentiable, and S ⊂ W
be nonempty, closed, and convex. Consider Algorithm 2.1 and assume that f(wk) is bounded below.
Furthermore, let ∇f be α-order Hölder continuous on

Nρ
0 =

{
w + s : f(w) ≤ f(w0), ‖s‖W ≤ ρ

}

for some α > 0 and some ρ > 0. Then

lim
k→∞
‖p(wk)‖W = 0.

Proof. Set pk = p(wk) and assume pk 6→ 0. Then there exist ε > 0 and an infinite set K with
‖pk‖W ≥ ε for all k ∈ K.

By construction we have that f(wk) is monotonically decreasing and by assumption the sequence is
bounded below. Since ∇f is α-order Hölder continuous on N0, we have for all k ∈ K

f(wk)− f(wk+1) ≥ γ

σk
‖PS(wk + σks

k)− wk‖2

W ≥ γσk‖pk‖2

W ≥ γσkε
2,

where we have used the Armijo condition and Lemma 5.2 e). This shows (σk)K → 0 and (‖PS(wk + σks
k)− wk‖W )K →

0.

For large k ∈ K we have σk ≤ 1/2 and therefore, the Armijo condition did not hold for the step size
σ = 2σk. Hence,

− γ

2σk
‖PS(wk + 2σks

k)− wk‖2

W ≤ f(PS(wk + 2σksk))− f(wk)

≤ − 1

2σk
‖PS(wk + 2σks

k)− wk‖2

W + L‖PS(wk + 2σks
k)− wk‖1+α

W .
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Here, we have applied Lemma 2.9 and the fact that by Lemma 5.2 e)

‖PS(wk + 2σks
k)− wk‖W ≤ 2‖PS(wk + σks

k)− wk‖W
K3k→∞−→ 0.

Hence,
1− γ
2σk
‖PS(wk + 2σks

k)− wk‖2

W ≤ L‖PS(wk + 2σks
k)− wk‖1+α

W .

From this we derive

(1− γ)‖pk‖W‖PS(wk + 2σks
k)− wk‖W ≤ L‖PS(wk + 2σks

k)− wk‖1+α

W .

Hence,

(1− γ)ε ≤ L‖PS(wk + 2σks
k)− wk‖αW ≤ L2α‖PS(wk + σks

k)− wk‖αW
K3k→∞−→ 0.

This is a contradiction. �
A careful choice of search directions will allow to extend the convergence theory to more general
classes of projected descent algorithms. For instance, in finite dimensions, q-superlinearly convergent
projected Newton methods and their globalization are investigated in [47, 10]. In an L2 setting, the
superlinear convergence of projected Newton methods was investigated by Kelley and Sachs in [48].

2.3. General optimization problems. For more general optimization problems than we dis-
cussed so far, one usually globalizes by choosing step sizes based on an Armijo-type rule that is
applied to a suitable merit function. For instance, if we consider problems of the form

min
w

f(w) s.t. E(w), C(w) ∈ K,

with functions f : W → R, E : W → Z, and C : W → V , where W , Z, and V are Banach spaces
and K ⊂ V is a closed convex cone, a possible choice for a merit function is

mρ(w) = f(w) + ρ‖E(w)‖W + ρ dist(C(w), K)

with penalty parameter ρ > 0. In the case of equality constraints, a global convergence result for
reduced SQP methods based on this merit function is presented in [45]. Other merit functions can be
constructed by taking the norm of the residual of the KKT system, the latter being reformulated as a
nonsmooth operator equation, see section 5. This residual-based type of globalization, however, does
not take into account second-order information.

3. Newton-based methods – A preview

To give an impression of modern Newton-based for optimization problems approaches, we first con-
sider all these methods in the finite dimensional setting: W = Rn.
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3.1. Unconstrained problems – Newton’s method. Consider

(3.1) min
w∈Rn

f(w)

with f : Rn → R twice continuously differentiable.

From analysis we know that the first-order optimality conditions are:

(3.2) ∇f(w) = 0.

Newton’s method for (3.1) is obtained by applying Newton’s method to the equation (3.2).

This, again, is done by linearizing G = ∇f about the current iterate wk:

G(wk) +G′(wk)sk = 0, wk+1 = wk + sk.

It is well-known – and will be proved later in a much more general context – that Newton’s method
converges q-superlinearly if G is C1 and G′(w∗) is invertible.

3.2. Simple constraints. Let f : Rn → R be C2 and let S ⊂ Rn be a nonempty closed convex
set.

We consider the problem

min
w∈Rn

f(w) s.t. w ∈ S.

The optimality conditions, written in a form that directly generalizes to a Banach space setting, are:
w∗ satisfies

(3.3) w ∈ S, ∇f(w)T (v − w) ≥ 0 ∀ v ∈ S.

This is a Variational Inequality, which we abbreviate VI(∇f, S).

Note that the necessity of VI(∇f, S) can be derived very easily: For any v ∈ S, the line segment
{w∗ + t(v − w∗) : 0 ≤ t ≤ 1} connecting w∗ and v is contained in S (convexity) and therefore, the
function

φ(t) := f(w∗ + t(w − w∗))
is nondecreasing at t = 0:

0 ≤ φ′(0) = ∇f(w∗)T (v − w∗).
Similarly, in the Banach space setting, we will have that w∗ solves

w ∈ S, 〈f ′(w), v − w〉W ∗,W ≥ 0 ∀ v ∈ S

with S ⊂ W closed, convex and f ′ : W →W ∗.

Note that if S = Rn, then (3.3) is equivalent to (3.2).
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3.2.1. Nonsmooth reformulation approach and generalized Newton methods. In the development
of projected descent methods we already used the important fact that the VI (3.3) is equivalent to

(3.4) w − PS(w − θ∇f(w)) = 0,

where θ > 0 is fixed.

EXAMPLE 3.1. If S is a box, i.e.,

S = [a1, b1]× · · · × [an, bn],

then PS(w) can be computed very easily as follows:

PS(w)i = max(ai,min(wi, bi)).

It is instructive (and not difficult) to check the equivalence of (3.3) and (3.4) by hand.

The function
Φ(w) := w − PS(w − θ∇f(w))

is Lipschitz continuous (PS is non-exapnsive and ∇f is C1), but cannot be expected to be differen-
tiable. Therefore, at a first sight, Newton’s method is not applicable.

However, a second look shows that Φ has nice properties if S is sufficiently nice. To be concrete, let

S = [a1, b1]× · · · × [an, bn]

be a box in the following. Then Φ is piecewise continuously differentiable, i.e., it consists of finitely
many C1-pieces Φj : Rn → Rn, j = 1, . . . , m. More precisely, every component Φi of Φ consists of
three pieces:

wi − ai, wi − bi, wi − (wi − θ∇f(w)i) = θ∇f(w)i,

hence Φ consists of (at most) 3n pieces Φj .

Denote by
A(w) =

{
j : Φj(w) = Φ(w)

}

the active indices at w and by
I(w) =

{
j : Φj(w) 6= Φ(w)

}

the set of inactive indices at w.

By continuity, I(w) = I(w∗) in a neighborhood U of w∗. Now consider the following

ALGORITHM 3.2 (Generalized Newton’s method for piecewise C1 equations).

0. Chose w0 (sufficiently close to w∗).

For k = 0, 1, 2, . . .:

1. Choose Mk ∈
{

(Φj)′(wk) : j ∈ A(wk)
}

and solve

Mks
k = −Φ(wk).

2. Set wk+1 = wk + sk.
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For wk close to w∗, we have A(wk) ⊂ A(w∗) and thus sk is the Newton step for the C1 equation

Φjk(w) = 0,

where jk ∈ A(wk) ⊂ A(w∗) is the active index with Mk = (Φjk)′(wk).

Therefore, if all the finitely many Newton processes for

Φj(w) = 0, j ∈ A(w∗)

converge locally fast, our generalized Newton’s method converges locally fast, too. In particular, this
is the case if f is C2 and all (Φj)′(w∗), j ∈ A(w∗), are invertible.

3.2.2. SQP methods. A further appealing idea is to obtain an iterative method by linearizing ∇f
in VI(∇f, S) about the current iterate wk ∈ S:

w ∈ S, (∇f(wk) +∇2f(wk)(w − wk))T (v − w) ≥ 0 ∀ v ∈ S.
The solution wk+1 of this VI is then the new iterate. The resulting method, of course, can just as well
be formulated for general variational inequalities VI(F, S) with C1-function F : Rn → Rn. We obtain
the following method:

ALGORITHM 3.3 (Josephy-Newton method for VI(F, S)).

0. Choose w0 ∈ S (sufficiently close to the solution w∗ of VI(F, S)).

For k = 0, 1, 2 . . .

1. STOP if wk solves VI(F, S) (holds if wk = wk−1).

2. Compute the solution wk+1 of

VI(F (wk) + F ′(wk)(· − wk), S) :

w ∈ S, (F (wk) + F ′(wk)(w − wk))T (v − w) ≥ 0 ∀ v ∈ S
that is closest to wk.

It is easily seen that VI(F (wk) + F ′(wk)(· − wk), S) are the first-order optimality conditions of the
problem

min
w∈Rn

∇f(wk)T (w − wk) +
1

2
(w − wk)T∇2f(wk)(w − wk) s.t. w ∈ S.

The objective function is quadratic, and in the case of box constraints, we have a box-constrained
quadratic program.

This is why this approach is called sequential quadratic programming.

ALGORITHM 3.4 (Sequential Quadratic Programming for simple constraints).

0. Chose w0 ∈ Rn (sufficiently close to w∗).

For k = 0, 1, 2, . . .:
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1. Compute the first-order optimal point sk of the QP

min
s∈Rn
∇f(wk)T s+

1

2
sT∇2f(wk)s s.t. wk + s ∈ S

that is closest to 0.

2. Set wk+1 = wk + sk.

The local convergence analysis of the Josephy-Newton method is intimately connected with the lo-
cally unique and Lipschitz-stable solvability of the parametrized VI

VI(F (w∗) + F ′(w∗)(· − w∗)− p, S) :

w ∈ S, (F (w∗) + F ′(w∗)(w − w∗)− p)T (v − w) ≥ 0 ∀ v ∈ S.
In fact, if there exist open neighborhoods Up ⊂ Rn of 0, Uw ⊂ Rn of w∗, and a Lipschitz continuous
function Up 3 p 7→ w(p) ∈ Uw such that w(p) is the unique solution of VI(F (w∗)+F ′(w∗)(·−w∗)−
p, S) in Uw, then VI(F, S) is called strongly regular at w∗.

As we will see, strong regularity implies local q-superlinear convergence of the above SQP method if
f is C2.

In the case S = Rn we have
VI(F,Rn) : F (w) = 0

Hence, the Josephy-Newton method for VI(F,Rn) is Newton’s method for F (w) = 0. Furthermore,
from

VI(F (w∗) + F ′(w∗)(· − w∗) + p,Rn) : F (w∗) + F ′(w∗)(w − w∗) + p = 0

we see that in this case strong regularity is the same as the invertibility of F ′(w∗).

3.3. General inequality constraints. We now consider general nonlinear optimization in Rn:

(3.5) min
w∈Rn

f(w) s.t. E(w) = 0, C(w) ≤ 0,

where f : Rn → R, E : Rn → Rp, and C : Rn → Rm are C2 and ≤ is meant component-wise.

Denote by
L(w, λ, µ) = f(w) + λTC(w) + µTE(w)

the Lagrange function of problem (3.5).

Under a CQ, the first-order optimality conditions (KKT conditions) hold at (w∗, λ∗, µ∗):

∇wL(w, λ, µ) = ∇f(w) + C ′(w)Tλ+ E ′(w)Tµ = 0,

λ ≥ 0, ∇λL(w, λ, µ)T (z − λ) = C(w)T (z − λ) ≤ 0 ∀ z ≥ 0,(3.6)

∇µL(w, λ, µ) = E(w) = 0.

REMARK 3.5.

a) An easy way to remember these conditions is the following: (w∗, λ∗, µ∗) is a first-order saddle
point of L on Rn × (Rm+ × Rp).
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b) The second equation can be equivalently written in the following way:

λ ≥ 0, C(w) ≤ 0, C(w)Tλ = 0.

The KKT system consists of two equations and the variational inequality VI(−C(w),Rm+ ). This is a
VI w.r.t. λ that is parametrized byw. Also, since equations are special cases of variational inequalities,
we have that (3.6) is in fact the same as VI(−∇L,Rn × Rm+ × Rp).
We now can use the same techniques as for simple constraints.

3.3.1. Nonsmooth reformulation approach and generalized Newton methods. Using the projec-
tion, we rewrite the VI in (3.6) as a nonsmooth equation:

Φ(w, λ) := λ− PRm+ (λ+ θC(w)) = 0.

The reformulated KKT system

G(w, λ, µ) :=



∇f(w) + C ′(w)Tλ+ E ′(w)Tµ

Φ(w, λ)
E(w)


 = 0

is a system of n +m+ p equations in n +m+ p unknowns.

The function on the left is C1, except for the second row which is piecewise C1. Therefore, the gener-
alized Newton’s method for piecewise smooth equations (Alg. 3.2) can be applied. It is q-superlinearly
convergent if (Gj)′(w∗, λ∗, µ∗) is invertible for all active indices j ∈ A(w∗, λ∗, µ∗).

3.3.2. SQP methods. As already observed, the KKT system is identical to VI(−∇L,Rn × Rm+ ×
Rp).

The SQP method for (3.5) can now be derived as in the simply constrained case by linearizing −∇L
about the current iterate xk := (wk, λk, µk): The resulting subproblem is VI(−∇L(xk)−∇L(xk)(· −
xk),Rn × Rm+ × Rp), or, in detail:

∇wL(xk) +∇2
wxL(xk)(x− xk) = 0

λ ≥ 0, (C(wk) + C ′(wk)(w − wk))T (z − λ) ≤ 0 ∀ z ≥ 0,(3.7)

E(wk) + E ′(wk)(w − wk) = 0.

As in the simply constrained case, it is straightforward to verify that (3.7) is equivalent to the KKT
conditions of the following quadratic program:

min
w
∇f(wk)T (w − wk) +

1

2
(w − wk)T∇2

wwL(xk)(w − wk)

s.t. E(wk) + E ′(wk)(w − wk) = 0, C(wk) + C ′(wk)(w − wk) ≤ 0.
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4. Generalized Newton methods

We have seen in the previous section that we can reformulate KKT systems of finite dimensional
optimization problems as nonsmooth equations. This also holds true for PDE-constrained optimiza-
tion with inequality constraints, as we will sketch below. In finite dimensions, we observed that a
projection-based reformulation results in a piecewise C1-function to which a Newton-type method
can be applied. In order to develop similar approaches in a function space framework, it is important
to find minimum requirements on the operator G : X → Y that allow us to develop and analyze a
Newton-type method for the (possibly nonsmooth) operator equation

(4.1) G(x) = 0.

4.1. Motivation: Application to optimal control. We will show now that the optimality condi-
tions of constrained optimal control problems can be converted to nonsmooth operator equations.

Consider the following elliptic optimal control problem:

min
y∈H1

0 ,u∈L2
J(y, u)

def
= ‖y − yd‖2

L2 +
γ

2
‖u‖2L2 s.t. Ay = u, α ≤ u ≤ β.

Here, y ∈ H1
0 (Ω) is the state, which is defined on the open bounded domain Ω ⊂ Rn, and u ∈ L2(Ω)

is the control. Furthermore, A : H1
0 (Ω) → H−1(Ω) = H1

0 (Ω)∗ is a (for simplicity) linear elliptic
partial differential operator, e.g., A = −∆.

The control is subject to pointwise bounds α < β. The objective is to drive the state as close to
yd ∈ L2(Ω) as possible. The second part penalizes excessive control costs; the parameter γ > 0 is
typically small.

We eliminate the state y via the state equation, i.e., y = y(u) = A−1u, and obtain the reduced problem

min
u∈L2

f(u)
def
= J(y(u), u)

def
=

1

2
‖A−1u− yd‖2

L2 +
γ

2
‖u‖2

L2 s.t. α ≤ u ≤ β.

The feasible set is

S =
{
u ∈ L2(Ω) : α ≤ u ≤ β

}

and the optimality conditions are given by

VI(∇f, S) : u ∈ S, (∇f(u), v − u)L2 ≥ 0 ∀ v ∈ S.

Using the projection PS(u) = P[α,β](u(·)) onto S, this can be rewritten as

Φ(u)
def
= u− P[α,β](u− θ∇f(u)) = 0,

where θ > 0 is fixed. This is a nonsmooth operator equation in the space L2(Ω). Hence, we were able
to convert the optimality system into a nonsmooth operator equation.
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4.2. A general superlinear convergence result. Consider the operator equation (4.1) with G :
X → Y , X , Y Banach spaces.

A general Newton-type method for (4.1) has the form

ALGORITHM 4.1 (Generalized Newton’s method).

0. Choose x0 ∈ X (sufficiently close to the solution x∗.)

For k = 0, 1, 2, . . . :

1. Choose an invertible operator Mk ∈ L(X, Y ).

2. Obtain sk by solving

(4.2) Mks = −G(xk),

and set xk+1 = xk + sk.

We now investigate the generated sequence (xk) in a neighborhood of a solution x∗ ∈ X , i.e.,G(x∗) =
0.

For the distance dk := xk − x∗ to the solution we have

Mkd
k+1 = Mk(x

k+1 − x∗) = Mk(x
k + sk − x∗) = Mkd

k −G(xk) = G(x∗) +Mkd
k −G(xk).

Hence, we obtain:

1. (xk) converges q-linearly to x∗ with rate γ ∈ (0, 1) iff

(4.3) ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X ≤ γ‖dk‖X ∀ k with ‖dk‖X sufficiently small.

2. (xk) converges q-superlinearly to x∗ iff

(4.4) ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = o(‖dk‖X) for ‖dk‖X → 0.

3. (xk) convergences with q-order 1 + α > 1 iff

(4.5) ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = O(‖dk‖1+α

X ) for ‖dk‖X → 0.

In 1., the esimate is meant uniformly in k, i.e., there exists δγ > 0 such that

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X ≤ γ‖dk‖X ∀ k with ‖dk‖X < δγ .

In 2., o(‖dk‖X) is meant uniformly in k, i.e., for all η ∈ (0, 1), there exists δη > 0 such that

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X ≤ η‖dk‖X ∀ k with ‖dk‖X < δη.

The condition in 3. and those stated below are meant similarly.

It is convenient, and often done, to split the smallness assumption on

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X
in two parts:



4. GENERALIZED NEWTON METHODS 81

1. Regularity condition:

(4.6) ‖M−1
k ‖Y,X ≤ C ∀ k ≥ 0.

2. Approximation condition:

(4.7) ‖G(x∗ + dk)−G(x∗)−Mkd
k‖X = o(‖dk‖X) for ‖dk‖X → 0.

or

(4.8) ‖G(x∗ + dk)−G(x∗)−Mkd
k‖X = O(‖dk‖1+α

X ) for ‖dk‖X → 0.

We obtain

THEOREM 4.2. Consider the operator equation (4.1) with G : X → Y , where X and Y are Banach
spaces. Let (xk) be generated by the generalized Newton method (Alg. 4.1). Then:

1. If x0 is sufficiently close to x∗ and (4.3) holds then xk → x∗ q-linearly with rate γ.

2. If x0 is sufficiently close to x∗ and (4.4) (or (4.6) and (4.7)) holds then xk → x∗ q-superlinearly.

3. If x0 is sufficiently close to x∗ and (4.5) holds (or (4.6) and (4.8)) then xk → x∗ q-superlinearly
with order 1 + α.

Proof. 1. Let δ > 0 be so small that (4.3) holds for all xk with ‖dk‖X < δ. Then, for x0 satisfying
‖x0 − x∗‖X < δ, we have

‖x1 − x∗‖X = ‖d1‖X = ‖M−1
0 (G(x∗ + d0)−G(x∗)−M0d

0)‖X ≤ γ‖d0‖X
= γ‖x0 − x∗‖X < δ.

Inductively, let ‖xk − x∗‖X < δ. Then

‖xk+1 − x∗‖X = ‖dk+1‖X = ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X
≤ γ‖dk‖X = γ‖xk − x∗‖X < δ.

Hence, we have
‖xk+1 − x∗‖X ≤ γ‖xk − x∗‖X ∀ k ≥ 0.

2. Fix γ ∈ (0, 1) and let δ > 0 be so small that (4.3) holds for all xk with ‖dk‖X < δ. Then, for x0

satisfying ‖x0 − x∗‖X < δ, we can apply 1. to conclude xk → x∗ with rate γ.

Now, (4.4) immediately yields

‖xk+1 − x∗‖X = ‖dk+1‖X = ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = o(‖dk‖X)

= o(‖xk − x∗‖X) (k →∞).

3. As in 2, but now

‖xk+1 − x∗‖X = ‖dk+1‖X = ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = O(‖dk‖1+α

X )

= O(‖xk − x∗‖1+α

X ) (k →∞).

�
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We emphasize that an inexact solution of the Newton system (4.2) can be interpreted as a solution
of the same system, but with Mk replaced by a perturbed operator M̃k. Since the condition (4.4)
(or the conditions (4.6) and (4.7)) remain valid if Mk is replaced by a perturbed operator M̃k and the
perturbation is sufficiently small, we see that the fast convergence of the generalized Newton’s method
is not affected if the system is solved inexactly and the accuracy of the solution is controlled suitably.
The Dennis-Moré condition [25] characterizes perturbations that are possible without destroying q-
superlinear convergence.

We will now specialize on particular instances of generalized Newton methods. The first one, of
course, is Newton’s method itself.

4.3. The classical Newton’s method. In the classical Newton’s method, we assume that G is
continuously F-differentiable and choose Mk = G′(xk).

The regularity condition then reads

‖G′(xk)−1‖Y,X ≤ C ∀ k ≥ 0.

By Banach’s Lemma (asserting continuity of M 7→ M−1), this holds true if G′ is continuous at x∗

and

G′(x∗) ∈ L(X, Y ) is continuously invertible.

This condition is the textbook regularity requirement in the analysis of Newton’s method.

Fréchet differentiability at x∗ means

‖G(x∗ + dk)−G(x∗)−G′(x∗)dk‖X = o(‖dk‖X).

Now, due to the continuity of G′,

‖G(x∗ + dk)−G(x∗)−Mkd
k‖X = ‖G(x∗ + dk)−G(x∗)−G′(x∗ + dk)dk‖X

≤ ‖G(x∗ + dk)−G(x∗)−G′(x∗)dk‖X + ‖(G′(x∗)−G′(x∗ + dk))dk‖X
= o(‖dk‖X) + ‖G′(x∗)−G′(x∗ + dk)‖X,Y ‖dk‖X = o(‖dk‖X).

Therefore, we have proved the superlinear approximation condition.
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IfG′ is α-order Hölder continuous near x∗, we even obtain the approximation condition of order 1+α.
In fact, let L > 0 be the modulus of Hölder continuity. Then

‖G(x∗ + dk)−G(x∗)−Mkd
k‖Y = ‖G(x∗ + dk)−G(x∗)−G′(x∗ + dk)dk‖Y

=

∥∥∥∥
∫ 1

0

(G′(x∗ + tdk)−G′(x∗ + dk))dk dt

∥∥∥∥
Y

≤
∫ 1

0

‖G′(x∗ + tdk)−G′(x∗ + dk)‖X,Y dt ‖dk‖X

≤ L

∫ 1

0

(1− t)α‖dk‖αX dt ‖dk‖X

=
L

1 + α
‖dk‖1+α

X = O(‖dk‖1+α

X ).

Summarizing, we have proved the following

COROLLARY 4.3. Let G : X → Y be a continuously F-differentiable operator between Banach
spaces and assume that G′(x∗) is continuously invertible at the solution x∗. Then Newton’s method
(i.e., Alg. 4.1 with Mk = G′(xk) for all k) converges locally q-superlinearly. If, in addition, G′ is
α-order Hölder continuous near x∗, the order of convergence is 1 + α.

REMARK 4.4. The choice of Mk in the ordinary Newton’s method, Mk = G′(xk), is point-based,
since it depends on the point xk.

4.4. Generalized differential and semismoothness. If G is nonsmooth, the question arises if
a suitable substitute for G′ can be found. We follow [75, 77] here; a related approach can be found
in [50]. Thinking at subgradients of convex functions, which are set-valued, we consider set-valued
generalized differentials ∂G : X ⇒ Y . Then we will choose Mk point-based, i.e.,

Mk ∈ ∂G(xk).

If we want every such choice Mk to satisfy the superlinear approximation condition, then we have to
require

sup
M∈∂G(x∗+d)

‖G(x∗ + d)−G(x∗)−Md‖X = o(‖d‖X) for ‖d‖X → 0.

This approximation property is called semismoothness [75, 77]:

DEFINITION 4.5 (Semismoothness). Let G : X → Y be a continuous operator between Banach
spaces. Furthermore, let be given the set-valued mapping ∂G : X ⇒ Y with nonempty images
(which we will call generalized differential in the sequel). Then

a) G is called ∂G-semismooth at x ∈ X if

sup
M∈∂G(x+d)

‖G(x+ d)−G(x)−Md‖X = o(‖d‖X) for ‖d‖X → 0.
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b) G is called ∂G-semismooth of order α > 0 at x ∈ X if

sup
M∈∂G(x+d)

‖G(x+ d)−G(x)−Md‖X = O(‖d‖1+α
X ) for ‖d‖X → 0.

LEMMA 4.6. If G : X → Y is continuously F-differentiable near x, then G is {G′}-semismooth at x.
Furthermore, if G′ is α-order Hölder continuous near x, then G is {G′}-semismooth at x of order α.

Proof.

‖G(x+ d)−G(x)−G′(x+ d)d‖Y ≤
≤ ‖G(x+ d)−G(x)−G′(x)d‖Y + ‖G′(x)d−G′(x+ d)d‖Y
≤ o(‖d‖X) + ‖G′(x)−G′(x + d)‖X,Y ‖d‖X = o(‖d‖X).

Here, we have used the definition of F-differentiablity and the continuity of G′.

In the case of α-order Hölder continuity we have to work a little bit more:

‖G(x+ d)−G(x)−G′(x + d)d‖Y =

∥∥∥∥
∫ 1

0

(G′(x + td)−G′(x+ d))d dt

∥∥∥∥
Y

≤
∫ 1

0

‖G′(x + td)−G′(x+ d)‖X,Y dt ‖d‖X ≤
∫ 1

0

L(1− t)α‖d‖αX dt ‖d‖X

=
L

1 + α
‖d‖1+α

X = O(‖d‖1+α
X ).

�

EXAMPLE 4.7. For locally Lipschitz-continuous functionsG : Rn → Rm, the standard choice for ∂G
is Clarke’s generalized Jacobian:

(4.9) ∂clG(x) = conv
{
M : xk → x, G′(xk)→M, G differentiable at xk

}
.

This definition is justified since G′ exists almost everywhere on Rn by Rademacher’s theorem (which
is a deep result).

REMARK 4.8. The classical definition of semismoothness for functions G : Rn → Rm [59, 64] is
equivalent to ∂clG-semismoothness, where ∂clG is Clarke’s generalized Jacobian defined in (4.9), in
connection with directional differentiability of G.

Next, we give a concrete example of a semismooth function:

EXAMPLE 4.9. Consider ψ : R→ R, ψ(x) = P[a,b](x), then Clarke’s generalized derivative is

∂clψ(x) =





0 x < a or x > b,

1 a < x < b,

conv{0, 1} = [0, 1] x = a or x = b.

The ∂clψ-semismoothness of ψ can be shown easily:
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For all x /∈ {a, b} we have that ψ is continuously differentiable in a neighborhood of x with ∂clψ ≡
{ψ′}. Hence, by Lemma 4.6, ψ is ∂clψ-semismooth at x.

For x = a, we estimate explicitly: For small d > 0, we have ∂clψ(x) = {ψ′(a+ d)} = {1} and thus

sup
M∈∂clψ(x+d)

|ψ(x+ d)− ψ(x)−Md| = a+ d− a− 1 · d = 0.

For small d < 0, we have ∂clψ(x) = {ψ′(a+ d)} = {0} and thus

sup
M∈∂clψ(x+d)

|ψ(x+ d)− ψ(x)−Md| = a− a− 0 · d = 0.

Hence, the semismoothness of ψ at x = a is proved.

For x = b we can do exactly the same.

The class of semismooth operators is closed with respect to a wide class of operations, see [75]:

THEOREM 4.10. Let X , Y , Z, Xi, Yi be Banach spaces.

a) If the operators Gi : X → Yi are ∂Gi-semismooth at x then (G1, G2) is (∂G1, ∂G2)-semismooth
at x.

b) If Gi : X → Y , i = 1, 2, are ∂Gi-semismooth at x then G1 +G2 is (∂G1 + ∂G2)-semismooth at
x.

c) Let G1 : Y → Z and G2 : X → Y be ∂Gi-semismooth at G2(x) and x, respectively. Assume that
∂G1 is bounded near y = G2(x) and that G2 is Lipschitz continuous near x. Then G = G1 ◦G2

is ∂G-semismooth with

∂G(x) = {M1M2 : M1 ∈ ∂G1(G2(x)), M2 ∈ ∂G2(x)} .

Proof. Parts a) and b) are straightforward to prove.

Part c):

Let y = G2(x) and consider d ∈ X . Let h(d) = G2(x+ d)− y. Then

‖h(d)‖Y = ‖G2(x+ d)−G2(x)‖Y ≤ L2‖d‖Y .

Hence, for M1 ∈ ∂G1(G2(x + d)) and M2 ∈ ∂G2(x+ d), we obtain

‖G1(G2(x + d))−G1(G2(x))−M1M2d‖Z =

= ‖G1(y + h(d))−G1(y)−M1h(d) +M1(G2(x+ d)−G2(x)−M2d)‖Z
≤ ‖G1(y + h(d))−G1(y)−M1h(d)‖Y + ‖M1‖Y,Z‖G2(x + d)−G2(x)−M2d‖Y
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By assumption, there exists C with ‖M1‖Y,Z ≤ C. Taking the supremum with respect to M1, M2 and
using the semismoothness gives

sup
M∈∂G(x+d)

‖G(x + d)−G(x)−Md‖Z

≤ sup
M1∈∂G1(y+h(d))

‖G1(y + h(d))−G1(y)−M1h(d)‖Y

+ C sup
M2∈∂G2(x+d)

‖G2(x+ d)−G2(x)−M2d‖Y

= o(‖h(d)‖Y ) + o(‖d‖X) = o(‖d‖X).

�

4.5. Semismooth Newton methods. The semismoothness concept ensures the approximation
property required for generalized Newton methods. In addition, we need a regularity condition, which
can be formulated as follows:

There exist constants C > 0 and δ > 0 such that

(4.10) ‖M−1‖Y,X ≤ C ∀M ∈ ∂G(x) ∀ x ∈ X, ‖x− x∗‖X < δ.

Under these two assumptions, the following generalized Newton method for semismooth operator
equations is q-superlinearly convergent:

ALGORITHM 4.11 (Semismooth Newton’s method).

0. Choose x0 ∈ X (sufficiently close to the solution x∗.)

For k = 0, 1, 2, . . . :

1. Choose Mk ∈ ∂G(xk).

2. Obtain sk by solving
Mks = −G(xk),

and set xk+1 = xk + sk.

The local convergence result is a simple corollary of Theorem 4.2:

THEOREM 4.12. Let G : X → Y be continuous and ∂G-semismooth at a solution x∗ of (4.1).
Furthermore, assume that the regularity condition (4.10) holds. Then there exists δ > 0 such that for
all x0 ∈ X , ‖x0 − x∗‖X < δ, the semismooth Newton method (Alg. 4.11) converges q-superlinearly
to x∗.

If G is ∂G-semismooth of order α > 0 at x∗, then the convergence is of order 1 + α.

Proof. The regularity condition (4.10) implies (4.6) as long as xk is close enough to x∗. Further-
more, the semismoothness of G at x∗ ensures the q-superlinear approximation property (4.7).

In the case of α-order semismoothness, the approximation property with order 1 + α holds.
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Therefore, Theorem 4.2 yields the assertions. �
4.5.1. Semismooth Newton method for finite dimensional KKT systems. At the beginning of this

chapter we have seen that we can rewrite the KKT conditions of the NLP

min f(w) s.t. E(w) = 0, C(w) ≤ 0

in the following form:

G(x)
def
=




∇wL(w, λ, µ)
λ− PRp+(λ+ C(w))

E(w)


 = 0,

where we have set x = (w, λ, µ). With the developed results, we now can show that the function G
on the left is semismooth. In fact, ∇wL is {∇2

wxL}-semismooth and E is E ′-semismooth.

Furthermore, as shown above, ψ(t) = PR+(t) is ∂clψ-semismooth with

∂clψ(t) = 0 (t < 0), ∂clψ(t) = 1 (t > 0), ∂clψ(0) = [0, 1].

Hence, by the sum and chain rules from Theorem 4.10

φi(w, λi)
def
= λi − PR+(λi + Ci(w)),

is semismooth with respect to

∂φi(w, λi) :=
{

(−giC ′i(w), 1− gi) : gi ∈ ∂clψ(λi + Ci(w))
}
.

Therefore, the function Φ(w, λ) = λ− PRp+(λ+ C(w)) is semismooth with respect to

∂Ψ(w, λ) :=
{

(−DgC
′
i(w), I −Dg) : Dg = diag(gi), gi ∈ ∂clψ(λi + Ci(w))

}
.

This shows that G is semismooth with respect to

∂G(x)
def
=







∇2
wwL(x) C ′(w)T E ′(w)T

−DgC(w)′ I −Dg 0
E ′(w) 0 0


 ; Dg = diag(gi), gi ∈ ∂clψ(λi + Ci(w))



 .

Under the regularity condition

‖M−1‖ ≤ C ∀M ∈ ∂G(x) ∀ x, ‖x− x∗‖ < δ,

where x∗ = (w∗, λ∗, µ∗) is a KKT triple, Theorem 4.12 is applicable and yields the q-superlinear
convergence of the semismooth Newton method.

REMARK 4.13. The compact-valuedness and the upper semicontinuity of Clarke’s generalized differ-
ential [21] even allows to reduce the regularity condition to

‖M−1‖ ≤ C ∀M ∈ ∂G(x∗).

REMARK 4.14. We also can view G as a piecewise smooth equation and apply Algorithm 3.2. In
fact, it can be shown that Clarke’s generalized Jacobian is the convex hull of the Jacobians of all
essentially active pieces [70, 75]. We are not going into details here.
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4.5.2. Discussion. So far, we have looked at semismooth Newton methods from an abstract point
of view. The main point, however, is to prove semismoothness for concrete instances of nonsmooth
operators. In particular, we aim at reformulating KKT systems arising in PDE-constrained optimiza-
tion in the same way as we did this in finite dimensions in the above section. We will investigate this
in detail in the next section 5.

It should be mentioned that the class of semismooth Newton method includes as a special case the
primal dual active set strategy, a modern approach found in the literature, see [9, 39].

5. Semismooth Newton methods in function spaces

In the finite dimensional setting we have shown that variational inequalities and complementarity
conditions can be reformulated as nonsmooth equations. We also described how generalized Newton
methods can be developed that solve these nonsmooth equations.

In section 4.5 we introduced the concept of semismoothness for nonsmooth operators and developed
superlinearly convergent generalized Newton methods for semismooth operator equations. We now
will show that, similar to the finite dimensional case, it is possible to reformulate variational inequal-
ities and complementarity conditions in function space.

5.1. Pointwise bound constraints in L2. Let Ω ⊂ Rn be measurable with 0 < |Ω| < ∞. We
consider the problem

min
u∈L2(Ω)

f(u) a ≤ u ≤ b a.e. on Ω

with f : L2(Ω)→ R twice continuously F-differentiable. We can admit unilateral constraints (a ≤ u
or u ≤ b) just as well. To avoid distinguishing cases, we will focus on the bilateral case a, b ∈ L∞(Ω),
b−a ≥ ν > 0 on Ω. We also could consider problems in Lp, p 6= 2. However, for the sake of compact
presentation, we focus on the case p = 2, which is the most important situation.

It is convenient to transform the bounds to constant bounds, e.g., via

u 7→ u− a
b− a .

Hence, we will consider the problem

(5.1) min
u∈L2(Ω)

f(u) α ≤ u ≤ β a.e. on Ω

with constants α < β. Let U = L2(Ω) and S = {u ∈ L2(Ω) : α ≤ u ≤ β}. We choose the standard
dual pairing 〈·, ·〉U∗,U = (·, ·)L2 and then have U ∗ = U = L2(Ω). The optimality conditions are

u ∈ S, (∇f(u), v − u)L2 ≥ 0 ∀ v ∈ S.
We now use the projection PS onto S, which is given by

PS(v)(x) = P[α,β](v(x)), x ∈ Ω.

Then the optimality conditions can be written as

(5.2) Φ(u) := u− PS(u− θ∇f(u)) = 0,



5. SEMISMOOTH NEWTON METHODS IN FUNCTION SPACES 89

where θ > 0 is arbitrary, but fixed. Note that, since PS conincides with the pointwise projection onto
[α, β], we have

Φ(u)(x) = u(x)− P[α,β](u(x)− θ∇f(u)(x)).

Our aim now is to define a generalized differential ∂Φ for Φ in such a way that Φ is semismooth.

By the chain rule and sum rule that we developed, this reduces to the question how a suitable differ-
ential for the superposition P[α,β](v(·)) can be defined.

5.2. Semismoothness of superposition operators. More generally than the superposition oper-
ator in the previous subsection, we look at the superposition operator

Ψ : Lp(Ω)m → Lq(Ω), Ψ(w)(x) = ψ(w1(x), . . . , wm(x)).

with 1 ≤ q ≤ p ≤ ∞.

Here, ψ : Rm → R is assumed to be Lipschitz continuous. Since we aim at semismoothness of Ψ, it
is more than natural to assume semismoothness of ψ. As differential we choose Clarke’s generalized
differential ∂clψ. Now it is reasonable to define ∂Ψ in such a way that, for all M ∈ ∂Ψ(w + d), the
remainder

|(Ψ(u+ d)−Ψ−Md)(x)| = |ψ(w(x) + d(x))− ψ(w(x))− (Md)(x)|
becomes pointwise small if |d(x)| is small. By semismoothness of ψ, this, again, holds true if (Md)(x) ∈
∂cl(w(x) + d(x)) is satisified.

Hence, we define:

DEFINITION 5.1. Let ψ : Rm → R be locally Lipschitz continuous and (∂clψ-) semismooth. For
1 ≤ q ≤ p ≤ ∞, consider

Ψ : Lp(Ω)m → Lq(Ω), Ψ(w)(x) = ψ(w1(x), . . . , wm(x)).

We define the differential

∂Ψ : Lp(Ω)m ⇒ L(Lp(Ω), Lq(Ω)),

∂Ψ(w) =
{
M : Mw = gTw, g ∈ L∞(Ω)m, g(x) ∈ ∂clψ(w(x)) for a.a. x ∈ Ω

}
.

The operator Φ in (5.2) is naturally defined as a mapping from L2 to L2. Therefore, since∇f maps to
L2, we would like the superposition v 7→ P[α,β](v(·)) to be semismooth from L2 to L2. But this is not
true, as the following Lemma shows in great generality.

LEMMA 5.2. Let ψ : R → R be any locally Lipschitz continuous function that is not affine linear.
Furthermore, let Ω ⊂ Rn be nonempty, open and bounded. Then, for all q ∈ [1,∞), the operator

Ψ : Lq(Ω) 3 u 7→ ψ(u(·)) ∈ Lq(Ω)

is not ∂Ψ-semismooth.
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Proof. Fix b ∈ R and choose gb ∈ ∂ψ(b) Since ψ is not affine linear, there exists a ∈ R with

ψ(a) 6= ψ(b) + gb(a− b).
Hence,

ρ := |ψ(b)− ψ(a)− gb(b− a)| > 0.

Let x0 ∈ Ω and Uε = (x0 − hε, x0 + hε)
n, hε = ε1/n/2. Define

u(x) = a, x ∈ Ω, dε(x) =

{
b− a x ∈ Uε,
0 x /∈ Uε.

Then

‖dε‖Lq =

(∫

Ω

|dε(x)|q dx
)1/q

=

(∫

Uε

|b− a|qdx
)1/q

= ε1/q|b− a|.

Choose some ga ∈ ∂ψ(a) and define

gε(x) =

{
gb x ∈ Uε,
ga x /∈ Uε.

Then M : Lq(Ω) 3 v 7→ gε · v ∈ Lq(Ω) is an element of ∂Ψ(u+ dε). Now, for all x ∈ Ω,

|ψ(u(x) + dε(x))− ψ(u(x))− gε(x)dε(x)| =
{
|ψ(b)− ψ(a)− gb(b− a)| = ρ > 0, x ∈ Uε,
|ψ(a)− ψ(a)− ga(a− a)| = 0, x /∈ Uε.

Therefore,

‖Ψ(u+ dε)−Ψ(u)−Mdε‖Lq =

(∫

Ω

|ψ(u(x) + dε(x))− ψ(u(x))− gε(x)dε(x)|q dx
)1/q

=

(∫

Uε

ρq dx

)1/q

= ε1/qρ =
ρ

|b− a|‖dε‖Lq .

�
Note that the trouble is not caused by the nonsmoothness of ψ, but by the nonlinearity of ψ.

Fortunately, Ulbrich [75, 77] proved a result that helps us. To formulate the result in its full generality,
we extend our definition of generalized differentials to superposition operators of the form ψ(G(·)),
where G is a continuously F-differentiable operator.

DEFINITION 5.3. Let ψ : Rm → R be Lipschitz continuous and (∂clψ-) semismooth. Furthermore, let
1 ≤ q ≤ p ≤ ∞ be given, consider

ΨG : Lp(Ω)m → Lq(Ω), ΨG(y)(x) = ψ(G(y)(x)),

where G : Y → Lp(Ω)m is continuously F-differentiable and Y is a Banach space. We define the
differential

∂ΨG : Y ⇒ L(Y, Lq(Ω)),

∂ΨG(y) =
{
M : Mv = gT (G′(y)v), g ∈ L∞(Ω)m, g(x) ∈ ∂clψ(G(y)(x)) for a.a. x ∈ Ω

}
.

(5.3)
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Note that this is just the differential that we would obtain by the construction in part c) of Theorem
4.10.

Now we can state the following semismoothness result.

THEOREM 5.4. Let Ω ⊂ Rn be measurable with 0 < |Ω| < ∞. Furthermore, let ψ : Rm → R
be locally Lipschitz continuous and semismooth. Let Y be a Banach space, 1 ≤ q < p ≤ ∞, and
assume that the operator G : Y → Lq(Ω)m is F-differentiable and that G maps Y locally Lipschitz
continuously to Lp(Ω). Then, the operator

ΨG : Y → Lq(Ω), ΨG(y)(x) = ψ(G(y)(x)),

is ∂ΨG-semismooth, where ∂ΨG is defined in (5.3).

Addition: Under additional assumptions, the operator ΨG is ∂ΨG-semismooth of order α > 0.

5.3. Pointwise bound constraints in L2 revisited. We return to the operator Φ defined in (5.2).
To be able to prove the semismoothness of Φ : L2 → L2 definied in (5.2), we thus need some kind of
smoothing property of the mapping

u 7→ u− θ∇f(u).

Therefore, we assume that∇f has the following structure:
There exist γ > 0 and p > 2 such that

∇f(u) = γu+B(u),

B : L2(Ω)→ L2(Ω) continuously F-differentiable,

B : L2(Ω)→ Lp(Ω) locally Lipschitz continuous.

(5.4)

This structure is met by many optimal control problems, as illustrated in section 5.4.

If we now choose θ = 1/γ, then we have

Φ(u) = u− P[α,β](u− (1/γ)(γu+B(u))) = u− P[α,β](−(1/γ)B(u)).

Therefore, we have achieved that the operator inside the projection satisfies the requirements of The-
orem 5.4. We obtain:

THEOREM 5.5. Consider the problem (5.1) with α < β and let f : L2(Ω)→ L2(Ω) satisfy condition
(5.4). Then, for θ = 1/γ, the operator Φ in the reformulated optimality conditions (5.2) is ∂Φ-
semismooth with

∂Φ : L2(Ω)⇒ L(L2(Ω), L2(Ω)),

∂Φ(u) =
{
M ; M = I +

g

γ
·B′(u), g ∈ L∞(Ω),

g(x) ∈ ∂clP[α,β](−1/γB(u)(x)) for a.a. x ∈ Ω
}
.

Here,

∂P[α,β](t)





0 t < α or t > β,

1 α < t < β,

[0, 1] t = α or t = β.
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Proof. Setting q = 2, ψ = P[α,β] and G = −(1/γ)B, we can apply Theorem 5.4 and obtain that
the operator ΨG : L2(Ω) → L2(Ω) is ∂ΨG-semismooth. Therefore, Φ = γI + ΨG is (γI + ∂ΨG)-
semismooth by Theorem 4.10. Since ∂Φ = γI + ∂ΨG, the proof is complete. �
For the applicability of the semismooth Newton method (Alg. 4.11) we need, in addition, the following
regularity condition:

‖M−1‖L2,L2 ≤ C ∀M ∈ ∂Φ(u) ∀ u ∈ L2(Ω), ‖u− u∗‖L2 < δ.

Sufficient conditions for this regularity assumption in the flavor of second order sufficient optimality
conditions can be found in [76, 75].

5.4. Application to optimal control. Consider the following elliptic optimal control problem:

(5.5) min
y∈H1

0 ,u∈L2
J(y, u)

def
= ‖y − yd‖2

L2 +
γ

2
‖u‖2L2 s.t. Ay = r +Ru, α ≤ u ≤ β.

Here, y ∈ H1
0 (Ω) is the state, which is defined on the open bounded domain Ω ⊂ Rn, and u ∈ L2(Ωc)

is the control, which is defined on the open bounded domain Ωc ⊂ Rm. Furthermore, A : H1
0 (Ω) →

H−1(Ω) = H1
0 (Ω)∗ is a (for simplicity) linear elliptic partial differential operator, e.g., A = −∆, and

r ∈ H−1(Ω) is given.

The control operator R : Lp
′
(Ωc) → H−1(Ω) is continuous and linear, with p′ ∈ [1, 2) (the reason

why we do not choose p′ = 2 here will become clear later; note however, that L2(Ωc) is continuously
embedded in Lp′(Ωc)). For instance, distributed control on the whole domain Ω would correspond to
the choice Ωc = Ω and R : u ∈ Lp′(Ω) 7→ u ∈ H−1(Ω), where p′ is chosen in such a way that H1

0 (Ω)
is continuously embedded in the dual space Lp(Ω), p = p′/(p′ − 1), of Lp′(Ω).

The control is subject to pointwise bounds α < β. The objective is to drive the state as close to
yd ∈ L2(Ω) as possible. The second part penalizes excessive control costs; the parameter γ > 0 is
typically small.

We eliminate the state y via the state equation, i.e., y = y(u) = A−1(r+Ru), and obtain the reduced
problem

min
u∈L2

f(u)
def
= J(y(u), u)

def
=

1

2
‖y(u)− yd‖2

L2 +
γ

2
‖u‖2L2 s.t. α ≤ u ≤ β.

This problem is of the form (5.1).

For the gradient we obtain

(∇f(u), d)L2 = (y(u)− yd, y′(u)d)L2(Ω) + γu, d)L2(Ωc) = (y′(u)∗(y(u)− yd) + γ(u, d)L2(Ωc)

Therefore,

∇f(u) = y′(u)∗(y(u)− yd) + γu = R∗(A−1)∗(A−1(r +Ru)− yd) + γu

= γu+R∗(A−1)∗(A−1(r +Ru)− yd) def
= γu+B(u).

Since R ∈ L(Lp
′
(Ωc), H

−1(Ω)), we have R∗ ∈ L(H1
0 (Ω), Lp(Ωc)) with p = p′/(p′ − 1) > 2. Hence,

the affine linear operator
B(u) = R∗(A−1)∗(A−1(r +Ru)− yd)
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is a continuous affine linear mapping L2(Ωc)→ Lp(Ω).

Hence, we can apply Theorem 5.4 to rewrite the optimality conditions as a semismooth operator
equation

Φ(u)
def
= u− P[α,β](−(1/γ)B(u)) = 0.

The Newton system reads

(5.6) (I +
1

γ
gk ·B′(uk))sk = −Φ(uk),

where g ·B′(u) stands for v 7→ g · (B ′(u)v) and gk ∈ L∞(Ωc) is chosen such that

gk(x)





= 0 −(1/γ)B(uk)(x) /∈ [α, β],

= 1 −(1/γ)B(uk)(x) ∈ (α, β),

∈ [0, 1] −(1/γ)B(uk)(x) ∈ {α, β}.
The linear operator on the left has the form

Mk
def
= I +

1

γ
gk ·B′(uk) = I +

1

γ
gk ·R∗(A−1)∗A−1R.

For solving (5.6), it can be advantagous to note that sk solves (5.6) if and only if sk = dku and
(dky, d

k
u, d

k
µ)T solves

(5.7)



I 0 A∗

0 I − 1
γ
gk ·R∗

A −R 0





dky
dku
dkµ


 =




0
−Φ(uk)

0




As we will see later in section 7.2, this is system is amenable to multigrid methods.

5.5. General optimization problems with inequality constraints inL2. We now consider prob-
lems of the form

min
w∈W

f(w) E(w) = 0, Cj(w) ≤ 0 a.e. on Ωj , j = 1, . . . , m.

Here W and Z are Banach spaces, f : W → R, E : W → Z, and Cj : W → L2(Ωj) are twice
continuously F-differentiable. The sets Ωj ⊂ Rnj are assumed to be open and bounded.

The main application we have in mind are control-constrained optimal control problems with L2-
control u and state y ∈ Y :

min
y∈Y,u∈L2(Ω)

J(y, u) E(y, u) = 0, ai ≤ ui ≤ bi, i = 1, . . . , r,

with y ∈ Y denoting the state, u ∈ L2(Ω1)×· · ·×L2(Ωr) denoting the controls, and ai, bi ∈ L∞(Ωi).

In this case, we have

w = (y, u), m = 2r, C2i−1(y, u) = ai − ui, C2i(y, u) = ui − bi, i = 1, . . . , r.

To simplify the presentation, consider the case m = 1, i.e.,

(5.8) min
w∈W

f(w) E(w) = 0, C(w) ≤ 0 a.e. on Ω.



94 2. OPTIMIZATION METHODS IN BANACH SPACES

The Lagrange function is given by

L : W × L2(Ω)× Z∗, L(w, λ, µ) = f(w) + (λ, C(w))L2 + 〈µ,E(w)〉Z∗.Z.
Assuming that a CQ holds at the solution w∗ ∈ W , the KKT conditions hold:

There exist λ∗ ∈ L2(Ω) and µ∗ ∈ Z∗ such that (w∗, λ∗, µ∗) satisfies

L′w(w, λ, µ) = 0,(5.9)

E(w) = 0,(5.10)

C(w) ≤ 0, λ ≥ 0, (λ, C(w))L2 = 0.(5.11)

The last line can equivalently be written as VI(−C,K) with K = {u ∈ L2(Ω) : u ≥ 0} and this VI
can again be rewritten using the projection onto K:

λ− PK(λ+ θC(w)) = 0.

Since PK(u) = P[0,∞)(u(·)), we again have to deal with a superposition operator.

To make the whole KKT system a semismooth equation, we need to get a smoothing operator inside
of the projection.

We need additional structure to achieve this. Since it is not very enlightening to define this structure
in full generality, we look at an example.

5.6. Application to an elliptic control problem. Very similar as in section 5.4, we consider the
following control-constrained elliptic optimal control problem

min
y∈H1

0 (Ω),u∈L2(Ω)
J(y, u)

def
= ‖y − yd‖2

L2
+
γ

2
‖u‖2L2

s.t. Ay = r +Ru, u ≤ b.
(5.12)

Here Ω ⊂ Rn is an open bounde domain and A : H1
0 (Ω) → H−1(Ω) is a second order linear elliptic

operator, e.g., A = −∆. Furthermore, b ∈ L∞(Ω) is an upper bound on the control, r ∈ H−1(Ω) is
a source term, and C ∈ L(Lp

′
(Ωc), H

−1(Ω)), p′ ∈ [1, 2) is the control operator. For a more detailed
explanation of the problem setting, see section 5.4.

We convert this control problem into the form (5.8) by setting

w = (y, u), W = Y × U, Y = H1
0 (Ω), U = L2(Ω), Z = H−1(Ω),

E(y, u) = Ay −Ru− r, C(y, u) = u− b.
Note that E is a continuous linear operator and C is a continuous affine linear operator. Hence,

E ′y(y, u) = A, E ′u(y, u) = −R, C ′y(y, u) = 0, C ′u(y, u) = I.

The Lagrange function is

L(y, u, λ, µ) = J(y, u) + (λ, C(y, u)L2) + 〈µ,E(y, u)〉H1
0 ,H
−1.
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We write down the optimality conditions:

L′y(y, u, λ, µ) = Jy(y, u) + C ′y(y, u)∗λ+ E ′y(y, u)∗µ = y − yd + A∗µ = 0,

L′u(y, u, λ, µ) = Ju(y, u) + C ′u(y, u)∗λ+ E ′u(y, u)∗µ = γu+ λ− R∗µ = 0,

λ ≥ 0, C(y, u) = u− b ≤ 0, (λ, C(y, u))L2 = (λ, u− b)L2 = 0,

E(y, u) = Ay − Ru− r = 0.

The second equation yields λ = R∗µ− γu and inserting this, we arrive at

y − yd + A∗µ = 0, (adjoint equation)

R∗µ− γu ≥ 0, u ≤ b, (R∗µ− γu, u− b)L2 = 0,

Ay − Ru− f = 0, (state equation)

We can reformulate the complementarity condition by using the projection P[0,∞) as follows:

b− u− P[0,∞)(b− u− θ(R∗µ− γu)) = 0.

If we choose θ = 1/γ, this simplifies to

Φ(u, µ) := u− b+ P[0,∞)(b− (1/γ)R∗µ) = 0.

Since R∗ ∈ L(H1
0 (Ω), Lp(Ω)) with p = p′/(p′ − 1) > 2, we see that

(u, µ) ∈ L2(Ω)×H1
0 (Ω) 7→ b− (1/γ)R∗µ ∈ Lp(Ω)

is continuous and affine linear, and thus Φ is ∂Φ-semismooth w.r.t.

∂Φ : L2(Ω)×H1
0(Ω)⇒ L(L2(Ω)×H1

0 (Ω), L2(Ω)),

∂Φ(u, µ) =
{
M ; M = (I,−(g/γ) ·R∗), g ∈ L∞(Ω),

g(x) ∈ ∂clP[0,∞)(b(x)− (1/γ)R∗µ(x)) for a.a. x ∈ Ω
}
.

Here,

∂P[0,∞)(t)





0 t < 0,

1 t > 0,

[0, 1] t = 0.

The semismooth Newton system looks as follows

(5.13)



I 0 A∗

0 I −(gk/γ) ·R∗
A −R 0





sy
su
sµ


 = −




yk − yd + A∗µk

uk − b+ P[0,∞)(b− (1/γ)R∗µk)
Ayk − Ruk − f




It is important to note that this equation has exactly the same linear operator on the left as the ex-
tended system in (5.7). In particular, the regularity condition for the Newton system (5.13) is closely
connected to the regularity condition for (5.6).
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6. Sequential Quadratic Programming

6.1. Lagrange-Newton methods for equality constrained problems. We consider

(6.1) min
w∈W

f(w) s.t. E(w) = 0

with f : W → R and E : W → Z twice continuously F-differentiable.

If w∗ is a local solution and a CQ holds (i.e., E ′(w∗) is surjective), then the KKT conditions hold:

There exists a Lagrange multiplier µ∗ ∈ Z∗ such that (w∗, µ∗) satisfies

L′w(w, µ) = f ′(w) + E ′(w)∗µ = 0,

L′µ(w, µ) = E(w) = 0.

Setting

x = (w, µ), G(w, µ) =

(
L′w(w, µ)
E(w)

)
,

the KKT conditions form a nonlinear equation

G(x) = 0.

To this equation we can apply Newton’s method:

G′(xk)sk = −G(xk).

Written in detail,

(6.2)
(
L′′ww(wk, µk) E ′(wk)∗

E ′(wk) 0

)(
skw
skµ

)
= −

(
L′w(wk, µk)

E(wk)

)
.

We need a regularity condition:

(6.3)
(
L′′ww(w∗, µ∗) E ′(w∗)∗

E ′(w∗) 0

)
is boundedly invertible.

THEOREM 6.1. Let f and E be twice continuously F-differentiable. Let (w∗, µ∗) be a KKT pair
of (6.1) at which the regularity condition (6.3) holds. Then there exists δ > 0 such that, for all
(w0, µ0) ∈ W × Z∗ with ‖(w0, µ0)− (w∗, µ∗)‖W×Z∗ < δ, the Lagrange-Newton iteration converges
q-superlinearly to (w∗, µ∗).

If the second derivatives of f and E are locally Lipschitz continuous, then the rate of convergence is
q-quadratic.

Proof. We just have to apply the convergence theory of Newton’s method.

If the second derivatives of f and E are locally Lipschitz continuous, then G′ is locally Lipschitz
continuous, and thus we have q-quadratic convergence. �
So far, it is not clear what the connection is between the Lagrange-Newton method and sequential
quadratic programming.



6. SEQUENTIAL QUADRATIC PROGRAMMING 97

However, the connection is very close. Consider the following quadratic program:

SQP subproblem:

min
d∈W
〈f ′(wk), d〉W ∗,W +

1

2
〈L′′ww(wk, µk)d, d〉W ∗,W

s.t. E(wk) + E ′(wk)d = 0.
(6.4)

The constraint is linear with derivative E ′(wk). As we will show below, E ′(wk) is surjective for wk

close to w∗.

Therefore, at a solution dk of (6.4), the KKT conditions hold:

There exists µkqp ∈ Z∗ such that (dk, µkqp) solves

f ′(wk) + L′′ww(wk, µk)d+ E ′(wk)∗µqp = 0

E(wk) + E ′(wk)d = 0.
(6.5)

It is now easily seen that (dk, µkqp) solves (6.5) if and only if (skw, s
k
µ) = (dk, µkqp − µk) solves (6.2).

Hence, locally, the Lagrange-Newton method is equivalent to the following method:

ALGORITHM 6.2 (SQP method for equality constrained problems).

0. Choose (w0, µ0) (sufficiently close to (w∗, µ∗)).

For k = 0, 1, 2, . . .:

1. If (wk, µk) is a KKT pair of (6.1), STOP.

2. Compute the KKT pair (dk, µk+1) of

min
d∈W
〈f ′(wk), d〉W ∗,W +

1

2
〈L′′ww(wk, µk)d, d〉W ∗,W

s.t. E(wk) + E ′(wk)d = 0.

that is closest to (0, µk).

3. Set wk+1 = wk + sk.

For solving the SQP subproblems in step 2, it is important to know if for wk close to w∗, the operator
E ′(wk) is indeed surjective and if there exists a unique solution to the QP.

LEMMA 6.3. Let W be a Hilbert space and Z be a Banach space. Furthermore, let E : W → Z be
continuously F-differentiable and let E ′(w∗) be surjective. Then E ′(w) is surjective for all w close to
w∗.

Proof. We set B = E ′(w∗), and B(w) = E ′(w), and do the splitting W = W0⊥W1 with W0 =
Kern(B). We then see that B|W1 ∈ L(W1, Z) is bijective and thus continuously invertible (open
mapping theorem). Now, by continuity, for w → w∗ we have B(w) → B in L(W,Z) and thus
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also B(w)|W1 → B|W1 in L(W1, Z). Therefore, by the Lemma of Banach, B(w)|W1 is continuously
invertible for w close to w∗ and thus B(w) is onto. �
Next, we show a second-order sufficient condition for the QP.

LEMMA 6.4. Let W be a Hilbert space and Z be a Banach space. Furthermore, let f : W → R and
E : W → Z be twice continuously F-differentiable. Let E(w∗) = 0 assume that E ′(w∗) is surjective.
In addition, let the following second-order sufficient condition hold at (w∗, µ∗):

〈d, L′′ww(w∗, µ∗)d〉W,W ∗ ≥ α‖d‖2W ∀ d ∈ W with E ′(w∗)d = 0,

where α > 0 is a constant. Then, there exists δ > 0 such that for all (w, µ) ∈ W × Z∗ with
‖(w, µ)− (w∗, µ∗)‖W×Z∗ < δ the following holds:

〈d, L′′ww(w, µ)d〉W,W ∗ ≥
α

2
‖d‖2W ∀ d ∈ W with E ′(w)d = 0,

Proof. Set B = E ′(w∗), B(w) = E ′(w), W0 = Kern(W ) and split W = W0⊥W1. Remember
that B|W1 ∈ L(W1, Z) is continuously invertible.

For any d ∈ Kern(B(x)) there exist unique d0 ∈ W0 and d1 ∈ W1 with d = d0 + d1. Our first aim is
to show that d1 is small. In fact,

‖Bd1‖Z = ‖Bd‖Z = ‖(B − B(w))d‖ ≤ ‖B − B(w)‖W,Z‖d‖W .
Hence,

‖d1‖W ≤ ‖(B|W1)
−1‖Z,W1

‖B −B(w)‖W,Z‖d‖W
def
= ξ(w)‖d‖W .

Therefore, setting x = (w, µ),

〈L′′ww(x)d, d〉W ∗,W = 〈L′′ww(x∗)d, d〉W ∗,W + 〈(L′′ww(x)− L′′ww(x∗))d, d〉W ∗,W
= 〈L′′ww(x∗)d0, d0〉W ∗,W + 〈L′′ww(x∗)(d+ d0), d1〉W ∗,W + 〈(L′′ww(x)− L′′ww(x∗))d, d〉W ∗,W
≥ α‖d0‖2

W − ‖L′′ww(x∗)‖W,W ∗(‖d‖W + ‖d0‖W )‖d1‖W − ‖L′′ww(x)− L′′ww(x∗)‖W,W ∗‖d‖2W
≥ (α(1− ξ2(w))− 2‖L′′ww(x∗)‖W,W ∗ξ(w)− ‖L′′ww(x)− L′′ww(x∗)‖W,W ∗)‖d‖

2
W

=: α(x)‖d‖2W .
By continuity, α(x)→ α for x→ x∗. �
A sufficient condition for the regularity condition (6.3) is the following:

LEMMA 6.5. Let W be a Hilbert space, let E ′(w∗) be surjective (this is a CQ), and assume that the
following second order sufficient condition holds:

〈d, L′′ww(w∗, µ∗)d〉W,W ∗ ≥ α‖d‖2W ∀ d ∈ W with E ′(w∗)d = 0.

Then the regularity condition (6.3) holds.

Proof. For brevity, set A = L′′ww(w∗, µ∗) and B = E ′(w∗). We consider the unique solvability of
(
A B∗

B 0

)(
w

µ

)
=

(
r1

r2

)
.
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Denote by W0 the null space of B and by W1 its orthogonal complement. Then W = W0⊥W1 and
W0, W1 are Hilbert spaces.

Since B is surjective, the equation Bw = r2 is solvable and the set of all solutions is w1(r2) + W0,
where w1(r2) ∈ W1 is uniquely determined.

We have
〈d, Ad〉W,W ∗ ≥ α‖d‖2W ∀ d ∈ W0.

Hence, by the Lax-Milgram Lemma, there exists a unique solution w0(r1, r2) ∈ W0 to the problem

w0 ∈ W0, 〈d, Aw0〉W,W ∗ = 〈d, r1 − Aw1(r2)〉W,W ∗ ∀ d ∈ W0.

Since B is surjective, the closed range theorem yields

Kern(B∗) = (BW )⊥ = Z⊥ = {0}.
Hence, B∗ is injective. Also, since BW = Z is closed, the closed range theorem yields

B∗Z∗ = Kern(B)⊥ = W⊥
0

Here, for S ⊂ X
S⊥ = {x′ ∈ X∗ : 〈x′, s〉X∗,X = 0 ∀ s ∈ S} .

By construction, r1−Aw0(r1, r2)−Aw1(r2) ∈ W⊥
0 . Hence, there exists a unique µ(r1, r2) ∈ Z∗ such

that
µ(r1, r2) = r1 − Aw0(r1, r2)− Aw1(r2)

Therefore, we have found the unique solution
(
w

µ

)
=

(
w0(r1, r2) + w1(r2)

µ(r1, r2)

)
.

�

6.2. The Josephy-Newton method. In the previous section, we were able to derive the SQP
method for equality-constrained problems by applying Newton’s method to the KKT system.

For inequality constrained problems this is not directly possible since the KKT system consists of
operator equations and a variational inequality. As we will see, such a combination can be most
elegantly written as a

6.2.1. Generalized Equation:

GE(G,N ): 0 ∈ G(x) +N(x).

Here, G : X → Y is assumed to be continuously F-differentiable and N : X ⇒ Y is a set-valued
mapping with closed graph.

For instance, the variational inequality VI(F, S), with F : W → W ∗ and S ⊂ W closed and convex,
can be written as

0 ∈ F (w) +NS(w),

where NS is the normal cone mapping of S:
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DEFINITION 6.6. Let S ⊂ W be a nonempty closed convex subset of the Banach space W . The
normal cone NS(w) of S at w ∈ W is defined by

NS(w) =

{
{y ∈ W ∗ : 〈y, z − w〉W ∗,W ≤ 0 ∀ z ∈ S} , w ∈ S,
∅ w /∈ S.

This defines a set-valued mapping NS : W ⇒W ∗.

The Josephy-Newton method for generalized equations looks as follows:

ALGORITHM 6.7 (Josephy-Newton method for GE(G,N )).

0. Choose x0 ∈ X (sufficiently close to the solution x∗ of GE(G,N )).

For k = 0, 1, 2 . . .

1. STOP if xk solves GE(G,N ) (holds if xk = xk−1).

2. Compute the solution xk+1 of

GE(G(xk) +G′(xk)(· − xk), N) :

0 ∈ G(xk) +G′(xk)(x− xk) +N(x)

that is closest to xk.

In the ordinary Newton’s method, which corresponds to N(x) = {0} for all x, an essential ingredient
is the regularity condition that G′(x∗) is continuously invertible.

This means that the linearized equation

p = G(x∗) +G′(x∗)(x− x∗)
possesses the unique solution x(p) = G′(x∗)−1p, which of course depends linearly and thus Lipschitz
continuously on p ∈ Y .

The appropriate generalization of this regularity condition is the following:

DEFINITION 6.8 (Strong regularity). The generalized equation GE(G,N ) is called strongly regular
at a solution x∗ if there exist δ > 0, ε > 0 and L > 0 such that, for all p ∈ Y , ‖p‖Y < δ, there exists
a unique x = x(p) ∈ X with ‖x(p)− x∗‖X < ε such that

p ∈ G(x∗) +G′(x∗)(x− x∗) +N(x)

and x(p) is Lipschitz continuous:

‖x(p1)− x(p2)‖X ≤ L‖p1 − p2‖Y ∀ p1, p2 ∈ Y, ‖pi‖X < δ, i = 1, 2.

It is a milestone result of Robinson ([67]) that then the following holds:

THEOREM 6.9. Let X , Y , and Z be Banach spaces. Furthermore, let z∗ ∈ Z be fixed and assume
that x∗ is a solution of

GE(G(z∗, ·), N) : 0 ∈ G(z∗, x) +N(x)
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at which the GE is strongly regluar with Lipschitz modulus L. Assume that G is F-differentiable with
repect to x near (z∗, x∗) and that G and G′x are continuous at (z∗, x∗).

Then, for every ε > 0, there exist neighborhoods Zε(z∗) of z∗, Xε(x
∗) of x∗, and a mapping x :

Zε(z
∗)→ Xε(x

∗) such that, for all z ∈ Zε(z∗), x(z) is the (locally) unique solution of the generalized
equation

0 ∈ G(z, x) +N(x), x ∈ Xε(x
∗).

In addition,

‖x(z1)− x(z2)‖X ≤ (L+ ε)‖G(z1, x(z2))−G(z2, x(z2))‖Y ∀ z1, z2 ∈ Zε(z∗).

From this, it is not difficult to derive fast local convergence of the Josephy-Newton method:

THEOREM 6.10. Let X , Y be Banach spaces, G : X → Y continuously F-differentiable, and let
N : X ⇒ Y be set-valued with closed graph. If x∗ is a strongly regular solution of GE(G,N ), then
the Josephy-Newton method (Alg. 6.7) is locally q-superlinearly convergent in a neighborhood of x∗.
If, in addition, G′ is α-Hölder continuous near x∗, then the order of convergence is 1 + α.

Proof. For compact notation, we set Bδ(x) = {y ∈ X : ‖y − x‖X < δ}.
Let L be the Lipschitz modulus of strong regularity. We set Z = X , z∗ = x∗ and consider

Ḡ(z, x)
def
= G(z) +G′(z)(x− z).

Since Ḡ(z∗, ·) is affine linear, we have

Ḡ(z∗, x∗) + Ḡ′x(z
∗, x∗)(x− x∗) = G(z∗, x) = G(z∗) +G′(z∗)(x− z∗) = G(x∗) + G′(x∗)(x− x∗).

Therefore, GE(Ḡ(z∗, ·), N) is strongly regular at x∗ with Lipschitz constant L. Theorem 6.9 is appli-
cable and thus, for ε > 0, there exist neighborhoods Zε(x∗) of z∗ = x∗ and Xε(x

∗) of x∗ such that,
for all z ∈ Zε(x∗),

0 ∈ Ḡ(z, x) +N(x) = G(z) +G′(z)(x− z) +N(x), x ∈ Xε(x
∗)

has a unique solution x(z) that satisfies

∀ z1, z2 ∈ Zε(z∗) = Zε(x
∗) :

‖x(z1)− x(z2)‖X ≤ (L + ε)‖Ḡ(z1, x(z2))− Ḡ(z2, x(z2))‖Y
= (L + ε)‖G(z1)−G(z2) +G′(z1)(x(z2)− z1)−G′(z2)(x(z2)− z2)‖Y
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If we choose z1 = z ∈ Zε(x∗) and z2 = x∗, we obtain x(z2) = x∗ and thus forall z ∈ Zε(x∗):

‖x(z)− x∗‖X ≤ (L+ ε)‖G(z)−G(x∗) +G′(z)(x∗ − z)−G′(x∗)(x∗ − x∗)‖Y
= (L + ε)‖G(z)−G(x∗)−G′(z)(z − x∗)‖Y
≤ (L+ ε)‖G(z)−G(x∗)−G′(x∗)(z − x∗)‖Y

+ (L + ε)‖(G′(x∗)−G′(z))(z − x∗)‖Y
≤ (L+ ε)‖G(z)−G(x∗)−G′(x∗)(z − x∗)‖Y

+ (L + ε)‖G′(x∗)−G′(z)‖X,Y ‖z − x∗‖X
= o(‖z − x∗‖X) (z → x∗).

(6.6)

In the last estimate, we have used the F-differentiability of G and the continuity of G′.

Now choose δ > 0 such that B3δ(x
∗) ⊂ Zε(x

∗). By possibly reducing δ, we achieve

x(z) ∈ Bδ/2(x∗) ⊂ Bδ(x
∗) ∀ z ∈ Bδ(x

∗).

Now observe that, for xk ∈ Bδ(x
∗), the unique solution of GE(G(xk) +G′(xk)(· − xk), N ) in Zε(x∗)

is given by x(xk) ∈ Bδ/2(x∗).

From

‖x(xk)− xk‖ ≤ ‖x(xk)− x∗‖X + ‖x∗ − xk‖X <
δ

2
+ δ =

3

2
δ

and B3δ(x
∗) ⊂ Zε(x

∗) we conclude that x(xk) is the solution of GE(G(xk) +G′(xk)(· − xk), N ) that
is closest to xk. Hence, for xk ∈ Bδ(x

∗), we have

xk+1 = x(xk) ∈ Bδ(x
∗), ‖xk+1 − x∗‖X ≤

1

2
‖xk − x∗‖X

Thus, if we choose x0 ∈ Bδ(x
∗), we obtain by induction xk → x∗.

Furthermore, from (6.6) it follows that

‖xk+1 − x∗‖X = ‖x(xk)− x∗‖X = o(‖xk − x∗‖X) (k →∞).

This proves the q-superlinear convergence.

If G′ is α-order Hölder continuous at x∗, then we can improve the estimate (6.6):

‖x(z)− x∗‖X ≤ (L+ ε)‖G(z)−G(x∗)−G′(z)(z − x∗)‖Y

= (L + ε)

∥∥∥∥
∫ 1

0

G′(x∗ + t(z − x∗))−G′(z))(z − x∗) dt
∥∥∥∥
Y

≤ (L+ ε)

∫ 1

0

‖G′(x∗ + t(z − x∗))−G′(z)‖X,Y dt‖z − x∗‖X

≤ (L+ ε)

∫ 1

0

t‖z − x∗‖αX dt ‖z − x∗‖X =
L+ ε

1 + α
‖z − x∗‖1+α

X

= O(‖z − x∗‖1+α
X ) (z → x∗).
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Hence,
‖xk+1 − x∗‖X = ‖x(xk)− x∗‖X = O(‖xk − x∗‖1+α

X ) (k →∞).

�

6.3. SQP methods for inequality constrained problems. We consider the problem

(6.7) min
w∈W

f(w) s.t. E(w) = 0, C(w) ∈ K.

with f : W → R, E : W → Z, and C : W → V twice continuously F-differentiable. Furthermore,
W ,Z, V are Banach spaces, and V is reflexive (i.e., V ∗∗ = V ), and K ⊂ V is a nonempty closed
convex cone.

For this problem, we define the Lagrange function

L(w, λ, µ) = f(w) + 〈λ, C(w)〉V ∗,V + 〈µ,E(w)〉Z∗,Z.
We will need the notion of the polar cone.

DEFINITION 6.11. Let X be a Banach space and let K ⊂ X be a nonempty closed convex cone. Then
the polar cone of K is defined by

K◦ = {y ∈ X∗ : 〈y, x〉X∗,X ≤ 0 ∀ x ∈ K} ,
Obviously, K◦ is a closed convex cone.

Recall also the definition of the normal cone mapping (Def. 6.6).

Under a constraint qualification, the following KKT conditions hold:

There exist Lagrange multipliers λ∗ ∈ K◦ and µ∗ ∈ Z∗ such that (w∗, λ∗, µ∗) satisifes

L′w(w, λ, µ) = 0,

C(w) ∈ K, λ ∈ K◦, 〈λ, C(w)〉V ∗,V = 0,

E(w) = 0,

Note that, since V ∗∗ = V , we have K◦ ⊂ V .

The second condition can be shown to be equivalent to VI(−C(w), K◦). This is a VI w.r.t. λ with a
constant operator parametrized by w.

Now comes the trick, see, e.g., [4]:

By means of the normal cone NK◦, it is easily seen that VI(−C(w), K◦) is equivalent to the general-
ized equation

0 ∈ −C(w) +NK◦(λ).

Therefore, we can write the KKT system as a generalized equation:

(6.8) 0 ∈



Lw(w, λ, µ)
−C(w)
E(w)


 +



{0}

NK◦(λ)
{0}


 .
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Setting

N(w, λ, µ) =



{0}

NK◦(λ)
{0}


 ,

and notingL′λ(w, λ, µ) = C(w),L′µ(w, λ, µ) = E(w), we can write (6.8) very compactly as GE(−L′, N ).

The closed graph of the normal cone mapping is proved in the next lemma.

LEMMA 6.12. Let X be a Banach spaces and S ⊂ X be nonempty, closed, and convex. Then the
normal cone mapping NS has closed graph.

Proof. Let graph(NS) 3 (xk, yk) → (x∗, y∗). Then yk ∈ NS(xk) and thus xk ∈ S, since other-
wise NS(xk) would be empty. Since S is closed, x∗ ∈ S follows. Now, for all z ∈ S, by continuity

〈y∗, z − x∗〉X∗,X = lim
k→∞
〈yk, z − xk〉X∗,X︸ ︷︷ ︸

≤0

≤ 0,

hence y∗ ∈ NS(x∗). Therefore, (x∗, y∗) ∈ graph(NS). �
If we now apply the Josephy-Newton method to (6.8), we obtain the following subproblem (we set
xk = (wk, λk, µk)):

(6.9) 0 ∈



Lw(xk)
−C(wk)
E(wk)


 +



L′′ww(xk) C ′(wk)∗ E ′(wk)∗

−C ′(wk) 0 0
E ′(wk) 0 0





w − wk
λ− λk
µ− µk


+



{0}

NK◦(λ)
{0}


 .

It is not difficult to see that (6.9) are exactly the KKT conditions of the following quadratic optimiza-
tion problem:

6.3.1. SQP subproblem:

min
w∈W

〈f ′(wk), w − wk〉W ∗,W +
1

2
〈L′′ww(xk)(w − wk), w − wk〉W ∗,W

s.t. E(wk) + E ′(wk)(w − wk) = 0, C(wk) + C ′(wk)(w − wk) ∈ K.
In fact, the Lagrange function of the QP is

Lqp(x) = 〈f ′(wk), w − wk〉W ∗,W +
1

2
〈L′′ww(xk)(w − wk), w − wk〉W ∗,W

+ 〈λ, C(wk) + C ′(wk)(w − wk)〉W ∗,W + 〈µ,E(wk) + E ′(wk)(w − wk)〉Z∗,Z.
Since

Lqpw
′(x) = f ′(wk) + L′′ww(xk)(w − wk) + C ′(wk)∗λ+ E ′(wk)∗µ

= L′w(xk) + L′′ww(xk)(w − wk) + C ′(wk)∗(λ− λk) + E ′(wk)∗(µ− µk),
we see that writing down the KKT conditions for the QP in the form (6.8) gives exactly the generalized
equation (6.9).

We obtain:
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ALGORITHM 6.13 (SQP method for inequality constrained problems).

0. Choose (w0, λ0, µ0) (sufficiently close to (w∗, λ∗, µ∗)).

For k = 0, 1, 2, . . .:

1. If (wk, λk, µk) is a KKT triple of (6.7), STOP.

2. Compute the KKT triple (dk, λk+1, µk+1) of

min
d∈W
〈f ′(wk), d〉W ∗,W +

1

2
〈L′′ww(wk, λk, µk)d, d〉W ∗,W

s.t. E(wk) + E ′(wk)d = 0, C(wk) + C ′(wk)d ∈ K.
that is closest to (0, λk, µk).

3. Set wk+1 = wk + dk.

Since this method is the Josephy-Newton algorithm applied to (6.8), we can derive local convergence
results immediately if a Robinson’s strong regularity condition is satisfied. This condition has to be
verified from case to case and is connected to second order sufficient optimality conditions. As an
example where strong regularity is verified for an optimal control problem, we refer to [32].

6.3.2. Application to optimal control. For illustration, we consider the nonlinear elliptic optimal
control problem

(6.10) min
y∈H1

0 ,u∈L2
J(y, u)

def
= ‖y − yd‖2

L2 +
γ

2
‖u‖2L2 s.t. Ay + y3 + y = u, u ≤ b.

Here, y ∈ H1
0 (Ω) is the state, which is defined on the open bounded domain Ω ⊂ Rn, n ≤ 3, and

u ∈ L2(Ω) is the control. Furthermore, A : H1
0 (Ω) → H−1(Ω) = H1

0 (Ω)∗ is a linear elliptic partial
differential operator, e.g., A = −∆. Finally b ∈ L∞(Ω) is an upper bound on the control. We convert
this control problem into the form (6.7) by setting

Y = H1
0 (Ω), U = L2(Ω), Z = H−1(Ω),

E(y, u) = Ay + y3 + y − u, C(y, u) = u− b,
K =

{
u ∈ L2(Ω) : u ≤ 0 a.e. on Ω

}
.

One can show (note n ≤ 3) that the operator E is twice continuously F-differentiable with

E ′y(y, u) = A+ 3y2 · I + I, E ′′yy(y, u)(h1, h2) = 6yh1h2

(the other derivatives are obvious due to linearity). Therefore, given xk = (yk, uk, λk, µk), the SQP
subproblem reads

min
dy ,du

(yk − yd, dy)L2 + Aγ(uk, du)L2 +
1

2
‖dy‖2

L2 +
1

2
〈µk, 6ykd2

y〉H1
0 ,H

−1 +
γ

2
‖du‖2

L2

s.t. Ayk + (yk)3 + yk − uk + Ady + 3(yk)2dy + dy − du = 0,

uk + du ≤ b.
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7. Further aspects

7.1. Mesh independence. For numerical computations, we have to discretize the problem (Finite
elements, finite differences,...) and to apply the developed optimization methods to the discretized,
finite dimensional problem. One such situation would be, for instance, to apply an SQP method to the
discretization (Ph) of the infinite dimensional problem (P). If this is properly done, we can interpret
the discrete SQP method as an inexact (i.e. perturbed) version of the SQP method applied to (P).

Abstractly speaking, we have an infinite dimensional problem (P) and an algorithm A for its solution.
Furthermore, we have a family of finite dimensional approximations (Ph) of (P), and discrete versions
Ah of algorithm A. Here h > 0 denotes the accuracy of discretization (with increasing accuracy
as h → 0). Starting from x0 and the corresponding discrete point x0

h, respectively, the algorithms
A and Ah will generate sequences (xk) and (xkh), respectively. Mesh independence means that the
convergence behavior of (xk) and (xkh) become more and more alike as the discretization becomes
more and more accurate, i.e., as h → 0. This means, for instance, that q-superlinear convergence of
Alg. A on a δ-neighborhood of the solution implies the same rate of convergence for Alg. Ah on a
δ-neighborhood of the corresponding discrete solution as soon as h is sufficiently small.

Mesh independence results for Newton’s method were established in, e.g., [2, 26]. The mesh indepen-
dence of SQP methods and Josephy-Newton methods was shown, e.g., in [5, 27]. Furthermore, the
mesh independence of semismooth Newton methods was established in [40].

7.2. Application of fast solvers. An important ingredient in PDE constrained optimization is the
combination of optimization methods with efficient solvers (sparse linear solvers, multigrid, precon-
ditioned Krylov subspace methods, etc.). It is by far out of the scope of these notes to give details.
Instead, we focus on just two simple examples.

For both semismooth reformulations of the elliptic control problems (5.5) and (5.12), we showed that
the semismooth Newton system is equivalent to

(7.1)



I 0 A∗

0 I −1

γ
gk ·R∗

A −R 0






dky
dku
dkµ


 =



rk1
rk2
rk3




with appropriate right hand side. HereA ∈ L(H1
0(Ω), H−1(Ω)) is an elliptic operator,R ∈ L(Lp

′
(Ωc), H

−1(Ω))
with p′ ∈ [1, 2), and gk ∈ L∞(Ωc) with gk ∈ [0, 1] almost everywhere. We can do block elimination
to obtain 



I A∗ 0

A −1

γ
R(gk ·R∗) 0

0 −g
k

γ
·R∗ I






sy
sµ
su


 = −




rk1
Rrk2 + rk3

rk2




The first two rows form a 2× 2 elliptic system for which very efficient fast solvers (e.g., multigrid
[34]) exist.
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Similar techniques can successfully be used, e.g., for elastic contact problems [79].

7.3. Other methods. Our treatment of Newton-type methods is not at all complete. There exist,
for instance, interior point methods that are very well suited for optimization problems in function
spaces, see [37, 78].
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1. Introduction

This chapter presents the state of the art of discrete concepts in pde constrained optimization including
control and state constraints. So far, concepts without constraints are fairly well understood, and
theory and praxis for control constraints are strongly emerging. However, the development of reliable
numerical approaches for state constraints is still an open issue and requires further intensive research.

We illustrate all concepts at hand of model pdes which are well understood w.r.t. analysis and dis-
cretization concepts. This allows to focus the presentation on structural aspects inherent in optimal
control problems with pde constraints.

109



110 3. DISCRETE CONCEPTS

2. Stationary model problem

We consider the Mother Problem

(2.1) (P)





min(y,u)∈Y×U J(y, u) := 1
2
‖y − z‖2

L2(Ω) + α
2
‖u‖2

U

s.t.
−∆y = Bu in Ω,

y = 0 on ∂Ω,
and
u ∈ Uad ⊆ U.

Here, Ω ⊂ Rn denotes an open, bounded sufficiently smooth (polyhedral) domain, Y := H 1
0 (Ω),

the operator B : U → H−1(Ω) ≡ Y ∗ denotes the (linear, continuous) control operator, and Uad is
assumed to be a closed and convex subset of the Hilbert space U .

EXAMPLE 2.1.

(1) U := L2(Ω), B : L2(Ω) → H−1(Ω) Injection, , Uad := {v ∈ L2(Ω); a ≤ v(x) ≤
b a.e. in Ω}, a, b ∈ L∞(Ω).

(2) U := Rm, B : Rm → H−1(Ω), Bu :=
m∑
j=1

ujFj, Fj ∈ H−1(Ω) given , Uad := {v ∈
Rm; aj ≤ vj ≤ bj}, a < b.

We already know that problem P admits a unique solution (y, u) ∈ H 1(Ω)× U , and that (P) equiva-
lently can be rewritten as the optimization problem

(2.2) min
u∈Uad

Ĵ(u)

for the reduced functional Ĵ(u) := J(y(u), u) ≡ J(SBu, u) over the set Uad, where S : Y ∗ → Y
denotes the solution operator associated with−∆. We further know that the first order necessary (and
here also sufficient) optimality conditions take the form

(2.3) (Ĵ ′(u), v − u)U ≥ 0 for all v ∈ Uad

where Ĵ ′(u) = αu + B∗S∗(SBu − z) ≡ αu + B∗p, with p := S∗(SBu − z) denoting the adjoint
variable. The function p in our setting satisfies

−∆p = y − z in Ω,
p = 0 on ∂Ω.

To discretize (P) we concentrate on Finite Element approaches and make the following assumptions.

ASSUMPTION 4.
Ω ⊂ Rn denotes a polyhedral domain, Ω̄ = ∪ntj=1T̄j with admissible quasi-uniform sequences of
partitions {Tj}ntj=1 of Ω, i.e. with hnt := maxj diam Tj and σnt := minj{sup diam K;K ⊆ Tj} there
holds c ≤ hnt

σnt
≤ C uniformly in nt with positive constants 0 < c ≤ C < ∞ independent of nt. We

abbreviate τh := {Tj}ntj=1.
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In order to tackle (P) numerically we shall distinguish two different approaches. The first is called
First discretize, then optimize, the second First optimize, then discretize. It will turn out that both
approaches under certain circumstances lead to the same numerical results. However, from a structural
point of view they are completely different.

2.1. First discretize, then optimize. The First discretize, then optimize approach works as fol-
lows. All quantities in (P) are discretized a-priori, which results in a finite dimensional optimization
problem. To discretize we replace the spaces Y and U by finite dimensional subspaces Yh and Ud, the
set Uad by some discrete counterpart U d

ad, and the functionals, integrals and dualities by appropriate
discrete surrogates. Having in mind Assumption 4 we set for k ∈ N

Wh := {v ∈ C0(Ω̄); v|Tj ∈ Pk(Tj) for all 1 ≤ j ≤ nt} =: 〈φ1, . . . , φng〉, and

Yh := {v ∈ Wh, v|∂Ω
= 0} =: 〈φ1, . . . , φn〉 ⊆ Y,

with some 0 < n < ng. The resulting Ansatz for yh then is of the form yh(x) =
n∑
i=1

yiφi. Further,

with u1, . . . , um ∈ U , we set Ud := 〈u1, . . . , um〉 and Ud
ad := P d

Uad
(Ud), where P d

Uad
: U → Uad is a

sufficiently smooth (nonlinear) mapping. It is convenient to assume that U d
ad may be represented in

the form

Ud
ad =

{
u ∈ U ; u =

m∑

j=1

sju
j, s ∈ C

}

with C ⊂ Rm denoting a convex closed set. Finally let zh := Ihz =
ng∑
i=1

ziφi, where Ih : L2(Ω)→Wh

denotes a continuous interpolation operator. Now we replace problem (P) by

(2.4) (P(h,d))





min(yh,ud)∈Yh×Ud J(h,d)(y, u) := 1
2
‖yh − zh‖2

L2(Ω) + α
2
‖ud‖2

U

s.t.
a(yh, vh) = 〈Bud, vh〉Y ∗,Y for all vh ∈ Yh,

and
ud ∈ Ud

ad.

Here, we have set a(y, v) :=
∫
Ω

∇y∇vdx. Introducing the Finite Element stiffness matrix A :=

(aij)
n
i,j=1, aij := a(φi, φj), the Finite Element Mass matrix M := (mij)

ng
i,j=1, mij :=

∫
Ω

φiφjdx,

the matrixE := (eij)i=1,...,n;j=1,...,m, eij = 〈Buj, φi〉Y ∗,Y , and the control mass matrix F := (fij)
m
i,j=1,

fij := (ui, uj)U , allows us to rewrite (P(h,d)) in the form

(2.5) (P(n,m))





min(y,s)∈Rn×Rm Q(y, s) := 1
2
(y − z)tM(y − z) + α

2
stFs

s.t.
Ay = Es

and
s ∈ C.
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This is now a finite dimensional optimization problem with quadratic objective, linear equality con-
straints, and admissibility characterized by the closed, convex set C ⊂ Rm. Since the matrix A is spd,
problem (P(n,m)) is equivalent to minimizing the reduced functional Q̂(s) := Q(A−1Es, s) over the
set C. And of course does (P(n,m)) admit a unique solution (y, s) ∈ Rn × C which is characterized
by the finite dimensional variational inequality

(2.6) (Q̂′(s), t− s)Rm ≥ 0 for all t ∈ C,
with Q̂′(s) = αFs+EtA−tM(A−1Es−z) ≡ αFs+Etp, where p := A−tM(A−1Es−z) denotes the

discrete adjoint vector to whom we associate the discrete adjoint variable ph :=
n∑
i=1

piφi. Comparing

this with the expression for Ĵ ′(u) from above, we note that the operator E takes the role the control
operator B, and the inverse of the stiffness matrix A that of the solution operator S.

Problem (P(n,m)) now can be solved numerically with the help of appropriate solution algorithms,
which should exploit the structure of the problem. We fix the following

NOTE 2.2. In the First discretize, then optimize approach the discretization of the adjoint variable p
is determined by the Ansatz for the discrete state yh.

In the First optimize, then discretize approach discussed next, this is different.

2.2. First optimize, the discretize. The starting point for the present approach is the system of
first order necessary optimality conditions for problem (P) stated next;

(2.7) (OS)





−∆y = Bu in Ω,
y = 0 on ∂Ω,

−∆p = y − z in Ω,
p = 0 on ∂Ω,

(αu+B∗p, v − u)U ≥ 0 for all v ∈ Uad.

Now we discretize everything related to the state y, the control u, and to functionals, integrals, and
dualities as in Section 2.1. Further, we have the freedom to also select an appropriate discretization
of the adjoint variable p. Here we choose continuous Finite Elements of order l on τ , which leads to

the Ansatz ph(x) =
q∑
i=1

piχi(x), where 〈χ1, . . . , χq〉 ⊂ Y denotes the Ansatz space for the adjoint

variable. Forming the adjoint stiffness matrix Ã := (ãij)
q
i,j=1, ãij := a(χi, χj), the matrix Ẽ :=

(ẽij)i=1,...,q;j=1,...,m, ẽij = 〈Buj, χi〉Y ∗,Y , and T := (tij)i=1,...,n;j=1,...,q, tij :=
∫
Ω

φiχjdx, the discrete

analogon to (OS) reads

(2.8) (OS)(n,q,m)





Ay = Es,

Ãp = T (y − z),
(αFs+ Ẽtp, t− s)Rm ≥ 0 for all t ∈ C.

Since the matrices A and Ã are spd, this system is equivalent to the variational inequality

(2.9) (αFs+ ẼtÃ−1T (A−1Es− z), t− s)Rm ≥ 0 for all t ∈ C.
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Before we relate the approaches of Section 2.1 and Section 2.2 let us give some examples, compare
Example 2.1.

EXAMPLE 2.3.

(1) U := L2(Ω), B : L2(Ω) → H−1(Ω) Injection, , Uad := {v ∈ L2(Ω); a ≤ v(x) ≤
b a.e. in Ω}, a, b ∈ L∞(Ω). Further let k = l = 1 (linear Finite Elements for y and p),
Ud := 〈u1, . . . , unt〉, where uk|Ti = δki (k, i = 1, . . . , nt) are piecewise constant functions

(i.e. m = nt), C :=
nt∏
i=1

[ai, bi], where ai := a(barycenter(Ti)), bi := b(barycenter(Ti)).

(2) As in (1), but Ud := 〈u1, . . . , ung〉, where uk|Di
= δki (k, i = 1, . . . , ng) are piecewise

constant functions (i.e. m = ng), with Di denoting the patch associated to the vertex

Pi (i = 1, . . . , ng) of the barycentric dual triangulation of τ , C :=
ng∏
i=1

[ai, bi], where

ai := a(Pi), bi := b(Pi).

(3) As in (1), but Ud := 〈φ1, . . . , φng〉 (i.e. m = ng), C :=
ng∏
i=1

[ai, bi], where ai := a(Pi),

bi := b(Pi), with Pi (i = 1, . . . , ng) denote the vertices of the triangulation τ .

(4) (Compare Example 2.1): As in (1), butU := Rm, B : Rm → H−1(Ω), Bu :=
m∑
j=1

ujFj, Fj ∈

H−1(Ω) given , Uad := {v ∈ Rm; aj ≤ vj ≤ bj}, a < b, Ud := 〈e1, . . . , em〉 with ei ∈ Rm

(i = 1, . . . , m) denoting the i−th unit vector, C :=
ng∏
i=1

[ai, bi] ≡ Ud.

2.3. Discussion and implications. Now let us compare the approaches of the two previous sec-
tions. It is clear that choosing the same Ansatz spaces for the state y and the adjoint variable p in the
First optimize, then discretize approach leads to an optimality condition which is identical to that of
the First discretize, then optimize approach in (2.6), since then T ≡M . However, choosing a different
approach for p in general leads to (2.9) with a non-symmetric matrix T , with the consequence that
the matrix αF + ẼtÃ−1TA−1E not longer represents a symmetric matrix. This is in contrast to the
matrix Q̂′′(s) = αF + EtA−1MA−1E of the First discretize, then optimize approach. Moreover, the
expression αFs+ ẼtÃ−1T (A−1Es− z) in general does not represent a gradient, which is in contrast
to Q̂′(s) = αFs+EtA−tM(A−1Es−z) which in fact is the gradient of the reduced finite dimensional
functional Q̂(s).

In many situations the adjoint variable p is much more regular than the state y. For example, if z is
a smooth function, the domain Ω has smooth boundary and B denotes the injection as in Example
2.1(1), the adjoint variable p admits two more weak derivatives than the state y, whose regularity in
the control constrained case is restricted through the regularity of the control u, which in the present
example is not better than H1,r for some r ≤ ∞, no matter how smooth the boundary of Ω is. So it
could be meaningful to use Ansatz functions with higher polynomial degree for p than for y.

There is up to now no general recipe which approach has to be preferred, and it should depend on the
application and computational resources which approach to take for tackling the numerical solution of
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the optimization problem. However, the numerical approach taken should to some extent reflect and
preserve the structure which is inherent in the infinite dimensional optimization problem (P). This can
be best explained in the case without control constraints, i.e. Uad ≡ U . Then the first order necessary
optimality conditions for (P) read

Ĵ ′(u) = αu+B∗S∗(SBu− z) ≡ αu+B∗p = 0 in U.

Now let us for the moment consider Example 2.1(1), in which this equation becomes

Ĵ ′(u) = αu+ p = 0 in L2(Ω).

For proceeding on the numerical level this identity clearly gives us the advice to relate to each other
the discrete Ansätze for the control u and the adjoint variable p. This remains true also in the presence
of control constraints, for which this smooth operator equation has to be replaced by the nonsmooth
operator equation

(2.10) u = PUad

(
− 1

α
p

)
in L2(Ω),

where PUad denotes the orthogonal projection in U (here = L2(Ω)) onto the admissible set of controls.
In any case, optimal control and corresponding adjoint state are related to each other, and this should
be reflected by every numerical approach to be taken for the solution of problem (P).

NOTE 2.4. Controls should be discretized conservative, i.e. according to the relation between the
adjoint state and the control given by the first order optimality condition. This rule should be obeyed
in both, the First discretize, then optimize, and in the First optimize, then discretize approach.

2.4. A structure exploiting discretization concept. The concepts presented in the subsequent
subsections are introduced in [41]. Let us closer investigate (2.10) (in the general setting now) in terms
of the simple fix-point iteration given next.

ALGORITHM 2.5.

• u given
• do until convergence
u+ = PUad

(
− 1
α
B∗p(u)

)
, u = u+.

In this algorithm p(u) is obtained by first solving y = SBu, and then p = S∗(SBu − z). To obtain
a discrete algorithm we now replace the solution operators S, S∗ by their discrete counterparts Sh, S∗h
obtained by a Finite Element discretization, say. The discrete algorithm then reads

ALGORITHM 2.6.

• u given
• do until convergence
u+ = PUad

(
− 1
α
B∗ph(u)

)
, u = u+,
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where ph(u) is obtained by first solving y = ShBu, and then solving ph = S∗h(ShBu−z). We note that
in this algorithm the control is not discretized. Only state and co-state are discretized. Two questions
immediately arise.

(1) Is Algorithm 2.6 numerically implementable?
(2) Do Algorithms 2.5, 2.6 converge?

Let us first discuss question (2). Since both algorithms are fix-point algorithms, sufficient conditions
for convergence are given by the relations α > ‖B∗S∗SB‖L(U) for Algorithm 2.5, and by α >
‖B∗S∗hShB‖L(U) for Algorithm 2.6, since PUad : U → Uad denotes the orthogonal projection which is
Lipschitz continuous with Lipschitz constant L = 1. However, we already know that (2.10) for every
σ > 0 is equivalent (in the general setting) to the equation

(2.11) G(u) = u− PUad

(
u− σĴ ′(u)

)
≡ u− PUad (u− σ(αu+B∗p)) = 0 in U,

so that we may apply a semi-smooth Newton algorithm, or a primal-dual active set strategy to its
numerical solution. Since local convergence for these algorithms applied to 2.11 can be guaranteed
for every choice of σ > 0 we in particular may set σ := 1

α
. To anticipate discussion, for this choice of

parameter we will obtain that the semi-smooth Newton method, and the primal-dual active set strategy
are both numerically implementable in the discrete case.

Question (1) admits the answer Yes, whenever for given u it is possible to numerically evaluate the
expression

PUad

(
− 1

α
B∗ph(u)

)

in the i − th iteration of Algorithm 2.6 with an numerical overhead which is independent of the
iteration counter of the algorithm. To illustrate this fact let us turn back to Example 2.1(1), i.e. U =
L2(Ω) and B denoting the injection, with a ≡ const1, b ≡ const2. In this case it is easy to verify that

PUad (v) (x) = P[a,b] (v(x)) = max {a,min {v(x), b}} ,
so that in every iteration of Algorithm 2.6 we have to form the control

(2.12) u+(x) = P[a,b]

(
− 1

α
ph(x)

)
,

which for in the one-dimensional setting is illustrated in Figure 2.4.

To construct the function u+ it is sufficient to characterize the intersection of the bounds a, b (under-
stood as constant functions) and the function − 1

α
ph on every simplex T of the triangulation τ = τh.

For piecewise linear finite element approximations of p we have the following theorem.

THEOREM 2.7. Let u+ denote the function of (2.12), with ph denoting a piecewise linear, continuous
finite element function, and constant bounds a < b. Then there exists a partition κh = {K1, . . .Kl(h)}
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FIGURE 2.1. Projection of − 1
α
p (left) and − 1

α
ph (right) in one space dimension, ph

discretized with linear finite elements. Finite element grid given by black bars.

of Ω such that u+ restricted to Kj (j = 1, . . . , l(h)) is a polynomial either of degree zero or one. For
l(h) there holds

l(h) ≤ Cnt(h),

with a positive constant C ≤ 3 and nt(h) denoting the number of simplexes in τh. In particular, the
vertices of the discrete active set associated to u+ need not coincide with finite element nodes.

Proof: Abbreviate ξah := − 1
α
p∗h − a, ξbh := b− 1

α
p∗h and investigate the zero level sets 0ah and 0bh of ξah

and ξbh, respectively.

Case n = 1: 0ah ∩ Ti is either empty or a point Sai ∈ Ti. Every point Sai subdivides Ti into two sub-
intervals. Analogously 0bh ∩ Ti is either empty or a point Sbi ∈ Ti. Further Sai 6= Sbi since a < b. The
maximum number of sub-intervals of Ti induced by 0ah and 0bh therefore is equal to three. Therefore,
l(h) ≤ 3nt(h), i.e. C = 3.

Case n = 2: 0ah ∩ Ti is either empty or a vertex of τh or a line Lai ⊂ Ti, analogously 0bh ∩ Ti is either
empty or a vertex of τh or a line Lbi ⊂ Ti. Since a < b the lines Lai and Lbi do not intersect. Therefore,
similar considerations as in the case n = 1 yield C = 3.



2. STATIONARY MODEL PROBLEM 117

Case n ∈ N: 0ah ∩ Ti is either empty or a part of a k−dimensional hyperplane (k < n) Lai ⊂ Ti,
analogously 0bh ∩ Ti is either empty or a part of k−dimensional hyperplane (k < n) Lbi ⊂ Ti. Since
a < b the surfaces Lai and Lbi do not intersect. Therefore, similar considerations as in the case n = 2
yield C = 3. This completes the proof.

It is now clear that the proof of the previous theorem easily extends to functions ph which are piece-
wise polynomials of degree k ∈ N, and bounds a, b which are piecewise polynomials of degree l ∈ N
and m ∈ N, respectively, since the difference of a, b and ph in this case also represents a piecewise
polynomial function whose projection on every element can be easily characterized.

We now have that Algorithm 2.6 is numerically implementable, but only converges for a certain
parameter range of α. A locally (super-linearly) convergent algorithm for the numerical solution of
equation (2.11) is the semi-smooth Newton method, since the function G is semi-smooth in the sense
of [77, Example 5.6].

Before we proceed let us define

Ĵh(u) := J(ShBu, u), u ∈ U

and consider the following infinite dimensional optimization problem

(2.13) min
u∈Uad

Ĵh(u).

According to (2.2) this problem admits a unique solution uh ∈ Uad which is characterized by the
variational inequality

(2.14) (Ĵ ′h(uh), v − uh)U ≥ 0 for all v ∈ Uad,

which in turn is equivalent to the non-smooth operator equation (compare (2.11))

Gh(u) = u− PUad

(
u− σĴ ′h(u)

)
≡ u− PUad (u− σ(αu+B∗ph)) = 0 in U,

where similar as above

J ′h(u) = αu+B∗S∗h(ShBu− z) ≡ αu+B∗ph(u).

The considerations made above now imply that the unique solution uh of the infinite dimensional op-
timization problem (2.13) can be numerically computed either by Algorithm 2.6 (for α large enough),
or by a semi-smooth Newton method (since the function Gh also is semi-smooth), however in both
cases without a further discretization step.

2.5. Error estimates. Next let us investigate the error ‖u−uh‖U between the solutions u of (2.3)
and uh of (2.13).
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THEOREM 2.8. Let u denote the unique solution of (2.2), and uh the unique solution of (2.13). Then
there holds

(2.15) ‖u− uh‖2
U ≤

1

α
{(B∗(p(u)− p̃h(u)), uh − u)U +

+

∫

Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx



 ,

where p̃h(u) := S∗h(SBu− z), yh(u) := ShBu, and y(u) := SBu.

Proof: Since (2.13) is an optimization problem defined on all of Uad, the unique solution u of (2.2)
is an admissible test function in (2.14). Let us emphasize, that this is different for approaches, where
the control space is discretized explictly. In this case we may only expect that uh is an admissible test
function for the continuous problem (if ever). So let us test (2.3) with uh, and (2.14) with u, and then
add the resulting variational inequalities. This leads to

(α(u− uh) +B∗S∗(SBu− z)− B∗S∗h(ShBuh − z), uh − u)U ≥ 0.

This inequality is equivalent to

α‖u− uh‖2
U ≤

≤ (B∗(p(u)− p̃h(u)) +B∗(p̃h(u)− ph(u)) +B∗(ph(u)− ph(uh)), uh − u)U .

Let us investigate the third addend on the right hand side of this inequality. By definition of the adjoint
variables there holds

(B∗(ph(u)− ph(uh), uh − u)U = 〈ph(u)− ph(uh), B(uh − u)〉Y ∗,Y =

= a(yh(uh)− yh(u), ph(u)− ph(uh)) =

∫

Ω

(yh(uh)− yh(u))(yh(u)− yh(uh))dx =

= −‖yh(u)− yh(uh)‖2
L2(Ω) ≤ 0.

Furthermore, for the second addend we have

(B∗(p̃h(u)− ph(u), uh − u)U = 〈p̃h(u)− ph(u), B(uh − u)〉Y ∗,Y =

= a(yh(uh)− yh(u), p̃h(u)− ph(u)) =

∫

Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx,

so that the claim of the theorem follows.

What are the consequences of Theorem 2.15? From the structure of this estimate we immediately
infer that an error estimate for ‖u− uh‖U is at hand, if

• an error estimate for ‖B∗(p(u)− p̃h(u)‖U is available, and
• the mapping u 7→ yh(u) from U to L2(Ω) is Lipschitz continuous, and
• an error estimate for ‖y(u)− yh(u)‖L2(Ω) is available.
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This means, that the error of ‖u− uh‖U is completely determined by the approximation properties of
the discrete solution operators Sh and S∗h.

NOTE 2.9. The error ‖u−uh‖U between the solution u of problem (2.2) and uh of (2.13) is completely
determined by the approximation properties of the discrete solution operators Sh and S∗h.

Let us revisit Example 2.1. Then U = L2(Ω) and B denotes the injection. Then y = SBu ∈ H2(Ω)∩
H1

0 (Ω) (if for example Ω ∈ C1,1 or Ω convex). Let us estimate the two addenda on the right side of
the inequality sign in (2.15). There holds

(B∗(p(u)− p̃h(u)), u− uh)U =

∫

Ω

(p(u)− p̃h(u))(u− uh)dx ≤

≤ ‖p(u)− p̃h(u)‖L2(Ω)‖u− uh‖L2(Ω) ≤ ch2‖y(u)‖L2(Ω)‖u− uh‖L2(Ω),

and
∫

Ω

(yh(u)− yh(uh))(y(u)− y(uh))dx ≤

≤ ‖y(u)− yh(u)‖L2(Ω)‖yh(u)− yh(uh)‖L2(Ω) ≤
≤ ch2‖u‖L2(Ω)‖yh(u)− yh(uh)‖L2(Ω).

To obtain an error estimate of the form ‖u−uh‖L2(Ω) ≤ ch2 it remains to show the Lipschitz continuity
of yh w.r.t. the control u which is easy to verify in the following way.
∫

Ω

|yh(u)− yh(uh)|2dx ≤ c2
pa(yh(u)− yh(uh), yh(u)− yh(uh)) =

= c2
p

∫

Ω

(yh(u)− yh(uh))(u− uh)dx ≤

≤ c2
p‖yh(u)− yh(uh)‖L2(Ω)‖u− uh‖L2(Ω).

Here cp denotes the constant of the Poincaré inequality. Combining these estimates we immediately
obtain

THEOREM 2.10. Let u and uh denote the solutions of problem (2.2) and (2.13), respectively in the
setting of Example 2.1(1). Then there holds

‖u− uh‖L2(Ω) ≤ ch2
{
‖y(u)‖L2(Ω) + ‖u‖L2(Ω)

}
.

And this theorem is also valid for the setting of Example 2.1(2) if we require Fj ∈ L2(Ω) (j =
1, . . . , m). This is an easy consequence of the fact that for a function z ∈ H−1(Ω) there holds B∗z ∈
Rm with (B∗z)i = 〈Fi, z〉Y ∗,Y for i = 1, . . . , m.

THEOREM 2.11. Let u and uh denote the solutions of problem (2.2) and (2.13), respectively in the
setting of Example 2.1(2). Then there holds

‖u− uh‖Rm ≤ ch2
{
‖y(u)‖L2(Ω) + ‖u‖Rm

}
,



120 3. DISCRETE CONCEPTS

where the positive constant now depends on the functions Fj (j = 1, . . . , m).

Proof: It suffices to estimate

(B∗(p(u)− p̃h(u)), u− uh)Rm =

=

m∑

j=1





∫

Ω

Fj(p(u)− p̃h(u))dx(u− uh)j



 ≤

≤ ‖p(u)− p̃h(u)‖L2(Ω)




m∑

j=1

∫

Ω

|Fj|2dx




1
2

‖u− uh‖Rm ≤

≤ ch2‖y(u)‖L2(Ω)‖u− uh‖Rm.
The reminder terms can be estimated as above.

2.6. Boundary control. The structure of all considerations of the previous subsections remain
valid also for inhomogeneous Neumann and Dirichlet boundary control problems. Let us consider the
model problems

(2.16) (NC)





min(y,u)∈Y×U J(y, u) := 1
2
‖y − z‖2

L2(Ω) + α
2
‖u‖2

U

s.t.
−∆y = 0 in Ω,
∂ηy = Bu− γy on ∂Ω,

and
u ∈ Uad ⊆ U,

and

(2.17) (DC)





min(y,u)∈Y×U J(y, u) := 1
2
‖y − z‖2

L2(Ω) + α
2
‖u‖2

U

s.t.
−∆y = 0 in Ω,

y = Bu on ∂Ω,
and
u ∈ Uad ⊆ U,

where in both cases B : U → L2(Γ) with Γ := ∂Ω. To anticipate the discussion we note that the
Dirichlet problem for y in (DC) for Bu ∈ L2(Γ) is understood in the very weak sense.

2.6.1. Neumann and Robin-type boundary control. Let us first consider problem (NC) which
equivalently can be rewritten in the form

(2.18) min
u∈Uad

Ĵ(u)

for the reduced functional Ĵ(u) := J(y(u), u) ≡ J(SBu, u) over the set Uad, where S : Y ∗ → Y for
Y := H1(Ω) denotes the weak solution operator of the Neumann boundary value problem for −∆,
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i.e. y = Sf iff

a(y, v) :=

∫

Ω

∇y∇vdx+

∫

Γ

γyvdΓ = 〈f, v〉Y ∗,Y for all v ∈ Y,

and the action of Bu ∈ L2(Γ) as an element EBu ∈ Y ∗ is defined by

〈EBu, v〉Y ∗,Y :=

∫

Γ

BuvdΓ for all v ∈ Y.

We further know that the first order necessary (and here also sufficient) optimality conditions here
take the form

(2.19) (Ĵ ′(u), v − u)U ≥ 0 for all v ∈ Uad

where Ĵ ′(u) = αu + B∗E∗S∗(SEBu − z) ≡ αu + B∗E∗p, with p := S∗(SEBu − z) denoting
the adjoint variable. Here E∗ : Y → L2(Γ) denotes the trace operator. From here onwards let us not
longer distinguish between B and EB. The function p in our setting satisfies the following Poisson
problem with Neumann (Robin-type) boundary conditions;

−∆p = y − z in Ω,
∂ηp+ γp = 0 on ∂Ω.

We now define the discrete analogon to problem (2.18) as in the previous subsection;

(2.20) min
u∈Uad

Ĵh(u),

where for u ∈ U we set Ĵh(u) := J(ShBu, u) with Sh denoting the discrete analogon of S. According
to (2.18) this problem admits a unique solution uh ∈ Uad which is characterized by the variational
inequality

(2.21) (Ĵ ′h(uh), v − uh)U ≥ 0 for all v ∈ Uad,

where similar as above

J ′h(u) = αu+B∗S∗h(ShBu− z) ≡ αu+B∗ph(u).

We notice that the whole exposition can be done by copy and paste from Section 2.4, the structure
of the optimization problem its discretization does not depend on where control is applied. It is com-
pletely characterized by the operators S, Sh, and B (as well as by E). For Neumann boundary control
the analogon to Theorem 2.8 reads

THEOREM 2.12. Let u denote the unique solution of (2.18), and uh the unique solution of (2.20).
Then there holds

(2.22) ‖u− uh‖2
U ≤

1

α
{(B∗(p(u)− p̃h(u)), uh − u)U +

+

∫

Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx



 ,

where p̃h(u) := S∗h(SBu− z), yh(u) := ShBu, and y(u) := SBu.
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The proof of this theorem is analogous to that of Theorem 2.8 and is left as an exercise.

2.6.2. Dirichlet boundary control. Now we switch to problem (DC) which equivalently can be
rewritten in the form

(2.23) min
u∈Uad

Ĵ(u)

for the reduced functional Ĵ(u) := J(y(u), u) ≡ J(SBu, u) over the set Uad, where S : Y ∗ → L2(Ω)
for Y := H2(Ω)∩H1

0 (Ω) denotes the the very-weak solution operator of the Dirichlet boundary value
problem for −∆, i.e. for f ∈ Y ∗ and u ∈ U there holds y = S(f + EBu) iff

a(y, v) :=

∫

Ω

y(−∆v)dx = 〈f, v〉Y ∗,Y −
∫

Γ

Bu∂ηvdΓ for all v ∈ Y.

Here, the action of Bu ∈ L2(Γ) as an element EBu ∈ Y ∗ is defined by

〈EBu, v〉Y ∗,Y :=

∫

Γ

Bu∂ηvdΓ for all v ∈ Y.

The first order necessary (and here also sufficient) optimality conditions here again take the form

(2.24) (Ĵ ′(u), v − u)U ≥ 0 for all v ∈ Uad

where Ĵ ′(u) = αu − B∗E∗S∗(SEBu − z) ≡ αu − B∗E∗p, with p := S∗(SEBu − z) denoting
the adjoint variable. Here E∗ : Y → L2(Γ) denotes the trace operator of first order, i.e. for v ∈ Y
there holds E∗v = (∂ηv)|Γ. From here onwards let us not longer distinguish between B and EB, so
that Ĵ ′(u) = αu− B∗∂ηp. The function p in our setting satisfies the following Poisson problem with
homogeneous Dirichlet boundary conditions;

−∆p = y − z in Ω,
p = 0 on ∂Ω.

To define an appropriate discrete approach for (2.23) in the present situation is a little bit more in-
volved due to the following fact.

NOTE 2.13. We intend to approximate the solution y of the Dirichlet boundary value problem in (2.23)
and the adjoint variable p by piecewise polynomials yh and ph of order k greater or equal to one, say.
Then it is clear that it makes no sense to prescribe boundary values for yh represented by (restrictions
of) piecewise polynomials of order k−1. However, the discrete analogon of the variational inequality
(2.24) exactly proposes this, since ∂ηph is a piecewise polynomial of order k − 1 on Γ.

We introduce the L2 projection Πh onto boundary functions which are piecewise polynomial of degree
k ≥ 1 and continuous on the boundary grid induced by triangulation of Ω on the boundary Γ. For
v ∈ L2(Γ) we define Πhv to be the continuous, piecewise polynomial of degree k defined by the
relation ∫

Γ

ΠhvwhdΓ =

∫

Γ

vwhdΓ for all wh ∈ trace(Wh),
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where Wh is defined in Section 2.1. The numerical approximation ShBu := yh ∈ Wh of the very
weak solution y of the state equation with boundary values Bu is defined by the relation∫

Ω

∇yh∇vhdx = 0 for all vh ∈ Yh, and yh = Πh(Bu) on Γ,

and the numerical approximation ph of the adjoint variable p as the usual finite element approximation
ph := S∗h(ShE(Bu)− z), i.e.∫

Ω

∇ph∇vhdx =

∫

Ω

(yh − z)vhdx for all vh ∈ Yh.

The discrete analogon of the optimization problem (2.23) reads

(2.25) min
u∈Uad

Ĵh(u),

where for u ∈ U we set Ĵh(u) := J(ShBu, u) with Sh denoting the discrete analogon to S. It admits
a unique solution uh ∈ Uad. After a short calculation we obtain for u ∈ Uad

J ′h(u) = αu−B∗∂ηph(u),

where the discrete flux ∂ηph(u) in the latter equation is a continuous, piecewise polynomial function
of degree k on the boundary grid defined through the relation

(2.26)
∫

Γ

∂ηph(u)whdΓ :=

∫

Ω

∇ph∇whdx−
∫

Ω

(yh(u)− z)whdx for all wh ∈ Wh.

The unique solution uh ∈ Uad of problem (2.25) satisfies the variational inequality

(2.27) (J ′h(uh), v − uh)U ≥ 0 for all v ∈ Uad,

which also represents a sufficient condition for uh to solve problem (2.25). For Dirichlet boundary
control the analogon to Theorem 2.8 reads

THEOREM 2.14. Let u denote the unique solution of (2.23), and uh the unique solution of (2.27).
Then there holds

(2.28) ‖u− uh‖2
U ≤

1

α

{
−
(
B∗(∂ηp(u)− ∂̃ηph(u)), uh − u

)
U

+

−
∫

Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx



 ,

where ∂̃ηph(u) denotes the discrete flux associated to y(u) = SBu, and yh(u) := ShBu.

Proof: We test equation (2.24) with uh, equation (2.27) with the solution u of problem (2.23), and
add the variational inequalities (2.24) and (2.27). This leads to

α‖u− uh‖U ≤
≤ − (B∗(∂ηp(u)− ∂ηph(u)), uh − u)U − (B∗(∂ηph(u)− ∂ηph(uh)), uh − u)U .
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From the definition of B, Πh and of Sh it follows that

− (B∗(∂ηph(u)− ∂ηph(uh)), uh − u)U = −‖yh(uh)− yh(u)‖2
L2(Ω) ≤ 0.

Further,

(B∗(∂ηp(u)− ∂ηph(u)), uh − u)U =

=
(
B∗(∂ηp(u)− ∂̃ηph(u)), uh − u

)
U

+
(
B∗(∂̃ηph(u)− ∂ηph(u)), uh − u

)
U
,

and, by the definition of Πh and the discrete fluxes,
(
B∗(∂̃ηph(u)− ∂ηph(u)), uh − u

)
U

=

∫

Γ

(yh(uh)− yh(u))(∂̃ηph(u)− ∂ηph(u))dΓ =

=

∫

Ω

∇(yh(uh)− yh(u))∇(p̃h(u)− ph(u))dx−
∫

Ω

(y(u)− yh(u))(yh(uh)− yh(u))dx.

Since p̃h(u) = ph(u) = 0 on Γ, there holds
∫

Ω

∇(yh(uh)− yh(u))∇(p̃h(u)− ph(u))dx = 0,

so that the claim of the theorem follows.

Let us finally emphasize the similarities in Theorem 2.8, Theorem 2.12 and Theorem 2.14. All three
estimates contain the term ∫

Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx,

which stems from the first part of the cost functional in problem (2.1). But also the first addend of the
right-hand sides in (2.15), (2.22), and (2.28) have a very similar structure. They may be rewritten as

(
B(p(u)− p̃h(u)), uh − u

)
U

in estimates (2.15) and (2.22), where E : Y → Y denotes the identity in (2.15), and as

−
(
B∗(∂ηp(u)− B∗∂̃ηph(u)), uh − u

)
U

in estimate (2.28).

2.7. Numerical examples. In the present section we present numerical results for the discrete
approach presented in the previous subsections, and also numerical comparisons to other commonly
used discrete approaches. Let us begin with the following distributed control problem.

EXAMPLE 2.15. (Distributed control)
We consider problem (2.1) with Ω denoting the unit circle, Uad := {v ∈ L2(Ω);−0.2 ≤ u ≤ 0.2} ⊂
L2(Ω) and B : L2(Ω) → Y ∗(≡ H−1(Ω)) the injection. Further we set z(x) := (1 − |x|2)x1 and
α = 0.1. The numerical discretization of state and adjoint state is performed with linear, continuous
finite elements.
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Here we consider the scenario that the exact solution of the problem is not known in advance (although
it is easy to construct example problems where exact state, adjoint state and control are known, see
[74]). Instead we use the numerical solutions computed on a grid with h = 1

256
as references. To

present numerical results it is convenient to introduce the Experimental Order of Convergence, brief
EOC, which for some positive error functional E is defined by

(2.29) EOC :=
lnE(h1)− lnE(h2)

ln h1 − ln h2
.

Fig. 2.15 presents the numerical results for h = 1
8
. Fig. 2.15 presents a numerical comparison for

active sets obtained by the numerical approach discussed so far, and obtained by a conventional ap-
proach which uses piecewise linear, continuous finite elements also for the a-priori discretization of
controls. We observe a significant better resolution of active sets by the approach presented in the
previous subsections. In Tables 2.1 - 2.3 the experimental order of convergence for different error
functionals is presented for the state, adjoint state, and control. We use the abbreviations EyL2

for the
error in the L2-norm, Eysup for the error in the L∞-norm, Eysem for the error in the H1-seminorm, and
EyH1

for the error in the H1-norm. Table 2.4 presents the results for the controls of the conventional
approach which should be compared to the numbers of Table 2.3. Table 2.5 presents the order of
convergence of the active sets for the approach presented here and for the conventional approach. As
error functional we use in this case the area

Ea := |(A \ Ah) ∪ (Ah \ A)|
of the symmetric difference of discrete and continuous active sets. EOC with the corresponding sub-
scripts denotes the associated experimental order of convergence.

As a result we obtain, that the approach presented here provides a much better approximation of the
controls and active sets than the conventional approach. In particular the errors in the L2- and L∞-
norm are much smaller than the corresponding ones in the conventional approach. Let us also note that
the results in the conventional approach would become even more worse if we would use piecewise
constants as Ansatz for the controls. For theoretical and numerical results of conventional approaches
let us refer to [6].

Let us note that similar numerical results can be obtained by an approach of Meyer and Rösch pre-
sented in [56]. The authors in a preliminary step compute a piecewise constant optimal control ū and
with its help compute in a post-processing step a projected control u through

u = PUad(−
1

α
B∗ph(ū)).

However, the numerical analysis of their approach underlies much more restrictions than the approach
presented here, and requires assumptions on the d− 1-dimensional Hausdorff measure of the discrete
active set induced by the optimal control.
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FIGURE 2.2. Numerical results of distributed control: Optimal state (left), corre-
sponding adjoint state (middle) and associated optimal control (right). The black and
green lines, respectively depict the boarders of the active set.

h EyL2
Eysup Eysem EyH1

EOCyL2
EOCysup EOCysem EOCyH1

1/1 1.47e-2 1.63e-2 5.66e-2 5.85e-2 - - - -
1/2 5.61e-3 6.02e-3 2.86e-2 2.92e-2 1.39 1.44 0.98 1.00
1/4 1.47e-3 1.93e-3 1.38e-2 1.39e-2 1.93 1.64 1.06 1.08
1/8 3.83e-4 5.02e-4 6.89e-3 6.90e-3 1.94 1.95 1.00 1.01

1/16 9.65e-5 1.26e-4 3.44e-3 3.45e-3 1.99 2.00 1.00 1.00
1/32 2.40e-5 3.14e-5 1.71e-3 1.71e-3 2.01 2.00 1.01 1.01
1/64 5.73e-6 7.78e-6 8.37e-4 8.37e-4 2.06 2.01 1.03 1.03

1/128 1.16e-6 1.85e-6 3.74e-4 3.74e-4 2.30 2.07 1.16 1.16
TABLE 2.1. Errors (columns left) and EOC (columns right) of state for different error
functionals. As reference solution yh for h = 1

256
is taken.
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FIGURE 2.3. Numerical comparison of active sets obtained by the approach presented
here, and those obtained by a conventional approach with piecewise linear, continuous
controls: h = 1

8
and α = 0.1 (left), h = 1

4
and α = 0.01 (right). The red line depicts the

boarder of the active set in the conventional approach, the cyan line the exact boarder,
the black and green lines, respectively the boarders of the active set in the approach
presented here.

h EpL2
Epsup Epsem EpH1

EOCpL2
EOCpsup EOCpsem EOCpH1

1/1 2.33e-2 2.62e-2 8.96e-2 9.26e-2 - - - -
1/2 6.14e-3 7.75e-3 4.36e-2 4.40e-2 1.92 1.76 1.04 1.07
1/4 1.59e-3 2.50e-3 2.17e-2 2.18e-2 1.95 1.64 1.00 1.02
1/8 4.08e-4 6.52e-4 1.09e-2 1.09e-2 1.97 1.94 0.99 0.99

1/16 1.03e-4 1.64e-4 5.48e-3 5.48e-3 1.99 1.99 1.00 1.00
1/32 2.54e-5 4.14e-5 2.73e-3 2.73e-3 2.01 1.99 1.01 1.01
1/64 6.11e-6 1.04e-5 1.33e-3 1.33e-3 2.06 1.99 1.03 1.03

1/128 1.27e-6 2.61e-6 5.96e-4 5.96e-4 2.27 1.99 1.16 1.16
TABLE 2.2. Errors (columns left) and EOC (columns right) of adjoint state for differ-
ent error functionals. As reference solution ph for h = 1

256
is taken.

EXAMPLE 2.16. (Robin-type boundary control)
Now we consider Robin-type boundary control and in particular compare the approach presented here
with that taken by Casas et al. in [19]. In order to compare our numerical results to exact solutions
we consider an optimal control problem which slightly differs from that formulated in (2.16). The
following example is taken from [19]. The computational domain is the unit square Ω := [0, 1]2 ⊂ R2.
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h EuL2
Eusup Eusem EuH1

EOCuL2
EOCusup EOCusem EOCuH1

1/1 2.18e-1 2.00e-1 8.66e-1 8.93e-1 - - - -
1/2 5.54e-2 7.75e-2 4.78e-1 4.81e-1 1.97 1.37 0.86 0.89
1/4 1.16e-2 2.30e-2 2.21e-1 2.22e-1 2.25 1.75 1.11 1.12
1/8 3.02e-3 5.79e-3 1.15e-1 1.15e-1 1.94 1.99 0.94 0.95

1/16 7.66e-4 1.47e-3 6.09e-2 6.09e-2 1.98 1.98 0.92 0.92
1/32 1.93e-4 3.67e-4 2.97e-2 2.97e-2 1.99 2.00 1.03 1.03
1/64 4.82e-5 9.38e-5 1.41e-2 1.41e-2 2.00 1.97 1.07 1.07

1/128 1.17e-5 2.37e-5 6.40e-3 6.40e-3 2.04 1.98 1.14 1.14
TABLE 2.3. Errors (columns left) and EOC (columns right) of control for different
error functionals. As reference solution uh for h = 1

256
is taken.

h EuL2
Eusup Eusem EuH1

EOCuL2
EOCusup EOCusem EOCuH1

1/1 2.18e-1 2.00e-1 8.66e-1 8.93e-1 - - - -
1/2 6.97e-2 9.57e-2 5.10e-1 5.15e-1 1.64 1.06 0.76 0.79
1/4 1.46e-2 3.44e-2 2.39e-1 2.40e-1 2.26 1.48 1.09 1.10
1/8 4.66e-3 1.65e-2 1.53e-1 1.54e-1 1.65 1.06 0.64 0.64

1/16 1.57e-3 8.47e-3 9.94e-2 9.94e-2 1.57 0.96 0.63 0.63
1/32 5.51e-4 4.33e-3 6.70e-2 6.70e-2 1.51 0.97 0.57 0.57
1/64 1.58e-4 2.09e-3 4.05e-2 4.05e-2 1.80 1.05 0.73 0.73

1/128 4.91e-5 1.07e-3 2.50e-2 2.50e-2 1.68 0.96 0.69 0.69
TABLE 2.4. Conventional approach: Errors (columns left) and EOC (columns right)
of control for different error functionals. As reference solution uh for h = 1

256
is taken.

The optimization problem reads

min J(y, u) =
1

2

∫

Ω

(y(x)− yΩ)2dx +
α

2

∫

Γ

u(x)2dσ(x) +

∫

Γ

eu(x)u(x)dσ(x)

+

∫

Γ

ey(x)y(x)dσ(x)

s.t. (y, u) ∈ H1(Ω) × L∞(Γ), u ∈ Uad = {u ∈ L∞(Γ) : 0 ≤ u(x) ≤ 1}, and (y, u) satisfying the
linear state equation

−∆y(x) + c(x)y(x) = e1(x) in Ω

∂νy(x) + y(x) = e2(x) + u(x) on Γ,
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conventional approach our approach
h Ea EOCa Ea EOCa

1/1 5.05e-1 - 5.11e-1 -
1/2 5.05e-1 0.00 3.38e-1 0.60
1/4 5.05e-1 0.00 1.25e-1 1.43
1/8 2.60e-1 0.96 2.92e-2 2.10

1/16 1.16e-1 1.16 7.30e-3 2.00
1/32 4.98e-2 1.22 1.81e-3 2.01
1/64 1.88e-2 1.41 4.08e-4 2.15

1/128 6.98e-3 1.43 8.51e-5 2.26
TABLE 2.5. Errors (columns left) and EOC (columns right) of active sets. As ref-
erence set that corresponding to the control uh for h = 1

256
is taken. The order of

convergence seems to tend to 1.5 in the classical approach, if we are optimistic. The
order of convergence of the approach presented here is clearly 2, and its errors are two
orders of magnitude smaller than those produced by the conventional approach.

where α = 1, c(x1, x2) = 1 + x2
1 − x2

2, ey(x1, x2) = 1, yΩ(x1, x2) = x2
1 + x1x2, e1(x1, x2) =

−2 + (1 + x2
1 − x2

2)(1 + 2x2
1 + x1x2 − x2

2),

eu(x1, x2) =





−1− x3
1 on Γ1

−1−min(8(x2 − 0.5)2 + 0.5, 1− 15x2(x2 − 0.25)
(x2 − 0.75)(x2 − 1)) on Γ2

−1− x2
1 on Γ3

−1− x2(1− x2) on Γ4,

and

e2(x1, x2) =





1− x1 + 2x2
1 − x3

1 on Γ1

7 + 2x2 − x2
2 −min(8(x2 − 0.5)2 + 0.5, 1) on Γ2

−2 + 2x1 + x2
1 on Γ3

1− x2 − x2
2 on Γ4.

Here Γ1, . . . ,Γ4 denote the boundary parts of the unit square numbered counterclockwise beginning
at bottom. The adjoint equation for this example is given by

−∆p + c(x)p = y(x)− yΩ(x) in Ω

∂νp+ p = ey(x) on Γ,

and the optimal control is given by

(2.30) u = ProjUad(−
1

α
(p+ eu)) on Γ.

To solve for uwe iterate (2.30), i.e. we apply the fix-point iteration of Algorithm 2.6. The correspond-
ing numerical results can be found in Tables 2.6-2.7 and Figures 2.16-2.5.
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h δyL2 δyL∞ δpL2 δpL∞ δuL2 δuL∞
2−0 0.21922165 0.16660113 0.00981870 0.01171528 0.01293312 0.00975880
2−1 0.05490636 0.05592789 0.00283817 0.00375928 0.00412034 0.00375928
2−2 0.01379774 0.01802888 0.00077525 0.00108642 0.00111801 0.00099280
2−3 0.00345809 0.00554111 0.00019969 0.00028092 0.00028729 0.00025594
2−4 0.00086531 0.00165357 0.00005038 0.00007065 0.00007250 0.00006447
2−5 0.00021639 0.00048246 0.00001263 0.00001769 0.00001819 0.00001615
2−6 0.00005410 0.00013819 0.00000316 0.00000443 0.00000455 0.00000404
2−7 0.00001353 0.00003899 0.00000079 0.00000111 0.00000114 0.00000101
2−8 0.00000338 0.00001086 0.00000020 0.00000028 0.00000028 0.00000025
2−4 0.00056188 0.04330776 0.11460900
2−5 0.00014240 0.02170775 0.05990258
2−6 0.00003500 0.01086060 0.03060061
2−7 0.00000897 0.00543114 0.01546116
TABLE 2.6. Errors in the approach presented here (top part) and in the approach of
[19] (bottom part). We observe that the error in the controls in the approach presented
here on the initial grid already is smaller than the error produced by the approach of
[19] on a grid with mesh size h = 2−7.

h yL2 yL∞ pL2 pL∞ uL2 uL∞
2−1 1.997345 1.574758 1.790572 1.639862 1.650235 1.376247
2−2 1.992541 1.633258 1.872222 1.790877 1.881837 1.920876
2−3 1.996386 1.702064 1.956905 1.951362 1.960359 1.955685
2−4 1.998688 1.744588 1.986941 1.991434 1.986431 1.989070
2−5 1.999575 1.777112 1.996193 1.997494 1.995161 1.997047
2−6 1.999873 1.803728 1.998912 1.999222 1.998106 1.999024
2−7 1.999964 1.825616 1.999700 1.999725 1.999174 1.999834
2−8 1.999991 1.843640 1.999932 1.999950 1.999609 1.999918

TABLE 2.7. EOC for the approach presented here in the case of Robin-type boundary
control. For a comparison to the approach of [19] see also Fig. 2.5.

EXAMPLE 2.17. (Dirichlet boundary control)
Here we consider problem (2.17) with U = L2(Γ), α = 1 and Uad = {u ∈ U ; 0 ≤ u ≤ 0.9}, i.e.
B ≡ Id. Again we choose Ω = (0, 1)2. The desired state is given by z = −sign(x− 0.5− 0.1

π
). State

and adjoint state are discretized with piecewise linear, continuous Ansatz functions as described in
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FIGURE 2.4. Exact control (left) and error of exact and numerically computed control
on the initial grid containing 4 triangles, i.e. h = 1

2
(right).

FIGURE 2.5. Numerical comparison of EOC of controls for E(h) := ‖u− uh‖L2(Γ):
Approach of [19] (dashed) and the approach presented here (solid). The latter yields
quadratic convergence, whereas the approach of [19] only shows linear convergence.

Subsection 2.6.2. The variational inequality (2.27) motivates the solution algorithm

u+
h = PUad

(
1

α
∂ηph(uh)

)
.
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We investigate two different approaches; approach 1 in this algorithm uses ∂ηph(uh), which represents
a piecewise constant (on the boundary grid) L2 function. Let us emphasize that we not yet have
available theory for this approach (which in fact seems to be the natural one if we would replace the
continuous quantities in (2.24) by their discrete counterparts). The second approach in this algorithm
uses the piecewise linear, continuous discrete flux ∂ηph(uh) defined by (2.26). For h = 2−6 the value
of the cost functional in the optimal solution for the second approach is J = 0.47473792124624.
The numerical results are summarized in Table 2.8 and are better than those which one would expect
from the theoretical investigations in [8] (for the state equation) and [20] (for the control problem).
However, in the case of Dirichlet boundary control many questions are still open and a lot of research
has to be done.

h yL2 yL∞ pL2 pL∞ uL2 uL∞
1-2 -44.315839 -45.874172 2.252319 1.449921 -Inf -Inf
2-3 -2.658752 -2.692762 0.890090 0.631871 -2.710238 -2.947286
3-4 0.513148 0.230017 1.605929 1.322948 0.559113 0.709528
4-5 0.864432 0.633565 1.641025 1.616581 0.867286 0.687088
5-6 0.955413 0.898523 1.474113 1.599350 0.937568 0.794933
6-7 0.969762 0.711332 1.239616 1.497993 0.936822 0.878459
7-8 0.992879 0.987835 1.106146 1.342300 0.986749 0.960009
8-9 0.990927 0.858741 1.035620 1.177092 0.982189 0.976724
1-2 -0.015094 -0.950093 2.273887 1.599015 -0.464738 -0.950093
2-3 1.479164 1.040787 0.909048 0.498459 1.194508 1.040787
3-4 1.484622 0.855688 1.720355 1.540523 0.979140 0.855688
4-5 1.647971 0.701102 1.873278 1.835947 1.360098 0.701102
5-6 1.545075 0.764482 1.910160 1.895133 1.253975 0.764482
6-7 1.424251 0.798198 1.955067 1.875618 1.227700 0.798198
7-8 1.163258 0.825129 1.915486 1.819988 1.173902 0.825129
8-9 1.020300 0.845442 1.742227 1.722124 1.099603 0.845442

TABLE 2.8. EOC for Dirichlet boundary control: Approach 1 (top part), for which
theory is not yet available, Approach 2 (bottom part), for which the theory of Sub-
section 2.6.2 applies. In both cases we observe linear convergence of the states and
controls. The adjoint state also converges linear for approach 1, but seems to converge
quadratically in approach 2.

NOTE 2.18. We note that in all numerical examples presented in the previous subsections, (variants)
of the fix-point iteration of Algorithm 2.6 are used. Let us recall that convergence of this algorithm
can only be guaranteed for parameter values α > 0 large enough. For small parameters α > 0
semi-smooth Newton methods [77] or primal-dual active set strategies [39] should be applied to the
numerical solution of the discrete problems, compare the discussion associated to (2.11). Finally
we note that our solution algorithms performs independent of the finite element mesh, i.e. is mesh-
independent. This may easily explained by the fact that the iteration of Algorithm 2.6 is defined on
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the infinite dimensional space U of controls, which we have not discretized. Thus, the finite element
discretization from the viewpoint of the control problem has more of the flavor of a parametrization
than of a discretization.

3. Time dependent problems with control constraints

For the time–dependent case we present the analysis of Discontinuous Galerkin approximations w.r.t.
time for an abstract linear–quadratic model problem. The underlying analysis turns out to be very
similar to that of the previous section for the stationary model problem.

3.1. Mathematical model, state equation. Let V,H denote separable Hilbert spaces, so that
(V,H = H∗, V ∗) forms a Gelfand triple. We denote by a : V ×V → R a bounded, coercive (and sym-
metric) bilinear form, and again by U the Hilbert space of controls, and by B : U → L2(U, L2(V ∗))
the linear control operator. Here, and from here onwards we write Lp(S) ≡ Lp((0, T );S) where S
denotes a Banach space and T > 0. For y0 ∈ H we consider the state equation

T∫
0

〈yt, v〉V ∗,V + a(y, v)dt =
T∫
0

〈(Bu)(t), v〉V ∗,V dt ∀ v ∈ L2(V ),

(y(0), v)H = (y0, v)H ∀ v ∈ V,



 :⇐⇒ y = T Bu,

which for every u ∈ U admits a unique solution y = y(u) ∈ W := {w ∈ L2(V ), wt ∈ L2(V ∗)}, see
e.g. [80].

3.2. Optimization problem. We consider the optimization problem

(3.1) (TP )

{
min(y,u)∈W×Uad J(y, u) := 1

2
‖y − z‖2

L2(H) + α
2
‖u‖2

U

s.t. y = T Bu,
where Uad ⊆ U denotes a closed, convex subset. Introducing the reduced cost functional

Ĵ(u) := J(y(u), u),

the necessary (and in the present case also sufficient) optimality conditions take the form
(
Ĵ ′(u), v − u

)
≥ 0 for all v ∈ Uad.

Here
Ĵ ′(u) = αu+B∗p(y(u)),

where the adjoint state p solves the adjoint equation
T∫
0

〈−pt, w〉V ∗,V + a(w, p)dt =
T∫
0

(y − z, w)H ∀w ∈ W,
(p(T ), v)H = 0, v ∈ V.

This variational inequality is equivalent to the semi–smooth operator equation

u = PUad

(
− 1

α
B∗p(y(u))

)
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with PUad denoting the orthogonal projection in U onto Uad.

3.3. Discretization. Let Vh ⊂ V denote a finite dimensional subspace, and let 0 = t0 < t1 <
· · · < tm = T denote a time grid with grid width δt. We set In := (tn−1, tn] for n = 1, . . . , m and
seek discrete states in the space

Vh,δt := {φ : [0, T ]× Ω→ R, φ(t, ·)|Ω̄ ∈ Vh, φ(·, x)|In ∈ Pr for n = 1, . . . , m}.
i.e. yh,δt is a polynomial of degree r ∈ N w.r.t. time. Possible choices of Vh in applications include
polynomial finite element spaces, and also wavelet spaces, say. We define the discontinuous Galerkin
w.r.t. time approximation (dG(r)-approximation) ỹ = yh,δt(u) ≡ Th,δtBu ∈ Vh,δt of the state y as
unique solution of

A(ỹ, v) :=

m∑

n=1

∫

In

(ỹt, v)H + a(ỹ, v)dt+

m∑

n=1

([ỹ]n−1, vn−1+)H + (ỹ0+, v0+)H =

= (y0, v
0+)H +

T∫

0

〈(Bu)(t), v〉V ∗,V dt for all v ∈ Vh,δt.

Here,
vn+ := lim

t↘tn
v(t, ·), vn− := lim

t↗tn
v(t, ·), and [v]n := vn+ − vn−.

The discrete counterpart of the optimal control problem reads

(Ph,δt) min
u∈Uad

Ĵh,δt(u) := J(yh,δt(u), u)

and it admits a unique solution uh,δt ∈ Uad. We further have

Ĵ ′h,δt(v) = v +B∗ph,δt(yh,δt(v)),

where ph,δt(yh,δt(v)) ∈ Vh,δt denotes the unique solution of

A(v, ph,δt) =

T∫

0

(yh,δt − z, v)Hdt for all v ∈ Vh,δt.

Further, the unique discrete solution uh,δt satisfies

(uh,δt +B∗ph,δt, v − uh,δt)H ≥ 0 for all v ∈ Uad.

As in the continuous case this variational inequality is equivalent to a semi–smooth operator equation,
namely

uh,δt = PUad

(
− 1

α
B∗ph,δt(yh,δt(uh,δt))

)
.

For this discrete approach the proof of the following theorem follows the lines of the proof of Theorem
2.8.
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THEOREM 3.1. Let u, uh,δt denote the unique solutions of (P ) and (Ph,δt), respectively. Then

(3.2) ‖u− uh,δt‖2
U ≤

1

α

{
(B∗(p(u)− p̃h,δt(u)), uh,δt − u)U +

+

T∫

0

(yh,δt(uh,δt)− yh,δt(u))(y(u)− yh,δt(u))H dt



 ,

where p̃h,δt(u) := T ∗h,δt(T Bu− z), yh,δt(u) := Th,δtBu, and y(u) := T Bu.

4. State constraints (joint with Klaus Deckelnick, Magdeburg)

Let us now sketch the actually most promising discrete approach in the presence of state constraints.
As model problem we take

(4.1) (S)





min(y,u)∈Y×U J(y, u) := 1
2

∫
Ω
|y − y0|2 + α

2
‖u− u0‖2

U

s.t.
−∆y + y = u in Ω,

∂ηy = 0 on Γ,

}
:⇐⇒ y = G(u)

and
y ∈ Yad := {y ∈ L∞(Ω), y(x) ≤ b(x) a.e. in Ω}.

Here, Ω ⊂ Rn denotes an open, bounded sufficiently smooth (polyhedral) domain, U ≡ L2(Ω),
α > 0, and y0, u0 ∈ H1(Ω) as well as b ∈ W 2,∞(Ω) are given functions. We denote byM(Ω̄) the
space of Radon measures which is defined as the dual space of C0(Ω̄) and endowed with the norm

‖µ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄

fdµ.

The difficulty of problem (S) stems from the pointwise state constraint y(x) ≤ b(x) a.e. in Ω. How-
ever, the analysis of (4.1) is well understood and sketched in [74, Section 6.2.1] for the problem under
consideration. Since the state constraints form a convex set and the cost functional is quadratic it is
not difficult to establish the existence of a unique solution u ∈ L2(Ω) to this problem. Moreover, from
[16, Theorem 5.2] we infer (compare also [15, Theorem 2])

THEOREM 4.1. A function u ∈ L2(Ω) is a solution of (4.1) if and only if there exist µ ∈ M(Ω̄) and
p ∈ L2(Ω) such that with y = G(u) there holds

∫

Ω

p
(
−∆v + v

)
=

∫

Ω

(y − z)v +

∫

Ω̄

vdµ ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω(4.2)

p+ α(u− u0) = 0 a.e. in Ω(4.3)

µ ≥ 0, y(x) ≤ b(x) a.e. in Ω and
∫

Ω̄

(b− y)dµ = 0.(4.4)
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The study of (4.1) is complicated by the presence of the measure µ on the right hand side of (4.2).
As a consequence, the solution p of this problem is no longer in H 1(Ω) but only in W 1,s(Ω) for all
1 ≤ s < d

d−1
. This fact also accounts for the form of the weak formulation (4.2). In its classical form

the first order optimality system of problem (4.1) reads

(4.5)





−∆y + y = u in Ω,
∂ηy = 0 on Γ,

−∆p + p = y − z − µ in Ω,
∂ηy = 0 on Γ,

p+ α(u− u0) = 0 a.e. in Ω,∫
Ω̄

y − bdµ = 0

and
µ ≥ 0, y(x) ≤ b(x) a.e. in Ω.

Let us first provide Example 6.2 from [58] (in slightly modified form) which illustrates that Lagrange
multipliers in fact occur as measures.

EXAMPLE 4.2. (see [58, Example 6.2])
We set Ω := B1(0) ⊂ R2, r = r(x) := |x| and denote by Φ(r) := − 1

2π
log r the fundamental solution

of Poisson’s equation on the unit disc in R2. Then

−∆Φ = δ0,

where δ0 denotes the Dirac measure concentrated in 0 ∈ R2. The solution of (4.5) with u0 = 4 +
1

4απ
r2 − 1

2απ
log r, and b(x) := r4 + 4 and z(x) := 4 + 1

π
− 1

4π
r2 + 1

2π
log r then is given by

y(x) ≡ 4, p(x) =
1

4π
r2 − 1

2π
log r, u(x) ≡ 4, and µ = δ0,

and µ ∈ C(Ω)∗, but µ /∈ H1(Ω)∗.

The development of numerical approaches to tackle (4.1) and/or (4.5) is ongoing. In the following
we sketch the approach presented in [23] and present finite element approximations of problem (4.1).
The underlying idea consists in approximating the cost functional J by a sequence of functionals Jh
where h is a mesh parameter related to a sequence of triangulations. The definition of Jh involves the
approximation of the state equation by linear finite elements and enforces constraints on the state in
the nodes of the triangulation. We shall prove that the minima of Jh converge in L2 to the minimum
of J as h → 0 and that the states convergence strongly in H 1 as well as uniformly and derive corre-
sponding error bounds.
To the authors knowledge only few earlier attempts have been made to develop a finite element analy-
sis for state constrained elliptic control problems. In [17] Casas proves convergence of finite element
approximations to optimal control problems for semi-linear elliptic equations with finitely many state
constraints. Casas and Mateos extend these results in [18] to a less regular setting for the states and
prove convergence of finite element approximations to semi-linear distributed and boundary control
problems.
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Let us comment on further approaches that tackle optimization problems for pdes with state con-
straints. A Lavrentiev-type regularization of problem (4.1) is investigated in [57]. In this approach the
state constraint y ≤ b in (4.1) is replaced by the mixed constraint εu + y ≤ b, with ε > 0 denoting
a regularization parameter. It turns out that the associated Lagrange multiplier µε belongs to L2(Ω).
The resulting optimization problems are solved either by interior-point methods or primal-dual active
set strategies, compare [58]. The development of numerical approaches to tackle (4.1) is ongoing. An
excellent overview can be found in [37, 38], where among other things penalty methods are discussed,
and also further references are given.

4.1. Finite element discretization. Let Th be a triangulation of Ω with maximum mesh size
h := maxT∈Th diam(T ) and vertices x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th
so that element edges lying on the boundary are curved. In addition, we assume that the triangulation
is quasi-uniform in the sense that there exists a constant κ > 0 (independent of h) such that each
T ∈ Th is contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define the space
of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}.
In what follows it is convenient to introduce a discrete approximation of the solution operator G. For
a given function v ∈ L2(Ω) we denote by zh = Gh(v) ∈ Xh the solution of the discrete Neumann
problem ∫

Ω

(
∇zh · ∇vh + zhvh

)
=

∫

Ω

vvh for all vh ∈ Xh.

It is well–known that for all v ∈ L2(Ω)

‖G(v)− Gh(v)‖ ≤ Ch2‖v‖,(4.6)

‖G(v)− Gh(v)‖L∞ ≤ Ch2− d
2 ‖v‖.(4.7)

Here, ‖ · ‖ denotes the L2–norm. We propose the following approximation of the control problem
(4.1):

(4.8)
min

u∈L2(Ω)
Jh(u) :=

1

2

∫

Ω

|yh − Phy0|2 +
α

2

∫

Ω

|u− Phu0|2

subject to yh = Gh(u) and yh(xj) ≤ b(xj) for j = 1, . . . , m.

Here, Ph denotes the L2–projection, i.e.

(4.9)
∫

Ω

Phz vh =

∫

Ω

z vh ∀vh ∈ Xh.

It is well–known that

(4.10) ‖z − Phz‖ ≤ Ch‖z‖H1 ∀z ∈ H1(Ω).

Problem (4.8) represents a convex infinite-dimensional optimization problem of similar structure as
problem (4.1), but with only finitely many equality and inequality constraints which form a convex
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admissible set. Again we can apply [16, Theorem 5.2] which together with [15, Corollary 1] yields
(compare also the analysis of problem (P) in [17])

LEMMA 4.3. Problem (4.8) has a unique solution uh ∈ L2(Ω). There exist µ1, . . . , µm ∈ R and
ph ∈ Xh such that with yh = Gh(uh) and µh =

∑m
j=1 µjδxj we have

∫

Ω

(
∇ph · ∇vh + phvh

)
=

∫

Ω

(yh − Phy0)vh +

∫

Ω̄

vhdµh for all vh ∈ Xh,(4.11)

ph + α(uh − Phu0) = 0 in Ω,(4.12)

µj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . , m and
∫

Ω̄

(
Ihb− yh

)
dµh = 0.(4.13)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange interpolation
operator.

REMARK 4.4. From (4.12) we deduce that in problem (4.8) it is sufficient to minimize over controls
u ∈ Xh instead of u ∈ L2(Ω) in order to obtain the same unique solution uh. For the resulting finite
dimensional optimization problem the result of Lemma 4.3 then follows from e.g. [62, Theorem 12.1].

Now let us introduce the finite element matrices

A = (aij), aij :=

∫

Ω

∇φi∇φj + φiφjdx, and M = (mij), mij :=

∫

Ω

φiφjdx, (i, j = 1, . . . , nv).

Then we may rewrite the system of Lemma 4.3 in the form

(4.14)





Ay = Mu,
Ap = M(y − z)− µ,

p + α(u− u0) = 0,
µ = max (0, µ+ (y − b)),

where now y, p, u, µ, b ∈ Rnv denote the nodal vectors associated to the corresponding finite element
Ansatz functions.

We have the following convergence result.

THEOREM 4.5. Let uh ∈ L2(Ω) be the optimal solution of (4.8) with corresponding state yh ∈ Xh

and adjoint variables ph ∈ Xh and µh ∈ M(Ω̄). Then, as h→ 0 we have

uh → u in L2(Ω), yh → y in H1(Ω) and in C0(Ω̄),

where u is the solution of (4.1) with corresponding state y.

Proof. Let b := minx∈Ω̄ b(x). Since b = Gh(b) and b ≤ b(xj) for j = 1, . . . , m we have
1

2

∫

Ω

|yh − Phy0|2 +
α

2

∫

Ω

|uh − Phu0|2 = Jh(uh) ≤ Jh(b) ≤ C(y0, u0, b).

This implies that there exists a constant C which is independent of h such that

(4.15) ‖yh‖, ‖uh‖, ‖ph‖ ≤ C for all 0 < h ≤ 1.
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Note that the bound on ph follows from (4.12). In order to estimate µh we use vh ≡ 1 in (4.11) and
obtain for every f ∈ C0(Ω̄), |f | ≤ 1

∫

Ω̄

fdµh ≤
m∑

j=1

µj|f(xj)| ≤
m∑

j=1

µj =

∫

Ω̄

1dµh =

∫

Ω

(
ph + Phy0 − yh

)
≤ C

by (4.15). This yields

(4.16) ‖µh‖M(Ω̄) ≤ C for all 0 < h ≤ 1.

In view of (4.15), (4.16) there exists a sequence h → 0 and û, p̂ ∈ L2(Ω) as well as µ̂ ∈ M(Ω̄) such
that

(4.17) uh ⇀ û, ph ⇀ p̂ in L2(Ω), and µh ⇀ µ̂ inM(Ω̄).

Since G is compact as an operator from L2(Ω) into C0(Ω̄) we have, after passing to a further subse-
quence if necessary,

(4.18) G(uh)→ G(û) in C0(Ω̄)

and hence

‖yh − G(û)‖L∞ ≤ ‖Gh(uh)− G(uh)‖L∞ + ‖G(uh)− G(û)‖L∞ ≤ Ch2− d
2 ‖uh‖+ ‖G(uh)− G(û)‖L∞

so that yh → G(û) =: ŷ in C0(Ω̄) as h → 0 by (4.15) and (4.18). A similar argument shows that
yh → ŷ in H1(Ω).

Let us now pass to the limit in (4.11)–(4.13). To begin, let v ∈ H 2(Ω) with ∂νv = 0 on ∂Ω and denote
by Rhv the Ritz projection of v. Recalling (4.17), (4.11) and the fact that Rhv → v in C0(Ω̄) we
obtain ∫

Ω

p̂
(
−∆v + v

)
←

∫

Ω

ph
(
−∆v + v

)
=

∫

Ω

(
∇ph · ∇v + phv

)

=

∫

Ω

(
∇ph · ∇Rhv + phRhv

)
=

∫

Ω

(yh − Phy0)Rhv +

∫

Ω̄

Rhvdµh

→
∫

Ω

(ŷ − y0)v +

∫

Ω̄

vdµ̂.

Using (4.17) we may pass to the limit in (4.12) and deduce p̂ + α(û − u0) = 0 a.e. in Ω. Clearly,
µ̂ ≥ 0; since yh ≤ Ihb in Ω̄ and yh → ŷ in C0(Ω̄) we have ŷ ≤ b in Ω̄. Furthermore, recalling that∫

Ω̄
(Ihb− yh)dµh = 0 we obtain in the limit

∫

Ω̄

(b− ŷ)dµ̂ = 0.

Lemma 4.1 now implies that û is a solution of (4.1); as the solution of this problem is unique we must
have u = û and hence y = ŷ and the whole sequence is convergent.
Let us finally prove that uh → u in L2(Ω). To begin, note that by (4.7)

Gh
(
u− γh2− d

2

)
= Gh(u)− G(u) + G(u)− γh2− d

2 ≤ Ch2− d
2 ‖u‖+ b− γh2− d

2 ≤ b
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in Ω̄, provided that γ is large enough. Evaluating the above inequality at the nodes x1, . . . , xm we see
that Gh(u− γh2− d

2 ) is admissible for the discrete problem and hence Jh(uh) ≤ Jh(u− γh2− d
2 ) or

α

2
‖uh − Phu0‖2 ≤ α

2
‖u− γh2− d

2 − Phu0‖2 +
1

2
‖Gh(u)− γh2− d

2 − Phy0‖2 − 1

2
‖yh − Phy0‖2.

Since yh → y, Gh(u)→ G(u) = y in L2(Ω) we infer that

lim sup
h→0

‖uh − Phu0‖2 ≤ ‖u− u0‖2 ≤ lim inf
h→0

‖uh − Phu0‖2,

where the second inequality is a consequence of the weak convergence uh − Phu0 ⇀ u − u0. Thus,
‖uh−Phu0‖2 → ‖u− u0‖2 which implies uh− Phu0 → u− u0 in L2 and hence uh → u0 in L2. �

4.2. Error analysis. Let us now turn to the error analysis and start with a couple of auxiliary
results.

LEMMA 4.6. Suppose that u, uh ∈ L2(Ω) are the optimal solutions of (4.1) and (4.8) respectively
with corresponding states y ∈ H2(Ω), yh ∈ Xh. Let v ∈ L2(Ω) and z = G(v), zh = Gh(v). Then

J(u) +
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω̄

(b− z)dµ = J(v)(4.19)

Jh(uh) +
1

2

∫

Ω

|zh − yh|2 +
α

2

∫

Ω

|v − uh|2 +

∫

Ω̄

(
Ihb− zh

)
dµh = Jh(v)(4.20)

Proof. An elementary calculation using (4.2) shows

J(v)− J(u) =
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω

(z − y)(y − y0) + α

∫

Ω

(u− u0)(v − u)

=
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω

p
(
−∆(z − y) + (z − y)

)

−
∫

Ω̄

(z − y)dµ+ α

∫

Ω

(u− u0)(v − u).

Since z = G(v), y = G(u) we have∫

Ω

p
(
−∆(z − y) + (z − y)

)
=

∫

Ω

p(v − u),

so that (4.3) and (4.4) finally imply

J(v)− J(u) =
1

2

∫

Ω

|z − y|2 +
α

2

∫

Ω

|v − u|2 +

∫

Ω̄

(b− z)dµ.

The second claim follows in a similar way. �

REMARK 4.7. Note that in the above z = G(v), zh = Gh(v) do not necessarily have to be admissible
for the minimization problems.

The next lemma examines in more detail the approximation of J by Jh.
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LEMMA 4.8. Suppose that v ∈ W 1,s(Ω) for some 2d
d+2
≤ s ≤ 2. Then

|J(v)− Jh(v)| ≤ Ch2+ d
2
− d
s

(
‖u0‖H1‖v‖W 1,s + ‖v‖2 + ‖y0‖2

H1 + ‖u0‖2
H1

)
.

Proof. Let z = G(v), zh = Gh(v). Then

J(v)− Jh(v) =
1

2

∫

Ω

(
|z − y0|2 − |zh − Phy0|2

)
+
α

2

∫

Ω

(
|v − u0|2 − |v − Phu0|2

)
.

Using (4.9), (4.10), (4.6) and
‖y‖H2 ≤ C‖u‖L2.

we obtain

|
∫

Ω

(
|z − y0|2 − |zh − Phy0|2

)
| = |

∫

Ω

(z − y0 − zh + Phy0)(z − y0 + zh − Phy0)|

= |
∫

Ω

(
(z − zh)(z − y0 + zh − Phy0)− (y0 − Phy0)(z − y0 − Ph(z − y0)

)
|

≤ C‖z − zh‖
(
‖z‖+ ‖zh‖+ ‖y0‖

)
+ Ch2‖y0‖H1

(
‖z‖H1 + ‖y0‖H1

)

≤ Ch2
(
‖v‖2 + ‖y0‖2

H1

)
.

For the second term we obtain in a similar way∫

Ω

(
|v − u0|2 − |v − Phu0|2

)
=

∫

Ω

(u0 − Phu0)w =

∫

Ω

(u0 − Phu0)(w − Phw),

where w = u0 +Phu0− 2v and where we have used (4.9). Applying Lemma 4.16 from the Appendix
we infer

|
∫

Ω

(
|v − u0|2 − |v − Phu0|2

)
| ≤ Ch2+ d

2
− d
s ‖u0‖H1‖w‖W 1,s

≤ Ch2+ d
2
− d
s ‖u0‖H1

(
‖u0‖H1 + ‖v‖W 1,s

)
.

This proves the lemma. �

LEMMA 4.9. Suppose that v ∈ W 1,s(Ω) for some 1 < s < d
d−1

. Then

‖G(v)− Gh(v)‖L∞ ≤ Ch3− d
s | log h| ‖v‖W 1,s.

Proof. Let z = G(v), zh = Gh(v). Elliptic regularity theory implies that z ∈ W 3,s(Ω) from which we
infer that z ∈ W 2,q(Ω) with q = ds

d−s using a well–known embedding theorem. Furthermore, we have

(4.21) ‖z‖W 2,q ≤ c‖z‖W 3,s ≤ c‖v‖W 1,s.

Using Theorem 2.2 and the following Remark in [69] we have

(4.22) ‖z − zh‖L∞ ≤ c| logh| inf
χ∈Xh

‖z − χ‖L∞,

which, combined with a well–known interpolation estimate, yields

‖z − zh‖L∞ ≤ ch2− d
q | log h|‖z‖W 2,q ≤ ch3− d

s | log h|‖v‖W 1,s
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in view (4.21) and the relation between s and q. �

Our next aim is to derive a uniform bound on ‖uh‖W 1,s for s < d
d−1

.

LEMMA 4.10. Let 1 < s < d
d−1

. Then there exists a constant c, which is independent of h, such that

‖uh‖W 1,s ≤ c for all 0 < h ≤ 1.

Proof. In view of (4.12) we have

‖uh‖W 1,s ≤ 1

α
‖ph‖W 1,s + ‖Phu0‖H1 ≤ 1

α
‖ph‖W 1,s + c,

so that it is sufficient to bound ‖ph‖W 1,s .
Let s′ be such that 1

s
+ 1

s′ = 1 and suppose that φ ∈ Ls′(Ω). Let us denote by ψ ∈ W 2,s′(Ω) the unique
solution of the Neumann problem

−∆ψ + ψ = φ in Ω
∂νψ = 0 on ∂Ω.

Integration by parts and (4.11) yield
∫

Ω

ph φ =

∫

Ω

(
∇ph · ∇ψ + phψ

)
=

∫

Ω

(
∇ph · ∇Rhψ + phRhψ

)

=

∫

Ω

(yh − Phy0)Rhψ +

∫

Ω̄

Rhψdµh,(4.23)

where Rhψ is the Ritz projection of ψ. Arguing similarly as in Theorem 1 of [14] one shows that there
exists a unique solution ph ∈ W 1,s(Ω) of the problem

(4.24)
∫

Ω

ph
(
−∆v + v

)
=

∫

Ω

(yh − Phy0)v +

∫

Ω̄

vdµh ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω.

Furthermore, there exists a constant c = c(s) > 0 such that

(4.25) ‖ph‖W 1,s ≤ c
(
‖yh − Phy0‖+ ‖µh‖M(Ω̄)

)
≤ c

uniformly in h in view of (4.15) and (4.16). If we use v = ψ in (4.24) and combine it with (4.23) we
obtain ∫

Ω

(ph − ph)φ =

∫

Ω

(yh − Phy0)(ψ −Rhψ) +

∫

Ω̄

(ψ − Rhψ)dµh

≤ ch2‖ψ‖H2

(
‖yh‖+ ‖Phy0‖

)
+ ‖ψ − Rhψ‖L∞‖µh‖M(Ω̄)

≤ ch2‖ψ‖H2 + ch2− d
s′ | logh|‖ψ‖W 2,s′

≤ ch2− d
s′ | log h|‖φ‖Ls′ .

Note that we have again applied (4.22) in order to control ‖ψ−Rhψ‖L∞ . Since φ ∈ Ls′(Ω) is arbitrary
we infer

‖ph − ph‖Ls ≤ ch2− d
s′ | log h|.
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Interpolation and inverse estimates then give

‖∇ph‖Ls ≤ c‖∇ph‖Ls + ch1− d
s′ | log h| ≤ c

by (4.25) and since 1− d
s′ = d−1

s

(
d
d−1
− s
)
> 0. �

Let us finally turn to an error estimate for the optimal controls and the optimal states.

THEOREM 4.11. Let u and uh be the solutions of (4.1) and (4.8) respectively. For every ε > 0 there
exists Cε > 0 such that

‖u− uh‖+ ‖y − yh‖H1 ≤ Cεh
2− d

2
−ε.

Proof. Let us define ỹh := G(uh) ∈ H2(Ω) and ỹh := Gh(u) ∈ Xh. Then Lemma 4.6 implies

J(u) +
1

2

∫

Ω

|ỹh − y|2 +
α

2

∫

Ω

|uh − u|2 +

∫

Ω̄

(b− ỹh)dµ = J(uh)

Jh(uh) +
1

2

∫

Ω

|ỹh − yh|2 +
α

2

∫

Ω

|u− uh|2 +

∫

Ω̄

(
Ihb− ỹh

)
dµh = Jh(u).

Since u = u0 − 1
α
p ∈ W 1,s(Ω) for all 2d

d+2
≤ s < d

d−1
we obtain with the help of Lemma 4.8

1

2

∫

Ω

|ỹh − y|2 +
1

2

∫

Ω

|ỹh − yh|2 + α

∫

Ω

|uh − u|2

= J(uh)− J(u) + Jh(u)− Jh(uh)−
∫

Ω̄

(b− ỹh)dµ−
∫

Ω̄

(
Ihb− ỹh

)
dµh(4.26)

≤ Ch2+ d
2
− d
s

(
‖u0‖H1

(
‖u‖W 1,s + ‖uh‖W 1,s

)
+ ‖u‖2 + ‖uh‖2 + ‖y0‖2

H1 + ‖u0‖2
H1

)

+

∫

Ω̄

(ỹh − b)dµ+

∫

Ω̄

(ỹh − Ihb)dµh.

Let us first consider the last two integrals. We have for x ∈ Ω̄

ỹh(x)− b(x) = (ỹh(x)− yh(x)) + (yh(x)− (Ihb)(x)) + ((Ihb)(x)− b(x))

≤ ‖G(uh)− Gh(uh)‖L∞ + ‖Ihb− b‖L∞,
since yh(xj) ≤ b(xj), j = 1, . . . , m implies that yh ≤ Ihb in Ω̄. If we combine Lemma 4.9 with
Lemma 4.10 we infer∫

Ω̄

(ỹh − b)dµ ≤ ch3− d
s | log h| ‖uh‖W 1,s + Ch2|b|W 2,∞ ≤ ch3− d

s | log h|.

Similarly we have from (4.4)

ỹh(x)− (Ihb)(x) = (ỹh(x)− y(x)) + (y(x)− b(x)) + (b(x)− (Ihb)(x))

≤ ‖Gh(u)− G(u)‖L∞ + ‖b− Ihb‖L∞ ,
so that (4.16) and Lemma 4.9 give∫

Ω̄

(
yh − Ihb

)
dµh ≤ ch3− d

s | logh| ‖u‖W 1,s + Ch2|b|W 2,∞ ≤ ch3− d
s | log h|.
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Inserting these estimates into (4.26) and applying again Lemma 4.10 we derive

‖u− uh‖2 + ‖y − yh‖2 ≤ ch3− d
s | log h|.

If we now choose s sufficiently close to d
d−1

we obtain

‖u− uh‖2 + ‖y − yh‖2 ≤ Cεh
4−d−2ε.

Finally, in order to obtain the error bound for y in H1 we note that
∫

Ω

(
∇(y − yh) · ∇vh + (y − yh)vh

)
=

∫

Ω

(u− uh)vh

for all vh ∈ Xh, from which one derives the desired estimate using standard finite element techniques
and the bound on ‖u− uh‖. �

In general we only expect weak convergence of µh to µ. Nevertheless we have the following partial
result.

COROLLARY 4.12. Let K ⊂ Ω̄ be compact with K ∩ suppµ = ∅. For every ε > 0 there exists a
constant Cε such that

µh(K) ≤ Cεh
2− d

2
−ε.

Proof. By Lemma 4.17 in the Appendix there exists a nonnegative function φ ∈ C 2(Ω̄) which satisfies

φ ≥ 1 on K, φ = 0 on suppµ, ∂νφ = 0 on ∂Ω.

Since µh ≥ 0 we obtain from (4.11)

µh(K) ≤
∫

Ω̄

φ dµh =

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω̄

Rhφ dµh

=

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

(
∇ph · ∇Rhφ+ phRhφ

)
−
∫

Ω

(yh − Phy0)Rhφ

=

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

(
∇ph · ∇φ+ phφ

)
−
∫

Ω

(yh − Phy0)Rhφ

=

∫

Ω̄

(φ− Rhφ)dµh +

∫

Ω

ph(−∆φ+ φ)−
∫

Ω

(yh − Phy0)Rhφ,

where Rh is again the Ritz projection. On the other hand, (4.2) and the fact that φ = 0 on suppµ imply
∫

Ω

(y − y0)φ−
∫

Ω

p(−∆φ+ φ) = 0.
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Combining this relation with the first estimate we derive

µh(K) ≤
∫

Ω̄

(φ−Rhφ)dµh +

∫

Ω

(ph − p)(−∆φ + φ) +

∫

Ω

(yh − Phy0)(φ−Rhφ)

+

∫

Ω

(y − yh − y0 + Phy0)φ

≤ ‖φ− Rhφ‖L∞‖µh‖M(Ω̄) + ‖p− ph‖‖φ‖H2 +
(
‖yh‖+ ‖Phy0‖

)
‖φ−Rhφ‖

+
(
‖y − yh‖+ ‖y0 − Phy0‖

)
‖φ‖

≤ C‖φ− Rhφ‖L∞ + Cεh
2− d

2
−ε ≤ Cεh

2− d
2
−ε

in view of (4.3), (4.12) and Theorem 4.11. �
REMARK 4.13. We mention here a second approach that differs from the one discussed above in the
way in which the inequality constraints are realized. Denote byD1, . . . , Dm the cells of the dual mesh.
Each cell Di is associated with a vertex xi of Th and we have

Ω̄ = ∪mi=1Di, int(Di) ∩ int(Dj) = ∅, i 6= j.

In (4.8), we now impose the constraints

(4.27) −
∫

Dj

(yh − Ihb) ≤ 0 for j = 1, . . . , m

on the discrete solution yh = Gh(u). Here, we have abbreviated −
∫
Dj
f = 1

|Dj |
∫
Dj
f . The measure µh

that appears in Lemma 4.3 now has the form µh =
∑m

j=1 µj−
∫
Dj
· dx, and the pointwise constraints in

(4.13) are replaced by those of (4.27). Introducing the matrix

C = (cij), cij :=

∫

Di

φj, (i, j = 1, . . . , nv),

the corresponding optimality system in matrix form then reads

(4.28)





Ay = Mu,
Ap = M(y − z)− Cµ,

p+ α(u− u0) = 0,
µ = max (0, µ+ C t(y − b)),

where now y, p, u, µ, b ∈ Rnv again denote the nodal vectors associated to the corresponding finite
element Ansatz functions. This system admits a unique solution, since it represents the first-order
necessary (and also sufficient) optimality system of the following quadratic optimization with convex
constraints;

(4.29) (S)





min(yh,u)∈Yh×U J(yh, u) := 1
2
‖yh − Phz‖2

L2(Ω) + α
2
‖u− u0‖2

U

s.t.yh = Gh(u)
and

yh ∈ Y h
ad :=

{
yh ∈ L∞(Ω), −

∫
Dj

(yh − Ihb) ≤ 0 for all j = 1, . . . , m
}
.
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The error analysis for the resulting numerical method can be carried out in the same way as shown
above with the exception of Theorem 4.11, where the bounds on ỹ− b and ỹh− Ihb require a different
argument. In this case, additional terms of the form

‖f −−
∫

Dj

f‖L∞(Dj)

have to be estimated. Since these will in general only be of order O(h), this analysis would only give
‖u− uh‖, ‖y− yh‖H1 = O(

√
h). The numerical test example in §4 suggests that at least ‖u− uh‖ =

O(h), but we are presently unable to prove such an estimate.

4.3. Numerical examples.

EXAMPLE 4.14. The following test problem is taken - in a slightly modified form - from [58], Exam-
ple 6.2. Let Ω := B1(0), α > 0,

y0(x) := 4 +
1

π
− 1

4π
|x|2 +

1

2π
log |x|, u0(x) := 4 +

1

4απ
|x|2 − 1

2απ
log |x|

and b(x) := |x|2 + 4. We consider the cost functional

J(u) :=
1

2

∫

Ω

|y − y0|2 +
α

2

∫

Ω

|u− u0|2,

where y = G(u). By checking the optimality conditions of first order one verifies that u ≡ 4 is the
unique solution of (4.1) with corresponding state y ≡ 4 and adjoint states

p(x) =
1

4π
|x|2 − 1

2π
log |x| and µ = δ0.

The finite element counterparts of y, u, p and µ are denoted by yh, uh, ph and µh.

To investigate the experimental order of convergence (see (2.29) for its definition) for our model prob-
lem we choose a sequence of uniform partitions of Ω containing five refinement levels, starting with
eight triangles forming a uniform octagon as initial triangulation of the unit disc. The corresponding
grid sizes are hi = 2−i for i = 1, . . . , 5. As error functionals we take E(h) = ‖(u, y)− (uh, yh)‖ and
E(h) = ‖(u, y)− (uh, yh)‖H1 and note, that the error p− ph is related to u− uh via (4.12). We solve
problems (4.8) using the QUADPROG routine of the MATLAB OPTIMIZATION TOOLBOX. The
required finite element matrices for the discrete state and adjoint systems are generated with the help
of the MATLAB PDE TOOLBOX. Furthermore, for discontinuous functions f we use the quadrature
rule ∫

Ω

f(x)dx ≈
∑

T∈Th
f
(
xs(T )

)
|T |,

where xs(T ) denotes the barycenter of T . In all computations we set α = 1.

In Table 4.9, we present EOCs for problem (4.8) (case S = D) and the approach sketched in Remark
4.13 (case S = M ). As one can see, the error ‖u − uh‖ behaves in the case S = D as predicted by
Theorem 4.11, whereas the errors ‖y − yh‖ and ‖y − yh‖H1 show a better convergence behaviour.
On the finest level we have ‖u − uh‖ = 0.003117033, ‖y − yh‖ = 0.000123186 and |y − yh|H1 =
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FIGURE 4.1. Numerically computed state yh (left) and control uh (right) for h = 2−5

in the case S = D.

0.000083757. Furthermore, all coefficients of µh are equal to zero, except the one in front of δ0 whose
value is 0.99946494 The errors ‖u − uh‖, ‖y − yh‖ and ‖y − yh‖H1 in the case S = M show a
better EOC than in the case S = D. This can be explained by the fact that the exact solutions y and u
are very smooth, and that the relaxed form of the state constraints introduce a smearing effect on the
numerical solutions at the origin. On the finest level we have ‖u− uh‖ = 0.001020918, ‖y − yh‖ =
0.000652006 and |y − yh|H1 = 0.000037656. Furthermore, the coefficient of µh corresponding to the
patch containing the origin has the value 1.0640946.

Figures 4.1 and 4.2 present the numerical solutions yh and uh for h = 2−5 in the case S = D and
S = M , respectively. We note that using equal scales on all axes would give completely flat graphs in
all four figures.

(S=D) (S=M) (S=D) (S=M) (S=D) (S=M)
Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 0.788985 0.654037 0.536461 0.690302 0.860516 0.688531
2 0.759556 1.972784 1.147861 2.017836 1.272400 2.015602
3 0.919917 1.962191 1.389378 2.004383 1.457095 2.004286
4 0.966078 1.856687 1.518381 1.989727 1.564204 1.990566
5 0.986686 1.588722 1.598421 1.979082 1.632772 1.979945

TABLE 4.9. Experimental order of convergence

EXAMPLE 4.15. The second test problem is taken from [57], Example 2. It reads

min
u∈L2(Ω)

J(u) =
1

2

∫

Ω

|y − y0|2 +
1

2

∫

Ω

|u− u0|2

subject to y = G(u) and y(x) ≥ b(x) in Ω.
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FIGURE 4.2. Numerically computed state yh (left) and control uh (right) for h = 2−5

in the case S = M .

Here, Ω denotes the unit square,

b(x) =

{
2x1 + 1, x1 <

1
2
,

2, x1 ≥ 1
2
,
y0(x) =





x2
1 − 1

2
, x1 <

1
2
,

1
4
, x1 = 1

2
,

3
4
, x1 >

1
2
,

and

u0(x) =

{
5
2
− x2

1, x1 <
1
2
,

9
4
, x1 ≥ 1

2
.

The exact solution is given by y ≡ 2 and u ≡ 2 in Ω. The corresponding Lagrange multiplier p ∈
H1(Ω) is given by

p(x) =

{
1
2
− x2

1, x1 <
1
2
,

1
4
, x1 ≥ 1

2
.

The multiplier µ has the form

(4.30)
∫

Ω̄

fdµ =

∫

{x1= 1
2
}
fds+

∫

{x1>
1
2
}
fdx, f ∈ C0(Ω̄).

In our numerical computations we use uniform grids generated with the POIMESH function of the
MATLAB PDE TOOLBOX. Integrals containing y0, u0 are numerically evaluated by substituting
y0, u0 by their piecewise linear, continuous finite element interpolations Ihy0, Ihu0. The grid size of a
grid containing l horizontal and l vertical lines is given by hl =

√
2

l+1
. Fig. 4.3 presents the numerical

results for a grid with h =
√

2
36

in the case (S=D). The corresponding values of µh on the same grid are
presented in Fig. 4.4. They reflect the fact that the measure consists of a lower dimensional part which
is concentrated on the line {x ∈ Ω | x1 = 1

2
} and a regular part with a density χ|{x1>

1
2
}. We again note

that using equal scales on all axes would give completely flat graphs for yh as well as for uh.
We compute EOCs for the two different sequences of grid-sizes so = {h1, h3, . . . , h19} and se =
{h0, h2, . . . , h18}. We note that the grids corresponding to so contain the line x1 = 1

2
. Table 4.10



4. STATE CONSTRAINTS (JOINT WITH KLAUS DECKELNICK, MAGDEBURG) 149

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

2

2

2

2

2

2

2

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.9996

1.9997

1.9998

1.9999

2

2.0001

2.0002

2.0003

2.0004

FIGURE 4.3. Numerically computed state yh (left) and control uh (right) for h =
√

2
36

in the case S = D.

presents EOCs for so, and Table 4.11 presents EOCs for se. For the sequence so we observe super-
convergence in the case (S=D), although the discontinuous function y0 for the quadrature is replaced
by its piecewise linear, continuous finite element interpolant Ihy0. Let us note that further numerical
experiments show that the use of the quadrature rule (4.14) for integrals containing the function y0

decreases the EOC for ‖u−uh‖ to 3
2
, whereas EOCs remain close to 2 for the other two errors ‖y−yh‖

and ‖y − yh‖H1 . For this sequence also the case (S=M) behaves twice as good as expected by our
arguments in Remark 4.13. For the sequence se the error ‖u− uh‖ in the case (S=D) approximately
behaves as predicted by our theory, in the case (S=M) it behaves as for the sequence so. The errors
‖y − yh‖ and ‖y − yh‖H1 behave that well, since the the exact solutions y and u are very smooth.
For h19 we have in the case (S=D) ‖u − uh‖ = 0.000103428, ‖y − yh‖ = 0.000003233 and |y −
yh|H1 = 0.000015155, and in the case (S=M) ‖u − uh‖ = 0.011177577, ‖y − yh‖ = 0.000504815
and |y − yh|H1 = 0.001547907. We observe that the errors in the case S = M are two magnitudes
larger than in the case (S=D). This can be explained by the fact that an Ansatz for the multiplier µ
with a linear combination of Dirac measures is better suited to approximate measures concentrated
on singular sets than a piecewise constant Ansatz as in the case (S=M). Finally, Table 4.12 presents∑
xi∈{x1=1/2}

µi and
∑

xi∈{x1>1/2}
µi for so in the case (S=D). As one can see

∑
xi∈{x1=1/2}

µi tends to 1,

the length of {x1 = 1/2}, and
∑

xi∈{x1>1/2}
µi tends to 1/2, the area of {x1 > 1/2}. These numerical

findings indicate that µh =
m∑
i=1

µiδxi well approximates µ, since
∫

Ω̄
dµh =

m∑
i=1

µi, and that µh also well

resolves the structure of µ, see (4.30). For all numerical computations of this example we have µi = 0
for xi ∈ {x1 < 1/2}.

4.4. Appendix.
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FIGURE 4.4. Numerically computed multiplier µh for h =
√

2
36

in the case S = D.

(S=D) (S=M) (S=D) (S=M) (S=D) (S=M)
Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 1.669586 0.448124 1.417368 0.544284 1.594104 0.384950
2 1.922925 1.184104 1.990906 1.473143 1.992097 1.239771
3 2.000250 1.456908 2.101633 1.871948 2.080739 1.745422
4 2.029556 1.530303 2.125168 2.427634 2.108241 2.348036
5 2.041913 1.260744 2.124773 2.743918 2.116684 2.563363
6 2.047106 1.142668 2.117184 1.430239 2.117739 1.318617
7 2.048926 1.177724 2.107828 1.503463 2.115633 1.409563
8 2.049055 1.194893 2.098597 1.578342 2.112152 1.497715
9 2.048312 1.194802 2.090123 1.622459 2.108124 1.549495

TABLE 4.10. Experimental order of convergence, x1 = 1
2

grid line

LEMMA 4.16. Let 2d
d+2
≤ s ≤ 2 and v ∈ W 1,s(Ω). Then

‖v − Phv‖ ≤ Ch1+ d
2
− d
s ‖v‖W 1,s.

Proof. The assertion is clear if s = 2d
d+2

or if s = 2 so that we may assume 2d
d+2

< s < 2. Let us write

∫

Ω

|v − Phv|2 =

∫

Ω

|v − Phv|
sd−2d+2s

s |v − Phv|
d(2−s)
s
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(S=D) (S=M) (S=D) (S=M) (S=D) (S=M)
Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 0.812598 0.460528 1.160789 2.154570 0.885731 1.473561
2 1.361946 0.406917 2.042731 0.597846 1.918942 0.405390
3 1.228268 1.031763 1.832573 1.392796 1.700124 1.088595
4 1.245030 1.262257 1.678233 1.621110 1.570580 1.392408
5 1.252221 1.416990 1.646124 1.844165 1.554434 1.686808
6 1.256861 1.505759 1.696309 2.128776 1.620231 2.021210
7 1.264456 1.489061 1.627539 2.507863 1.559065 2.415552
8 1.260157 1.316627 1.640964 2.989867 1.580113 2.818148
9 1.265599 1.169109 1.686579 1.601263 1.635084 1.460153

TABLE 4.11. Experimental order of convergence, x1 = 1
2

not a grid line

Level
∑

xi∈{x1=1/2}
µi

∑
xi∈{x1>1/2}

µi

1 1.13331662624081 0.36552954225441
2 1.06315278164899 0.43644163287114
3 1.03989323182608 0.45990635060758
4 1.02893022155910 0.47095098878247
5 1.02265064139378 0.47727091447291
6 1.01855129775903 0.48139306499280
7 1.01569011772403 0.48426838085822
8 1.01359012331610 0.48637773715316
9 1.01198410389649 0.48799027450619

TABLE 4.12. Approximation of the multiplier in the case (S=D), x1 = 1
2

grid line

and apply Hölder’s inequality with p = s2

sd−2d+2s
, q = s2

(d−s)(2−s) which implies

‖v − Phv‖2 ≤ ‖v − Phv‖
sd−2d+2s

s
Ls ‖v − Phv‖

d(2−s)
s

L
ds
d−s

≤ ‖v − Phv‖
sd−2d+2s

s
Ls

(
‖v‖

L
ds
d−s

+ ‖Phv‖
L

ds
d−s

) d(2−s)
s .

We infer from [24] that

‖v − Phv‖Ls ≤ Ch‖v‖W 1,s, ‖Phv‖
L

ds
d−s
≤ C‖v‖

L
ds
d−s

which, together with the continuous embedding W 1,s(Ω) ↪→ L
ds
d−s (Ω), gives

‖v − Phv‖2 ≤ ch
sd−2d+2s

s ‖v‖2
W 1,s

so that the assertion follows. �
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LEMMA 4.17. Suppose that K and K̃ are two disjoint compact subsets of Ω̄. Then there exists a
nonnegative function φ ∈ C2(Ω̄) which satisfies

∂νφ = 0 on ∂Ω, φ ≥ 1 on K, φ = 0 on K̃.

Proof. For r > 0 let us define Ωr := {x ∈ Ω̄ | dist(x, ∂Ω) < r}. In view of the smoothness of ∂Ω
there exists δ > 0 such that for each x ∈ Ωδ there exists a unique point y = y(x) ∈ ∂Ω with

x = y − dist(x, ∂Ω)ν(y)

(see [31], 14.6). Since K ∩ K̃ = ∅ we may assume that dist(K, K̃) > δ. Let us define

ΓK := {y(x) | x ∈ K ∩ Ω δ
2
}, ΓK̃ := {y(x) | x ∈ K̃ ∩ Ω δ

2
}.

ΓK and ΓK̃ are disjoint, compact subsets of ∂Ω, since dist(K, K̃) > δ and x 7→ y(x) is continuous.
Let φ1 ∈ C2(∂Ω) be a nonnegative function satisfying φ1 ≥ 1 on ΓK , φ1 = 0 on ΓK̃ . By setting
φ1(x) = φ1(y(x)) we extend φ1 as a C2 function to Ωδ. Clearly, ∂νφ1 = 0 on ∂Ω. Let ψ ∈ C2(Ω̄) be
a nonnegative cut–off function with ψ = 1 in Ω δ

4
and ψ = 0 in Ω̄ \ Ω δ

2
. Then φ2 := ψφ1 satisfies

∂νφ2 = 0 on ∂Ω, φ2 ≥ 1 on K ∩ Ω δ
4
, φ2 = 0 on K̃.

Finally, choose a nonnegative function φ3 ∈ C2(Ω̄) with

φ3 ≥ 1 on K ∩ (Ω̄ \ Ω δ
4
), φ3(x) = 0 if dist(x,K ∩ (Ω̄ \ Ω δ

4
)) ≥ δ

8
.

Then, ∂νφ3 = 0 on ∂Ω, φ3 = 0 on K̃ and φ := φ2 + φ3 has the required properties. �
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1. Introduction

The following three sections are devoted to the study of three industrial applications, in which op-
timization with partial differential equations plays a crucial role. To give you an overview on the
the different mathematical settings which can be handled with the general optimal control calculus,
we will focus on large scale optimal control problems involving the three well–known types of par-
tial differential equations, namely elliptic, parabolic and hyperbolic equations. And since real world
applications lead generally to mathematically involved problems, we study especially nonlinear sys-
tems of equations. The examples are chosen in such a way that they are up to date and represent the
present status of the mathematical tools, which are employed for their solution. The industrial fields
we will cover are ranging from semiconductor design over glass production to automated traffic con-
trol. Since most people will not be familiar with the underlying physics and mathematical models, we
will start each section with a modelling part for the derivation of the equations, which is followed by
the analytical and numerical study of the related optimal control problems.

2. Optimal Semiconductor Design

In the first lecture on numerical mathematics each student learns that the enormous speed-up of numer-
ical simulations during the last 30 years is stemming from two facts, namely the significant improve-
ment of algorithms and the ongoing miniaturization in electronics which allows for faster computing
times. During the last lectures we already learned how one can develop fast numerical algorithms,
so we will now shortly study the impact mathematical of optimization on advanced semiconductor
design. In this industry there are several stages at which optimization and control is necessary. Think
e.g. of circuit design, thermal control of the circuit board or, on a smaller level, the design of each
semiconductor device, or even the control of the production process itself. Presently, the most popular
semiconductor device is the so-called MOSFET (metal oxide silicium field effect transistor), which
is employed in many applications (see Figure 2.1) [73]. In the design cycle one changes the geometry

153
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FIGURE 2.1. MOSFET Device

of the device (miniaturization!) and the so-called doping profile, which describes the the density of
charged background ions describing the specific type of the device. In the conventional design cycle
simulation tools are employed to compute the so called current-voltage characteristics of the device,
from which the engineer can deduce the many performance characteristica of the device. This is done
for a certain set of design parameters and then, the parameters are adjusted empirically. Thus, the total
design time depends crucially on the knowledge and experience of the electrical engineer.

In standard applications a working point, i.e. a certain voltage–current pair, for the device is fixed.
Especially for MOSFET devices in portable systems it is most important to have on the one hand a
low leakage current (in the off–state), which maximizes the battery lifetime, and on the other hand
to maximize the drive current (in the on–state) [72]. Now, we want to study how one can apply the
previously introduced techniques to optimize such a device, especially we want to find a solution to
the following design question:

Is it possible to gain an amplified current at the working point only by a slight
change of the doping profile?

We will proceed in several steps. First, we motivate the system of nonlinear equations, which is de-
scribing the electronic behavior of the semiconductor device. There are many semiconductor models
at hand, but we will concentrate in the next section on the so-called drift diffusion model. Then, we
state the optimization problem in mathematical terms and study its solution.

2.1. Modeling. In this section we give a brief introduction into the physics and mathematics of
semiconductor devices, which is far from being comprehensive. If the reader wants to go into the
details we suggest to have look into the books by Sze [73] or Selberherr [71]. Clearly, the most
important features of semiconductor devices are due to electromagnetic effects, i.e such a device
reacts on applied voltages. Here, we will only consider electrostatic effects ignoring electrodynamics
and magnetic phenomena. Further, we will ignore quantum effects, which are getting increasingly
important due to the shrinking device size.

In general one might say, the semiconductor is a specifically modified crystal. The modification of the
underlying crystal (consisting e.g. of Silicium atoms) are due a preparation of the surface (to build
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metallic or insulating contacts) and due to the implantation of impurities (e.g. Aluminum atoms).
This has to be done since the electronic behavior of a homogeneous semiconductor is rather boring.
But due to the replacement of atoms in the crystal, which is the so-called doping process, we get an
inhomogeneous semiconductor which exhibits the desired electronic performance. There exist several
sophisticated technologies to achieve the desired doping. And since these processes can be controlled
on the nanometer scale, it is possible to fabricate nowadays devices, which have a gate length of 60
nanometers. Nevertheless, there is still a strong need for the (automated) design of the semiconductor
device, i.e. how the doping has to be adjusted such that the device shows the desired behavior.

Normally, one implants atoms which have more (donator atoms) or less (acceptor atoms) electrons
participating at binding interactions. While Silicium atoms have four binding electrons, Phosphor
atoms have five and Aluminum atoms have three. If a Silicium atom is replaced by a Phosphor atom
we have one additional electron, which is not necessary for the binding and which can therefor move
freely in the crystal. Hence, the Phosphor atom donates one electron to the conductivity band. But if
the Silicium atom is replaced by an Aluminum atom, then the additional electron which is needed for
the binding is taken from the surrounding atoms and a hole is generated.

Note, that also these holes contribute to the charge transport, since the Silicium atom which is then
positively charged will attract an electron from one surrounding atom. This process repeats and charge
transport takes place by the missing electrons, i.e. the holes. Experiments suggest that the charge
transport by holes can be considered as charge transport by real particles which have a positive charge
q.

Now that we have a feeling how charge transport takes place in the semiconductor, let us assume that
the semiconductor occupies a bounded domain Ω ⊂ R3. So far, our assumptions imply that there is
an instantenous electric field E(x), x ∈ Ω which is only determined by the position of the charged
particles.

EXAMPLE 2.1. In school one learns that the force F acting between two charges q1 and q2 in the
points x1 and x2 is given by Coulomb’s law

F = q1 · q2 ·
x2 − x1

|x2 − x1|3
,

where |z|2 =
∣∣(z1, z2, z3)T

∣∣2 = z2
1 + z2

2 + z2
3 .

Hence, we could describe the overall charge transport the semiconductor just by considering an
ensemble of charged particles interacting via the electric field: Put an electron with velocity v0 in the
point x0 ∈ Ω. Then there will be an interaction of the electron with the electric field, which can be
describes by Coulomb’s law and Newton’s second law:

me
d2 x(t)

dt2
= −qE(x(t)),

where me is the electron mass and q is the elementary charge. Further, we would have the initial
conditions

x(t = 0) = x0 and . .xt(t = 0) = v0.
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The above example shows us that this ensemble of electrons will act as an electronic device, since the
presence of an electric field leads to an energy transport performed by the charged particles. Clearly,
this description is computationally not efficient since there will be billions of particles even in a very
tiny piece of the semiconductor. For this reason we introduce the electron density n(x) with unit m−3

(number of particles per cubic meter). This function can be interpreted as follows: Consider again that
the semiconductor occupies the domain Ω and assume that this domain contains a large number of
electrons. Now assume that there is a subdomain ω ⊂ Ω which is large compared to the size of one
electron. Then the total number of electrons in this subdomain is given by

∫

ω

n(x) dx.

Since the number of particles in a domain is always nonnegative, we directly have n ≥ 0. The density
of holes p(x) is defined respectively.

Further, we introduce the mean electron velocity vn, which has the following meaning: Assume that
there is a subdomain ω ⊂ Ω which is large compared to the size of one electron. Then the avergage
velocity of electrons in this subdomain is given by

∫

ω

vn(x) dx.

In analogy, we define the mean hole velocity vp. Finally, we introduce the electron and hole current
densities by

Jn = q nvn, Jp = −q pvp.

Now, we will motivate the set of partial differential equations connecting those quantities.

2.1.1. The Potential Equation. First, we give a mathematically tractable relation between the
charge densities and the electric field. This can be done by the introduction of the electrostatic poten-
tial V which is defined as a solution of Poisson’s equation

−ε∆V = q(n− p+NA −ND),

where ε is the dielectric constant of the semiconductor material and NA, ND are the densities of
acceptor and donator atoms, respectively. Here, we assumed that each donator atom contributes just
one electron as well as each acceptor atom contributes just one hole. One can show that then the
electric field can be expressed as

E = −∇V.
Note that the potential is not uniquely defined by this equations, since one might add an arbitrary
constant and will still get the same electric field. Especially, if the equation is posed on a bounded
domain the prescription of boundary data will be essential. Introducing the doping profile

C(x) := ND(x)−NA(x)

we get the equation

(2.1) −ε∆V = q(n− p− C),

where the function q(n− p− C) is called the space charge.
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REMARK 2.1. For the sake of simplicity and notational convenience we assume in the following that
all physical parameters in our model are constant.

2.1.2. The Continuity Equations. The current density J(x) in the semiconductor consists of the
electron and the hole current density, i.e.

J = Jn + Jp.

Note that that only the full current can be measured. If we assume that we have conservation of
charged particles and no generation and recombination processes are present, then it holds for each
subdomain ω ⊂ Ω with smooth boundary Σ that

IΣ =

∫

Σ

J · ν ds = 0.

Hence, Gauß’ theorem implies directly
∫

ω

div J dx = 0

and since this holds for any subdomain ω the variational lemma yields the differential form of the
continuity equation

div J = 0.

Taking into account J = Jn + Jp we get

div Jn = div Jp = 0.

2.1.3. The Current Densities. These equations are by far not sufficient to prescribe the charge
transport in the semiconductor. Especially, we need additional relations for the current densities. In
many applications one can successfully assume that the current densities are entirely determined by
the particle densities and by the electrostatic potential. Here, we will consider two contributions,
namely the convective current density and the diffusion current density.

The convective current density encounters for the acceleration of charged particles in an electric field
and it is assumed to be essentially proportional to the electric field, i.e.

Jconvn = q µn n∇V, Jconvp = −q µp n∇V,
where µn and µp are the mobilities of electrons and holes, respectively.

The diffusion current density accounts for the ensemble of many charged particles which tends to
compensate density fluctuations. Hence, this causes an additional movement of the particles, the so–
called diffusion. We assume that these diffusion current densities are given by

Jdiffn = q Dn∇n, Jdiffp = q Dp∇p,
where the diffusion coefficients Dn and Dp are assumed to be positive constants.
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Finally, we get the current density relations

Jn = Jdiffn + Jconvn = q Dn∇n+ q µn n∇V,
Jp = Jdiffp + Jconvp = q Dp∇p− q µp p∇V.

These can be further simplified by assuming the Einstein relations

Dn

µn
=
Dp

µp
=
kB T

q
=: UT ,

where T is the (constant) temperature of electrons and holes and kB is the Boltzmann constant. Here,
UT is called the thermal voltage.

Summarizing we get the so-called drift diffusion model which was first introduced by Van Rosbroeck
(cf. [73, 54] and the references therein):

Jn = q (Dn∇n + µn n∇V ) ,(2.2a)

Jp = −q (Dp∇p− µp p∇V ) ,(2.2b)
div Jn = 0,(2.2c)
div Jp = 0,(2.2d)

−ε∆V = q(n− p− C).(2.2e)

Henc, the drift diffusion model consists of a coupled system of nonlinear elliptic partial differential
equations, which makes its mathematical analysis quite involved. To get a well posed problem we
have further to prescribe additional boundary data. We assume that the boundary ∂Ω of the domain Ω
splits into two disjoint parts ΓD and ΓN , where ΓD models the Ohmic contacts of the device and ΓN
represents the insulating parts of the boundary. Let ν denote the unit outward normal vector along the
boundary. First, assuming charge neutrality (n − p − C = 0) and thermal equilibrium (np = n2

i ) at
the Ohmic contacts ΓD and, secondly, zero current flow and vanishing electric field at the insulating
part ΓN yields the following set of boundary data

n = nD, p = pD, V = VD on ΓD,(2.2f)
Jn · ν = Jp · ν = ∇V · ν = 0 on ΓN ,(2.2g)

where nD, pD, VD are given by

nD =
C +

√
C2 + 4n2

i

2
, pD =

−C +
√
C2 + 4n2

i

2
, VD = −UT log

(
nD
ni

)
+ U, on ΓD.

Here, U denotes the applied biasing voltage, which is e.g. applied between the source and the drain
contact of the MOSFET device, and ni the intrinsic carrier density of the semiconductor. Note, that
the main unknowns are the densities n and p as well as the potential V .

2.1.4. Scaling. These model is not only challenging from the analytical point view, but also due
to the severe numerical problems it is causing. To understand this it is most convenient to rewrite the



2. OPTIMAL SEMICONDUCTOR DESIGN 159

equations in nondimensional form using following diffusion scaling

n→ Cm ñ, p→ Cm p̃, x→ L x̃,

C → Cm C̃, V → UT Ṽ , Jn,p →
q UT Cm µn,p

L
J̃n,p

where L denotes a characteristic device length, Cm the maximal absolute value of the background
doping profile and µn,p a characteristic value for the respective mobilities. Defining the dimensionless
Debye length

λ2 =
ε UT

q Cm L2

the scaled equations read

div Jn = 0, Jn = ∇n + n∇V,(2.3a)

div Jp = 0, Jp = −(∇p− p∇V ),(2.3b)

−λ2∆V = n− p− C,(2.3c)

where we omitted the tilde for notational convenience. The Dirichlet boundary conditions transform
to

(2.3d) nD =
C +
√
C2 + 4 δ4

2
, pD =

−C +
√
C2 + 4 δ4

2
, VD = − log

(nD
δ2

)
+ U, on ΓD,

where δ2 = ni/Cm denotes the scaled intrinsic density.

For typical device parameters we get for the Debye length λ2 = 10−3 and δ2 = 10−4. Hence, the
DD model is singular perturbed which has to be encountered in the numerical treatment. One real-
izes that there will be large gradients in the potential and thus also in the particle densities near to
rapid changes in the doping profile, the so called junctions. In general, one employs the Scharfetter–
Gummel discretization [68] for the discretization, which can be interpreted as an exponentially fitted
scheme.

2.2. Optimization. After setting up the underlying model equations we turn our attention again
to the design question. Remember that the main objective in optimal semiconductor design is to get an
improved current flow at a specific contact of the device, e.g. focusing on the reduction of the leakage
current (in the off-state) in MOSFET devices or maximizing the drive current (in the on–state) [72].
In both cases a certain working point is fixed and one tries to achieve the objective by a change of the
doping profile C. Hence, the objective of the optimization, the current flow over a contact Γ, is given
by

(2.4) I =

∫

Γ

J · ν ds =

∫

Γ

(Jn + Jp) · ν ds,

where the current density J for a specific doping profile C is given by the solution of the DD model
(2.3).
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Now, we want to embed the design question into the optimal control context. We want to minimize a
cost functional of tracking type

(2.5) Q(n, p, V, C) :=
1

2

∣∣∣∣
∫

Γ

J · ν ds− I∗
∣∣∣∣
2

+
γ

2

∫

Ω

∣∣∇(C − C̄)
∣∣2 dx,

where C̄ is a given reference doping profile, I∗ is a desired current flow, and the parameter γ >
0 allows to adjust the deviations from C̄. Clearly, C is acting here as the control parameter. The
introduction of C̄ is necessary to ensure that we change not the type of the semiconductor device
during the optimization.

Since the current density J is given by a solution of the DD model this yields altogether a con-
strained optimization problem. This problem can be clearly tackled by an optimization approach, but
only recently efforts were made to solve the design problem using mathematical sound optimization
techniques [13, 12, 29, 30, 43, 42, 44]. In [52] Lee et al. present a finite–dimensional least-squares
approach for adjusting the parameters of a semiconductor to fit a given, ideal IVC. Their work is
purely numerical and has its focus on testing different approaches to solve the least-squares problem.

We describe in the following how one can apply the idea of the adjoints to this problem. For this
purpose we introduce the state x def

= (n, p, V ) and an admissible set of controls C ⊂ H1(Ω) and rewrite
the state equations (2.3) shortly as e(x, C) = 0. Due to the nonlinear structure of the equations we
define the state spaceX def

= xD+X0, where xD
def
= (nD, pD, VD) denotes the boundary data introduced

in (2.3) and X0
def
=
(
H1

0,ΓD
(Ω) ∩ L∞(Ω)

)3, where we define

H1
0,ΓD

(Ω)
def
=
{
φ ∈ H1(Ω) : φ|ΓD = 0

}
,

as well as Z def
= [H1(Ω)]3. Then, one can show that e : X×H1(Ω)→ Z∗ is well–defined and infinitely

often differentiable [43]. Now, the mathematically precise optimization problem reads

(2.6) min
X×C

Q(n, p, V, C) such that e(n, p, V, C) = 0.

We restrict the set of admissible controls to

(2.7) C def
= {C ∈ H1(Ω) : C = C̄ on ΓD}.

This is necessary for the solvability of the state system and for the continuous dependence of the state
on the control C, since the boundary data in (2.3) does depend on C. In fact, there are various results
on the solvability of the state system (c.f. [60, 54, 55] and the references therein). For completeness
we state the the following existence results, for which the proof can be found in [61].

PROPOSITION 2.1. Assume sufficient regularity of the boundary and the data. Then for each C ∈
H1(Ω) and all boundary data (nD, pD, VD) with

1

K
≤ nD(x), pD(x) ≤ K, x ∈ Ω, and ‖VD‖L∞(Ω) ≤ K
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for some K ≥ 1, there exists a solution (Jn,Jp, n, p, V ) ∈ [L2(Ω)]
2 × (H1(Ω) ∩ L∞(Ω))

3 of system
(2.3) fulfilling

1

L
≤ n(x), p(x) ≤ L, x ∈ Ω, and ‖V ‖L∞(Ω) ≤ L

for some constant L = L(Ω, K, ‖C‖Lp(Ω)) ≥ 1, where the embedding H1(Ω) ↪→ Lp(Ω) holds.

The idea of the proof to write down a fixed point mapping decoupling the equations and to use
Schauder’s fixed point theorem to get the existence of a fixed point. The compactness of the map-
ping is derived by energy estimates and Stampacchia’s truncation method, which ensures the uniform
bounds on the solution.

What makes this system special is that there exists in general no unique solution and this is even
physically reasonable, since there are devices, like the thyristor, whose performance relies on the
multiplicity of solutions. Nevertheless, one can ensure uniqueness near to the thermal equilibrium
state, i.e. for small applied biasing voltages U . Clearly, this has also impact on the optimization prob-
lem. Especially, we cannot consider the reduced cost functional in each regime and also the linearized
operator ex is in general not boundedly invertible. But still one can proof the existence of a minimizer
[43].

THEOREM 2.2. The constrained minimization problem (2.6) admits at least one solution (n∗, p∗, V ∗, C∗) ∈
X × C.

The proof uses the standard techniques presented during this week. I.e. one extracts a convergent
minimizing sequence using the coercivity of the cost functional, employs the bounds for the state
system given in Proposition 2.1 to get convergent subsequences of the state variables and uses the
weak lower semicontinuity of the cost functional.

Since the set given by the constraint is not convex, we can in general not expect the uniqueness of the
minimizer. Here, one can in fact show analytically that for special choices of the reference doping C̄
there exist at least two solutions and for other choices there is numerical evidence. This is due to the
fact that the minimizer has the possibility to interchange the roles of the electron and the hole current
densities (see Figure 2.2 and Figure 2.3). Clearly, this has also some impact on the construction and
convergence of numerical schemes. Espescially, the choice of an appropriate starting point for iterative
algorithms is then crucial.

2.2.1. The First–order Optimality System. In this section we want to discuss the first–order opti-
mality system which is, as we already know, the basis for all optimization methods seeking at least a
stationary point. Since we have a constrained optimization problem, we write the first–oder optimality
system using the Lagrangian L : X × C × Z → R associated to problem (2.6) defined by

L(x, C, ξ)
def
= Q(x, C) + 〈e(x, C), ξ〉Z∗,Z ,

where ξ def
= (ξn, ξp, ξV ) denotes the adjoint variable. For the existence of a Lagrange multiplier asso-

ciated to an optimal solution (x∗, C∗) of (2.6) it is sufficient that the operator e′(x∗, C∗) is surjective.
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Note the equivalence

e′(x, C)[(v, C̃)] = g in Z∗ ⇔ ex(x, C)[v] = g − eC(x, C)[C̃] in Z∗.

For the DD model this does in general not hold, but one can ensure the bounded invertibility of
e′(x∗, C∗) for small current densities [55]. This idea can be used to prove the unique existence of
adjoint states [43].

THEOREM 2.3. There exists a constant j = j(Ω, λ, U) > 0 such that for each state x ∈ X with
∥∥∥∥

J2
n

n

∥∥∥∥
L∞(Ω)

+

∥∥∥∥
J2
p

p

∥∥∥∥
L∞(Ω)

≤ j

there exists an adjoint state ξ ∈ Z fulfilling e∗x(x, C)ξ = −Qx(x, C).

Hence, at least for small current densities there exists a unique Lagrange multiplier ξ∗ such that
together with an optimal solution (x∗, C∗) it fulfills the first–order optimality system

(2.8) L′(x∗, C∗, ξ∗) = 0.

We can rewrite this equations in a more concise form:

e(x∗, C∗) = 0 in Z∗,

e∗x(x
∗, C∗)ξ∗ +Qx(x

∗, C∗) = 0 in X∗,

eC(x∗, C∗)ξ∗ +QC(x∗, C∗) = 0 in C∗.
I.e., a critical point of the Lagrangian has to satisfy the state system (2.3), as well as the adjoint system.
The derivation of this system is an easy exercise just using the techniques presented in the previous
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lectures, yielding

∆ξn −∇V ∇ξn = ξV ,(2.9a)

∆ξp +∇V ∇ξp = −ξV ,(2.9b)

−λ2∆ξV + div (n∇ξn)− div (p∇ξp) = 0,(2.9c)

supplemented with the boundary data

ξJn =

{∫
Γ
Jn · ν ds− I∗n, on Γ,

0, on ΓD \ Γ,
(2.9d)

ξJp =

{∫
Γ
Jp · ν ds− I∗p , on Γ,

0, on ΓD \ Γ,
(2.9e)

ξV = 0, on ΓD,(2.9f)

as well as

ξn · ν = ξp · ν = ∇ξV · ν = 0 on ΓN .(2.9g)

Further we have the optimality condition

γ∆
(
C − C̄

)
= ξV in Ω,(2.10a)

C = C̄ on ΓD, ∇C · ν = ∇C̄ · ν on ΓN .(2.10b)

2.3. Numerical Results. Finally, we want to discuss the behavior of two numerical methods
applied to this optimization problem. The first adequate and easy to implement numerical method for
the solution of (2.6) is the following gradient algorithm.

ALGORITHM 2.1.

(1) Choose C0 ∈ C.
(2) For k = 1, 2, . . . compute Ck = Ck−1 − αkQ̂′(Ck−1)

Here, Q̂(C)
def
= Q(x(C), C) denotes the reduced cost functional, which can be introduced near to the

thermal equilibrium state, and Q̂′(C) is the Riesz representative of its first variation. The evaluation
of

Q̂′(C) = QC(x, C) + e∗Cξ

requires the solution of the nonlinear state system (2.3) for x as well as a solution of the linear adjoint
system (2.9) for ξ and finally a linear solve of a Poisson problem to get the correct Riesz representative.

REMARK 2.2. There exist various choices for the parameters αk ensuring the convergence of this
algorithm to a critical point, like the Armijo or the Goldstein rule. The overall numerical performance
of this algorithm relies on an appropriate choice of the step–size rule for αk, since these methods
require in general consecutive evaluations of the cost functional requiring additional solves of the
nonlinear state system [53].
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We apply Algorithm 2.1 for the optimal design of an unsymmetric n–p–diode (for the reference doping
profile see Figure 2.4). We already learned that the cost functional employed so far might admit
multiple minimizers. For this reason we study here a slightly different functional of the form

Q(n, p, V, C) =
1

2

∣∣∣∣
∫

Γ

Jn · ν ds− I∗n
∣∣∣∣
2

+
1

2

∣∣∣∣
∫

Γ

Jp · ν ds− I∗p
∣∣∣∣
2

+
γ

2

∫

Ω

∣∣∇(C − C̄)
∣∣2 dx.

This allows to adjust the electron and hole current separately. The computations were performed on
a uniform grid with 1000 points and the scaled parameters were set to λ2 = 10−3, δ2 = 10−2 and
U = 10. For the parameter γ we chose 2 · 10−2. The step–size αk is computed by an exact one
dimensional linesearch

αk = argminα Q̂
(
Ck−1 − αQ̂′(Ck−1)

)
.

The iteration terminates when the relative error
∥∥∥Q̂′(Ck)

∥∥∥
H1
/
∥∥∥Q̂′(C0)

∥∥∥
H1

is less than 5 · 10−4.

In Figure 2.4 we present the optimized doping profiles for different choices of I ∗n, I
∗
p , i.e. we are

seeking an amplification of either the hole current (I∗n = J∗n, I
∗
p = 1.5 · J∗p) or of the electron current

(I∗n = 1.5 · J∗n, I∗p = J∗p) or of both of them I∗n = 1.5 · J∗n, I∗p = 1.5 · J∗p) by 50%.
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To get an impression of the overall performance of the method we also have to consider the nonlinear
solves needed for the exact one dimensional linesearch. These are presented in Figure 2.5 and one
realizes that this is indeed the numerically most expensive part.

Finally, we want to discuss the performance of the Newton algorithm presented in ???. Again, we
tried to achieve an increase of the electron and hole current by 50 % and studied the influence of the
regularization parameter γ. The different resulting optimal doping profiles can be found in Figure 2.6.
As expected we get larger deviations from C̄ for decreasing γ, which on the other hand also allows for
a better reduction of the observation as can be seen in Figure 2.7. For all three cases we already get a
significant reduction after two steps and the algorithm terminates rather quickly. Only for the smallest
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value of γ we need two more iterations to meet the stopping criterion, which can be explained by a
loss of convexity or, equivalently, a weaker definiteness of the Hessean.
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The conjugate gradient algorithm in the inner loop was terminated when the norm of the gradient
became sufficiently small; to be more precise, in the j-th conjugate gradient step for the computation
of the update in Newton step k we stop if the residual rjk satisfies

(2.11)
‖rkj ‖∥∥∥Q̂′(C0)

∥∥∥
≤ min

{(
‖Q̂′(Ck)‖
‖Q̂′(C0)‖

)q

, p
‖Q̂′(Ck)‖
‖Q̂′(C0)‖

}
or j ≥ 100.

Note, that q determines the order of the outer Newton algorithm, such that p should be chosen in the
open interval (1, 2). The value of p is important for the first step of Newton’s method, as for k = 0 the
norm quotients are all 1; for later steps, the influence of q becomes increasingly dominant.
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To get deeper insight into the convergence behavior of the algorithm, we present in Figure 2.8 the
norm of the residual during the iteration for different values of γ. Here, we used q = 2 to get the
desired quadratic convergence behavior. Again, one realizes that the convergence deteriorates with
decreasing γ. Since the overall numerical effort is spent in the inner loop, we show the number of
conjugate gradient steps in Figure 2.9. Here, one realizes the drastic influence of the regularization
parameter.
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The next numerical test was devoted to the stopping criterion of the inner iteration and the influence of
the exponent q. In Figure 2.10 the decrease of the residual is depicted for different values of q = 1, 1.5,
or 2. As predicted by the general theory one gets linear, superlinear and quadratic convergence. Note,
that for all three cases we have a linear convergence behavior at the beginning of the iteration due to
the globalization of the Newton algorithm. Clearly, the parameter q strongly influences the number of
conjugate gradient steps, which can be seen from Figure 2.11. While in the linear case (q = 1) we have
an almost constant amount of CG steps in each each iteration, we get, as expected, a drastic increase
towards the end of the iteration for the quadratic case (q = 2). Hence, the overall numerical effort
in terms of CG steps is despite of the quadratic convergence much larger compared to the relaxed
stopping criterion, which only yields linear convergence!
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3. Optimal Control of Glass Cooling

Although glass manufacturing is a very old industry, one has to be aware that it is nowadays tech-
nically rather advanced. This is stemming from the strong need for high quality glass products, like
lenses for laser optics or mirrors for space telescopes. But clearly one also wants to influence the pro-
duction process for lower quality fabriques, like monitors or car windows. There are many stages in
the production process where optimal control techniques can be used. We will focus here on the stage
where a hot melt of glass is cooled in a controlled environment, e.g. a furnace. During cooling, large
temperature differences i.e. large gradients have to be avoided since they lead to thermal stress in the
material. This may cause cracks or, in the case of high quality glass, affect the quality of the resulting
product or device. Hence, the process has to be managed in such a way that temperature gradients are
sufficiently small. Another related question concerns chemical reactions during the cooling process,
which have to be activated and triggered. Here, one again wants to avoid spatial gradients since these
reactions have to take place homogeneously in the glass. We will see that these two different question
can be mathematically embedded into the same optimal control problem. The presentation is again

FIGURE 3.1. This happens after wrong cooling!

done in three steps. First, we discuss the equations which can be used for the simulation of the cooling
process. Then, we state and discuss the optimal control problem and, finally, we present numerical
results.

3.1. Modeling. The modeling of glass cooling has to take into account that this process involves
very high temperatures up to 1500 K. In this temperature range heat transfer will be dominated by
radiation and not by diffusion anymore. Hence, we have first to understand how radiation can be
modelled.

3.1.1. Radiation. Thermal radiation can be viewed as electro–magnetic waves or, alternatively,
as photons. It is characterized by its speed of propagation c, wavelength λ and frequency ν, which are
related by c = λ · ν. The most important difference to heat conduction and convection is that it is a
long–range, non–local phenomenon in contrast to the local, microscopic diffusion effect.

REMARK 3.1. Note, that the magnitude of conduction and convection is linear in the temperature
T , whereas radiation depends essentially on the fourth power of T , which shows that this effect gets
increasingly important for higher temperatures.
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In general, engineers are only interested in the energy of the radiative field and they describe it using
the radiative intensity I = I(x, t, ω, ν), which depends on the position x, the time t, the angular
direction ω and on the frequency ν. To derive an equation for I , we consider a small portion ∆x of a
ray in direction ω.

FIGURE 3.2. Radiative Effects

There, one looses energy due to absorption −κI∆x, where κ is the absorption coefficient of the
material, which might also depend on T and ν. Further, one gains energy due to emission +κB∆x,
where

B(T, ν) = n2
G

2hν3

c2

(
e
hν
kT − 1

)−1

is Planck’s function for black body radiation. Another source for energy loss is scattering −σI∆x,
where σ is the scattering constant of the material. But one can also gain energy due to back scattering,
i.e. one has to collect the distributions from all incoming directions + σ

4π

∫
ω
I(ω′) dω′ ∆x. Now, we

can write down the balance equation for the radiative intensity

I(x+ cω∆t, ω, t+ ∆t)− I(x, ω, t) =
(
−κI + κB − σI +

σ

4π

∫

ω

I(ω′) dω′
)

∆x

Going to the limit ∆t→ 0,∆x = c∆t yields

(3.1)
1

c
∂tI + ω · ∇I + (κ+ σ)I =

σ

4π

∫

ω

I(ω′) dω′ + κB.

This equation holds for all times t ∈ R+, all spatial points x ∈ Ω, all angles ω ∈ S2 and all frequencies
ν ∈ [ν0,∞)! To get an impression of the computational effort let us assume that we use a discretization
with

60 angles × 10 frequency bands × 8000 spatial points× 100 time steps.

This yields 500 millions discrete variables! Indeed, this leads to a large scale optimization problem.
To be honest, we will not even dare to use this equation directly, but instead we will use techniques
from asymptotic analysis to derive a numerically tractable model. Finally, we pose some physically
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reasonable assumptions which will significantly simplify the presentation. Note that c is large and
hence we will drop the time derivative. Further, we assume that no scattering occurs in the glass, i.e.
σ = 0.

3.1.2. SPN–approximations. Using a diffusion scaling we introduce the optical thickness of the
material as a small parameter

ε =
1

κrefxref
≈ mean free path

reference length
.

Then, the remaining scaled equation reads

εω · ∇I = κ(B − I)

Now, the idea is to invert the transport operator
(

1 +
ε

κ
ω · ∇

)
I = B

formally using the Neumann series. Then it holds for ρ :=
∫
ω
I dω in the limit ε→ 0 the asymptotic

expansion

4πB =
[
1− ε2

3κ2
∆− 4ε4

45κ4
∆2 − 44ε6

945κ6
∆3
]
ρ +O(ε8)

This yields the SPN -approximations [51] of order O(ε2N ).

In the following we will only employ the SP1–approximation. Since the radiative intensity depends
crucially on the temperature, we need to couple our approximate equation with the heat equation
which yields the overall system

∂tT = k∆T +
1

3κ
∆ρ,(3.2a)

−ε2 1

3κ
∆ρ+ κρ = 4πκ a T 4(3.2b)

This has to be supplmented with appropriate initial conditions T (x, 0) = T0(x) and boundary data

h

εk
T + n · ∇T =

h

εk
u,(3.2c)

3κ

2ε
ρ + n · ∇ρ =

3κ

2ε
4π a u4.(3.2d)

Here, we assume that we have heat loss over the boundary only due to Newton’s cooling law, where
h is the heat transfer coefficient, and that we have semi–transparent boundary data for the mean
radiative intensity ρ. Here, u denotes the ambient temperature which will act in the following as the
control variable.

This leads alltogether to an optimal boundary control problem for an parabolic/elliptic system, which
can be treated numerically with standard finite element techniques.

REMARK 3.2. Reasonable regularity assumptions on the data ensure the existence of a unique solu-
tion to system (3.2).
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3.2. Optimization. We intend to minimize cost functionals of tracking type having the form

(3.3) J(T, u) =
1

2
‖T − Td‖2

L2(0,1;L2(Ω)) +
δ

2
‖u− ud‖2H1(0,1;R) ,

Here, Td = Td(t, x) is a specified temperature profile, which is typically given by engineers. In glass
manufacturing processes, Td is used to control chemical reactions in the glass, especially their activa-
tion energy and the reaction time. For the quality of the glass it is essential that these reactions happen
spatially homogeneously, such that we will later on require that Td is independent of x. The control
variable u, which is considered to be space–independent, enters the cost functional as a penalizing
and regularizingterm, where additionally a known cooling curve ud can be prescribed. The parameter
δ allows to adjust the effective heating costs of the cooling process. The main subject is now the study
of the following boundary control problem

min J(T, ρ, u) w.r.t.(T, ρ, u),(3.4)
subject to the SP1–system (3.2).

For notational convenience we define

Q
def
= (0, 1)× Ω, Σ

def
= (0, 1)× ∂Ω,

V
def
= L2(0, 1;H1(Ω)), U

def
= H1(0, 1;R),

W
def
= {φ ∈ V : φt ∈ V ∗} , X

def
= W × V, Z

def
= V × V × L2(Ω).

Then, we defineX∞
def
= X∩[L∞(Q)]2 as the space of states x def

= (T, ρ) and U is the space of controls.
Finally, we set α = h

εk
, γ = 3κ

2ε
.

We define the state/control pair (x, u) ∈ X∞ × U and the nonlinear operator e def
= (e1, e2, e3) :

X∞ × U → Z∗ via

(3.5a) 〈e1(x, u), φ〉V ∗,V
def
= 〈∂tT, φ〉V ∗,V + k (∇T,∇φ)L2(Q) +

1

3κ
(∇ρ,∇φ)L2(Q)

+ kα(T − u, φ)L2(Σ) +
1

3κ
γ(ρ− 4πau4, φ)L2(Σ)

and

(3.5b) 〈e2(x, u), φ〉V ∗,V
def
=

ε2

3κ
(∇ρ,∇φ)L2(Q) + κ(ρ− 4πκa T 4, φ)L2(Q) +

ε2

3κ
γ(ρ− 4πau4, φ)L2(Σ)

for all φ ∈ V . Further, we define e3(x, u)
def
= T (0)− T0.

REMARK 3.3. Note, that for d ≤ 2 it is in fact possible to use X itself as the state space, but for d = 3
we cannot guarantee that e2 is well defined due to the fourth–order nonlinearity in T .

Then the minimization problem (3.4) can be shortly written as

min J(x, u) over (x, u) ∈ X∞ × U,(3.6)

subject to e(x, u) = 0 in Z∗.
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In fact, one can show the existence of a minimizer.

THEOREM 3.1. There exists a minimizer (x∗, u∗) ∈ X∞×U of the constrained minimization problem
(3.7).

The proof uses the standard techniques presented during this week. I.e. one extracts a convergent
minimizing sequence using the coercivity of the cost functional, uses the bounds for the state system
to get convergent subsequences of the state variables and uses the weak lower semicontinuity of the
cost functional.

3.2.1. Derivatives. In the following we provide the derivative information, which is necessary for
the application of the Newton algorithm.

Owing to the fact that the system (3.2) is uniquely solvable [63], we may reformulate the minimization
problem (3.6) introducing the reduced cost functional Ĵ as

minimize Ĵ(u)
def
= J(x(u), u) over u ∈ U(3.7)

where x(u) ∈ X satisfies e(x(u), u) = 0.

The numerical realization of Newton’s method relies on derivative information on J and e, or Ĵ
respectively. Formally, these can derived as follows: First, the implicit function theorem leads to the
following derivative of x at u in a direction δu:

x′(u)δu = −e−1
x (x(u), u)eu(x(u), u)δu.

Using the chain rule one obtains
〈
Ĵ ′(u), δu

〉
=
〈
Ju(x(u), u)− e∗u(x(u), u)e−∗x (x(u), u)Jx(x(u), u), δu

〉
.

Here, e∗x(x, u)ξ denotes the adjoint of the linearization of e at (x, u) in the direction ξ. We define the
adjoint variable ξ = (ξT , ξρ, ξT0) by

ξ = −e−∗x (x(u), u)Jx(x(u), u) ∈ Z.
Assuming enough regularity of the solution one gets the Riesz representative of the derivative

(3.8) Ĵ ′(u) = Ju(x(u), u) + e∗u(x(u), u)ξ.

EXAMPLE 3.2. In case of the cost functional (3.3), the adjoint variable can be characterized as the
variational solution of

−∂tξT = k∆ξT + 16πaκ T 3 ξρ − (T − Td),(3.9a)

− ε
2

3κ
∆ξρ + κ ξρ =

1

3κ
∆ξT , in Q(3.9b)

with boundary conditions

k(n · ∇ξT + α ξT ) = 0,(3.9c)

n · ∇ξT + γ ξT + ε2(n · ∇ξρ + γ ξρ) = 0, on Σ(3.9d)
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and terminal condition

(3.9e) ξT (1) = 0 in Ω.

Introducing the Lagrangian L : X × U × Z → R associated to (3.6) defined by

L(x, u, ξ)
def
= J(x, u) + 〈e(x, u), ξ〉 .

we know that there exists a critical point of the Lagrangian. In fact, for an optimal solution there exists
a unique Lagrange multiplier [63].

THEOREM 3.3. Let (x∗, u∗) ∈ X×U denote an optimal solution. Then there exists a unique Lagrange
multiplier ξ∗ ∈ Z∗ such that the triple (x∗, u∗, ξ∗) satisfies

L′(x∗, u∗, ξ∗) = 0 in X∗ × U∗ × Z∗.

Let (x∗, u∗) ∈ X × U denote an optimal solution. Then the second derivative of the Lagrangian is
formally given by

L′′(x∗, u∗, ξ∗) =


Jxx(x

∗, u∗) + 〈exx(x∗, u∗)(·, ·), ξ∗〉 0 e∗x(x
∗, u∗)

0 Juu(x
∗, u∗) + 〈euu(x∗, u∗)(·, ·), ξ∗〉 e∗u(x

∗, u∗)
ex(x

∗, u∗) eu(x
∗, u∗) 0


 .

Defining the operator

T (x, u)
def
=

(
−e−1

x (x, u) eu(x, u)
idU

)

we can write the reduced Hessean as

(3.10) Ĵ ′′(u)
def
= T ∗(x, u)Lyy(x, u, ξ)T (x, u),

where y def
= (x, u), i.e. Lyy is the upper left 2× 2–block of L′′.

3.2.2. Newton’s Method. In this section we describe the second order optimization algorithm, i.e.
we apply Newton’s method for the computation of an optimal control for the reduced cost functional.
The algorithm reads formally

ALGORITHM 3.1.

(1) Choose u0 in a neighborhood of u∗.
(2) For k = 0, 1, 2, . . .

(a) Solve Ĵ ′′(uk)δuk = −Ĵ ′(uk),
(b) Set uk+1 = uk + δuk.

REMARK 3.4. The solution of the system in step (ii.a) is done iteratively by using a conjugate gradient
algorithm embedded inside the Newton algorithm, as the computation of a discretization of the Hes-
sean would require a significant numerical effort, while a conjugate gradient based approach leads
to the same result with a fraction of the demands on memory and computation time. The conjugate
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gradient algorithm only requires the applications of the Hessean on a sequence of direction vectors
δu to be computed, so that no (direct) solution of the large system in (ii.a) is required.

ALGORITHM 3.2.

(1) Choose u0 in a neighborhood of u∗.
(2) For k = 0, 1, 2, . . .

(a) Evaluate Ĵ ′(uk) and set δujk = 0
(b) For j = 0, 1, 2, . . . do until convergence

(i) Evaluate qjk = Ĵ ′′(uk)δu
j
k

(ii) Compute an approximation δuj+1
k for δuk, e.g. by a cg–step

(c) Set uk+1 = uk + δuk

Each application of the reduced Hessian Ĵ ′′(uk) during the j-th cg–step requires two linear solves, in
detail

vjk = e−1
x (xk, uk)eu(xk, uk)δu

j
k

and

wjk = e−∗x (xk, uk)
{
Jxx(xk, uk)(v

j
k, ·) +

〈
exx(xk, uk)(v

j
k, ·), ξk

〉
Z∗,Z

}
.

EXAMPLE 3.4. Especially, for the cost functional (3.3) one has to apply successively the following
steps

(1) Solve the linearized state system (see system 3.2)

∂tvT = k∆vT +
1

3κ
∆vρ(3.11a)

− ε
2

3κ
∆vρ + κvρ = 16πκaT 3

k vT(3.11b)

with boundary conditions

n · ∇vT + αvT = α δujk(3.11c)

n · ∇vρ + γvρ = γ16πau3
kδu

j
k(3.11d)

and initial condition

(3.11e) vT (0) = 0

for vjk
def
= (vT , vρ) ∈ X , where xk = (Tk, ρk).

(2) Evaluate

Jxx(xk, uk)(v
j
k, ·) +

〈
exx(xk, uk)(v

j
k, ·), ξk

〉
= vT + 48πκaT 2

k vT ξT,k.
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(3) Solve the linearized adjoint system (see system 3.9)

−∂twT = k∆wT + 16πκaT 3
kwρ + vT − 48πκaT 2

k vT ξT,k(3.12a)

− ε
2

3κ
∆wρ + κwρ =

1

3κ
∆wT(3.12b)

with boundary conditions

k(n · ∇wT + αwT ) = 0(3.12c)

ε2(n · ∇wρ + γwρ) + n · ∇wT + γwT = 0(3.12d)

and terminal condition

(3.12e) wT (1) = 0

for wjk
def
= (wT , wρ) ∈ X .

(4) Set

qjk(t) =
1

|∂Ω|

∫

∂Ω

kαwT +
γ16πa

3κ
u2(u(wT + ε2wρ)− 3 δujk(ξT + ε2ξρ)) ds+

δ

|∂Ω|

∫

∂Ω

δujk + ∂ttδu
j
k ds.

3.3. Numerical Results. The spatial discretization of the PDEs is based on linear finite elements.
We use a non-uniform grid with an increasing point density towards the boundary of the medium,
consisting of 109 points. The temporal discretization uses a uniform grid consisting of 180 points for
the temperature–tracking problem. We employ the implicit backward Euler method to compute the
state (T, ρ). The adjoint systems are discretized using a modified implicit Euler backward method
taking into account the symmetry of the discrete reduced Hessean [33].

The conjugate gradient algorithm was terminated when the norm of the gradient became sufficiently
small; to be more precise, in the j-th conjugate gradient step for the computation of the update in
Newton step k we stop if the residual rjk satisfies

(3.13)
‖rkj ‖
‖J ′(u0)‖ ≤ min

{(
‖Ĵ ′(uk)‖
‖Ĵ ′(u0)‖

)p

, q
‖Ĵ ′(uk)‖
‖Ĵ ′(u0)‖

}
or j ≥ 100.

Note, that p determines the order of the outer Newton algorithm, such that p should be chosen in the
open interval (1, 2). The value of q is important for the first step of Newton’s method, as for k = 0
the norm quotients are all 1; for later steps, the influence of p becomes increasingly dominant. In our
numerical experiments, p = 1.5 and q = 0.1 proved to be a suitable choice.

REMARK 3.5. In the Newton algorithm, one might use

Juu(u) = δ(I − ∂tt)
as a preconditioning operator for the Newton system (ii.a).
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FIGURE 3.3. Unoptimized (blue) and optimized (green) cooling profile.

Now we present numerical results underlining the feasibility of our approach. For a given (time depen-
dent) temperature profile Td we compute an optimal u such that the temperature of the glass follows
the desired profile Td as good as possible. Such profiles are of great importance in glass manufactur-
ing in order to control at which time, at which place and for how long certain chemical reactions take
place, which is essential for the quality of the glass. Intervals of constant temperature allow for lengthy
reactions in a controlled manner; short peaks of high temperature trigger reactions that have a high
activation energy. Especially, it can be desirable to attain a spatial constant temperature, which is in
contradiction to the boundary layers of the temperature due the radiative heat loss over the boundary.

The blue line in Figure 3.3 describes the desired temperature profile Td(t) which shall be attained
homogeneously in space. From the engineering point of view it is an educated guess to use the same
profile for the boundary control. Clearly, this leads to deviations which can be seen in the left graphic
of Figure 3.4. Our optimal control approach leads now the the green line in Figure 3.3, which yields
in turn the improved temperature differences on the right in Figure 3.4. One realizes a significant
improvement although we have still a large peak. But note that we require a very sharp jump in the
temperature. Due to diffusive part of the equations it is almost impossible to resolve such fast change
in the cooling. Finally, let us discuss the influence of the penalizing parameter δ on the convergence of
the iterative Newton method. In Table 3.1 and Table 3.2 we compare the number of Newton iterations,
the evolution of the cost functional and the residual as well as number of cg iteration in each Newton
step. As expected we get e better performance for the ”more convex” problem.
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FIGURE 3.4. Temperature differences for the uncontrolled (left) and controlled (right) state.

k J(uk) ‖Ĵ ′(uk+1)‖2 #cg
1 224.7359 1.605777 · 10+01 26
2 184.5375 1.306437 · 10+01 16
3 142.9351 1.038065 · 10+01 14
4 112.5493 7.985859 · 10+00 13
5 90.52294 5.861017 · 10+00 13
6 74.95062 3.989118 · 10+00 14
7 64.45030 2.357674 · 10+00 14
8 57.97925 9.541926 · 10−01 16
9 54.70802 4.762934 · 10−02 17
10 53.96191 5.101231 · 10−04 17
11 53.96017 2.086531 · 10−06 17
12 53.96017 1.590937 · 10−09 25

TABLE 3.1. Convergence statistics for δ = 3.5 · 10−7

k J(uk) ‖Ĵ ′(uk+1)‖2 #cg
1 337.5395 3.912697 · 10+01 29
2 254.1703 2.918320 · 10+01 27
3 193.4364 1.978074 · 10+01 27
4 151.9171 1.094969 · 10+01 28
5 126.9592 2.751367 · 10+00 29
6 116.2621 3.163388 · 10−02 29
7 115.4742 2.184202 · 10−04 31
8 115.4741 4.352735 · 10−07 37
9 115.4741 4.542256 · 10−09 28

TABLE 3.2. Convergence statistics for δ = 3.5 · 10−6.
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4. Optimal Control of Traffic Networks

In this section we study a totally different application, which attained considerable attention during
the last years. Everybody using a car knows how annoying traffic jams are. They are in fact not
only annoying, but also quite expensive, which explains that there is a strong need for strategies
influencing the traffic on our streets in such a way that no traffic jams occur. In cities this can be
done by traffic lights and on highways one might use adjustable speed limits. Finally, the long term
goal is to influence the individual navigation system of each driver. For this reason many engineers
and mathematicians first concentrated on the development of appropriate models for the simulation of
traffic flow on highways. There exists a whole hierarchy of models for traffic flow on unidirectional
roads, ranging from microscopic over kinetic to macroscopic models [7]. Here, we will concentrate on
a well-known macroscopic PDE model and its extension to road networks. Since these models need to
be able to describe traffic jams, which can be interpreted as a front moving backwards along the road,
the reader might already guess that we are heading now for hyperbolic conservation laws. But due to
the network structure one has to take special care of the coupling conditions which govern the flow
along the junctions and the optimal control problem we want to consider is then related to the traffic
management in such large scale networks, which is numerically rather challenging. The forthcoming
presentation follows the work of [35, 36].

Again we will proceed in several steps. First we derive the model equations for one single road and
then we discuss the extension to traffic networks. In the following we will set up the optimal control
problem and show an approach for its numerical solution.

4.1. Modeling. We start our modeling by considering a single road. Assume that it has just one
lane and all cars are driving in the same direction.

x x+dx

Clearly, this yields a onedimensional problem. Let ρ(x, t) be the density of cars and v(x, t) their mean
velocity. The number of cars in the road section [x1, x2 = x1 + ∆x] at time t is then given by

∫ x2

x1

ρ(x, t) dx ≈ ρ∆x

and the flux of cars in a point x during the time period [t1, t2 = t1 + ∆t] is given by
∫ t2

t1

ρ(x, t) v(x, t) dt ≈ ρv∆t.

Since no cars are getting lost or are entering this road, i.e. we have no highway entrance, we have the
conservation of cars which directly yields

The change of cars on this road section is equal to the difference of the flux of cars
leaving or entering over the boundary.
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Mathematically, this reads
∫ x2

x1

ρ(x, t2) dx−
∫ x2

x1

ρ(x, t1) dx =

∫ t2

t1

ρ(x1, t)v(x1, t) dt−
∫ t2

t1

ρ(x2, t)v(x2, t) dt.

To derive a differential equation we use the main theorem of calculus which gives

ρ(x, t2)− ρ(x, t1) =

∫ t2

t1

∂

∂t
ρ(x, t) dt,

ρ(x2, t)v(x2, t)− ρ(x1, t)v(x1, t) =

∫ x2

x1

∂

∂x
(ρ(x, t) v(x, t)) dx.

Now interchanging the order of integration we get
∫ t2

t1

∫ x2

x1

( ∂
∂t
ρ +

∂

∂x
(ρv)

)
dx dt = 0 ∀t1, t2, x1, x2.

Since this has to hold for each road section and for each time period we can use the variational lemma
and get the so-called continuity equation

∂tρ + ∂x(ρv) = 0.

To get a closed equation for the density ρ one needs an additional constitutive relation between v
and ρ. Now we assume that, the more dense the traffic is, the slower the cars will drive. This can be
modelled using the following function

v = v(ρ) = vmax

(
1− ρ

ρmax

)
,

which gives rise to famous Lighthill-Whitham model. Here, vmax is the maximal velocity and ρmax

describes the maximal capacity of the road. Defining the flux function

f(ρ) = vmax ρ
(

1− ρ

ρmax

)

we get the equation
∂tρ + ∂xf(ρ) = 0,

which is the prototype of a hyperbolic scalar conservation law in one space dimension. Note that
hyperbolic equations show a totally different behavior compared to e.g. parabolic equations. They
allow only for finite speed of propagation and the solutions might be discontinuous. This has to be
taken into account for the definition of appropriate network coupling conditions.

4.1.1. Traffic Networks. Let us generalize this concept now to traffic networks. A traffic network
is nothing else than a directed graph G = (V,A). A vertex v ∈ V describes a junction, and an edge
e ∈ A describes a road.

On each road j ∈ {1, . . . , |A|} we have the conservation law

(4.1) ∂tfρj + ∂xfj(ρj) = 0, fj(ρj) = ρj · (ρmax,j − ρj), ∀x ∈ [aj, bj], t ∈ [0, T ]
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FIGURE 4.1. A Traffic Network

where ρmax,j describes the maximal capacity of the j–the road, aj , bj are the starting and endpoint
of the road and T is the time horizon we are considering. For notational simplicity we assume
vmax,j/ρmax,j = 1.

Each equation is further supplemented with the initial condition

(4.2) ρj(x, 0) = ρj,0(x), ∀x ∈ [aj, bj].

It remains to discuss the coupling conditions at the junctions. We consider a single junction with n
roads labelled by j = 1, . . . , nwith end bj at the junction andm roads labeled by j = n+1, . . . , n+m
with end aj at the junction. To guarantee the conservation of the numbers of cars, at the junction the
following condition is prescribed:

(4.3)
n∑

j=1

fj(ρj(bj, t)) =
n+m∑

j=n+1

fj(ρj(aj, t)), ∀t ≥ 0.

This corresponds to the well–known Rankine–Hugoniot conditions for hyperbolic equations. One can
show, at least if only up to four roads meet at one junction, that there exists a solution to this network
problem which we cannot make precise here. However, the above condition does not guarantee the
uniqueness of solutions on the network. This drawback can be overcome by additional conditions, for
details we refer to [36]. We restrict the following discussion to the cases of three connected roads.
Then, by composition of such junctions we can easily model all other kinds of possible junctions.
There are two possibilities of junctions with a total of three connected roads: either one road disperses
into two roads or two roads merging into one road.
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To get a unique solution we follow the idea of Coclite and Piccoli [22] and prescribe further coupling
conditions at the junctions, which is described in the following example.
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EXAMPLE 4.1. Let us assume we have a network with just one junction k. Then we have for the
solution ρ(x, t) = (ρ1, ρ2, ρ3)(x, t) at a junction k

(ρ̄1, ρ̄2, ρ̄3)(t) :=




ρ1(x = b1, t)
ρ2(x = a2, t)
ρ3(x = a3, t)


 (ρ̄1, ρ̄2, ρ̄3)(t) :=




ρ1(x = b1, t)
ρ2(x = b2, t)
ρ3(x = a3, t)




If we pose certain restrictions on ρ̄(t), t > 0, it turns out that ρ̄(t) is independent of time, i.e. ρ̄(t) ≡ ρ̄.
Selecting the unique real values ρ̄j ∈ R for all roads j = 1, 2, 3, we can obtain a weak solution
ρj(x, t), for all x ∈ [aj, bj], j = 1, 2, 3, and for all t ∈ R+ at the junction k by solving the following
Riemann problems:

For j = 1, . . . , n : ∂tρj + ∂xf(ρj) = 0

ρj(x, 0) =

{
ρj,0, x < bj,

ρ̄j x = bj,

For j = n+ 1, . . . , n+m : ∂tρj + ∂xf(ρj) = 0

ρj(x, 0) =

{
ρj,0 x > aj,

ρ̄j x = aj,

Now, Coclite and Piccoli devise a method to obtain these unique ρ̄j . They introduce control parameters
α ∈ (0, 1) at each junction. Then, the additional coupling conditions read in the two different cases

-��
��*

HHHHj

q
αi · q

(1− αi) · q

k

�
�
��

@
@
@R -
i f3(ρ̄3)f1(ρ1,0)

f2(ρ2,0)

f2(ρ̄2) = αif1(ρ1,0),

f3(ρ̄3) = (1− αi)f1(ρ1,0)

for dispersing roads, or just

f3(ρ̄3) = f1(ρ1,0) + f2(ρ2,0)

for merging roads.

It holds that 0 ≤ αi ≤ 1 and the parameter αi just distributes the flux from one incoming to the two
outgoing roads. This will lateron give us the possibility to control the flow in the network. The choice
of the values αi influences directly ρ̄j . A different value ρ̄j yields a different Riemann Problem at a
dispersing junction. In turn, this yields a different network solution ρ. It is most convenient to write
the unique values ρ̄j in terms of a function Uj which just depends on the parameters ρ1(bi, t) and αi
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for junctions of the first type and as a function of ρ1(bi, t), ρ2(bi, t) for junctions of the second type,
i.e.

ρ̄2,i = U2(ρ1(bi, t), αi),

ρ̄3,i = U3(ρ1(bi, t), αi),

as well as
ρ̄3,i = U3(ρ1(bi, t), ρ2(bi, t)).

4.1.2. Macroscopic ODE models. Before we turn our attention to the optimization problem, let
us shortly discuss the numerical effort of for solving the forward problem. Since one has to solve a
Riemann problem for each road and there might be thousands of roads, a solution of a PDE traffic
network model will be very time consuming and cannot be done in real–time, even with appropriate
schemes. Considering the optimal control problem we will run into troubles since each optimization
step usually requires several simulations of the governing equations. Therefore, we present now a
simplified model obtained by a spatial discretization of the PDE. To be more precise, based on the
averaged density evolution of the traffic on each road, we perform a simple finite spatial discretization
of (4.1) and obtain an ODE model. For notational simplicity we drop the subscripts for aj , bj and
Lj = bj − aj in the following.

Integrating (4.1) over the intervals [a, d] and [d, b], a < d = a+b
2
< b we obtain,

(4.4a) ∂tρ
(a)
j (t) = − 2

L


f(ρj(d, t))− f(ρj(a, t))


,

(4.4b) ∂tρ
(b)
j (t) =

2

L


f(ρj(d, t))− f(ρj(b, t)))


,

where L = b− a is the length of the road. Here, we use the spatial approximations defined via

ρ
(a)
j (t) :=

2

L

∫ d

a

ρj(x, t)dx and ρ
(b)
j (t) :=

2

L

∫ b

d

ρj(x, t)dx.

Note that (4.4) contains additional unknowns. Thus, we assume for ρj(d, t), that the mean value is a
reasonable approximation and set

(4.5a) ρj(d, t) =
1

2

(
ρ

(a)
j (t) + ρ

(b)
j (t)

)
.

Also the initial conditions are obtained by averaging

(4.5b) ρ
(a)
j,0 =

2

L

∫ d

a

ρj,0(x)dx and ρ
(b)
j,0 =

2

L

∫ b

d

ρj,0(x)dx.

Finally, we obtain the values ρj(a, t) and ρj(b, t) by the previous coupling conditions, i.e., we define
(see Example 4.1)

(4.5c) ρaj (t) = U j
a(ρ

(a)
j (t), ρ

(a/b)
k (t), ρ

(a/b)
l (t)),
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(4.5d) ρbj(t) = U j
b (ρ

(b)
j (t), ρ(a/b)

r (t), ρ(a/b)
s (t), α),

where a and b are chosen for outgoing and ingoing roads at the junctions respectively. For the above
formulas let us assume that road j connects two junctions. Altogether, the equations (4.4) and (4.5)
constitute a well defined ODE system. For the time discretization, we use a fixed time step τ . We
use a Lax–Friedrichs discretization of the time derivative, since the naive Euler discretization would
yield oscillating solutions. We emphasize that τ has to satisfy the CFL condition, since the above
discretization can be seen as a (very coarse) finite–difference scheme for a conservation law which is
using only three spatial points. Hence, we require that τ fulfills

(4.6) τ ≤ L

2 maxρf
′(ρ)

.

Finally, we obtain the discretized following ODE system for a road j connected to two junctions,
where τ is chosen as in (4.6).

ρ
(a)
j (t+ τ) =


ρ

a
j (t) + ρ

(b)
j (t)

2


− 2τ

L


f(ρ

(b)
j (t))− f(ρaj (t))


,(4.7)

ρ
(b)
j (t+ τ) =


ρ

(a)
j (t) + ρbj(t)

2


+

2τ

L


f(ρ

(a)
j (t))− f(ρbj(t))


,(4.8)

ρaj (t) = U j
a(ρ

(a)
j (t), ρ

(a/b)
k (t), ρ

(a/b)
l (t)),(4.9)

ρbj(t) = U j
b (ρ

(b)
j (t), ρ(a/b)

r (t), ρ(a/b)
s (t), α).(4.10)

REMARK 4.1. Note that this system is different from any discretization of the partial differential
equation (4.1) due to the approximation of ρj(d, t) and due to the definition of the boundary values
ρa,bj (t). Nevertheless, the ODE model uses the functions U j

a,b(·) of the PDE model. Hence, also the
ODE model inherits the property of traffic jams moving backwards through the junction.

4.2. Optimization. We assume in the following that traffic can be distributed at certain dispersing
junctions of the network. In terms of our model, we have a percentage 0 ≤ αi ≤ 1 for each dispersing
junction i = 1, . . . ,M . These values are the control parameters to optimize the flow in the network.
In practical applications the value of αi is just a recommendation and might be given for example by
detour suggestions in the car–navigation systems or signs at the corresponding highway intersections.
For simplicity we assume, that the traffic is actually distributed according to the value of αi.Of course,
there are situations where not all cars follow the recommendations and a more sophisticated model
has to take into account random behavior at the junction. Hence, we have a total of M real valued
controls ~α = (α1, . . . , αM) and the set of admissible controls is given by S = [0, 1]M . In the following
we assume a network geometries with one inflow and one outflow arc. Further, the inflow profile ρ0(t)
and a time horizon T > 0 is given. At each dispersing junction i = 1, . . . , n of the network we apply
a control αi ∈ [0, 1] which appears in the functions U j

b and control the distribution of the flux on the
outgoing roads.
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A measure for the utilization of a single road j of the network is the time and space averaged density∫ T
0

∫ bj
aj
ρ(x, t)dxdt. Hence, an objective functional is

(4.11) J(~α;T, ρ0) =
I∑

j=1

∫ T

0

∫ b

a

ρj(x, t)dxdt.

It is easy to verify, that in the case of a single inflow arc j0 and outflow arc jI and sufficiently regular
solutions ρj ,

(4.12) J(~α;T, ρ0) =

∫ T

0

fj0(ρ(aj0, t))dt−
∫ T

0

fjI (ρ(bj, t))dt.

We are interested in controls ~α such that the functional J(~α) is minimized and give the precise opti-
mization problem below.

REMARK 4.2. The functional J(~α;T, ρ0) is popular in the traffic engineering community. According
to (4.12), it measures the possible maximal flow passing the network depending on routing decisions
at the junctions. Since the flux functions are concave, high densities are related to small velocities vj ,
i.e., ρjvj = fj(ρj). Therefore, minimizing (4.11) yields a traffic situation with a large average speed.
Similarly, the functional J penalizes backwards moving waves in the network. These waves can be
interpreted as traffic jams.

To obtain an approximation of J for the ODE model of the previous sections, we consider the dis-
cretized and space averaged objective function J2, i.e.,

(4.13) J2(α;T, ρ0) =
T∑

t=1

I∑

j=1

Lj
2
τ
(
ρ

(a)
j (t) + ρ

(b)
j (t)

)
.

and the minimization problem

(4.14) min
~α
J2 subject to 0 ≤ αi ≤ 1, i = 1, . . . , n, and (4.7− 4.10).

4.2.1. Adjoint Equations. The adjoint equations for the PDE model given by (4.1) can be easily
derived using the general calculus. This yields

∂tµj + f ′j(ρj)∂xµj = ρj, x ∈ [aj, bj], t ∈ [0, T ],

µj(bj, t) = u∗j(t), t ∈ [0, T ],

µj(x, T ) = 0, x ∈ [aj, bj].

The only problem which we still have to tackle is to find the adjoint boundary and junction conditions
u∗j(t). These are well defined and given by

(4.15) u∗m(t) = αmµr(ar, t) + (1− αm)µs(as, t)

for a dispersing junction or by

(4.16) u∗p(t) = µr(ar, t), u∗q(t) = µr(ar, t)

for a merging junction.
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REMARK 4.3. Like in the parabolic case we are able to transform the adjoint equation to an equation
forward in time.

Further, we want to derive the optimality conditions for ODE based model (4.14). The gradient and
adjoint equation are used in the numerical solution of (4.14) later on. We consider the general mini-
mization problem

(4.17) min
α∈Rn

f(α) subject to (4.18)

wherein the state equation is given by

(4.18) yt = Ft(yt−1, α) for t = 1, . . . , T,

and y0 given. For each t, Ft is a differentiable, non–linear function from Rm × Rn to Rm. Further the
differentiable objective function, f : Rm × Rn → R, has the following form,

(4.19) f =
T∑

t=1

ft(yt, α).

The optimality system can be derived as follows. Let gt ∈ Rn be the gradient of f as a function
of control variables α. To obtain gt, we differentiate (4.18) and use the differentials u = dα ∈ Rn,
z = dy ∈ Rm,

(4.20) zt = (Ft)
′
y(yt−1, α)zt−1 + (Ft)

′
α(yt−1, α)ut, z0 = 0.

By (4.19)

(4.21) df =
T∑

t=1

(∇yft(yt, ut), zt)m +
T∑

t=1

(∇αft(yt, ut), ut)n.

To obtain the adjoint equation we eliminate z as follows:

(1) SettingGt = (Ft)
′
y(yt−1, α), Ht = (Ft)

′
α(yt−1, α), γt = ∇yft(yt, ut) and ht = ∇αft(yt, ut).

Multiply each linearized state equation in (4.20) by a vector pt ∈ Rm and summing up we
have

(4.22) 0 = −(pT , zT ) +
T−1∑

t=1

(pt, zt)m +
T−1∑

t=1

(G>t+1pt+1, zt)m +
T∑

t=1

(H>t pt, ut)n.

(2) Adding this to the expression of df ,

(4.23) df = (−pT + γT , zT )m +

T−1∑

t=1

(−pt +G>t+1pt+1 + γt, zt)m +

T∑

t=1

(H>t pt + ht, ut)n.

(3) Choosing p such that the coefficients of zt vanish

pT = γT , pt = G>t+1pt+1 + γt for t = T − 1, . . . , 1.(4.24)

Then we obtain the gradient in desired form

(4.25) gt = H>t pt + ht for t = 1, . . . , T.
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Equation (4.24) is called the adjoint equation and equation (4.25) is called the gradient equation.

We apply the general discussion to the minimization problem (4.14). Considering the ODE–model
(4.7-4.10) and the objective functional (4.13), we denote by

(4.26) yjt =

(
ρ

(a)
j (t)

ρ
(b)
j (t)

)
=

(
y1,j
t

y2,j
t

)
, ∀j = 1, . . . , I.

Hence, m = 2I where I is the number of roads and n is the number of dispersing junctions in the
network. Therefore, the control variable α ∈ Rn and the state variables yt ∈ Rm for each t. We can
rewrite (4.7-4.10) as

y1,j
t = F 1,j

t (y1,j
t−1, y

2,j
t−1, α),

y2,j
t = F 2,j

t (y1,j
t−1, y

2,j
t−1, α),

(4.27) yjt = F j
t (yjt−1, α) for t = 1, . . . , T.

With these prerequisites the reader will be able to fill in the details for our special application, which
will be omitted here.

4.3. Numerical Results. In this section we want to present some numerical results underlining
the validity of our approach.

4.3.1. Comparison of the ODE and the PDE Model on a Sample Network. First, we compare
the PDE and ODE models on a sample network. The PDE model is discretized using a first–order
Godunov–scheme on an equidistant grid with Nx × Nt gridpoints. The objective functional J is dis-
cretized using a trapezoid–rule with equidistant spacing. We plot contour lines for J and J2 objective
functional for both models for the sample network in Figure 4.2. The sample network has two controls
α1 and α2, hence the objective functional J and J2 can be computed for all possible combinations of
the controls. This allows to investigate if the ODE model (4.7-4.10) has similar properties than the
full PDE model. We consider two different situations corresponding to a free–flow and a traffic jam
situation. In the free–flow case the inflow on road 1 is given by f1(ρ0) = 96% and less than the capac-
ities Mj = 1 of each road j. Therefore, no traffic jam can occur independent of the applied controls
(α1, α2). The contour plots of the objective functionals are given in Figures 4.3. We observe a quali-
tative correspondence of both models and note that even the optimal controls (1/2, 0) coincide in this
case. Next, we consider a situation of congested network by varying the maximal densities on each
road. We model this by a reduction of the maximal density and setM1 = M2 = M4 = M6 = M7 = 2,
M3 = 1 and M5 = 0.5. The inflow is again f1(ρ0) = 96%. The contour lines of the functionals J2 and
J2t are given in Figure 4.4. The white parts of the plot show correspond to controls (α1, α2), where a
traffic jam reached the inflow arc. Those traffic jams appear in both the ODE and the PDE model for
α1 ≤ 46%. Additionally, the PDE model simulates those jams for α1 > 90% in contrast to α1 > 95%
for the ODE model. For the remaining controls we observe a very similar behavior.

REMARK 4.4. Note, that the main difference between the two models can be observed in the sim-
ulation times. For larger networks we have approximately a factor 30 for one forward simulation.
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FIGURE 4.2. Sample Network

Consider again a first order descent method, which needs 50 gradient steps, then you can imagine the
computational drawback of the PDE model in this case.

4.3.2. Gradient information. We consider the network of Figure 4.2. Gradients for the functional
J2t and (4.7-4.10) can be obtained either by using the discrete adjoint equations of Section 4.2.1 or by
a finite difference approximation for J2t using (4.7-4.10).

For each control α1 and α2 we proceed as follows. We fix τ = 1/10. We compute finite differences
by one–sided differences with ∆αi = 10−1. For comparison we compute the adjoints and the gradient
by the calculus in Section 4.2.1. We plot the absolute difference between both in Figure 4.5. The
gradients differ in order O(∆αi) and vanish at the optimal values ( 1

2
, 0).

Of course, there is major advantage of using the adjoint calculus instead of finite differences. The
adjoint calculus yields all derivatives after a single computation of (4.24) and (4.25); whereas for
finite differences we have to compute (4.7-4.10) for each control αi at least twice.
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[19] E. Casas, M. Mateos, and F. Tröltzsch. Error estimates for the numerical approximation of boundary semilinear
elliptic control problems, Report 2003/21, Institut für Mathematik, TU Berlin (2003).

[20] E. Casas and J.P. Raymond. Error estimates for the numerical approximation of Dirichlet Boundary control
for semilinear elliptic equations, Preprint (2005).

[21] F. H. CLARKE, Optimization and nonsmooth analysis, Wiley, New York, 1983.
[22] G. Coclite and B. Piccoli. Traffic flow on a road network. To appear in SIAM J. Math. Anal.

189



190 BIBLIOGRAPHY

[23] K. Deckelnick and M. Hinze. Convergence of a finite element approximation to a state constrained elliptic
control problem, in preparation (2005).

[24] J. Douglas, T. Dupont, and L. Wahlbin. The stability in Lq of the L2–projection into finite element function
spaces, Numer. Math. 23, 193–197 (1975).

[25] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, Englewood Cliffs, 1983.

[26] P. DEUFLHARD AND F. A. POTRA, Asymptotic mesh independence of Newton-Galerkin methods via a refined
Mysovskiuı theorem, SIAM J. Numer. Anal., 29 (1992), pp. 1395–1412.

[27] A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV, Uniform convergence and mesh independence of
Newton’s method for discretized variational problems, SIAM J. Control Optim., 39 (2000), pp. 961–980.

[28] L. C. Evans: Partial Differential Equations. American Mathematical Society, 1998.
[29] W. Fang and E. Cumberbatch. Inverse problems for metal oxide semiconductor field-effect transistor contact

resistivity. SIAM J. Appl. Math., 52:699–709, 1992.
[30] W. Fang and K. Ito. Reconstruction of semiconductor doping profile from laser-beam-induced current image.

SIAM J. Appl. Math., 54:1067–1082, 1994.
[31] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order, (2nd ed.). Springer,

1983.
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[45] H. JÄGER AND E. W. SACHS, Global convergence of inexact reduced SQP methods, Optimization Methods

and Software, 7 (1997), pp. 83–110.
[46] J. Jost: Postmodern Analysis. Springer, 1998.
[47] C. T. KELLEY, Iterative methods for optimization, SIAM, Philadelphia, 1999.
[48] C. T. KELLEY AND E. W. SACHS, Multilevel algorithms for constrained compact fixed point problems, SIAM

J. Sci. Comput., 15 (1994), pp. 645–667.
[49] D. Kinderlehrer, G. Stampacchia: Introduction to Variational Inequalities and their Applications, Academic

Press, 1980.



BIBLIOGRAPHY 191

[50] B. KUMMER, Newton’s method for nondifferentiable functions, in Advances in mathematical optimization,
Akademie-Verlag, Berlin, 1988, pp. 114–125.
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