



ī)

• pick
$$P_{S^{n}0}$$
, $P_{S^{n}1}$
 $ad + bke $q^{\circ} \leq P_{S^{n}0}$, $b_{0} \in Q_{-} d, q^{\circ} \parallel F(0) = b_{0}^{\circ}$
 $q^{a} \leq P_{S^{n}1}$, $b_{1}^{\circ} \in Q_{-} d, q^{\circ} \parallel F(0) = b_{1}^{\circ}$
 $p^{\circ} = q^{\circ} \cup q^{a} \in S$ and $sten(p_{\circ}) = S$
 $B_{0} := \{b_{0}, b_{1}\}$$

Г

 $P_{s_{0}}^{\circ} \ge q^{\circ}, b_{0}^{\dagger} \qquad q^{\circ} HF(s)=b_{0}^{\dagger} \qquad (1)$ $P_{s_{0}}^{\circ} \ge q^{2}, b_{1}^{\dagger} \qquad q^{\circ} HF(s)=b_{1}^{\dagger}$ $P_{s_{0}}^{\circ} \ge q^{2}, b_{2}^{\dagger} \qquad q^{2} HF(s)=b_{2}^{\dagger}$ $P_{s_{0}}^{\circ} \ge q^{2}, b_{3}^{\dagger} \qquad q^{3} HF(s)=b_{3}^{\dagger}$ $P_{s_{0}}^{\circ} \ge q^{3}, b_{3}^{\dagger} \qquad q^{3} HF(s)=b_{3}^{\dagger}$ $P^{1} = q^{0} u q^{3} u q^{2} u q^{3} a d B^{1} = \{b^{3}, b^{3}, b^{3}$

By noticition, we proceed analogously and we get

$$\{P^{n}: m_{GW}\} \quad of these in S st.$$

$$P^{n+1} = P^{n}$$

$$P^{n+1} ad P^{n} hore the same Kth-spectroder,
for K = m+1$$
And so $\bigcap_{m \in W} P_{n} =: q \in S$
Further $Gt \quad B = \bigcup_{m \in W} B_{m}$
CLAIM:
 $q \mid |f - TGM(F) \leq B$
 $q \mid |f - TGM(F) \leq B$
 $q \mid |f - F(0) = b^{0} \vee F(s) = b^{0}$
 $q \mid |F \bigvee_{m \in W} F(s) = b^{0}$;
 $J \leq j$

As lost time, put
$$p := \bigcap_{men} p_m \in S$$

and $p \in M$ -Vmew (Ximi < Yimi).

OTHER EXAMPLON
MILLER FORCING III := poset Guesstup of perfect theor $p \le u^{cu}$
s.t. $Vtep$, $tespelding \Rightarrow \exists infinitely$
Mary mew set $timep$









