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Numerous logics

In building a foundation for mathematics one develops one big theory,
such as set theory, type theory, category theory, . . .

In modelling the logical reasoning in a particular setting both expressivity
and efficiency may play a role.

Hence the great variety of logics around.

One may wish to establish certain things about these logics: consistency,
complexity, conservativity, . . .

Good descriptions of a logic can help.

This talk: The possible descriptions of logics.

Areas: mathematics, computer science and philosophy.
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Descriptions of logics

Logics (and theories) can be described in various ways: semantically,
proof theoretically, . . .

Ex . Classical propositional logic CPCconsists of all formulas

◦ that evaluate to 1 in all truth tables,
(models)

◦ that can be derived by Modus Ponens from the axioms . . . ,
(proof systems),

◦ that hold in all boolean algebras,
(algebras)

◦ for which the conjunctive normal form of their negation has a
resolution refutation,
(proof systems)

...

Here we focus on proof–theoretic descriptions.
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Proof theory

Inference is the central notion:

For formulas ϕ and ψ: from ϕ infer ψ.

In most cases one consisders sets of premisses:

For a set of formulas Γ: from Γ infer ϕ.

Inference is relative to a given logic L: infer ϕ from Γ in L,

Γ `L ϕ.
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Hilbert systems

Ex . The {→}-fragment of CPC can be described via the Hilbert system
H consisting of axioms

ϕ→ (ψ → ϕ)
(
ϕ→ (ψ → χ)

)
→
(
(ϕ→ ψ)→ (ϕ→ χ)

)
and rule Modus Ponens

ϕ ϕ→ ψ

ψ

A formula ϕ belongs to CPC if there are formulas ϕ1, . . . , ϕn = ϕ such
that every formula either is an instance of an axiom or follows from
earlier formulas by an instance of Modus Ponens.

Hilbert systems consist of axiom schemes and rule schemes.
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Other proof systems

Ex . Natural deduction ND. Consists of axioms and rules such as

ϕ ψ

ϕ ∧ ψ
ϕ(y)

∀xϕ(x)
(y not free in open assumptions)

Ex . Gentzen calculi GC. The objects are sequents, expressions Γ⇒ ∆,
where Γ and ∆ are finite multisets of formulas. Intended interpretation:

I (Γ⇒ ∆) =
∧
ϕ∈Γ

ϕ→
∨
ψ∈∆

ψ.

Gentzen calculi consist of rules and axioms such as

Γ, ϕ⇒ ϕ,∆

Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆

Gentzen calculi are popular proof systems that are a useful tool in the
study of logics.

Thm. ND and GC polynomially simulate each other.
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Proof systems

Dfn. Given a language and expressions in that language, a rule is an

expression of the form Γ/ϕ or
Γ
ϕ, where ϕ is an expression and Γ a finite

set of expressions. It is an axiom if Γ is empty.

Expressions can be formulas, sequents, clauses, equations, . . . From now
on, formula stands for all such expressions.

Dfn. Given a set of rules L, Γ `L ϕ iff there are formulas ϕ1, . . . , ϕn = ϕ
such that every ϕi either belongs to Γ or there is a rule Π/ψ in L such
that for some substitution σ: σψ = ϕi and σΠ ⊆ {ϕ1, . . . , ϕi−1}.

What a substitution is depends on the context.

Ex . In propositional logic a substitution is a map from propositional
formulas to propositional formulas that commutes with the connectives.
If σ(p) = ¬p and L consists of the following rule,

(Γ⇒ p,∆) (Γ, p ⇒ ∆)

Γ⇒ ∆
Cut

then (⇒ ¬p), (¬p ⇒ ) `L (⇒ ).
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Consequence relations

Dfn. A consequence relation (c.r.) ` is a relation between finite sets of
formulas and formulas that satisfies

reflexivity ϕ ` ϕ;

monotonicity Γ ` ϕ implies Γ,Π ` ϕ;

transitivity Γ ` ϕ and Π, ϕ ` ψ implies Γ,Π ` ψ;

structurality Γ ` ϕ implies σΓ ` σϕ for all substitutions σ.

Thm. (Loś & Susko 1957) For any set of rules L, `L is a consequence
relation, and for every consequence relation ` there is a set of rules L
such that Γ ` ϕ if and only if Γ `L ϕ. ` is axiomatized by L.
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Logics and consequence relations

Dfn. Given a set of rules L, the set of theorems of L is

Th(`) ≡ {ϕ | ∅ ` ϕ holds }.

A conseqence relation ` covers a logic if Th(`) consists exactly of the
formulas that hold in the logic. A set of rules X axiomatizes a logic if the
conseqence relation `X covers it.

Ex . The {→}-fragment of CPC is axiomatized by the set of rules H
consisting of the rule Modus Ponens and the following axioms

ϕ→ (ψ → ϕ)
(
ϕ→ (ψ → χ)

)
→
(
(ϕ→ ψ)→ (ϕ→ χ)

)
.

Ex . LK and LK− {Cut} both axiomatize the sequent version of CQC.

Aim Describe all possible consequence relations that cover a given logic.
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Logics and consequence relations

Dfn. Γ/ϕ is derivable iff Γ `L ϕ.

Γ/ϕ is strongly derivable iff `L

∧
Γ→ ϕ.

Note CPC→ is axiomatized by the set of rules H. For all sets X of
implicational formulas:

H∪X covers CPC→ iff X consists of tautologies.

Do we have that for all sets X of implicational rules:

Question H∪X covers CPC→ iff X consists of rules strongly derivable in
CPC→?

Th(H ∪ X ) = CPC→ iff
∧

Γ→ ϕ is a tautology for all Γ/ϕ ∈ X.

Question H∪X covers CPC→ iff X consists of rules derivable in `H?

Th(H ∪ X ) = CPC→ iff Γ `H ϕ for all Γ/ϕ ∈ X.
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Admissible rules

Question
What happens with Th(` ) is we add rules to the consequence relation?

Dfn. (Lorenzen ’55, Johansson ’37)

R = Γ/ϕ is admissible in L iff Th(`L) = Th(`L,R).

Notation Γ |∼ Lϕ denotes “ Γ/ϕ is admissible in L”.

Ex . ϕ(x)/∀xϕ(x) admissible in many theories.

⊥/ϕ is admissible in any consistent logic, but not always derivable.

ϕ/2ϕ and 2ϕ/ϕ are admissible in many modal logics.

Cut is admissible in LK− {Cut} and shortens proofs superexponentially.

Note For all logics L: |∼ L is a consequence relation and

Γ `L ϕ ⇒ Γ |∼ Lϕ Th( `L) = Th( |∼ L).
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Admissible rules

Note The minimal consequence relation ` for which Th(`L) = Th(`) is

{Γ ` ϕ | `L ϕ or ϕ ∈ Γ }.

The maximal consequence relation ` for which Th(`L) = Th(`) is |∼ L.

Aim Describe the admissible rules, |∼ L, of a given logic L.

Lemma Γ |∼ Lϕ iff for all substitutions σ: `L

∧
σΓ implies `L σϕ.

12 / 33



Classical propositional logic

Thm. All admissible rules of CPC are strongly derivable.

Prf . If ϕ/ψ is admissible, then for all substitutions σ to {>,⊥}: if
`CPC σϕ, then `CPC σψ.

Thus ϕ→ ψ is true under all valuations. Hence `CPC ϕ→ ψ.

Many many nonclassical logics have nonderivable admissible rules.
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Intuitionistic logic

Thm. The Kriesel–Putnam rule

¬ϕ→ ψ ∨ χ
(¬ϕ→ ψ) ∨ (¬ϕ→ χ)

KP

is admissible but not strongly derivable in intuitionistic logic IQC, as

(¬ϕ→ ψ ∨ χ)→ (¬ϕ→ ψ) ∨ (¬ϕ→ χ)

is not derivable in IQC. The same holds for Heyting Arithmetic.

Thm. (Prucnal ’79)
KP is admissible in any intermediate logic.

Thm. (Buss & Mints & Pudlak ’01)
KP does not shorten proofs more than polynomially.
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Classical predicate logic

Thm. The Skolem rule ∃x∀yϕ(x , y)/∃xϕ(x , fx) is admissible but not
derivable in (theories in) classical predicate logic CQC.

Thm. (Avigad ’03)
If a theory can code finite functions, then the Skolem rule cannot shorten
proofs more than polynomially.

Thm. (Baaz & Hetzl & Weller ’12)
In the setting of sequent calculi and cut-free proofs, the Skolem rule
exponentially shortens proofs.
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Multi-conclusion rules

Ex . If `KT ϕ→ 2ϕ then `KT ϕ or `KT ¬ϕ (Williamson ’92).

If `IQC ϕ ∨ ψ then `IQC ϕ or `IQC ψ.

To express such inferences, extend the notion of consequence to
multi-conclusion consequence relations.
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Multi-conclusion consequence relations

Dfn. A multi-conclusion consequence relation (m.c.r.) ` is a relation on
finite sets of formulas that satisfies

reflexivity ϕ ` ϕ;

monotonicity Γ ` ∆ implies Γ,Π ` ∆,Σ;

transitivity Γ ` ϕ,∆ and Π, ϕ ` Σ implies Γ,Π ` ∆,Σ;

structurality Γ ` ∆ implies σΓ ` σ∆ for all substitutions σ.

Dfn. Γ |∼ L∆ iff for all σ: `L

∧
σΓ implies `L σϕ for some ϕ ∈ ∆.

Γ/∆ is derivable if Γ `L ϕ for some ϕ ∈ ∆.

Note L has the disjunction property iff ϕ ∨ ψ |∼ L{ϕ,ψ}.
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Bases

Aim Describe both the single-conclusion and multi-conclusion admissible
rules of a given logic, via an algorithm or in some other useful way.

Note If ϕ |∼ Lψ, then ϕ ∧ χ |∼ Lψ ∧ χ.

Dfn. A set of rules R derives a rule Γ/∆ if Γ `L,R ∆.

R is a basis for the admissible rules of L iff the rules in R are admissible
in L and R derives all admissible rules of L.

Sub aim Provide a “nice” basis for the single-conclusion and
multi-conclusion admissible rules of a given logic.
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Intermediate and modal logics

Thm. CPC is structurally complete (all admissible rules are derivable).

Thm. (Chagrov ’92)
There are decidable logics in which admissibility is undecidable.

Thm. (Rybakov ’80s) Admissibility is decidable in IPC and many modal
logics. Admissibility in IPC has no finite bases.

Thm. (Jěrábek ’07)
In IPC and many modal logics admissibility is coNEXP-complete.

Thm. (Iemhoff ’01 & Rozière ’95)
The Visser rules are a basis for the admissible rules of IPC.

Thm. (Iemhoff ’05)
The Visser rules are a basis for the admissible rules in all intermediate
logics in which they are admissible.

Thm. (Goudsmit&Iemhoff ’14)
The nth Visser rule is a basis for the admissible rules in the (n + 1)th
Gabbay-De Jongh logic of (n + 1)-branching trees.
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Modal logics

Dfn. Two sets of rules, in sequent notation:

2Γ⇒ 2∆
{�Γ⇒ p | p ∈ ∆} V•

2Γ ≡ Γ⇒ 2∆
{�Γ⇒ p | p ∈ ∆} V◦

Ex . For L ∈ {K4,S4,GL}: 2q |∼ Lq and 2q ∨2r |∼ Lq, r .

Thm. (Jěrábek ’05) The set of rules V• is a basis for the admissible rules
in any L ⊇ GL in which it is admissible. Similarly for V◦ and S4. More
results . . .

Thm. (Rybakov & Odintsov & Babenyshev ’00’s)
Admissibility is decidable in many temporal logics.
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Fragments

Thm. (Mints ’76)
In IPC, all nonderivable admissible rules contain ∨ and →.

Thm. (Prucnal ’83)
IPC→ is structurally complete, as is IPC→,∧.

Thm. (Cintula & Metcalfe ’10)
The Wroński rules are a basis for the admissible rules of IPC→,¬.
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Predicate logic

For predicate logic there are design choices to be made concerning
variables in substitutions.

For some choice, classical predicate logic is structurally complete (all
admissible rules are derivable), just like CPC.

Thm. (Visser ’99) The propositional admissible rules of Heyting
Arithmetic and IPC are equal.

Thm. (Visser ’02)
Admissibility for predicate rules is Π2-complete in Heyting Arithmetic.
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Proof ingredient

The proofs of many of the results above have unification as a key
ingredient.
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Unification theory

The study of substitutions σ such that σs =E σt.

In a logic L: ϕ =E ψ is `L ϕ↔ ψ.

Unification theory in logic is the study of substitutions σ such that `L σϕ.

Ex . In classical propositional logic, if A is satisfiable, it is unifiable
(by a substitution that maps every atom to > or ⊥).

Another unifier of ϕ = (p → q) is σ(r) = ϕ ∧ r .

Unifier because ` ϕ ∧ p → ϕ ∧ q.

Moreover, ϕ ` r ↔ σ(r), and if ` τϕ then ` τ(r)↔ τσ(r).
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Unifiers

Dfn. σ is a unifier of ϕ iff ` σϕ.

τ 6 σ iff for some τ ′ for all atoms p: ` τ(p)↔ τ ′σ(p).

σ is a maximal unifier (mu) of ϕ if among the unifiers of ϕ it is maximal.

A unifier σ of ϕ is a mgu if τ 6 σ for all unifiers τ of ϕ.

A unifier σ of ϕ is projective if for all atoms p:

ϕ ` p ↔ σ(p).

A formula ϕ is projective if it has a projective unifier (pu).

Note Projective unifiers are mgus: ` τϕ implies ` τ(p)↔ τσ(p).
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Projective approximations

Lemma If ϕ is projective, then

ϕ |∼ψ ⇔ ϕ ` ψ.

Lemma If for every ϕ there is a finite set of projective formulas Πϕ and a
set of admissible rules R such that∨

Πϕ |∼ϕ `R
∨

Πϕ,

then R is a basis for the admissible rules of L, and L has finitary
unification if it has a disjunction property.

Prf. ϕ |∼ψ implies χ ` ψ for all χ ∈ Πϕ. Hence ϕ `R ψ.

Dfn. L has finitary unification if every unifiable formula has finitely many
mus, and projective unification if all formulas have projective unifiers.

Note If in a logic with projective unification every formula is unifiable,
then the logic is structurally complete.
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Modal logic K4

Ex . 2p ∨2¬p has no mgu as τ0(p) = > and τ1(p) = ⊥ are both unifiers.

For every unifier σ of 2p ∨2¬p, σ 6 τ0 or σ 6 τ1.

Therefore τ0 and τ1 are the mus of 2p ∨2¬p.

A projective approximation of 2p ∨2¬p is {�p,�¬p}.
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Intermediate and modal logics

Thm. CPC has projective unification and is structurally complete.

Thm. (Rybakov ’80s) Admissibility is decidable in IPC and many modal
logics. Admissibility in IPC has no finite bases.

Thm. (Ghilardi ’99 & Rozière ’95)
IPC has finitary unification.

Thm. (Iemhoff ’05)
The Visser rules are a basis for the admissible rules in all intermediate
logics in which they are admissible.

It follows from results by Jěrábek and me that any intermediate logic has
a bases for admissibility that consists of rules derivable from the Visser
rules.

Thm. (Ghilardi ’99, Iemhoff ’05) KC (¬ϕ ∨ ¬¬ϕ) has unitary unification
and the Visser rules are a basis for its admissible rules.

Thm. (Wroński ’08) L has projective unification iff L ⊇ LC.

LC (ϕ→ ψ) ∨ (ψ → ϕ)
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Modal logics

Thm. K4, S4, GL and many other transitive modal logics have finitary
unification (Ghilardi ’01).

Thm. (Jěrábek ’05) The set of rules V• is a basis for the admissible rules
in any L ⊇ GL in which it is admissible. Similarly for V◦ and S4.

Thm. (Dzik & Wojtylak ’11) L ⊇ S4 has projective unification iff
L ⊇ S4.3.

S4.3 2(2ϕ→ 2ψ) ∨2(2ψ → 2ϕ)
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Fragments

Thm. (Mints ’76)
In IPC, all nonderivable admissible rules contain ∨ and →.

Thm. (Prucnal ’83)
IPC→ is structurally complete, as is IPC→,∧.

Thm. (Cintula & Metcalfe ’10)
IPC→,¬ has finitary unification and the Wroński rules are a basis for the
admissible rules of IPC→,¬.
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 Lukasiewicz logic

Thm. (Jěrábek ’10) Admissibility in  Lukasiewicz logic is in PSPACE.
Jěrábek provides explicit basis.

Thm. (Marraa&Spada)
 Lukasiewicz logic has nullary unification type.
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Open

◦ Modal logic K and description logics.

◦ Predicate logics.

◦ Substructural logics.

◦ Explanation of admissible rules in terms of what a logic is modelling.

◦ And the list goes on

◦ and on

◦ and on . . .

32 / 33



Finis
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