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1. Introduction

Blum-Shub-Smale model of computability and complexity over R:

Algorithms allow as basic steps arithmetic operations +,−, · as
well as test operation ’x ≥ 0?’

Decision problem: L ⊆ R∗ :=
⊔

n≥1Rn

Size of problem instance: number of reals specifying input

Cost of an algorithm: number of operations

Definition of complexity classes PR,NPR,PARR,PATR,...,
completeness notions for those classes, real version of P versus NP
question etc.
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Inspiring source of interesting questions in BSS model:

which form do classical theorems (Turing model) take?

Examples:

decidability of problems in NPR (Grigoriev, Vorobjov, Heintz,
Renegar ...)

transfer theorems (Shub&Smale, Koiran,...)

complexity separations: PR 6= NCR (Cucker)

real complexity of Boolean languages (Bürgisser, Cucker,
Grigoriev, Koiran,...)

Toda’s theorem (Basu & Zell)

real PCP theorem (Baartse & M.)

...
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Here: Interactive Proofs and Shamir’s theorem

Theorem (Shamir 1992)

IP = PSPACE ( = PAR = PAT)

Problem over R: space resources alone meaningless, real analogues
PARR and PATR differ:

Theorem (Cucker 1994)

PARR ( PATR
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Questions:

Is a real version IPR still captured by one of the two classes?

Or by something different?

Upper bounds for IPR?

Lower bounds for IPR?

How far does Shamir’s discrete technique lead?
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2. Interactive proofs over R: Class IPR

Prover P: BSS machine of unlimited power
Verifier V : randomized polynomial time BSS algorithm; V
generates sequence of random bits r = (r1, r2, . . .)

Computation proceeds as follows:

- on input x ∈ Rn and (some of) the random bits V computes
a real V (x , r) =: w1 ∈ R and sends it to P;

- P sends a real P(x ,w1) =: p1 ∈ R back to V ;

- using information sent forth and back after i rounds V
computes real V (x , r ,w1, p1, . . . , pi ) =: wi+1 and sends it to
P; P computes a real pi+1 and sends it to V ;

- communication halts after a polynomial number m of rounds.
Final result V (x , r ,w1, . . . , pm−1) =: wm ∈ {0, 1} reject /
accept

(P,V )(x , r) = result of interaction on x using r
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Definition

L ∈ IPR iff there exists a polynomial time randomized verifier V
such that

i) if x ∈ L there exists a prover P such that
Pr

r∈{0,1}∗
{(P,V )(x , r) = 1} = 1 and

ii) if x 6∈ L, then for all provers P it is
Pr

r∈{0,1}∗
{(P,V )(x , r) = 1} ≤ 1

4 .

Remark: Class IPR remains the same when using public coins
and/or two-sided error.
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Previous results: Ivanov & de Rougemont study interactive proofs
in additive BSS model exchanging bits and show
PARR,+ = BIPR,+

Important for us: they design a problem outside PARR that has an
additive interactive proof in which reals are exchanged (problem
considered for Cucker’s 1994 result)

Consequence: PARR 6= IPR

But: No significant upper or lower bounds for (full) IPR known

Klaus Meer Real Interactive Proofs for VPSPACE



Previous results: Ivanov & de Rougemont study interactive proofs
in additive BSS model exchanging bits and show
PARR,+ = BIPR,+

Important for us: they design a problem outside PARR that has an
additive interactive proof in which reals are exchanged (problem
considered for Cucker’s 1994 result)

Consequence: PARR 6= IPR

But: No significant upper or lower bounds for (full) IPR known

Klaus Meer Real Interactive Proofs for VPSPACE



3. Upper bound: The class MA∃R of mixed alternation

Description of interaction protocols roughly as follows:

computation for exponentially many random strings generated
by V can be covered in parallel;

search an optimal prover: look for optimal real answers the
prover sends to V in order to imply maximal number of
random strings leading to accepting protocol

Second item leads to additional existential real quantifiers on top
of parallel computation
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Suitable complexity class introduced by Briquel & Cucker: MA∃R

Definition (Mixed alternation)

A ∈ MA∃R iff there exists L ∈ PR and polynomial p such that
x ∈ A if and only if the following formula holds:

∀Bz1∃Ry1 . . . ∀Bzp(|x |)∃Ryp(|x |)(x , y , z) ∈ L .

The subscripts B,R for the quantifiers indicate whether a
quantified variable ranges over B := {0, 1} or R, respectively

i.e., polynomially alternating formula with arbitrary Boolean and
existential real quantifiers

Cucker & Briquel: PARR ( MA∃R ⊆ PATR
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Theorem (Baartse & M. 2015)

It holds IPR ⊆ MA∃R

Proof formalizes above idea of describing an optimal protocol
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4. Lower bounds: MFCS contribution

Upper bound shows: IPR ⊆ MA∃R ⊆ PATR; the latter inclusion is
conjectured to be strict, thus IPR likely strictly included in PATR;

result by Ivanov and de Rougemont shows: IPR 6= PARR

Can we design interactive protocols for interesting real complexity
classes?
How far does Shamir’s discrete technique lead?
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Recall Shamir’s technique to design IP for QBF:

- arithmetization of formula gives short algebraic expression
replacing quantifiers by operators

∑
xi∈{0,1}

xi ,
∏

xi∈{0,1}
xi ranging

over {0, 1}; explicit expression has exponentially many terms;

- recursively attach canonical univariate polynomials of

polynomial degree to expression by eliminating leftmost
1∑

xi=0

or
1∏

xi=0

- verify value of those polynomials in random points
interactively

Clear: Arithmetization breaks down when quantifiers range over R
Question: Can Shamir’s technique anyway be used?
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Definition (Koiran & Perifel)

Family {fn}n∈N of real polynomials is in UniformVPSPACE iff
there exists a polynomial p such that

i) each fn depends on p(n) variables

ii) total degree of fn bounded by 2p(n);

iii) coefficients of fn integers of bit size ≤ 2p(n) − 1;

iv) coefficient function a is PSPACE computable;
a(n, α, i) ∈ {0, 1} gives the i-th bit of the coefficient of
monomial xα in fn (and a(n, α, 0) gives the sign)

fn(x1, . . . , xu(n)) =
∑
α

(−1)a(n,α,0)

2p(n)∑
i=1

2i−1a(n, α, i)

 xα

 .
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Koiran & Perifel:

class UniformVPSPACE generalizes VNP

all problems in PARR can be decided by a polynomial time
BSS oracle algorithm using an oracle for evaluating functions
of a family {fn}n ∈ UniformVPSPACE
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Theorem

UniformVPSPACE ⊆ IPR in the following sense: For
{fn}n ∈ UniformVPSPACE there exists an interactive protocol for
the language {(n, x , y) ∈ N× Rp(n) × R | fn(x) = y}.

Proof.

Functions in UniformVPSPACE can be described via a discrete
construction pattern resembling structure of Shamir’s
arithmetization of QBF
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Proof (cntd.)

Binary polynomial formula bpf over reals is a formula p built in
finitely many steps according to rules:

i) p = 1 and p = xi for i = 1, 2, . . . are bpf;

ii) if p1, p2 are binary polynomial formulas, then so are
p1 + p2, p1 − p2, p1 · p2;

iii) if p is bpf depending freely on xi , then both∑
xi∈{0,1}

p(. . . , xi , . . .) and
∏

xi∈{0,1}
p(. . . , xi , . . .) are bpf

Size of p: # construction steps
pbf canonically represents a real polynomial function in its free
variables
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Proof (cntd.)

We need following relation of bpf to UniformVPSPACE :

Theorem (similar results by Poizat, Malod)

Let {fn}n be a family of polynomial functions. Then
{fn}n ∈ UniformVPSPACE if and only if there exists a polynomial
time Turing algorithm which on input n ∈ N (in unary) computes a
binary polynomial formula pn which represents fn.

Proof constructs pdf for all parts of the representation

fn(x1, . . . , xu(n)) =
∑
α

(−1)a(n,α,0)

2p(n)∑
i=1

2i−1a(n, α, i)

 xα

 .
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Proof (cntd.)

interactive protocol for verifying correct evaluation of fn:

construct corresponding pbf for fn and

apply Shamir’s technique to the latter

Using result by Koiran & Perifel this implies lower bound

Theorem

PARR ( IPR ⊆ MA∃R
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Open questions

How large is the class PUniformVPSPACE
R ? How far does

approach with oracle computations lead?

Is IPR closed under complementation?

Possible characterization of IPR: class PSPACER of problems
decidable in polynomial space by EXPTIMER algorithm
known: PARR ( PSPACER ⊆ MA∃R
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Definition (Real Parallel Time PARR)

A problem L ⊆ R∞ :=
⊔

i≥1Ri belongs to class PARR iff there
exists a family {Cn}n∈N of algebraic circuits of depth polynomially
bounded in n, a constant s ∈ N, and a vector c ∈ Rs of real
constants such that

i) each Cn has n + s input nodes;

ii) for all n ∈ N the circuit Cn computes the characteristic
function of L ∩ Rn, when the last s input nodes are assigned
the constant values from c, i.e., x ∈ L ∩ Rn ⇔ Cn(x , c) = 1;

iii) the family {Cn}n is PSPACE uniform, i.e., there is a Turing
machine working in polynomial space which for each n ∈ N
computes a description of Cn.

If no constant vector c is involved we obtain the constant free
version of PARR denoted by PAR0

R.
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Definition (Polynomial Alternating Time PATR)

A ∈ PATR iff there exists L ∈ PR and polynomial p such that
x ∈ A if and only if the following formula holds:

∀Rz1∃Ry1 . . . ∀Rzp(|x |)∃Ryp(|x |)(x , y , z) ∈ L .

The subscript R again indicates quantifiers ranging over R.
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