### Random reals and infinite time Turing machines

# Philipp Schlicht, Universität Bonn joint work with Merlin Carl, Universität Konstanz

11. September 2016

Random sequences

Infinite time Turing machines

Results

Questions

## Random sequences

When is an infinite sequence random?

In other words, we would like to formalize the properties of a sequence obtained by infinitely many tosses of an unbiased coin.

The intuition: an object is random if it satisfies no exceptional properties.

#### Example

- Every second digit is 0.
- In the limit, there are at least twice as many 0s as 1s.

The above sets are null classes.

We can formalize 'exceptional property' by null classes.

## Random sequences

Using algorithmic tools, we introduce effective null classes, also called tests. To be random in an algorithmic sense, a real merely has to avoid these effective null classes, that is, pass those tests.

#### Definition

• A Martin-Löf test is a uniformly computably enumerable sequence

 $\langle U_n \mid n \in \omega \rangle$ 

of open subsets of the Cantor space  $2^\omega$  such that

 $\mu(U_n) \leqslant 2^{-n}$ 

for all n.

• A real x is Martin-Löf random if x passes each ML-test, in the sense that x is not in all of the  $U_n$ .

### Incompressibility

When is an infinite sequence random?

A different answer is: when its initial segments are incompressible.

### Definition

- A partial computable function on finite words is *prefix-free* if there are no s, t in its domain with  $s \equiv t$ .
- Let

$$\langle M_n \mid n \in \omega \rangle$$

be an effective listing of all prefix-free machines. We define a universal prefix free machine U by

$$U(0^n \sigma) = M_d(\sigma).$$

• Given a string  $\tau$ , the prefix-free descriptive string complexity  $K(\tau)$  is the length of a shortest U-description of x:

$$K(\tau) = \min\{|\sigma| : U(\sigma) = \tau\}.$$

## Incompressibility

Informally, a finite string  $\sigma$  is *compressible* if  $K(\sigma) \ll |\sigma|$ ML-random sequences can be characterized by their initial segment complexity.

Theorem (Levin-Schnorr 1973)

The following are equivalent.

- x is ML-random.
- $\exists b \ \forall n \ K(x \upharpoonright n) \ge n b.$

# Hypercomputation

The field *hypercomputation* (higher recursion theory) studies notions of computability beyond Turing computability.

- $\Pi_1^1$  sets are a higher analogue of computably enumerable sets, where the steps of an effective enumeration are computable ordinals.
- Hyperarithmetical (i.e.  $\Delta_1^1$ ) sets are a higher analogue of computable sets.

### Satz (Gandy, Spector)

The following are equivalent for any subset A of the Cantor space  $2^{\omega}$ .

- 1. A is  $\Pi_1^1$ .
- 2. There is a  $\Sigma_1$ -formula  $\varphi$  such that

$$x \in A \Longleftrightarrow L_{\omega_1^x}[x] \vDash \varphi(x)$$

for all x.

## Higher randomness

Already Martin-Löf criticized the classical randomness notions as too weak.

Hjorth and Nies (2007), Yu and Bienvenu, Greenberg and Monin (2015) studied randomness notions at the level of  $\Pi_1^1$ .

# Higher randomness

These notions satisfy variants of desirable features of the classical randomness notions, for instance the following.

### Theorem (van Lambalgen)

 $x \oplus y$  is ML-random if and only x is ML-random and y is ML-random relative to x.

In this situation, we say that x and y are *mutually random*.

We will focus on the property: *Mutual randoms do not share common information*.

This is false for ML-random, but holds for many higher randomness notions.

## Higher randomness

#### Question

Do notions of randomness beyond  $\Pi_1^1$  have similar desirable properties as the classical randomness notions?

On the level of  $\Sigma_2^1$ , many properties of randomness are independent.

Therefore, we study randomness notions between  $\Pi_1^1$  and  $\Sigma_2^1$ , defined by infinite Turing machines.

## Infinite time Turing machines

Infinite time Turing machines were introduced by Hamkins and Kidder (Hamkins-Lewis 2000).

Hardware:

- tape of length  $\omega$
- read/write head.

Software:

- finite alphabet A
- finite set S of states, including some end states
- transition function  $A\times S\times \{\text{succ}, \lim\} \to A\times S\times \{\text{left}, \text{right}\}$

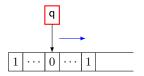
## Infinite time Turing machines

We can assume that the letters and states are natural numbers.

The machine runs through steps of the computation at every ordinal time.

At limits  $\lambda$ 

- form the lim inf in each cell
- form the lim inf of the previous states
- move the head to the beginning of the tape



### Snapshots of a computation

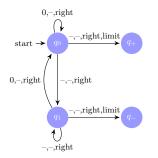
|    |                       | $tape \ cells \rightarrow$ |      |   |   |   |   |   |   |   |
|----|-----------------------|----------------------------|------|---|---|---|---|---|---|---|
|    | $\operatorname{time}$ | state                      | head | 0 | 1 | 2 | 3 | 4 | 5 |   |
| e↓ | 0                     | 0                          | 0    | - | - | - | - | - | - |   |
|    | 1                     | 1                          | 1    | 1 | - | - | - | - | - |   |
|    | 2                     | 0                          | 2    | 1 | - | - | - | - | - |   |
|    | 3                     | 1                          | 3    | 1 | - | 1 | - | - | - |   |
|    | 4                     | 0                          | 4    | 1 | - | 1 | - | - | - |   |
|    | 5                     | 1                          | 5    | 1 | - | 1 | - | 1 | - |   |
|    | 6                     | 0                          | 6    | 1 | - | 1 | - | 1 | - |   |
|    | :                     | :                          | :    | : | : | : | : | : | : | : |
|    | ω                     | 0                          | 0    | 1 | - | 1 | - | 1 | - |   |
|    | $\omega + 1$          | 1                          | 1    | 0 | - | 1 | - | 1 | - |   |
|    | $\omega + 1$          | 0                          | 2    | 0 | - | 1 | - | 1 | - |   |
|    | :                     |                            | :    | : | ÷ | : | : |   | ÷ | ÷ |
|    | $\omega \cdot 2$      | 0                          | 0    | 0 | - | 0 | - | 0 | - |   |
|    | $\omega \cdot 2 + 1$  | 1                          | 1    | 1 | - | 0 | - | 0 | - |   |
|    | $\omega \cdot 2 + 2$  | 0                          | 2    | 1 | - | 0 | - | 0 | - |   |

time .

### Example

#### Example

#### Does the letter 0 appear infinitely often in the input word?



## Strength of infinite time Turing machines

ITTMs can do the following.

- compute the halting problem (for Turing machines)
- test whether a tree is wellfounded, and hence can decide  $\Pi^1_1$  sets

### Writable ordinals

### Definition

- x ist *writable* if it can be written, with empty input, by a program which then halts.
- x is *eventually writable* if it can be written and eventually the tape contents is stable.
- x is accidentally writable if it can be written at some time in some computation.

#### Example

The halting problem for ITTMs is eventually writable.

By coding ordinals by reals, we define the writable ordinals etc.

## Writable ordinals

#### Definition

- $\lambda$  is the supremum of the writable ordinals.
- $\zeta$  is the supremum of the eventually writable ordinals.
- $\Sigma$  is the supremum of the accidentally writable ordinals.

Then  $\lambda$  is equal to the supremum of the clockable ordinals (halting times). An important characterization:

## Theorem (Welch)

 $\lambda,\zeta,\Sigma$  is the lexicographically least triple  $\alpha,\ \beta,\ \gamma$  with

 $L_{\alpha} \prec_{\Sigma_1} L_{\beta} \prec_{\Sigma_2} L_{\gamma}.$ 

### Preservation by random forcing

We distinguish between random generic and random (quasi-generic).

#### Definition

x is random (quasi-generic) over  $L_{\alpha}$  if x avoids every Borel null set with a code in  $L_{\alpha}.$ 

## Theorem (CS)

 $\lambda, \zeta$  and  $\Sigma$  are preserved by random reals over  $L_{\Sigma+1}$ .

This result is proved via an analysis of a quasi-forcing relation for random reals over admissible sets.

## Writable reals from non-null sets

To prove properties of randomness, we need the following analogue to a results of Sacks.

We write  $x \leq_w y$  ( $x \leq_{ew} y$ ,  $x \leq_{aw} y$ ) if x is (eventually, accidentally) writable from y.

Theorem (CS)

- 1. x is writable if and only if  $\mu(\{y : x \leq_w y\}) > 0$
- 2. x is eventually writable if and only if  $\mu(\{y : x \leq_{ew} y\}) > 0$
- 3. x is accidentally writable if and only if  $\mu(\{y : x \leq_{aw} y\}) > 0$

This is proved via the preservation of  $\lambda$ ,  $\zeta$  and  $\Sigma$  by sufficiently randoms.

## ITTM-random reals

A higher analogue of  $\Pi^1_1\text{-random:}$ 

#### Definition

A real x is ITTM-random if it avoids every ITTM-semidecidable null set.

Mutual ITTM-randoms have no common information:

#### Theorem

Suppose that  $x \oplus y$  is ITTM-random. If z is writable from x and from y, then z is writable.

This is proved via the previous result about writable reals from non-null sets.

# Characterization of ITTM-randoms

By results of Spector and Sacks, the following conditions are equivalent.

- x is  $\Pi_1^1$ -random.
- x is  $\Delta_1^1$ -random and  $\omega_1^x = \omega_1^{CK}$ .

A higher analogue:

Theorem (CS)

The following are equivalent.

- x is ITTM-random.
- x is random over  $L_{\Sigma}$  and  $\Sigma^{x} = \Sigma$ .

# Further results

- similar results for recognizable reals instead of writable reals
- similar results for an ITTM-decidable variant of ITTM-random
- similar results as Hjorth-Nies for a Martin-Löf variant of ITTM-random



#### Question

Is  $\zeta^x = \zeta$  for every ITTM-random?

#### Question

Is the set of ITTM-randoms  $\Pi_3^0$ ?

#### Question

Is there a concrete description of the set NCR of reals that are not ITTM-random with respect to any continuous measure?

# Bibliography

- Merlin Carl, Philipp Schlicht. Randomness via infinite computation and effective descriptive set theory, 2016, in preparation
- Joel David Hamkins, Andy Lewis. Infinite Time Turing Machines. Journal of Symbolic Logic 65(2), 567-604 (2000)
  - Greg Hjorth, Andre Nies. Randomness via effective descriptive set theory. Journal of the London Mathematical Society (2), 75(2):495-508 (2007).
- André Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford University Press, Oxford, 2009.
- Philip Welch. Characteristics of discrete transfinite Turing machine models: halting times, stabilization times, and normal form theorems. Theoretical Computer Science, 410 (2009), 426-442