On fixed points, diagonalization, and self-reference

Bernd Buldt

Department of Philosophy Indiana U-Purdue U Fort Wayne (IPFW) Fort Wayne, IN, USA e-mail: buldtb@ipfw.edu

CL 16 - Hamburg - September 12, 2016

CL 16, Hamburg 2016

・ 同 ト ・ ヨ ト ・ ヨ ト

Section I: G1 & Fixed Points

Fixed Points, Diagonalization, Self-Reference

✓ Ξ ▶ Ξ → ○ < ○ CL 16, Hamburg 2016

イロト イポト イヨト イヨト

G1 Proof, using the Gödel fixed point

Assumptions (ADQ) $\vdash_{\mathcal{F}} \varphi \iff \vdash_{\mathcal{F}} \Pr_{\mathsf{F}}(\ulcorner \varphi \urcorner)$, for all $\varphi \in \mathcal{L}_{\mathcal{F}}$ (FPE) $\vdash_{\mathcal{F}} \gamma \leftrightarrow \neg \Pr_{\mathsf{F}}(\ulcorner \gamma \urcorner)$, for at least one $\gamma \in \mathcal{L}_{\mathcal{F}}$

Proof

$$\vdash_{\mathcal{F}} \gamma \stackrel{ADQ}{\Rightarrow} \vdash_{\mathcal{F}} \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner \gamma \urcorner) \stackrel{\mathsf{FPE}}{\Rightarrow} \vdash_{\mathcal{F}} \neg \gamma \Rightarrow \notin \stackrel{\mathsf{con}\,\mathcal{F}}{\Rightarrow} \not\vdash_{\mathcal{F}} \gamma$$

$$\vdash_{\mathcal{F}} \neg \gamma \stackrel{\mathsf{FPE}}{\Rightarrow} \vdash_{\mathcal{F}} \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner \gamma \urcorner) \stackrel{ADQ}{\Rightarrow} \vdash_{\mathcal{F}} \gamma \Rightarrow \notin \stackrel{\mathsf{con}\,\mathcal{F}}{\Rightarrow} \not\vdash_{\mathcal{F}} \neg \gamma$$

Fixed Points, Diagonalization, Self-Reference

CL 16, Hamburg 2016

▲ロ → ▲ 聞 → ▲ 国 → ▲ 国 → ● ● ● ● ●

Fixed point derivation, Step 1: Substitution

- Fix a certain individual variable of your choice; say 'u.'
- Define a function sub that mirrors the substitution of the replacee variable 'u' for a replacer term 't,'

$$\varphi[\mathbf{u}]\frac{\mathbf{t}}{\mathbf{u}}\equiv \varphi(\mathbf{t}),$$

but in the realm of Gödel numbers. In short:

$$sub(x,y) := \begin{cases} gn(\varphi[\mathsf{u}]\frac{\overline{\mathsf{t}}}{\mathsf{u}}) & \text{if } x = gn(\varphi(\mathsf{u})) \text{ and } y = gn(\overline{\mathsf{t}}) \\ x & \text{otherwise.} \end{cases}$$

Note that sub(x, y) is primitive recursive and therefore represented by an expression φ_s(x, y) in F.

Fixed point derivation, Step 2: Definitions

• Define $\varphi(u) := \forall x [\neg \mathsf{Proof}_{\mathsf{F}}(x, \mathsf{sub}(u, u))].$

• Define
$$p := gn(\varphi(u))$$
.

Substitute *p* for u in
$$\varphi(u)$$
, *viz.*,

$$\gamma :\equiv \varphi(\overline{\mathbf{p}}) \equiv \forall x[\neg \operatorname{Proof}_{F}(x, \operatorname{sub}(\overline{\mathbf{p}}, \overline{\mathbf{p}}))].$$

► Calculate
$$sub(p, p) = sub(gn(\varphi(u)), p)$$
; def. p
= $gn(\varphi[u]\frac{\overline{p}}{u})$; def. sub
= $gn(\varphi(\overline{p}))$; substitution
= $gn(\gamma)$; def. γ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Fixed point derivation, Step 3: Derivation

- Recall Step 2: $sub(p, p) = gn(\gamma)$.
- ▶ Reason inside *F*.

$$\vdash_{\mathcal{F}} \neg \mathsf{Pr}_{\mathsf{F}}(\mathsf{x}) \leftrightarrow \neg \mathsf{Pr}_{\mathsf{F}}(\mathsf{x})$$
; logic

$$\vdash_{\mathcal{F}} \neg \mathsf{Pr}_{\mathsf{F}}(\mathsf{sub}(\overline{p},\overline{p})) \leftrightarrow \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner\gamma\urcorner) \qquad ; \quad \mathsf{Step 2}$$

$$\begin{split} & \vdash_{\mathcal{F}} \forall x \big[\neg \operatorname{Proof}_{F}(x, \operatorname{sub}(\overline{p}, \overline{p})) \big] \leftrightarrow \neg \operatorname{Pr}_{F}(\ulcorner \gamma \urcorner) \quad ; \quad \mathsf{def.} \ \mathsf{Pr}_{F} \\ & \vdash_{\mathcal{F}} \varphi(\overline{p}) \leftrightarrow \neg \mathsf{Pr}_{F}(\ulcorner \gamma \urcorner) \quad ; \quad \mathsf{def.} \ \varphi(\overline{p}) \end{split}$$

$$\vdash_{\mathcal{F}} \gamma \leftrightarrow \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner \gamma \urcorner) \qquad \qquad ; \quad \mathsf{def.} \ \gamma$$

Warning. We assumed ⊢_F sub(p̄, p̄) = ¬γ¬, which requires induction.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Fixed Point Theorem, Diagonalization Lemma)

Assume \mathcal{F} to allow for representation. For each expression φ with at least one variable free, there is a ψ such that,

 $\vdash_{\mathcal{F}} \psi \leftrightarrow \varphi_{\psi}$

where φ_{ψ} can be either of the four forms:

 $\varphi(\ulcorner\psi\urcorner), \ \varphi(\ulcorner\neg\psi\urcorner), \ \neg\varphi(\ulcorner\psi\urcorner), \neg\varphi(\ulcorner\neg\psi\urcorner),$

viz., instances of what we call a Henkin, Jeroslov, Gödel, or Rogers fixed point resp.

Proof.

Same as above (with minor modifications).

(同) (ヨ) (ヨ)

Black self-referential magic?

- ► Two questions about fixed points such as $\vdash_{\mathcal{F}} \gamma \leftrightarrow \neg \Pr_{\mathsf{F}}(\ulcorner \gamma \urcorner).$
 - 1. How much "black magic" is required for their derivation? ... will be answered in Section II.
 - 2. How much "self-reference" do they involve? ... will be answered in Section III.

・ 同 ト ・ ヨ ト ・ ヨ ト

Section II: Diagonalization

Fixed Points, Diagonalization, Self-Reference

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fixed Po	ints 00	Diagonalization o●ooooooooo	Self-Reference
4			
Blac	ck magic?		
1	L st Question		
	1	a man freed Constitution and a strength of Con-	1

How much "black magic" is required for the derivation of fixed points such as

$$\vdash_{\mathcal{F}} \gamma \leftrightarrow \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner \gamma \urcorner)?$$

Fixed Points, Diagonalization, Self-Reference

< ≧ ▶ ≧ ∽ へ (CL 16, Hamburg 2016

イロト イポト イヨト イヨト

Diagonalization

4

• Let $\mathcal{A} = \{a_{ij}\}_{i,j \in \omega}$ be a (countable) two-dimensional array:

<i>R</i> ₀ :	a ₀₀	a ₀₁		a _{0n}	
R_1 :	a_{10}	a_{11}		a _{1n}	
	÷	÷	۰.	÷	
<i>R_n</i> :	a _{n0}	a _{n1}		a _{nn}	
	÷	÷		÷	۰.

• Let f be a sequence transforming function,

$$f(R_n) = \{f(a_{ni})\}_{i \in \omega}.$$

Apply f to the diagonal sequence D:

$$D' = f(D) := \langle f(a_{00}), f(a_{11}), f(a_{22}), \dots, f(a_{nn}), \dots \rangle.$$

Diagonalization: (Non-)Closure

- One of two things can happen to the anti-diagonal D' = f(D):
 - 1. D' is identical to one of the rows, *viz.*, $f(D) = R_i \in A$, for some *i*.
 - 2. D' is not identical to any of the rows, *viz.*, $f(D) \neq R_i \in A$, for all *i*.
- If Case 1 applies, we call the set A closed under f, and f will have fixed points.
- If Case 2 applies, A is not closed under f, and we have Cantor's diagonal argument showing that a certain sequence is not in A (to "diagonalize out").

ロト ・ 同ト ・ ヨト ・ ヨト

Diagonalization: Case 1 – Closure

- D' is identical to one of the rows, viz., f(D) = R_i ∈ A, for some i.
- The identity $D' = f(D) = R_i$ is element-wise identity:

$$D' = \langle f(a_{00}), f(a_{11}), \dots, f(a_{ii}), \dots, f(a_{nn}), \dots \rangle$$

$$\| \| \| \| \| \| \|$$

$$R_i = \langle a_{i0}, a_{i1}, \dots, a_{ii}, \dots, a_{in}, \dots \rangle$$

Closure under f (failure to "diagonalize out") implies fixed points f(a_{ii}) = a_{ii}.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Diagonalization: Case 1 – Closure

R_0 :	a 00	a_{01}		a 0n				R_0 :	<i>fa</i> 00	a_{01}		a 0n		
R_1 :	a_{10}	a 11		a_{1n}				R_{1} :	a_{10}	<i>fa</i> 11		a_{1n}		
	÷	÷	$\gamma_{i,j}$	÷		⇒			÷	÷	γ_{i_1}	÷		
R_n :	<i>a</i> _{n0}	a_{n1}		a _{nn}				R_n :	<i>a</i> _{n0}	a_{n1}		fann		
	:	:		:	·				÷	÷		:	·.	
				R ₀	:	<i>a</i> 00	a ₀₁	•••	. a _{0i}		a ₀₁	n		
				R_1	:	a_{10}	a_{11}	••	. a _{1i}		a_1	n ••	•	
\Rightarrow		f(D) =				:	÷	·.			:			
			$= R_i$:	<u>fa₀₀</u> a _{i0}	<u>fa₁₁</u> a _{i1}	•••	. <u>fa_{ii}</u> a _{ii}		<u>tan</u> a _{in}	<u>n</u>	•		
					÷	÷		÷	· · .	÷				
				R _n	:	a _{n0}	a _{n1}	•••	. a _{ni}		an	n ·		
									Image:	● ● ●	→ ∢ ≣	→ ∢ ≣	▶ Ξ	- 4

Diagonalization: Closure & Gödel fixed point

Can we understand γ ↔ ¬Pr_F(¬γ¬) to be an instance of f(a_{ii}) = a_{ii} for some f and some array A = {a_{ij}}_{i,j∈ω}?

Yes.

Fixed Points, Diagonalization, Self-Reference

CL 16, Hamburg 2016

・日・ ・ヨ・ ・ヨ・

Diagonalization: Closure & Gödel fixed points

Step 1: Choose all first-order expressions with the free variable 'u:'

$$A = \{\varphi_0(\mathsf{u}), \varphi_1(\mathsf{u}), \varphi_2(\mathsf{u}), \ldots\}.$$

► Step 2: Form the set of all of their Gödel numbers: $P = \left[\left[\sum_{i=1}^{n} (i_i)^2 \right] \left[\sum_{i=1}^{n} (i_i)^2 \right] \left[\sum_{i=1}^{n} (i_i)^2 \right] \right]$

$$B = \{ \varphi_0(u) , \varphi_1(u) , \varphi_2(u) , \dots \}.$$

► Step 3: Systematically plug all members of *B* into the free variable slots of all members of *A*; call this set *C*. We write ' φ_{ab} ' instead of ' $\varphi_a(\ulcorner \varphi_b \urcorner)$.'

- 4 同 ト 4 ヨ ト 4 ヨ ト

elf-Refe
el O

Diagonalization: Gödel fixed points – 1^{st} diagonalization

► Lay out the elements of *C* in such a way that *A* determines the rows and *B* the columns which gives us::

 $\begin{bmatrix} \varphi_0 & \varphi_1 & \varphi_n \\ \varphi_0 & \varphi_{00} & \varphi_{01} & \cdots & \varphi_{0n} & \cdots \\ \varphi_1 & \varphi_{10} & \varphi_{11} & \cdots & \varphi_{1n} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_n & \varphi_{n0} & \varphi_{n1} & \cdots & \varphi_{nn} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \end{bmatrix}$

Note that the diagonal sequence {\(\varphi_{xx}\)}_{x∈\(\omega\)} corresponds to the substitution function sub(x, x) we used above.

4

ロト (同) (ヨ) (ヨ)

Diagonalization: Gödel fixed points – 2^{nd} diagonalization

- Observe that the provability predicate ¬Pr_F(u) is itself part of the first set we started out with: A = {φ₀, φ₁, φ₂,...}; i.e., ∃i s.t.: φ_i ≡ ¬Pr_F(u).
- 2. Apply the transformation $f: \varphi_{ab} \mapsto \neg \Pr_F(\varphi_{ab})$.
- 3. Because of (1), f maps C onto C, C will be closed under f, and each image $\neg \Pr_{\mathsf{F}}(\varphi_{ab})$ must be a φ_{in} , for some n.
- Hence, f(D) has a fixed point φ_{ii}, which corresponds to the expression γ ≡ φ(p̄) we used above.

Diagonalization: Gödel fixed points without "black magic"

► Derivable fixed points in systems of arithmetic \mathcal{F}_{Ar} , e.g., $\gamma \leftrightarrow \neg \Pr(\ulcorner \gamma \urcorner)$,

are a result of the fact that set of expressions, such as A, are closed under certain transformations f.

- sub(x, x) corresponds to $\{\varphi_{xx}\}_{x \in \omega}$.
- $\gamma \equiv \varphi(\overline{p})$ corresponds to φ_{ii} .
- Outcomes can be modelled in \mathcal{F}_{Ar} .
- The procedure ("double diagonalization") is entirely syntactic is completely mundane, no magic anywhere.

- 4 回 > - 4 回 > - 4 回 >

Section III: Self-Reference

Fixed Points, Diagonalization, Self-Reference

(人間) (人) (人) (人) (人) (人)

Fixed Points 0000000	Diagonalization 0000000000	Self-Reference
5		
D 1 1		

Black magic?

2nd Question

How much "self-reference" is required for the derivation of fixed points such as:

$$\vdash_{\mathcal{F}} \gamma \leftrightarrow \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner \gamma \urcorner)?$$

Fixed Points, Diagonalization, Self-Reference

CL 16, Hamburg 2016

- ∢ ≣ ▶

Self-Reference: Rendered moot by diagonalization

result from certain closure properties.

- The crucial steps,
 - sub(x, x) or $\{\varphi_{xx}\}_{x \in \omega}$.
 - $\gamma \equiv \varphi(\overline{p}) \text{ or } \varphi_{ii}.$

are entirely syntactic operations, which neither employ nor presuppose any concept of self-reference.

Self-Reference: Digging deeper

- Does $\psi \leftrightarrow \varphi(\psi)$ mean that ψ says it has property φ ?
 - Does γ ↔ ¬Pr_F(^Γγ[¬]) mean that γ expresses some property it itself has, namely, the property "¬Pr_F(u)" (unprovability)?
 - If so, does it mean that γ states its own unprovability?
- Preliminaries: What self-reference cannot be.
 - Self-reference cannot mean γ is somehow a proper part of itself; this would violate the mereological definition of proper parthood, PPxy := Pxy ∧ x ≠ y.
 - Self-reference hence presupposes a more abstract semantical relation than self-inclusion is.

ロトス回とスモトスモト

Self-Reference: 'Propertual' self-reference

- Expression $\varphi(u)$ defines, in some structure \mathfrak{A} , property *P* if:
 - 1. Definition: $\{x : P(x)\}$ iff $\{x : \mathfrak{A} \models \varphi(\#x)\}$.

Then $\varphi(u)$ has property *P* itself if:

- 2. Self-Reference: $\mathfrak{A} \models \varphi(\#\varphi(\mathsf{u}))$.
- Application to $\neg Pr_F(u)$
 - $\mathfrak{N} \models \neg \mathsf{Pr}_{\mathsf{F}}(\ulcorner \neg \mathsf{Pr}_{\mathsf{F}}(\mathsf{u})\urcorner)$, because $\nvdash_{\mathcal{F}} \neg \mathsf{Pr}_{\mathsf{F}}(\mathsf{u})$
 - Given suitable circumstances, 'propertual' self-reference may occur.
 - Mute point: no mention of $\gamma \leftrightarrow \neg \Pr(\ulcorner \gamma \urcorner)$.

ロト (高) (ヨ) (ヨ)

Self-Reference: Propertual self-reference

- ► Problem. What conditions would elevate \u03c6 in \u03c6 \u2264 \u03c6 \u0
- All known attempts to identify such conditions can be considered to have failed, mostly because we do not yet have a good theory of self-reference. (see Halbach and Visser 2015)

向 ト イヨ ト イヨ ト

Self-Reference: Improper self-reference

Direct objectual self-reference: $\varphi(\#\varphi)$; eg, *viz.*, $\varphi^{\frown}|\varphi|$, or $\varphi(\ulcorner\varphi\urcorner)$.

- Does γ in γ ↔ ¬Pr_F(¬γ¬) contain its own name?
- ► Recall that *γ* is shorthand for ∀x[¬Proof_F(x, sub(p̄, p̄))], with *p* = gn(¬Pr_F(sub(u, u)).
- ► Thus, no.
- However, since sub(p̄, p̄) = gn(γ), we know that γ would be self-referential if criteria would be more lax.

・ 同 ト ・ ヨ ト ・ ヨ ト

Self-Reference: Improper self-reference

Indirect objectual self-reference: $\varphi(\#\#\varphi)$; eg, $\varphi(t)$, with $t = \#\#\varphi(t)$

- ▶ Does γ in $\gamma \leftrightarrow \neg \Pr(\ulcorner \gamma \urcorner)$ contain its own indirect name?
- Since sub(p̄, p̄) = gn(γ), the expression γ, which is ∀x[¬Proof_F(x, sub(p̄, p̄))], contains an indirect name of itself.
- Some (eg, Heck 2007) are perfectly happy to embrace the last point and call the Gödel sentence γ self-referential in the above sense and have it say "I'm not provable."

Self-Reference: Improper self-reference

- ➤ γ does not say "I" but refers to itself indirectly via a functional expression
- γ is true *iff* γ is not formally provable. By itself, this is a raw datum about γ's model theoretic evaluation and the resulting truth value. As such, it is just another equivalence that implies nothing about meaning or self-reference.
- Semantic stance like intentional stance; useful but not justified
- We practice semantic hunches, but gut feelings are a poor substitute for an actual theory.

<回> < 回> < 回>

Self-Reference: Summary

- Diagonalization produces fixed points.
- Fixed points do not establish self-reference.
- Self-reference we find is not proper internal self-reference, but our external attribution.

Thank You!

Fixed Points, Diagonalization, Self-Reference

✓ ■ ▶ ■ ∽ へ ○
CL 16, Hamburg 2016

イロト イポト イヨト イヨト