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§1. Reminder -1-

Classes NP, coNP and PSPACE:
L ⊆ {0, 1}∗ is in NP, resp. coNP, if there exists a
polynomial p and a polytime TM M such that

x ∈ L⇔
(
∃u ∈ {0, 1}p(|x |)

)
M (x , u) = 1 ,

resp. x ∈ L⇔
(
∀u ∈ {0, 1}p(|x |)

)
M (x , u) = 1 ,

holds for every x ∈ {0, 1}∗.
L ⊆ {0, 1}∗ is in PSPACE if there exists a polynomial p and
a TM M such that for every input x ∈ {0, 1}∗, the total
number of non-blank locations that occur during M’s
execution on x is at most p (|x |), while x ∈ L⇔ M (x) = 1.
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§1. Reminder -2-

Known results and more:

NP ⊆ PSPACE and coNP ⊆ PSPACE .

NP = PSPACE implies NP = coNP. The latter
conjecture seems more natural and/or plausible, as it reflects
an idea of logical equivalence between model theoretical (re:
NP) and proof theoretical (re: coNP) interpretations of
non-deterministic polytime computability.

NP = coNP (resp. NP = PSPACE) follows from global
polynomial-size provability of tautologies in classical and/or
intuitionistic (resp. minimal) logic.

Claim [L.G.+E.H.Haeusler]: NP = PSPACE is provable by
DAG-like proof-compression techniques in Prawitz’s Natural
Deduction for minimal logic.
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§2. The proof [L.G.]: Overview

1 Formalize minimal propositional logic as fragment LM→ of
Hudelmaier’s tree-like cutfree intuitionistic sequent calculus.
For any LM→ proof ∂ of sequent ⇒ ρ :

1 h (∂) (= the height) is polynomial (actually linear) in |ρ|,
2 φ (∂) (= total number of formulas) and µ (∂) (= maximal

formula length) are also polynomial in |ρ|.
2 Show that there exists a constructive (1)+(2) preserving

embedding F of LM→ into Prawitz’s tree-like natural
deduction formalism NM→ for minimal logic.

3 Elaborate polytime verifiable DAG-like deducibility in NM→.
4 Elaborate and apply horizontal tree-to-DAG proof compression

in NM→. For any tree-like NM→ input ∂, the weight of
DAG-like output ∂c is bounded by h (∂)× φ (∂)× µ (∂).
Hence the weight of (F (∂))c for any given tree-like LM→
proof ∂ of ρ is polynomially bounded in |ρ|. Since minimal
logic is PSPACE-complete, conclude that NP = PSPACE .
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§2. More on conclusion NP = PSPACE

Proof.

Recall that the validity problem for minimal propositional logic is
PSPACE-complete. It will suffice to show that it is a NP problem.
So consider any purely implicational formula ρ. By Hudelmaier’s
result, ρ is valid in the minimal logic iff there exists a tree-like
LM→ proof ∂ of ρ. Hence, by the embedding theorem and
soundness and completeness of DAG-like NM→, ρ is valid in the
minimal logic iff we can “guess” a DAG-like NM→ proof ∂̂ of ρ,
whose weight is polynomial in |ρ| (witness: (F (∂))c). Moreover,
we know that ‘ ∂̂ is an encoded DAG-like NM→ proof of ρ ’ is
decidable in polynomial time with respect to |ρ|. Thus the
existence of DAG-like NM→ proof of ρ is verifiable in polynomial
time by a non-deterministic algorithm, and hence so is the problem
of ρ validity in the minimal logic, Q.E.D.
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§3. Background: Search for small propositional proofs

First question: Which proof system(s) could/should be used?
Basic options:

1  Lukasiewicz-Tarski-Hilbert-Bernays style modus ponens calculi
a/o Gentzen-Schütte-style sequent calculi with cut.

2 Cutfree sequent calculi.

3 Prawitz style natural deduction (not necessarily normal).

First answer: 2 and 3 interactive (1 is too loose).
Second question: What about geometric structure of proofs
involved?
Basic options:

1 Standard tree-like proofs.

2 DAG-like proofs (DAG = directed acyclic graph).

Second answer: 1 for 2 and 2 for 3.

L. Gordeev Proof Compression and NP vs PSPACE



§3. Background: Search for small propositional proofs

First question: Which proof system(s) could/should be used?

Basic options:

1  Lukasiewicz-Tarski-Hilbert-Bernays style modus ponens calculi
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§3. Background: Why DAG-like natural deductions?

1 DAGs in question arise by proof compression that is obtained
by merging distinct nodes labeled with identical proof objects
(formulas or sequents) in tree-like inputs.

2 Proofs in (cutfree, et al) sequent calculi admit full DAG-like
compression in which distnict nodes contain distint sequents,
which makes the size bounded by total number of sequents.

3 This is good, but not good enough. Because polynomial
bounds on the number of subformulas fail to provide
polynomial bounds on the number of sequents involved. In
contrast, proof objects of natural deductions are single
formulas, so there is a hope to overcome this obstacle.

4 However, full compression of natural deductions should be
weakened to (say) horizontal compression, to save Prawitz’s
discharging rule(s). But this weakening still yields the result,
provided that the height and the total number of formulas are
polynomially bounded (via emebedding of sequent proofs).
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§3. Background: Horizontal tree-to-dag compression

Any given tree-like deduction ∂ with root formula ρ can be
compressed to a DAG-like deduction ∂c of the same
conclusion ρ such that the size of ∂c is at most h (∂)× φ (∂).

The operation ∂ ↪→ ∂c (called horizontal compression) runs
by bottom-up recursion on h (∂) such that for any n ≤ h (∂),
the nth horizontal section of ∂c is obtained by merging all
nodes with identical formulas occurring in the nth horizontal
section of ∂ (this operation is called horizontal collapsing).

Thus the horizontal compression is obtained by bottom-up
iteration of the horizontal collapsing.

The size and weigth estimates |∂c| ≤ h (∂)× φ (∂) resp.
‖∂c‖ ≤ h (∂)× φ (∂)× µ (∂) are obvious, as the size of every
(compressed) nth horizontal section of ∂c can’t exceed φ (∂).
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§3. Background: Crucial technical features -1-

The notion of DAG-like deducibility/provability is highly
untrivial due to the corresponding DAG-like discharging (of
chosen assumptions α). For in a given DAG-like deduction ∂
there are different maximal threads connecting α with root
formula ρ. This is due to inverse-branching nodes (which
don’t occur in tree-like deductions).

Thus every DAG-like deduction requires additional information
on “legitimate” maximal deduction threads that determine the
sets of open/closed assumptions. This is achieved by adding a
suitable function `g that determines “legitimate” parents of
inverse-branching nodes (regarded as “road signs” showing
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§3. Background: Crucial technical features -2-

Corresponding “legitimate” DAG-like provability remains
sound and complete w.r.t. minimal logic (just as its canonical
tree-like version).

Horizontal compression is supplied with corresponding `g

compression that preserves closed assumptions (and hence
provability). So if ∂ is a canonical tree-like proof of ρ then ∂c

is a DAG-like proof of ρ.

DAG-like provability in question is encoded by appropriate
local proof correctness conditions that are polytime verifiable
(just as in standard tree-like case).
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§4. Hudelmaier’s sequent calculus LM→ -1-

Axiom and rules of implicational minimal logic:

(MA) : Γ, p =⇒ p

(MI1→) :
Γ, α =⇒ β

Γ =⇒ α→ β
[(@γ) : (α→ β)→ γ ∈ Γ]

(MI2→) :
Γ, α, β → γ =⇒ β

Γ, (α→ β)→ γ =⇒ α→ β

(ME → P) :
Γ, p, γ =⇒ q

Γ, p, p → γ =⇒ q
[q ∈ VAR (Γ, γ) , p 6= q]

(ME →→) :
Γ, α, β → γ =⇒ β Γ, γ =⇒ q

Γ, (α→ β)→ γ =⇒ q
[q ∈ VAR (Γ, γ)]
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§4. Hudelmaier’s sequent calculus LM→ -2-

Theorem (Hudelmaier + L.G.)

LM→ is sound and complete with respect to minimal propositional
logic and tree-like deducibility. So any given formula ρ is valid in
the minimal logic iff sequent =⇒ ρ is tree-like deducible in LM→.
Moreover:

1 The height of any tree-like LM→ deduction ∂ of sequent S is
linear in |S |. In particular if S is =⇒ ρ, then h (∂) ≤ 3 |ρ|.

2 The foundation of any tree-like LM→ deduction ∂ of sequent
S is at most quadratic in |S |. In particular if S is =⇒ ρ, then
φ (∂) ≤ (|ρ|+ 1)2, while |α| ≤ |ρ| for any α occurring in ∂.
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§5. Basic natural deduction formalism NM→

We consider Prawitz’s purely implicational proof system NM→
for minimal propositional logic that contains just two rules

(→ I ) :

[α]
...
β

α→ β
(→ E ) :

α α→ β

β

where α, β, γ, · · · denote arbitrary formulas over propositionl
variables p, q, r , · · · and one propositional connective →.

Theorem (Prawitz)

NM→ is sound and complete with respect to minimal propositional
logic and tree-like deducibility.
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§6. Embedding theorem

Theorem (L.G.)

There exists a recursive operator F that transforms any given
tree-like LM→ deduction ∂ of Γ =⇒ ρ into a tree-like NM→
deduction F (∂) with root-formula ρ and assumptions occurring in
Γ. Moreover ∂ and F (∂) share the semi-subformula property,
linearity of the height and polynomial upper bounds on the
foundation. In particular if Γ = ∅, then F (∂) is a NM→ proof of ρ
such that:

1 h (F (∂)) ≤ 18 |ρ|,
2 φ (F (∂)) < (|ρ|+ 1)2 (|ρ|+ 2),

3 µ (F (∂)) ≤ 2 |ρ|.
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