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Overview

I Introduction: Remark on mathematical practice

I Frank Quinn’s Contributions (to a Science of Contemporary
Mathematics)

I Mathematical Concepts
I A historical example
I Mathematical practice: Defining concept (FQ)
I Mathematical practice: Acquisition of concepts (FQ)
I Mathematical practice: Corroboration by math ed (cogn. sci.)
I ∗Mathematical practice: convergence with phenomenology

Mathematical Practice and Human Cognition CL 16, Hamburg 2016



Introduction: Remark on mathematical practice (MP)

Three meanings of MP

I MP in Math Ed and PME

I MP in “traditional” PoM: Kitcher (1984), Tymoczko (1986),
Mancou (2008)

I MP in “new” PoM: PhiMSAMP (2006–2011)
I Deliberate inclusion of insights from various disciplines
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Introduction: Remark on mathematical practice (MP)

MP as a culture

I “that complex whole that includes knowledge, belief, art,
morals, law, custom and any other capabilities and habits
acquired by [mathematicians] as members of [their trade].”
Edward Tylor, Primitive Culture (1871), vol. 1, p. 1
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Frank Quinn: Relevant Publications

I 1992: “Theoretical Mathematics” (BAMS; jointly w/ A. Jaffe)

I 2011: “Science-of-Learning Approach to MathEd” (NAMS)

I 2012: “Revolutions in Mathematics?” (NAMS)

I 2011: Contributions to a Science of Mathematics

I Quinn’s three periods
I I. ??–1600: “qualitative and philosophical”
I II. 1600–late 19th c: “quantitative and mathematical”

scientific needs; elite practioner syndrome
I III. late 19th c through Hilbert’s Göttingen–??

ontologically autonomous, methodologically unique
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Quinn’s Third Period: Rigor

I Traumatic transition
“the changes were forced by [the] increasingly difficulty of the
mathematics and [the] ambition of the profession.”

I Methodology
Rigorous definitions along with “genuinely error-displaying
methods” secure the “complete reliability” of all mathematical
conclusions.

I “The slavish devotion of mathematicians to rigorous
methodology is required by the subject [. . . ] Rigor plays the
same role in mathematics that agreement with the physical
world plays in other sciences. Relaxing rigor is like ignoring
data.”
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Concepts: Continuity as an example

I Period I. Philosophy and application: Leibniz’ principle of
continuity

I Period II. Quantitative and mathematical: ε-δ approach
Cauchy, building on d’Alembert, Euler, Lagrange, followed by
Bolzano, Dedekind, Weierstrass

I Period III. Purely mathematical: topological definition
Maurice Fréchet, Frigyes Reisz (not Marcel), Felix Hausdorff,
Kazimierz Kuratowksi, among others
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Concepts: Continuity a a topological notion

Definition. A topological space 〈X , T 〉 is a set X together with a
topology T , i. e., a family of open subsets of X , such that

1. ∅ and X are both open,

2. arbitrary unions of open sets are open,

3. finite intersection of open sets are open.

Definition. A function f : S → T between two topological spaces
is continuous iff the pre-image f −1(Q) of every open set Q ⊂ T is
an open set P ⊂ S .
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Concepts: Quinn’s question

I Increase in rigor and loss of experiential or intuitive contents
result in a concentration on the mathematical substance

I Definitions are not simply a codification of an intuitive
understanding” but “were developed and refined over long
periods and with great effort,” and were, in fact, “frequently a
community effort.”

I Quinn’s question: How do human agents acquire such
concepts?
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Concepts: Quinn’s answer

1. Sever as many ties to ordinary language as possible and limit
ordinary language explanations to an absolute minimum

2. Introduce axiomatic definitions and bundle them up with a
sufficient number of examples, lemmata, propositions, etc.
into small cognitive packages

3. Have students practice hard with one new cognitive package
at a time

4. Lather, rinse, repeat.
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Concepts: How did it evolve and into what?

I Natural selection: those who did adopt another approach
could no longer compete and eventually sank into oblivion

I Outcomes:
I Core mathematics (vs mathematical sciences)
I Empowering rank-and-file faculty (vs elite-practioner)
I Mathematical altruism: faculty develop habits that support

and nurse such practices of conceptual and methodic rigor
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Quinn: Is he right?

I Soft empirical evidence
I Quinn’s own expert testimony
I Graduate level textbooks

I Hard empirical evidence?
I Well, 2nd part of the talk ;-)
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Digression: PoMP & Quinn is right?

I Traditional PoM reduced cognitive labor to deductive proof
I Legacy of logicism

I A PoMP may realize that such a reduction is wrong
I Philosophy becomes richer and much more complex
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Evidence from CS, MathEd, PME: Caution

I General caution: “reproducibility crisis” (Nosek 2015, Nature
2016, and representability (eg, Heinrich et al. 2010: WEIRD)

I Caution re neuroimaging: It’s too early to tell

I Caution re MathEd/PME
I Undue influence of P&P
I No focus on advanced mathematics
I Lack of empirical reliability: sample sizes, reproducibility
I Lack of theoretical sophistication (eg, Anderson&Reder&Simon

(2000): “Applications and Misapplications of Cognitive
Psychology to Mathematics Education”)
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Supporting evidence from MathEd/PME (and CS)

Quinn’s No 1: Sever ties to ordinary language

I From lexical decision task to priming: fact or fiction?
(eg, Kahneman 2012 letter)

I Embodied knowledge and met-befores
(eg, Tall 2008, 2013)

I Generic extension principle & epistemic obstacles
(eg, Tall 1986; Cornu 1982, Sierpiǹska 1985ab)

I CS: Importance of inhibition control
(eg, Houdé&Tzourio-Mazoyer 2003, Houdé&Borst 2015)
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Supporting evidence from MathEd/PME (and CS)

Quinn’s No 2: Cognitive packaging: definitions plus exercises

I Adding properties (ie, meaning) and fluidity (ie, mastery)
(eg, Dreyfus 1991)

I Concept definition vs concept image (eg, Vinner 1983, 1991)

I CS: Package size matters (eg, Anderson&Lee&Fincham
2014); inhibition control (eg, Houdé et al., op cit.)
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Supporting evidence from MathEd/PME (and CS)

Quinn’s No 3: Practice hard!

1. Automation: load issues (eg, Thurston 1990: compressibility;
Lee&Ng&Ng 2009: word problems)

2. Mathematical “Habits of Mind”
(eg, Selden&Lim 2010; Wilkerson-Jerde&Wilensky 2009,
2011: novices vs experts)
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Qualifying evidence

I Contradicting evidence

I Different cultures: Mathematicians responding to Jaffe-Quinn

I Tall 2013: Introduction

I Enriching evidence

I Studies that lend support for Quinn’s thesis also provide a
much richer, higher-resolution picture of the cognitive
processes involved
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Enriching perspectives from MathEd/PME (and CS)

Quinn’s No 1: Sever ties to ordinary language

I Continuity and motivation:
conceptual-embodied – proceptual-symbolic – axiomatic
formal (eg, Tall 2008, 2013)

I Continuity and generalization vs abstraction:
Rn vs vector space
(eg, Dreyfuss 1991, Dubinsky 1991, Vinner 1991)
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Enriching perspectives from MathEd/PME (and CS)

Quinn’s No 2: Cognitive packaging: definitions plus exercises

I Deduction vs construction: building properties of abstract
objects

I Concept definition vs concept image: focus on generic or
otherwise disrupting images
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Enriching perspectives from MathEd/PME (and CS)

Quinn’s No 3: Practice hard!

I Fluidity among images
(eg, Dreyfus 1991; Tall 2013)

I Reification: point-wise vs. object-valued operators – focus
enhancing (eg, Harel&Kaput 1991)
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Some examples)

1. Concept definition vs concept image (generic images)

I Fluidity among images
(eg, Dreyfus 1991; Tall 2013)

I Reification: point-wise vs. object-valued operators – focus
enhancing (eg, Harel&Kaput 1991)
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Some examples)

1. Conceptual entititios (reification)

I Fluidity among images
(eg, Dreyfus 1991; Tall 2013)

I Reification: point-wise vs. object-valued operators – focus
enhancing (eg, Harel&Kaput 1991)
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Summary

1. While empirical findings lend support to Quinn’s claims about
the adequacy of the mathematical practice as he describes it
(as a three-step program), they also suggest that a more
nuanced approach is advisable.

2. Empirical findings strongly suggest that MP includes a
plethora of cognitive processes that go beyond deductive
proof; therefore,

PoM is dead, long live PoMP!
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Thank You!
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