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Theorem. The theory of (R, <,+,N) is decidable.

Arguably due to Skolem (1931) in Über einige Satzfunktionen in der
Arithmetik (see Smoryński (1991)).

Indeed, a quantifier elimination result in a suitably extended language
holds.

Rediscovered independently by Gordon (197?), Weispfenning (1999)
and C. Miller (2001).

Decidability also follows easily from Büchi’s theorem (1962) on the
decidability of monadic second order theory of one successor.

Theorem - Gödel (1931). The theory of (R, <,+, ·,N) is undecidable.
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Motivating question. How many traces of multiplication can one add to
(R, <,+,N) without making the theory undecidable?

Precise question. Let α be irrational. What can be said about
(R, <,+,N, x 7→ αx) and (R, <,+,N, αN)?

Surprisingly little was know, in particular given the fact that (R, <,+,N)
was (and still is) extensively used by computer scientists. Very partial
results due to Weisspfenning (1999). Some results claimed by Gordon in
1970’s, but the proofs were incorrect.
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Connection to Diophantine Approximations/Dynamical Systems. Let
α ∈ [0, 1]. For δ ∈ R, we define fα,δ : N→ [0, 1] by

fα,δ(n) := b(n + 1)α + δc − bnα + δc.

The word
f α,δ = fα,δ(1)fα,δ(2)fα,δ(3) . . .

is called a Sturmian word with slope α.

When α = 1
1+ϕ , where ϕ is the golden ratio, then f α,0 is the Fibonacci

word: 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, . . .

These functions are definable in (R, <,+,N, x 7→ αx). Decidability yields
decision procedure for questions about the Fibonacci word, like

∃p ∈ N p ≥ 0 ∧ ∃n ∈ N∀i ∈ N(i ≥ n)→ (fα,0(i) = fα,0(i + p))

(cp. Decision Algorithms for Fibonacci-Automatic Words by Mousavi,
Schaeffer and Shallit)
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Results - H. 2015.

Theorem. The theory of (R, <,+,N, x 7→ αx) is decidable if and only if
α is quadratic.

Theorem. Let S ⊆ R. Then the structure (R, <,+,N, (x 7→ βx)β∈S)
defines the same sets as exactly one of the following structures:

(i) (R, <,+,N),

(ii) (R, <,+,N, x 7→ αx), for some quadratic α ∈ R \Q,

(iii) (R, <,+, ·,N).

Consequence. When α is a quadratic real number, then the theory of
(R, <,+,N, αN) is decidable.

Is the theory of (R, <,+,N, αN) decidable for any non-quadratic α?
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Prior results.

H., Tychonievich (2014). Let α, β ∈ R be such that 1, α, β are linearly
independent over Q. Then (R, <,+,N, αN, βN) defines multiplication on
R.

Consequence: Let α ∈ R be a non-quadratic irrational number. Then
(R, <,+,N, x 7→ αx) defines multiplication on R.

Why? Morally, because (R, <,+,N, αN, βN) allows you define the
Sturmian word fα,δ and fβ,δ for each δ. If 1, α, β are linearly independent
over Q, then you can find δ such that the pair of Sturmian words is
arbitrarily complicated.
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Today I want to talk about the proof of:

Theorem. If α is quadratic, then the theory of (R, <,+,N, x 7→ αx) is
decidable.

Consider the two-sorted structure

B := (N,P(N), sN,∈),

where sN is the successor function on N and ∈ is the relation on N×P(N)
such that ∈ (t,X ) iff t ∈ X .

Theorem - Büchi (1962). The theory of B is decidable.

Theorem - H. (2014). Let α be a quadratic irrational number. Then
(R, <,+,N, x 7→ αx) and B are bi-interpretable.
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Observation: (R, <,+,N) is interpretable in B using binary coding.

x ∈ R ! pair of a finite and an infinite sequence of 0, 1’s:

b−n . . . b0.b1 . . .

x ∈ N ! pair of a finite and an infinite sequence of 0, 1’s of the form

b−n . . . b0.0 . . .

< on R ! lexicographic order on pairs of sequences

+ on R ! usual carry algorithm of adding two numbers

in binary representation

Conclusion. B interprets (R, <,+,N). Decidability of the theory of
(R, <,+,N) follows.
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Idea. How can we interpret (R, <,+,N, x 7→ αx) in B? Replace binary
representations by Ostrowski (Zeckendorf) representations.

For simplicity, we just consider α = ϕ = 1+
√
5

2 .

Philipp Hieronymi (Illinois) Diophantine approximation Colloquium Logicum 2016 9 / 25



Zeckendorf representation (1972). Let N ∈ N and Fk be the k-th
Fibonacci number. Then N can be written uniquely as

N =
n∑

k=1

bk+1Fk ,

where bk ∈ {0, 1} and if bk+1 = 1, then bk = 0.

F−1 = 0,F0 = 1,F1 = 1,F2 = 2,F3 = 3,F4 = 5, F5 = 8,...

Zeckendorf representation of 9 is 8 + 1 and not 5 + 3 + 1.

Take away: A natural number corresponds to a finite sequence of 0, 1’s
with no consecutive 1’s , and

< on N ! lexicographic order on the representation
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Zeckendorf representation for real numbers. Let c ∈ R be such that
− 1
ϕ ≤ c < 1− 1

ϕ . Then c can be written uniquely in the form

c =
∞∑
k=1

bk+1(Fkϕ− Fk+1),

where bk ∈ {0, 1} and if bk+1 = 1, then bk = 0, and bk+1 6= 1 for
infinitely many even k .

Note that Fkϕ− Fk+1 < 0 iff k is odd! Therefore the sequence of partial
sums is not strictly increasing.

Let b = b1b2, . . . and b′ = b′1b
′
2 . . . be two sequences of 0, 1’s. We say

b ≺ b′ if there is n ∈ N minimal such that bn 6= b′n and either

(i) bn > b′n and n is even,

(ii) b′n > bn and n is odd.

< on (− 1
ϕ , 1−

1
ϕ) ! ≺ on the representations
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Interpretation of (R, <,+,N) in B:

x ∈ N ! finite of 0, 1’s with no consecutive 1’s

x ∈ R ∩ (− 1

ϕ
, 1− 1

ϕ
) ! infinite sequence of 0, 1’s with no consecutive 1’s

< on N ! lexicographic order on the sequences

< on (− 1
ϕ , 1−

1
ϕ) ! ≺ on the sequences

+ on R ! ?

x → ϕx on R ! ?

Addition in Zeckendorf representation. Let M,N ∈ N given in
Zeckendorf representation. Then the Zeckendorf representation of M + N
can be recognized by a finite automaton.

This is due to Frougny (1992). There is an elegant, elementary three-pass
algorithm due to Ahlbach, Usatine, Frougny, Pippenger (2013).
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Since (Fkϕ− Fk+1) = −ϕ(Fk+1ϕ− Fk+2), we have

−ϕ
∑

k∈N>1

bk(Fkϕ− Fk+1) =
∑
k∈N

bk+1(Fkϕ− Fk+1).

Thus multiplication by ϕ is a shift operation in the Zeckendorf
representation.
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General case. When α is quadratic, then the theory of (R, <,+,N, αN)
is decidable. Same proof works, but one has to use Ostrowski
representations - a generalization of Zeckendorf representations.

Skip Ostrowski
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An introduction to Diophantine approximation

Definition A continued fraction expansion [a0; a1, . . . , ak , . . . ] is an
expression of the form

a0 +
1

a1 + 1
a2+

1

a3+
1

...

For a real number a, we say [a0; a1, . . . , ak , . . . ] is continued fraction
expansion of a if a = [a0; a1, . . . , ak , · · · ] and a0 ∈ Z, ai ∈ N>0 for i > 0.

Fact. The continued fraction expansion of a is periodic iff a is a quadratic
irrational.

ϕ = [1; 1, . . . , ] and
√

2 = [1; 2, . . . , ] and
√

3 = [1; 1, 2, 1, 2, . . . ].
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Definition. Let q−1 := 0, p−1 := 1 and q0 = 1, p0 = a0 and for k ≥ 0,

qk+1 := ak+1 · qk + qk−1,

pk+1 := ak+1 · pk + pk−1.

For ϕ: qk = Fk and pk = Fk+1, so βk = Fkϕ− Fk+1.
For
√

2: q1 = 2, q2 = 5, q3 = 12,..., p1 = 3, p2 = 7, p3 = 17,...

Definition. The k-th difference of a is defined as βk := qka− pk .

Fact. βk > 0 iff βk+1 < 0.
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Ostrowski representation (1921). Let N ∈ N. Then N can be written
uniquely as

N =
n∑

k=0

bk+1qk ,

where bk ∈ N such that b1 < a1, bk ≤ ak and, if bk+1 = ak+1, bk = 0.

Zeckendorf representation (1972). Let N ∈ N and Fk be the k-th
Fibonacci number. Then N can be written uniquely as

N =
n∑

k=1

bk+1Fk ,

where bk ∈ {0, 1} and if bk+1 = 1, then bk = 0.
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Ostrowski representation of a real number. Let c ∈ R be such that
− 1
ζ1
≤ c < 1− 1

ζ1
. Then c can be written uniquely in the form

c =
∞∑
k=0

bk+1βk ,

where bk ∈ N, 0 ≤ b1 ≤ a1 − 1, bk ≤ ak , for k ≥ 1, and bk = 0 if
bk+1 = ak+1, and bk 6= ak for infinitely many odd k .

Zeckendorf representation for real numbers. Let c ∈ R be such that
− 1
ϕ ≤ c < 1− 1

ϕ . Then c can be written uniquely in the form

c =
∞∑
k=1

bk+1(Fkϕ− Fk+1),

where bk ∈ {0, 1} and if bk+1 = 1, then bk = 0, and bk 6= 1 for infinitely
many odd k .
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Addition in Ostrowski representation (H.-Terry (2015)). Suppose a is
quadratic. Then the graph of addition of natural numbers in Ostrowski
representation can be recognized by a finite automaton.

Surprisingly this was only known for some quadratic numbers (for example
when a = ϕ). We used the ideas of Ahlbach, Usatine, Frougny, Pippenger
(2013) to give an elementary three-pass algorithm.
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If α is a quadratic real number, then the theory of (R, <,+,N, αN) is
decidable. What if α is not quadratic?

Observation. If the continued fraction expansion of α is non-computable,
then the theory of (R, <,+,N, αN) is undecidable.

Open question I: What happens when the continued fraction expansion is
nice, but not periodic? For example, e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . . ].

Open question II: For arbitrary α what can be said about definable sets
in (R, <,+,N, αN)?
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Recall: Let a, b ∈ R be such that 1, a, b is Q-linearly independent. Then
(R, <,+,N, aN, bN) defines multiplication on R.

Open question III: (Cobham’s theorem) Is there a set definable in both
(R, <,+,N, aN) and (R, <,+,N, bN) that is not definable in (R, <,+,N)?

By Robinson the structure (R, <,+, ·,Q) defines N and therefore its
theory is undecidable. On the other hand, the theory of (R, <,+,Q) is
decidable.

Open question IV: What about (R, <,+,Q, x 7→ αx)?

(R, <,+,Q, x 7→ αx) definable in (R, <,+, ·, 2Q, x 7→ xα). There are
non-algebraic α for which the latter structure is well-behaved.
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