A tutorial in Generalized Baire Spaces: Games, trees and models

Jouko Väänänen

Helsinki and Amsterdam

Background

- Classical Baire space is the space of irrational numbers, it arises from analysis.
- Mostowski and others started the study of countable models of first order theories using analytic (and topological) methods.
- Stability theory, infinitary logic, and generalized quantifiers led to uncountable structures.
- Generalized Baire spaces are suitable for topological study of uncountable models of theories in first order logic and its extensions.

Models i.e. structures

- Relational structure (M,R,...).
- A set with relations, functions and constants.
- Partial orders, trees, linear orders, lattices, groups, semigroups, fields, monoids, graphs, hypergraphs, directed graphs.

Models and topology

- A countable model is a point in 2^{ω} (mod \cong).
- A model of size κ is a point in 2^{κ} (mod \cong).
- Properties of models \sim subsets of 2^{κ} .
- Isomorphism of models: ``analytic" subset of $2^{\kappa}x2^{\kappa}$.

The basic question

- How to identify a structure?
- Relevant even for finite structures.
- Can infinite structures be classified by invariants?

Shelah's Main Gap

- M any structure.
- The first order theory of M is either of the two types:
 - Structure Case: All uncountable models can be characterized in terms of dimension-like invariants.
 - Non-structure case: In every uncountable cardinality
 there are non-isomorphic models that are
 ``extremely" difficult to distinguish from each other by
 means of invariants (but some other models of the theory may be easy to
 distinguish from each other).

The program

- To analyze further the non-structure case.
 - We replace isomorphism by a game.
 - We develop the topology of 2^{κ} .

Ehrenfeucht-Fraïssé game

Two players: The non-isomorphism player and the isomorphism player.

Approximating isomorphism

- M,N countable (graphs, posets,...)
- M ≇ N
- The non-isomorphism player wins the EF game of length ω with the enumeration strategy τ .
- T(M,N)=the countable tree of plays against τ , where the isomorphism player has not lost yet.
- T(M,N) has no infinite branches, well-founded.

Approximating isomorphism (contd.)

- T(M,N) has a rank $\alpha < \omega_1$, which we can minimize.
- $\sigma_{M} = \sup_{a,b} \{ \operatorname{rank}(T((M,a),(M,b))) : (M,a) \not\cong M,b) \}.$
- Scott rank of M.
- Scott ranks put countable models into a hierarchy, calibrated by countable ordinals.
- The orbit of M is a Borel subset of 2^{ω} .
- 60's and 70's: Scott, Vaught: invariant topology.
- 90's and 00's: Kechris, Hjorth, Louveau: Borel equivalence relations.

Game with a clock

• The isomorphism player loses the EF game of length ω , but maybe she can win if the nonisomorphism player is forced to obey a clock.

Ehrenfeucht-Fraïssé game with a clock

The clock gives a chance

- Although the isomorphism player loses the EF-game of length ω , she wins the game if T(M,N) is the clock.
 - Recall: T(M,N)=the tree of plays against τ , where the isomorphism player has not lost yet.

A well-founded clock

• The tree B_{α} of descending sequences of elements of α is the canonical well-founded tree of rank α .

For countable M and N:

- TFAE:
 - $-M \cong N$
 - The isomorphism player wins the EF game clocked by B_{α} for some $\alpha < \omega_1$ such that the nonisomorphism player wins with clock $B_{\alpha+1}$.

An ordering of trees

T≤T' if there is f:T→T' such that

$$x<_T y \rightarrow f(x)<_T f(y)$$
.

- If T and T' do not have infinite branches, then T≤T' iff rank(T)≤rank(T').
- Fact: T≤T' iff II wins a comparison game on T and T'.

T≤T' ranks game clocks

- If T≤T' then a game clocked by T is
 - easier for the isomorphism player
 - harder for the non-isomorphism player
 than the same game clocked by T'.

There are incomparable trees

- (Todorčević) There are incomparable Aronszajn trees.
- A tree is a bottleneck if it is comparable with every other tree.
- (Mekler-V., Todorčević-V.) It is consistent that there are no non-trivial bottlenecks.
- (Todorčević) PFA \rightarrow coherent Aronszajn trees are all comparable, and there is a canonical family of coherent Aronszajn trees that are bottlenecks in the class of trees of size \aleph_1 .

A "successor" operator on trees

- T a tree
- σT = the tree of ascending chains in T
- T< \sigmaT
- $\sigma B_{\alpha} = B_{\alpha+1}$
- Definition: T << T' iff $\sigma T \leq T'$.
- T << T' implies T<T'
- << is well-founded

The uncountable case

- M,N of size κ.
- M ≇ N.
- The non-isomorphism player wins the EF game of length κ with the enumeration strategy τ .
- T(M,N)=the tree of plays against τ , where the isomorphism player has not lost yet.
- T(M,N) has no branches of length κ .
- The cardinality of T(M,N) is $\kappa^{<\kappa}$.

Watershed

- For M and N of cardinality κ TFAE:
 - $-M \not\cong N$
 - The isomorphism player wins the EF game clocked by K for some tree K w/o κ-branches, $|K| \le 2^{\kappa^{<\kappa}}$, but does not win the game clocked by σK . (K=the tree of winning strategies of isomorphism player in short games).
 - The non-isomorphism player does not win the EF game clocked by S for some tree S w/o κ-branches, $|S| \le K^{<\kappa}$, but wins if clock is σS . (S is of the form T(M,N) for an enumeration strategy τ which renders S minimal in <<.)

Non-determinacy of the EF game

• Determinacy of the EF game of length ω_1 in the class of models of size \aleph_2 is equiconsistent with the existence of a weakly compact cardinal. (Hyttinen-Shelah-V.)

Generalized Baire space

- $\omega_1^{\omega_1}$, models of size \aleph_1
 - G_{δ} -topology.
 - ω_1 -metrizable, ω_1 -additive.
 - meager ($\bigcup_{\alpha<\omega_1}$ A_α, A_α nowhere dense), Baire Category Theorem holds: B_α dense open → $\bigcap_{\alpha<\omega_1}$ B_α≠∅.
 - dense set of continuum size.
 - A a topological space: Sikorski 50s, Juhasz & Weiss 70s, Todorčević 80s,
 - As descriptive set theory "higher up": Halko, Mekler, Shelah, Todorčević, V. 90s
- κ^{κ} , models of size κ
- λ^{κ} , κ =cof(λ), models of size λ , which are unions of chains of length κ of smaller models. (Dzamonja-V. 2011)

A Cantor-Bendixson Theorem

- Assume I(ω): There is a normal ideal on ω_2 such that the complement contains a dense σ -closed set.
- Every closed subset of $\omega_1^{\omega_1}$ is ω_1 -perfect after removing up to ω_1 elements.
- V. 1991

Another application of $I(\omega)$

- Assume I*(ω): The complement of the non-stationary ideal on ω_1 -cofinal elements of ω_2 has a dense σ -closed set.
- Follows: The determinacy of the EF game of length ω_1 in the class of models of size \aleph_2 . (Mekler-Shelah-V. 1993)

Descriptive Set Theory in $\omega_1^{\omega_1}$

- A set $A \subseteq \omega_1^{\omega_1}$ is analytic if it is the projection of a closed set $\subseteq \omega_1^{\omega_1} \times \omega_1^{\omega_1}$.
- Equivalently, there is a tree $T \subseteq \omega_1^{<\omega_1} \times \omega_1^{<\omega_1}$ such that for all f:

 $f \in A \text{ iff } T(f) \text{ has an uncountable branch,}$ where $T(f)=\{g(\alpha):(g(\alpha),f(\alpha))\in T\}$ and $g(\alpha)=(g(\beta))_{\beta<\alpha}.$

A Covering Theorem

- Every co-analytic subset A of $\omega_1^{\omega_1}$ is covered by canonical sets A_T , T a tree w/o uncountable branches, such that every analytic subset of A is covered by some A_T .
- CH implies the sets A_T are analytic and the trees T are of size \aleph_1 .

Covering Theorem under CH

Proof

- Suppose A is co-analytic and B⊆A is analytic.
- f∈A iff T(f) has no uncountable branches.
- f∈B iff S(f) has an uncountable branches.
- Let T' be the tree of $(\mathbf{f}(\alpha), \mathbf{g}(\alpha), \mathbf{h}(\alpha))$ where $\mathbf{g}(\alpha) \in T(f)$ and $\mathbf{h}(\alpha) \in S(f)$.
- If f∈B, there is an uncountable branch h in S(f).
- Let $F(g(\alpha)) = (f(\alpha), g(\alpha), h(\alpha))$.
- This is an order preserving mapping T(f)→T'

Proof contd.

- So T(f)≤T'
- Let $A_{T'} = \{f \in A : T(f) \leq T'\}$.
- Then $B\subseteq A_{T'}$.
- We have proved the Covering Theorem: If A is co-analytic, then A is the union of sets A_T such that if B is any analytic set $\subseteq A$, then there is a tree T w/o uncountable branches such that $B \subseteq A_T$.
- CH implies each A_T is analytic.

Souslin-Kleene, separation

- Souslin-Kleene: If A is analytic co-analytic, then A=A_T for some T w/o uncountable branches.
- Separation: If A and B are disjoint analytic sets, then there is a set C=(-B)_T which separates A and B.

Luzin Separation Theorem?

- Borel means closure of open under complements and unions of length ω_1 .
- (Shelah-V. 2000)
 - Assume CH. There are disjoint analytic sets which cannot be separated by a Borel set.
 - Assume ¬CH+MA. Any two disjoint analytic sets of expansions of $(\omega_1,<)$ can be separated by a Borel set.
- (Mekler-V. 1993, Halko-Shelah 2001,)
 - CUB is not Borel, and ``CUB is analytic co-analytic" is independent of ZFC+CH, as is ``the orbit of the free group of ℵ₁ generators is analytic co-analytic".

The analogy

Ordinals	Trees
No descending chains	No uncountable branches
Finite	Countable
Successor ordinal	The tree of all chains of a tree
Ranked game	Clock tree
Comparison of ordinals	Order-preseving mappings
Undefinability of well-order	Undefinability of having an uncountable branch
Baire space ω^{ω}	Generalized Baire space $\omega_1^{\ \omega_1}$
Union of an analytic set of countable ordinals is countable	Union of an analytic set of trees with no uncountable branches is a tree with no uncountable branches

Definable trees and/or models?

- (J. Steel) Assuming large cardinals,
 - -If $T \subseteq R^{<\omega_1}$ is in L(R), then ``T has an uncountable branch" is forcing absolute.
 - -If M and N are in L(R) and their universe is ω_1 , then M \cong N is absolute with respect to forcing that preserves ω_1 .

Cardinal invariants about trees

- $U(\kappa)$ Universality Property: There is a family of size κ of trees of size and height \aleph_1 w/o branches of length ω_1 such that every such tree is \leq one in the family.
- B(κ) Boundedness Property: Every family of size < κ of trees of size and height \aleph_1 w/o branches of length ω_1 has a tree which is \geq each one in the family.
- $C(\kappa)$ Covering Property: Every co-analytic subset A of $\omega_1^{\omega_1}$ is covered by κ analytic sets, such that every analytic subset of A is covered by one of them.

Cardinal invariants about trees

- U(κ) Universality Property
- B(κ) Boundedness Property
- C(κ) Covering Property
- Assuming CH: $(U(\kappa)\&B(\lambda)) \rightarrow C(\kappa)\&\lambda \le \kappa$ and $(B(\kappa)\&\lambda < \kappa) \rightarrow \neg C(\lambda)$.
- U(κ) & B(κ) is consistent with κ anything between \aleph_2 and 2^{\aleph_1} . (Mekler-V. 1993)
- $U(\lambda^+)$ & $B(\lambda^+)$ if \aleph_1 replaced by a singular strong limit λ , of cof ω . (Džamonja-V. 2008)

A more recent result of Shelah

- There are structures M and N such that
 - The cardinality of M and N is \aleph_1 .
 - –For all α < ω_1 , the isomorphism player wins the EF game of length α .
 - —M and N are non-isomorphic.
- The point: CH not assumed.

Kangas-Hyttinen-V. 2013

Theorem

Suppose that κ is a regular cardinal such that $\kappa = \aleph_{\alpha}$, $\beth_{\omega_1}(|\alpha| + \omega) \le \kappa$ and $2^{\lambda} < 2^{\kappa}$ for all $\lambda < \kappa$. Let T be a countable complete first order theory. Then every model of T of size κ is $L^2_{\kappa\omega}$ -characterizable if and only if T is a shallow, superstable theory without DOP or OTOP.

Summary

- In the non-structure case we can get models that are very close to being isomorphic in the sense that
 - the non-isomorphism player does not win even if he is given a large clock tree.
 - the isomorphism player wins in large clock trees.
- Structure of trees under ≤: an approach to infinite EF (and other!) games.

Thank you!