The Hurewicz dichotomy for generalized Baire spaces

Luca Motto Ros

Department of Mathematics "G. Peano" University of Turin, Italy luca.mottoros@unito.it

Amsterdam Workshop on Set Theory 2014 Generalized Baire Space 03.11.2014

Joint work with P. Lücke and P. Schlicht

1 / 28

The Baire space ${}^{\omega}\omega$ is a typical example of a Polish (= separable completely metrizable) space which is not K_{σ} , i.e. it cannot be written as a countable union of compact spaces.

2 / 28

The Baire space ${}^{\omega}\omega$ is a typical example of a Polish (= separable completely metrizable) space which is not K_{σ} , i.e. it cannot be written as a countable union of compact spaces.

Two ways to prove this:

• notice that a subset of ${}^{\omega}\omega$ is compact (resp. K_{σ}) iff it is bounded (resp. eventually bounded), or

The Baire space ${}^{\omega}\omega$ is a typical example of a Polish (= separable completely metrizable) space which is not K_{σ} , i.e. it cannot be written as a countable union of compact spaces.

Two ways to prove this:

- notice that a subset of ${}^{\omega}\omega$ is compact (resp. K_{σ}) iff it is bounded (resp. eventually bounded), or
- use the Baire category theorem and the fact that basic (cl)open sets of ${}^{\omega}\omega$ are trivially never compact.

Let X be Polish. Then X contains a closed subspace homeomorphic to ${}^{\omega}\omega$ iff X is not \mathbf{K}_{σ} .

Let X be Polish. Then X contains a closed subspace homeomorphic to ${}^{\omega}\omega$ iff X is not \mathbf{K}_{σ} .

Hurewicz theorem is equivalent to the following *dichotomy*:

Let X be Polish. Then X contains a closed subspace homeomorphic to ${}^{\omega}\omega$ iff X is not \mathbf{K}_{σ} .

Hurewicz theorem is equivalent to the following *dichotomy*:

Theorem (Hurewicz)

X Polish. Every G_{δ} set $A \subseteq X$ satisfies the Hurewicz dichotomy:

- either A is contained in a K_{σ} subset of X, or
- there is a closed set $F \subseteq A$ homeomorphic to ${}^{\omega}\omega$.

Let X be Polish. Then X contains a closed subspace homeomorphic to ${}^{\omega}\omega$ iff X is not \mathbf{K}_{σ} .

Hurewicz theorem is equivalent to the following *dichotomy*:

Theorem (Hurewicz)

X Polish. Every G_{δ} set $A \subseteq X$ satisfies the Hurewicz dichotomy:

- either A is contained in a K_{σ} subset of X, or
- there is a closed set $F \subseteq A$ homeomorphic to ${}^{\omega}\omega$.

Analytic sets = continuous images of closed subsets of ${}^{\omega}\omega$ (equivalently, of the whole ${}^{\omega}\omega$ when $\neq \emptyset$).

Let X be Polish. Then X contains a closed subspace homeomorphic to ${}^{\omega}\omega$ iff X is not \mathbf{K}_{σ} .

Hurewicz theorem is equivalent to the following *dichotomy*:

Theorem (Hurewicz)

X Polish. Every G_{δ} set $A \subseteq X$ satisfies the Hurewicz dichotomy:

- either A is contained in a K_{σ} subset of X, or
- there is a closed set $F \subseteq A$ homeomorphic to ${}^{\omega}\omega$.

Analytic sets = continuous images of closed subsets of ${}^{\omega}\omega$ (equivalently, of the whole ${}^{\omega}\omega$ when $\neq \emptyset$).

Theorem (Kechris, Saint Raymond)

Every analytic subset of a Polish X satisfies the Hurewicz dichotomy.

Luca Motto Ros (Turin, Italy)

The generalized Hurewicz dichotomy

Goal

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

The generalized Hurewicz dichotomy

Goal

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

Warning!

The generalized Hurewicz dichotomy

Goal

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

Warning!

In **all** the basic notions we must always replace ω with κ !

• κ -Borel sets = sets in the closure of the topology under complementation and unions of size $\leq \kappa$.

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

Warning!

- κ -Borel sets = sets in the closure of the topology under complementation and unions of size $\leq \kappa$.
- φ-Analytic sets = continuous images of *closed subsets* of the generalized Baire space ^κκ (hence sets of the form p[T] for some tree T ⊆ ^{<κ}κ × ^{<κ}κ).

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

Warning!

- κ -Borel sets = sets in the closure of the topology under complementation and unions of size $\leq \kappa$.
- φ-Analytic sets = continuous images of *closed subsets* of the generalized Baire space ^κκ (hence sets of the form p[T] for some tree T ⊆ ^{<κ}κ × ^{<κ}κ).
- S κ -Meager sets = unions of κ -many nowhere dense sets.

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

Warning!

- κ -Borel sets = sets in the closure of the topology under complementation and unions of size $\leq \kappa$.
- φ-Analytic sets = continuous images of *closed subsets* of the generalized Baire space ^κκ (hence sets of the form p[T] for some tree T ⊆ ^{<κ}κ × ^{<κ}κ).
- S κ -Meager sets = unions of κ -many nowhere dense sets.
- κ-Compactness = open coverings can be refined to subcoverings of size < κ.

Find generalizations of the Hurewicz dichotomy in the context of generalized DST, i.e. when ω is replaced by any κ with $\kappa^{<\kappa} = \kappa > \omega$.

Warning!

- κ -Borel sets = sets in the closure of the topology under complementation and unions of size $\leq \kappa$.
- φ-Analytic sets = continuous images of *closed subsets* of the generalized Baire space ^κκ (hence sets of the form p[T] for some tree T ⊆ ^{<κ}κ × ^{<κ}κ).
- S κ -Meager sets = unions of κ -many nowhere dense sets.
- κ-Compactness = open coverings can be refined to subcoverings of size < κ.
- K_{κ} sets = unions of κ -many κ -compact sets.

Definition

Given an infinite cardinal κ , we say that $A \subseteq {}^{\kappa}\kappa$ satisfies the *(generalized)* Hurewicz dichotomy if either

- A is contained in a K_{κ} subset of ${}^{\kappa}\kappa$, or
- A contains a closed subset homeomorphic to $\kappa \kappa$.

Definition

Given an infinite cardinal κ , we say that $A \subseteq {}^{\kappa}\kappa$ satisfies the *(generalized)* Hurewicz dichotomy if either

- A is contained in a K_{κ} subset of ${}^{\kappa}\kappa$, or
- A contains a closed subset homeomorphic to $\kappa \kappa$.

Remark: the two possibilities are again mutually exclusive because ${}^{\kappa}\kappa$ is not K_{κ} (κ -Baire category theorem!)

Definition

Given an infinite cardinal κ , we say that $A \subseteq {}^{\kappa}\kappa$ satisfies the *(generalized)* Hurewicz dichotomy if either

- A is contained in a K_{κ} subset of ${}^{\kappa}\kappa$, or
- A contains a closed subset homeomorphic to $\kappa \kappa$.

Remark: the two possibilities are again mutually exclusive because ${}^{\kappa}\kappa$ is not K_{κ} (κ -Baire category theorem!)

Question

Given a cardinal κ , is it possible to have that every κ -analytic set $A \subseteq {}^{\kappa}\kappa$ satisfies the Hurewicz dichotomy?

The generalized Hurewicz dichotomy at a given $\boldsymbol{\kappa}$

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable cardinal with $\kappa^{<\kappa} = \kappa$. Then there is a partial order $\mathbb{P}(\kappa)$ with the following properties:

The generalized Hurewicz dichotomy at a given $\boldsymbol{\kappa}$

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable cardinal with $\kappa^{<\kappa} = \kappa$. Then there is a partial order $\mathbb{P}(\kappa)$ with the following properties:

• $\mathbb{P}(\kappa)$ is $< \kappa$ -directed closed and κ^+ -c.c.;

Let κ be an uncountable cardinal with $\kappa^{<\kappa} = \kappa$. Then there is a partial order $\mathbb{P}(\kappa)$ with the following properties:

- $\mathbb{P}(\kappa)$ is < κ -directed closed and κ^+ -c.c.;
- *P*(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;

Let κ be an uncountable cardinal with $\kappa^{<\kappa} = \kappa$. Then there is a partial order $\mathbb{P}(\kappa)$ with the following properties:

- $\mathbb{P}(\kappa)$ is < κ -directed closed and κ^+ -c.c.;
- *P*(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;
- P(κ) forces that every κ-analytic A ⊆ ^κκ satisfies the Hurewicz dichotomy.

Let κ be an uncountable cardinal with $\kappa^{<\kappa} = \kappa$. Then there is a partial order $\mathbb{P}(\kappa)$ with the following properties:

- $\mathbb{P}(\kappa)$ is < κ -directed closed and κ^+ -c.c.;
- *P*(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;
- P(κ) forces that every κ-analytic A ⊆ ^κκ satisfies the Hurewicz dichotomy.

In particular: it is consistent with ZFC that the generalized Hurewicz dichotomy holds for κ -analytic subsets of $\kappa \kappa$.

Let κ be an uncountable cardinal with $\kappa^{<\kappa} = \kappa$. Then there is a partial order $\mathbb{P}(\kappa)$ with the following properties:

- $\mathbb{P}(\kappa)$ is < κ -directed closed and κ^+ -c.c.;
- *P*(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;

In particular: it is consistent with ZFC that the generalized Hurewicz dichotomy holds for κ -analytic subsets of $\kappa \kappa$.

 $\mathbb{P}(\kappa)$ is a $< \kappa$ -support iteration of a forcing $\mathbb{P}_{\kappa}(A)$ which turns a given κ -analytic $A \subseteq {}^{\kappa}\kappa$ of the ground model into a K_{κ} set.

The proof splits into cases depending on whether κ is weakly compact (in the forcing extension) or not. This distinction is related to the following:

The proof splits into cases depending on whether κ is weakly compact (in the forcing extension) or not. This distinction is related to the following:

Fact 1

The following characterization of κ -compact and \mathbf{K}_{κ} sets $A \subseteq {}^{\kappa}\kappa$ is true only when κ is weakly compact:

A is κ -compact (resp. K_{κ}) iff A is bounded (resp. eventually bounded).

The proof splits into cases depending on whether κ is weakly compact (in the forcing extension) or not. This distinction is related to the following:

Fact 1

The following characterization of κ -compact and \mathbf{K}_{κ} sets $A \subseteq {}^{\kappa}\kappa$ is true only when κ is weakly compact:

A is κ -compact (resp. K_{κ}) iff A is bounded (resp. eventually bounded).

(For κ not weakly compact only the forward direction holds.)

7 / 28

The proof splits into cases depending on whether κ is weakly compact (in the forcing extension) or not. This distinction is related to the following:

Fact 1

The following characterization of κ -compact and \mathbf{K}_{κ} sets $A \subseteq {}^{\kappa}\kappa$ is true only when κ is weakly compact:

A is κ -compact (resp. K_{κ}) iff A is bounded (resp. eventually bounded).

(For κ not weakly compact only the forward direction holds.)

Fact 2

The following is true only when κ is **not weakly compact**:

 $^{\kappa}2$ and $^{\kappa}\kappa$ are homeomorphic.

7 / 28

The proof splits into cases depending on whether κ is weakly compact (in the forcing extension) or not. This distinction is related to the following:

Fact 1

The following characterization of κ -compact and \mathbf{K}_{κ} sets $A \subseteq {}^{\kappa}\kappa$ is true only when κ is weakly compact:

A is κ -compact (resp. K_{κ}) iff A is bounded (resp. eventually bounded).

(For κ not weakly compact only the forward direction holds.)

Fact 2

The following is true only when κ is **not weakly compact**:

 $^{\kappa}2$ and $^{\kappa}\kappa$ are homeomorphic.

(Thus in the non-weakly compact case we have just to inscribe a closed copy of κ_2 inside any $A \subseteq \kappa_{\kappa}$ which is not covered by a K_{κ} set.)

In both cases we get some extra benefit (almost) for free!

In both cases we get some extra benefit (almost) for free!

Case A: κ is not weakly compact

In this case we can design $\mathbb{P}_{\kappa}(A)$ so that A becomes a \mathbf{K}_{κ} set in the forcing extension (and this remains true if we further force with a $< \kappa$ -closed poset).

In both cases we get some extra benefit (almost) for free!

Case A: κ is not weakly compact

In this case we can design $\mathbb{P}_{\kappa}(A)$ so that A becomes a \mathbf{K}_{κ} set in the forcing extension (and this remains true if we further force with a $< \kappa$ -closed poset). So using a book-keeping procedure and an interation of length 2^{κ} we can get that in the final $\mathbb{P}(\kappa)$ extension all κ -analytic sets satisfy the strong Hurewicz dichotomy: either A is \mathbf{K}_{κ} (hence an " \mathbf{F}_{σ} set"), or it contains a closed copy of ${}^{\kappa}\kappa$.

In both cases we get some extra benefit (almost) for free!

Case A: κ is not weakly compact

In this case we can design $\mathbb{P}_{\kappa}(A)$ so that A becomes a \mathbf{K}_{κ} set in the forcing extension (and this remains true if we further force with a $< \kappa$ -closed poset). So using a book-keeping procedure and an interation of length 2^{κ} we can get that in the final $\mathbb{P}(\kappa)$ extension all κ -analytic sets satisfy the strong Hurewicz dichotomy: either A is \mathbf{K}_{κ} (hence an " \mathbf{F}_{σ} set"), or it contains a closed copy of ${}^{\kappa}\kappa$.

Case B: κ is weakly compact (in the forcing extension)

Then A contains a closed copy of $\kappa \kappa$ iff it contains the body [T] of a κ -Miller tree $T \subseteq {}^{<\kappa}\kappa$, i.e. a tree closed under $< \kappa$ -sequences and cofinally κ -splitting.

In both cases we get some extra benefit (almost) for free!

Case A: κ is not weakly compact

In this case we can design $\mathbb{P}_{\kappa}(A)$ so that A becomes a \mathbf{K}_{κ} set in the forcing extension (and this remains true if we further force with a $< \kappa$ -closed poset). So using a book-keeping procedure and an interation of length 2^{κ} we can get that in the final $\mathbb{P}(\kappa)$ extension all κ -analytic sets satisfy the strong Hurewicz dichotomy: either A is \mathbf{K}_{κ} (hence an " \mathbf{F}_{σ} set"), or it contains a closed copy of ${}^{\kappa}\kappa$.

Case B: κ is weakly compact (in the forcing extension)

Then A contains a closed copy of $\kappa \kappa$ iff it contains the body [T] of a κ -Miller tree $T \subseteq {}^{<\kappa}\kappa$, i.e. a tree closed under $< \kappa$ -sequences and cofinally κ -splitting. Thus in the final $\mathbb{P}(\kappa)$ -generic extension all κ -analytic sets satisfy the Miller-tree Hurewicz dichotomy: either A is contained in a K_{κ} set, or it contains the body of a κ -Miller tree.

Lemma (Halko)

 $A \subseteq {}^{\kappa}\kappa$ is contained in a κ -compact set if and only if the canonical tree

$$T = \{ \boldsymbol{N}_{x \upharpoonright \alpha}^{\kappa} \mid x \in A, \alpha < \kappa \}$$

is a κ -tree (= levels have size < κ) without κ -Aronzajn subtrees.

Lemma (Halko)

 $A \subseteq {}^{\kappa}\kappa$ is contained in a κ -compact set if and only if the canonical tree

$$T = \{ \boldsymbol{N}_{x \upharpoonright \alpha}^{\kappa} \mid x \in A, \alpha < \kappa \}$$

is a κ -tree (= levels have size < κ) without κ -Aronzajn subtrees.

A variant of this takes care of (sets covered by) K_{κ} sets.

Lemma (Halko)

 $A \subseteq {}^{\kappa}\kappa$ is contained in a κ -compact set if and only if the canonical tree

$$T = \{ \boldsymbol{N}_{x \upharpoonright \alpha}^{\kappa} \mid x \in A, \alpha < \kappa \}$$

is a κ -tree (= levels have size < κ) without κ -Aronzajn subtrees.

A variant of this takes care of (sets covered by) K_{κ} sets.

When κ is not weakly compact we let $\mathbb{P}_{\kappa}(A) = \mathbb{K}(A)$ be the following variant of Todorcevic's forcing for adding a κ -Kurepa tree without κ -Aronzajn subtrees.

Given $A \subseteq {}^{\kappa}\kappa$, we let $\mathbb{K}(A)$ denote the partial order defined by the following clauses.

Given $A \subseteq {}^{\kappa}\kappa$, we let $\mathbb{K}(A)$ denote the partial order defined by the following clauses.

- ${\small \bigcirc} \ {\small Conditions in } \mathbb{K}(A) \text{ are pairs } p = \langle \alpha_p, c_p \rangle \text{ such that } \alpha_p < \kappa \text{ and }$
 - $c_p: A \xrightarrow{part} \kappa$ has cardinality less than κ .

Given $A \subseteq {}^{\kappa}\kappa$, we let $\mathbb{K}(A)$ denote the partial order defined by the following clauses.

• Conditions in $\mathbb{K}(A)$ are pairs $p = \langle \alpha_p, c_p \rangle$ such that $\alpha_p < \kappa$ and $c_p : A \xrightarrow{part} \kappa$ has cardinality less than κ . Given $p \in \mathbb{K}(A)$ and $\gamma \in \operatorname{ran}(c_p)$, we define

$$T_p(\gamma) = \{x \upharpoonright \beta \mid c_p(x) = \gamma, \beta \le \alpha_p\}.$$

Given $A \subseteq {}^{\kappa}\kappa$, we let $\mathbb{K}(A)$ denote the partial order defined by the following clauses.

• Conditions in $\mathbb{K}(A)$ are pairs $p = \langle \alpha_p, c_p \rangle$ such that $\alpha_p < \kappa$ and $c_p : A \xrightarrow{part} \kappa$ has cardinality less than κ . Given $p \in \mathbb{K}(A)$ and $\gamma \in \operatorname{ran}(c_p)$, we define

$$T_p(\gamma) = \{x \restriction \beta \mid c_p(x) = \gamma, \beta \le \alpha_p\}.$$

② Given $p, q \in \mathbb{K}(A)$, we set $p \leq_{\mathbb{K}(A)} q$ iff $\alpha_q \leq \alpha_p$, $c_q \subseteq c_p$ and $T_p(\gamma)$ is an end-extension of $T_q(\gamma)$ for every $\gamma \in \operatorname{ran}(c_q)$.

Given $A \subseteq {}^{\kappa}\kappa$, we let $\mathbb{K}(A)$ denote the partial order defined by the following clauses.

• Conditions in $\mathbb{K}(A)$ are pairs $p = \langle \alpha_p, c_p \rangle$ such that $\alpha_p < \kappa$ and $c_p : A \xrightarrow{part} \kappa$ has cardinality less than κ . Given $p \in \mathbb{K}(A)$ and $\gamma \in \operatorname{ran}(c_p)$, we define

$$T_p(\gamma) = \{ x \upharpoonright \beta \mid c_p(x) = \gamma, \beta \le \alpha_p \}.$$

② Given $p, q \in \mathbb{K}(A)$, we set $p \leq_{\mathbb{K}(A)} q$ iff $\alpha_q \leq \alpha_p$, $c_q \subseteq c_p$ and $T_p(\gamma)$ is an end-extension of $T_q(\gamma)$ for every $\gamma \in \operatorname{ran}(c_q)$.

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

Lemma

Let $\dot{\mathbb{P}}$ be a $\mathbb{K}(A)$ -name for a $< \kappa$ -closed partial order and G * H be $(\mathbb{K}(A) * \dot{\mathbb{P}})$ -generic over V. Then

11 / 28

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

Lemma

Let $\dot{\mathbb{P}}$ be a $\mathbb{K}(A)$ -name for a $< \kappa$ -closed partial order and G * H be $(\mathbb{K}(A) * \dot{\mathbb{P}})$ -generic over V. Then

• for every $\gamma < \kappa$ the tree $T_G(\gamma) = \{x \upharpoonright \beta \mid c_G(x) = \gamma, \beta < \kappa\}$ is a pruned κ -tree without κ -Aronszajn subtrees in V[G, H];

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

Lemma

Let $\dot{\mathbb{P}}$ be a $\mathbb{K}(A)$ -name for a $< \kappa$ -closed partial order and G * H be $(\mathbb{K}(A) * \dot{\mathbb{P}})$ -generic over V. Then

- for every $\gamma < \kappa$ the tree $T_G(\gamma) = \{x \upharpoonright \beta \mid c_G(x) = \gamma, \beta < \kappa\}$ is a pruned κ -tree without κ -Aronszajn subtrees in V[G, H];
- $A = \bigcup_{\gamma < \kappa} [T_G(\gamma)]^{\mathcal{V}[G,H]}.$

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

Lemma

Let $\dot{\mathbb{P}}$ be a $\mathbb{K}(A)$ -name for a $< \kappa$ -closed partial order and G * H be $(\mathbb{K}(A) * \dot{\mathbb{P}})$ -generic over V. Then

• for every $\gamma < \kappa$ the tree $T_G(\gamma) = \{x \restriction \beta \mid c_G(x) = \gamma, \beta < \kappa\}$ is a pruned κ -tree without κ -Aronszajn subtrees in V[G, H];

•
$$A = \bigcup_{\gamma < \kappa} [T_G(\gamma)]^{\mathcal{V}[G,H]}.$$

Lemma

For every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

28

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

Lemma

Let $\dot{\mathbb{P}}$ be a $\mathbb{K}(A)$ -name for a $< \kappa$ -closed partial order and G * H be $(\mathbb{K}(A) * \dot{\mathbb{P}})$ -generic over V. Then

- for every $\gamma < \kappa$ the tree $T_G(\gamma) = \{x \restriction \beta \mid c_G(x) = \gamma, \beta < \kappa\}$ is a pruned κ -tree without κ -Aronszajn subtrees in V[G, H];
- $A = \bigcup_{\gamma < \kappa} [T_G(\gamma)]^{\mathcal{V}[G,H]}.$

Lemma

For every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

• There is an \exists^x -perfect embedding into T (a combinatorial condition which allows us to inscribe κ_2 in p[T] as a closed subset).

If G is $\mathbb{K}(A)$ -generic over V, then we set $c_G = \bigcup \{c_p \mid p \in G\} \colon A \to \kappa$.

Lemma

Let $\dot{\mathbb{P}}$ be a $\mathbb{K}(A)$ -name for a $< \kappa$ -closed partial order and G * H be $(\mathbb{K}(A) * \dot{\mathbb{P}})$ -generic over V. Then

- for every $\gamma < \kappa$ the tree $T_G(\gamma) = \{x \restriction \beta \mid c_G(x) = \gamma, \beta < \kappa\}$ is a pruned κ -tree without κ -Aronszajn subtrees in V[G, H];
- $A = \bigcup_{\gamma < \kappa} [T_G(\gamma)]^{\mathcal{V}[G,H]}.$

Lemma

For every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

- There is an ∃^x-perfect embedding into T (a combinatorial condition which allows us to inscribe ^κ2 in p[T] as a closed subset).
- If P is a < κ-closed forcing adding a new subset of κ, then P adds a new element of p[T].

Let G be $\mathbb{P}(\kappa)$ -generic over V and notice that κ is not weakly compact in V[G] as well (because $\mathbb{P}(\kappa)$ is $< \kappa$ -closed). Let $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ be any tree in V[G] and set $A = p[T]^{V[G]}$.

• If there is an \exists^x -embedding in T, then p[T] contains a closed copy of ${}^{\kappa}2$, and hence of ${}^{\kappa}\kappa$.

12 / 28

- If there is an \exists^x -embedding in T, then p[T] contains a closed copy of ${}^{\kappa}2$, and hence of ${}^{\kappa}\kappa$.
- If this is not case, fix a level $\beta < 2^{\kappa}$ with $T \in V[G_{\beta}]$ and let $\beta \leq \alpha < 2^{\kappa}$ be such that the α -th iterand is $\mathbb{K}(p[T])$.

- If there is an \exists^x -embedding in T, then p[T] contains a closed copy of κ^2 , and hence of $\kappa\kappa$.
- If this is not case, fix a level $\beta < 2^{\kappa}$ with $T \in V[G_{\beta}]$ and let $\beta \leq \alpha < 2^{\kappa}$ be such that the α -th iterand is $\mathbb{K}(p[T])$. Since there cannot be \exists^x -embeddings into A by case assumption, we get $p[T]^{V[G_{\alpha}]} = A$.

- If there is an \exists^x -embedding in T, then p[T] contains a closed copy of ${}^{\kappa}2$, and hence of ${}^{\kappa}\kappa$.
- If this is not case, fix a level $\beta < 2^{\kappa}$ with $T \in V[G_{\beta}]$ and let $\beta \leq \alpha < 2^{\kappa}$ be such that the α -th iterand is $\mathbb{K}(p[T])$. Since there cannot be \exists^x -embeddings into A by case assumption, we get $p[T]^{V[G_{\alpha}]} = A$. Since V[G] is a $< \kappa$ -forcing extension of $V[G_{\alpha+1}]$, by our choice of α and the previous lemma we get that A is \mathbf{K}_{κ} in V[G].

The argument above does not work for κ 's which remain weakly compact in the forcing extension.

Definition (κ -Hechler forcing)

 $\mathbb{H}(\kappa)$ is the following forcing.

Definition (κ -Hechler forcing)

 $\mathbb{H}(\kappa)$ is the following forcing.

• A condition in $\mathbb{H}(\kappa)$ is a pair $p = \langle t_p, a_p \rangle$ such that $t_p \in {}^{\alpha_p}\kappa$ for some $\alpha_p < \kappa$ and $a_p \subseteq {}^{\kappa}\kappa$ has size $< \kappa$.

Definition (κ -Hechler forcing)

 $\mathbb{H}(\kappa)$ is the following forcing.

- A condition in $\mathbb{H}(\kappa)$ is a pair $p = \langle t_p, a_p \rangle$ such that $t_p \in {}^{\alpha_p}\kappa$ for some $\alpha_p < \kappa$ and $a_p \subseteq {}^{\kappa}\kappa$ has size $< \kappa$.
- $\textbf{O} \quad \text{Given } p,q \in \mathbb{H}(\kappa), \ p \leq_{\mathbb{H}(\kappa)} q \text{ iff } t_q \subseteq t_p, \ a_q \subseteq a_p, \text{ and } x(\beta) < t_p(\beta) \\ \text{ for all } x \in a_q \text{ and } \alpha_q \leq \beta < \alpha_p.$

Definition (κ -Hechler forcing)

 $\mathbb{H}(\kappa)$ is the following forcing.

- A condition in $\mathbb{H}(\kappa)$ is a pair $p = \langle t_p, a_p \rangle$ such that $t_p \in {}^{\alpha_p}\kappa$ for some $\alpha_p < \kappa$ and $a_p \subseteq {}^{\kappa}\kappa$ has size $< \kappa$.
- $\textbf{O} \quad \text{Given } p,q \in \mathbb{H}(\kappa), \ p \leq_{\mathbb{H}(\kappa)} q \text{ iff } t_q \subseteq t_p, \ a_q \subseteq a_p, \text{ and } x(\beta) < t_p(\beta) \\ \text{ for all } x \in a_q \text{ and } \alpha_q \leq \beta < \alpha_p.$

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} \colon \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} \colon \kappa \to \kappa$ and let h be the canonical $\mathbb{H}(\kappa)$ -name for h.

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} \colon \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

Lemma

Let $p \in \mathbb{H}(\kappa)$ and \dot{x} be an $\mathbb{H}(\kappa)$ -name for an element of $\kappa \kappa$ such that $p \models "\dot{x} \not\leq^* \dot{h}''$.

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} : \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

Lemma

Let $p \in \mathbb{H}(\kappa)$ and \dot{x} be an $\mathbb{H}(\kappa)$ -name for an element of ${}^{\kappa}\kappa$ such that $p \models "\dot{x} \nleq {}^{*}\dot{h}''$. Then for every $q \leq_{\mathbb{H}(\kappa)} p$ and $\beta < \kappa$ there is $\beta \leq \gamma < \kappa$ and a sequence $(q_{\alpha})_{\alpha < \kappa}$ of conditions below q s.t. $\forall \alpha < \kappa (q \models "\dot{x}(\check{\gamma}) > \check{\alpha}'')$.

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} \colon \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

Lemma

Let $p \in \mathbb{H}(\kappa)$ and \dot{x} be an $\mathbb{H}(\kappa)$ -name for an element of ${}^{\kappa}\kappa$ such that $p \models "\dot{x} \nleq {}^{*}\dot{h}''$. Then for every $q \leq_{\mathbb{H}(\kappa)} p$ and $\beta < \kappa$ there is $\beta \leq \gamma < \kappa$ and a sequence $(q_{\alpha})_{\alpha < \kappa}$ of conditions below q s.t. $\forall \alpha < \kappa (q \models "\dot{x}(\check{\gamma}) > \check{\alpha}'')$.

Lemma

Let $p \in \mathbb{H}(\kappa)$ be such that $p \models "\check{\kappa}$ is weakly compact". Then for every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} \colon \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

Lemma

Let $p \in \mathbb{H}(\kappa)$ and \dot{x} be an $\mathbb{H}(\kappa)$ -name for an element of ${}^{\kappa}\kappa$ such that $p \models "\dot{x} \nleq {}^{*}\dot{h}''$. Then for every $q \leq_{\mathbb{H}(\kappa)} p$ and $\beta < \kappa$ there is $\beta \leq \gamma < \kappa$ and a sequence $(q_{\alpha})_{\alpha < \kappa}$ of conditions below q s.t. $\forall \alpha < \kappa (q \models "\dot{x}(\check{\gamma}) > \check{\alpha}'')$.

Lemma

Let $p \in \mathbb{H}(\kappa)$ be such that $p \models "\check{\kappa}$ is weakly compact". Then for every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

There is an ∃^x-superperfect embedding into T (a combinatorial condition which ensures that p[T] contains the body of a κ-Miller tree, and hence a closed copy of ^κκ).

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} : \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

Lemma

Let $p \in \mathbb{H}(\kappa)$ and \dot{x} be an $\mathbb{H}(\kappa)$ -name for an element of ${}^{\kappa}\kappa$ such that $p \models "\dot{x} \nleq {}^{*}\dot{h}''$. Then for every $q \leq_{\mathbb{H}(\kappa)} p$ and $\beta < \kappa$ there is $\beta \leq \gamma < \kappa$ and a sequence $(q_{\alpha})_{\alpha < \kappa}$ of conditions below q s.t. $\forall \alpha < \kappa (q \models "\dot{x}(\check{\gamma}) > \check{\alpha}'')$.

Lemma

Let $p \in \mathbb{H}(\kappa)$ be such that $p \models "\check{\kappa}$ is weakly compact". Then for every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

- There is an ∃^x-superperfect embedding into T (a combinatorial condition which ensures that p[T] contains the body of a κ-Miller tree, and hence a closed copy of ^κκ).
- p[T] is not contained in a K_{κ} set in any $\mathbb{H}(\kappa)$ -generic extension of V.

If G is $\mathbb{H}(\kappa)$ -generic over V, we set $h = \bigcup \{t_p \mid p \in G\} \colon \kappa \to \kappa$ and let \dot{h} be the canonical $\mathbb{H}(\kappa)$ -name for h.

Lemma

Let $p \in \mathbb{H}(\kappa)$ and \dot{x} be an $\mathbb{H}(\kappa)$ -name for an element of ${}^{\kappa}\kappa$ such that $p \models "\dot{x} \nleq {}^{*}\dot{h}''$. Then for every $q \leq_{\mathbb{H}(\kappa)} p$ and $\beta < \kappa$ there is $\beta \leq \gamma < \kappa$ and a sequence $(q_{\alpha})_{\alpha < \kappa}$ of conditions below q s.t. $\forall \alpha < \kappa (q \models "\dot{x}(\check{\gamma}) > \check{\alpha}'')$.

Lemma

Let $p \in \mathbb{H}(\kappa)$ be such that $p \models "\check{\kappa}$ is weakly compact". Then for every tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ TFAE:

- There is an ∃^x-superperfect embedding into T (a combinatorial condition which ensures that p[T] contains the body of a κ-Miller tree, and hence a closed copy of ^κκ).
- p[T] is not contained in a K_κ set in any ℍ(κ)-generic extension of V.
 p ⊨ "∃x ∈ p[T] (x ≰* h)".

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

• $\mathbb{H}(\kappa)$ if α is even;

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

- $\mathbb{H}(\kappa)$ if α is even;
- $\mathbb{K}(^{\kappa}\kappa)$ if α is odd.

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

- $\mathbb{H}(\kappa)$ if α is even;
- $\mathbb{K}(\kappa\kappa)$ if α is odd.

Let G be $\mathbb{P}(\kappa)$ -generic over V, and fix an arbitrary tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ in V[G] such that $A = p[T]^{V[G]}$ is *not* contained in \mathbf{K}_{κ} set.

15 / 28

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

- $\mathbb{H}(\kappa)$ if α is even;
- $\mathbb{K}(\kappa\kappa)$ if α is odd.

Let G be $\mathbb{P}(\kappa)$ -generic over V, and fix an arbitrary tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ in V[G] such that $A = p[T]^{V[G]}$ is *not* contained in \mathbf{K}_{κ} set.

Assume first that κ is **weakly compact** in V[G]. Let α be even with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{H}(\kappa)$).

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

- $\mathbb{H}(\kappa)$ if α is even;
- $\mathbb{K}(\kappa\kappa)$ if α is odd.

Let G be $\mathbb{P}(\kappa)$ -generic over V, and fix an arbitrary tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ in V[G] such that $A = p[T]^{V[G]}$ is *not* contained in \mathbf{K}_{κ} set.

Assume first that κ is **weakly compact** in V[G]. Let α be even with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{H}(\kappa)$). Since "not being eventually bounded" can be expressed by a Π_1 -formula over $\langle H(\kappa^+), \in \rangle$, the fact that p[T] is not eventually bounded is true also in $V[G_{\alpha+1}]$.

Let now $\mathbb{P}(\kappa)$ be a $<\kappa\text{-support}$ iteration of length κ^+ in which the iterand at level $\alpha<\kappa$ is

- $\mathbb{H}(\kappa)$ if α is even;
- $\mathbb{K}(\kappa\kappa)$ if α is odd.

Let G be $\mathbb{P}(\kappa)$ -generic over V, and fix an arbitrary tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ in V[G] such that $A = p[T]^{V[G]}$ is *not* contained in \mathbf{K}_{κ} set.

Assume first that κ is **weakly compact** in V[G]. Let α be even with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{H}(\kappa)$). Since "not being eventually bounded" can be expressed by a Π_1 -formula over $\langle H(\kappa^+), \in \rangle$, the fact that p[T] is not eventually bounded is true also in $V[G_{\alpha+1}]$. Since κ must be weakly compact at any bounded stage, then by the previous lemma we get an \exists^x -superperfect embedding into T already in $V[G_{\alpha}]$, and hence also in V[G]. This shows that A contains a closed copy of $\kappa \kappa$.

If κ is **not weakly compact** in V[G], let α be odd with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{K}({}^{\kappa}\kappa)$).

If κ is **not weakly compact** in V[G], let α be odd with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{K}({}^{\kappa}\kappa)$). Then $({}^{\kappa}\kappa)^{V[G_{\alpha}]}$ is a \mathbf{K}_{κ} set in V[G] (because V[G] is a $< \kappa$ -closed extension of $V[G_{\alpha}]$), hence

$$p[T]^{\mathcal{V}[G_{\alpha}]} \subseteq ({}^{\kappa}\kappa)^{\mathcal{V}[G_{\alpha}]} \subsetneq p[T]^{\mathcal{V}[G]} = A.$$

If κ is **not weakly compact** in V[G], let α be odd with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{K}(^{\kappa}\kappa)$). Then $(^{\kappa}\kappa)^{V[G_{\alpha}]}$ is a K_{κ} set in V[G] (because V[G] is a $< \kappa$ -closed extension of $V[G_{\alpha}]$), hence

$$p[T]^{\mathcal{V}[G_{\alpha}]} \subseteq ({}^{\kappa}\kappa)^{\mathcal{V}[G_{\alpha}]} \subsetneq p[T]^{\mathcal{V}[G]} = A.$$

Thus there is an \exists^x -perfect embedding into T in $V[G_\alpha]$, hence also in V[G], hence A contains (in V[G]) a closed copy of κ^2 . By case assumption, A contains a closed copy of κ_{κ} .

16 / 28

If κ is **not weakly compact** in V[G], let α be odd with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{K}(^{\kappa}\kappa)$). Then $(^{\kappa}\kappa)^{V[G_{\alpha}]}$ is a K_{κ} set in V[G] (because V[G] is a $< \kappa$ -closed extension of $V[G_{\alpha}]$), hence

$$p[T]^{\mathcal{V}[G_{\alpha}]} \subseteq ({}^{\kappa}\kappa)^{\mathcal{V}[G_{\alpha}]} \subsetneq p[T]^{\mathcal{V}[G]} = A.$$

Thus there is an \exists^x -perfect embedding into T in $V[G_\alpha]$, hence also in V[G], hence A contains (in V[G]) a closed copy of κ^2 . By case assumption, A contains a closed copy of κ_{κ} .

This concludes the proof of the main theorem.

If κ is **not weakly compact** in V[G], let α be odd with $T \in V[G_{\alpha}]$ (so that the α -th iterand is $\mathbb{K}({}^{\kappa}\kappa)$). Then $({}^{\kappa}\kappa)^{V[G_{\alpha}]}$ is a \mathbf{K}_{κ} set in V[G] (because V[G] is a $< \kappa$ -closed extension of $V[G_{\alpha}]$), hence

$$p[T]^{\mathcal{V}[G_{\alpha}]} \subseteq ({}^{\kappa}\kappa)^{\mathcal{V}[G_{\alpha}]} \subsetneq p[T]^{\mathcal{V}[G]} = A.$$

Thus there is an \exists^x -perfect embedding into T in $V[G_\alpha]$, hence also in V[G], hence A contains (in V[G]) a closed copy of κ_2 . By case assumption, A contains a closed copy of κ_{κ} .

This concludes the proof of the main theorem. Using a small variation of the above argument one can get

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable regular cardinal, $\lambda > \kappa$ be an inaccessible cardinal, and G be $\mathbf{Col}(\kappa, < \lambda)$ -generic over V. Then in V[G] every κ -analytic set satisfies the Hurewicz dichotomy.

For $\kappa = \kappa^{<\kappa}$ we constructed a forcing $\mathbb{P}(\kappa)$ such that:

- $\ \, {\mathbb P}(\kappa) \ {\rm is} < \kappa {\rm -directed \ closed \ and \ } \kappa^+ {\rm -c.c.};$
- ② $\mathbb{P}(\kappa)$ is a subset of $H(\kappa^+)$ which is uniformly definable over $\langle H(\kappa^+), ∈ \rangle$ in the parameter κ ;

For $\kappa = \kappa^{<\kappa}$ we constructed a forcing $\mathbb{P}(\kappa)$ such that:

- $\ \ \, \mathbb{P}(\kappa) \ \, \mathrm{is} < \kappa \text{-directed closed and } \kappa^+ \text{-c.c.}; \ \ \, \mathbb{P}(\kappa) \ \, \mathrm{is} < \kappa \text{-directed closed and } \kappa^+ \text{-c.c.}; \ \, \mathbb{P}(\kappa) \ \ \, \mathbb{P}(\kappa) \ \ \, \mathbb{P}(\kappa) \ \ \, \mathbb{P}(\kappa) \ \ \, \mathbb{P}(\kappa) \$
- ② P(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;

Using a (class size) Easton support iteration of these $\mathbb{P}(\kappa)$'s we get

17 / 28

For $\kappa = \kappa^{<\kappa}$ we constructed a forcing $\mathbb{P}(\kappa)$ such that:

- $\ \ \, \mathbb{P}(\kappa) \ \, \text{is} < \kappa \text{-directed closed and } \kappa^+ \text{-c.c.};$
- ② P(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;
- P(κ) forces that every κ-analytic A ⊆ ^κκ satisfies the Hurewicz dichotomy.

Using a (class size) Easton support iteration of these $\mathbb{P}(\kappa)$'s we get

Theorem (Lücke-M.-Schlicht)

Assume GCH. Then there is a definable class-forcing $\vec{\mathbb{P}}$ with the following properties.

For $\kappa = \kappa^{<\kappa}$ we constructed a forcing $\mathbb{P}(\kappa)$ such that:

- $\ \ \, {\mathbb P}(\kappa) \ {\rm is} < \kappa {\rm -directed \ closed \ and \ } \kappa^+ {\rm -c.c.}; \ \ \,$
- ② P(κ) is a subset of H(κ⁺) which is uniformly definable over ⟨H(κ⁺), ∈⟩ in the parameter κ;
- P(κ) forces that every κ-analytic A ⊆ ^κκ satisfies the Hurewicz dichotomy.

Using a (class size) Easton support iteration of these $\mathbb{P}(\kappa)$'s we get

Theorem (Lücke-M.-Schlicht)

Assume GCH. Then there is a definable class-forcing $\vec{\mathbb{P}}$ with the following properties.

● Forcing with P preserves all cofinalities, GCH, strongly unfoldable cardinals and supercompact cardinals.

For $\kappa = \kappa^{<\kappa}$ we constructed a forcing $\mathbb{P}(\kappa)$ such that:

- $\ \ \, {\mathbb P}(\kappa) \ {\rm is} < \kappa {\rm -directed \ closed \ and \ } \kappa^+ {\rm -c.c.}; \ \ \,$
- ② $\mathbb{P}(\kappa)$ is a subset of $H(\kappa^+)$ which is uniformly definable over $\langle H(\kappa^+), ∈ \rangle$ in the parameter κ ;
- $\mathbb{P}(\kappa)$ forces that every κ -analytic $A \subseteq {}^{\kappa}\kappa$ satisfies the Hurewicz dichotomy.

Using a (class size) Easton support iteration of these $\mathbb{P}(\kappa)$'s we get

Theorem (Lücke-M.-Schlicht)

Assume GCH. Then there is a definable class-forcing $\vec{\mathbb{P}}$ with the following properties.

Sourcing with P

preserves all cofinalities, GCH, strongly unfoldable cardinals and supercompact cardinals.

2 If κ is an infinite regular cardinal, then $\vec{\mathbb{P}}$ forces that all κ -analytic sets satisfy the Hurewicz dichotomy.

Luca Motto Ros (Turin, Italy)

28

Definition

A set $A \subseteq {}^{\kappa}\kappa$ has the κ -Perfect Set Property (κ -PSP) if either $|A| \leq \kappa$, or A contains a closed copy of ${}^{\kappa}2$.

Definition

A set $A \subseteq {}^{\kappa}\kappa$ has the κ -Perfect Set Property (κ -PSP) if either $|A| \leq \kappa$, or A contains a closed copy of ${}^{\kappa}2$.

Proposition (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ be non-weakly compact, and assume that all closed sets have the κ -PSP. Then A is contained in a \mathbf{K}_{κ} set iff $|A| \leq \kappa$. Hence if Ahas the κ -PSP as well, then it satisfies the **strong** Hurewicz dichotomy.

18 / 28

Definition

A set $A \subseteq {}^{\kappa}\kappa$ has the κ -Perfect Set Property (κ -PSP) if either $|A| \leq \kappa$, or A contains a closed copy of ${}^{\kappa}2$.

Proposition (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ be non-weakly compact, and assume that all closed sets have the κ -PSP. Then A is contained in a \mathbf{K}_{κ} set iff $|A| \leq \kappa$. Hence if Ahas the κ -PSP as well, then it satisfies the **strong** Hurewicz dichotomy.

Theorem (Schlicht)

After collapsing an inaccessible $\lambda > \kappa$ to κ^+ , we get that all projective subsets of ${}^{\kappa}\kappa$ have the κ -PSP.

Definition

A set $A \subseteq {}^{\kappa}\kappa$ has the κ -Perfect Set Property (κ -PSP) if either $|A| \leq \kappa$, or A contains a closed copy of ${}^{\kappa}2$.

Proposition (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ be non-weakly compact, and assume that all closed sets have the κ -PSP. Then A is contained in a \mathbf{K}_{κ} set iff $|A| \leq \kappa$. Hence if Ahas the κ -PSP as well, then it satisfies the **strong** Hurewicz dichotomy.

Theorem (Schlicht)

After collapsing an inaccessible $\lambda > \kappa$ to κ^+ , we get that all projective subsets of ${}^{\kappa}\kappa$ have the κ -PSP.

Thus it is possible to have that all κ -analytic subsets of $\kappa \kappa$ have the κ -PSP **and** satisfy the Hurewicz dichotomy (independently of whether κ is weakly compact or not after the collapse).

Luca Motto Ros (Turin, Italy)

Can we separate the Hurewicz dichotomy from the κ -PSP?

Can we separate the Hurewicz dichotomy from the κ -PSP?

Theorem (Lücke-M.-Schlicht)

Assume V = L and let $\vec{\mathbb{P}}$ be the class forcing which forces the Hurewicz dichotomy for κ -analytic sets at all regular κ 's.

Can we separate the Hurewicz dichotomy from the κ -PSP?

Theorem (Lücke-M.-Schlicht)

Assume V = L and let $\vec{\mathbb{P}}$ be the class forcing which forces the Hurewicz dichotomy for κ -analytic sets at all regular κ 's. If $\kappa > \omega$ is regular, then there is a tree $T \subseteq {}^{<\kappa}\kappa$ such that in every $\vec{\mathbb{P}}$ -generic extension of V, the closed set [T] does not have the κ -PSP.

19 / 28

Can we separate the Hurewicz dichotomy from the κ -PSP?

Theorem (Lücke-M.-Schlicht)

Assume V = L and let $\vec{\mathbb{P}}$ be the class forcing which forces the Hurewicz dichotomy for κ -analytic sets at all regular κ 's. If $\kappa > \omega$ is regular, then there is a tree $T \subseteq {}^{<\kappa}\kappa$ such that in every $\vec{\mathbb{P}}$ -generic extension of V, the closed set [T] does not have the κ -PSP.

So the answer to the previous question is positive!

19 / 28

Definition

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree.

Definition

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree.

 T is perfect if it is closed under < κ-sequences and has cofinally many 2-splitting nodes;

Definition

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree.

- T is perfect if it is closed under < κ-sequences and has cofinally many 2-splitting nodes;
- T is a κ-Miller tree if it is closed under < κ-sequences and has cofinally many κ-splitting nodes;

Definition

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree.

- T is perfect if it is closed under < κ-sequences and has cofinally many 2-splitting nodes;
- T is a κ-Miller tree if it is closed under < κ-sequences and has cofinally many κ-splitting nodes;

Definition

Let κ be an infinite regular cardinal. A set $A\subseteq {}^\kappa\kappa$ is

Definition

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree.

- T is perfect if it is closed under < κ-sequences and has cofinally many 2-splitting nodes;
- T is a κ-Miller tree if it is closed under < κ-sequences and has cofinally many κ-splitting nodes;

Definition

Let κ be an infinite regular cardinal. A set $A \subseteq {}^{\kappa}\kappa$ is

• κ -Sacks measurable if for every perfect tree $T \subseteq {}^{<\kappa}\kappa$ there is a perfect tree $S \subseteq T$ such that either $[S] \subseteq A$ or $[S] \cap A = \emptyset$.

Definition

Let $T \subseteq {}^{<\kappa}\kappa$ be a tree.

- T is perfect if it is closed under < κ-sequences and has cofinally many 2-splitting nodes;
- T is a κ-Miller tree if it is closed under < κ-sequences and has cofinally many κ-splitting nodes;

Definition

Let κ be an infinite regular cardinal. A set $A\subseteq {}^\kappa\kappa$ is

- κ -Sacks measurable if for every perfect tree $T \subseteq {}^{<\kappa}\kappa$ there is a perfect tree $S \subseteq T$ such that either $[S] \subseteq A$ or $[S] \cap A = \emptyset$.
- κ -Miller measurable if for every κ -Miller tree $T \subseteq {}^{<\kappa}\kappa$ there is a κ -Miller tree $S \subseteq T$ such that either $[S] \subseteq A$ or $[S] \cap A = \emptyset$.

Theorem (Laguzzi)

After collapsing an inaccessible $\lambda > \kappa$ to κ^+ , all projective sets $A \subseteq {}^{\kappa}\kappa$ are κ -Miller measurable.

21 / 28

Theorem (Laguzzi)

After collapsing an inaccessible $\lambda > \kappa$ to κ^+ , all projective sets $A \subseteq {}^{\kappa}\kappa$ are κ -Miller measurable.

However, in such a model all projective sets have also the $\kappa\text{-}\mathsf{PSP}$ (Schlicht).

Theorem (Laguzzi)

After collapsing an inaccessible $\lambda > \kappa$ to κ^+ , all projective sets $A \subseteq {}^{\kappa}\kappa$ are κ -Miller measurable.

However, in such a model all projective sets have also the κ -PSP (Schlicht).

Question

Can we separate the κ -Miller measurability from the κ -PSP (and if yes, at which level)?

The Hurewicz dichotomy implies a corresponding "Hurewicz measurability property".

Lemma

Assume that all κ -analytic subsets of $\kappa \kappa$ satisfy the Hurewicz dichotomy. If $A \subseteq \kappa \kappa$ is κ -analytic, then for every closed copy C of $\kappa \kappa$ there is a closed copy $D \subseteq C$ of $\kappa \kappa$ such that eihter $D \subseteq A$ or $D \cap A = \emptyset$.

22 / 28

Lemma

Assume that all κ -analytic subsets of $\kappa \kappa$ satisfy the Hurewicz dichotomy. If $A \subseteq \kappa \kappa$ is κ -analytic, then for every closed copy C of $\kappa \kappa$ there is a closed copy $D \subseteq C$ of $\kappa \kappa$ such that eihter $D \subseteq A$ or $D \cap A = \emptyset$.

Proof.

If there is no such $D \subseteq A \cap C$, then by the Hurewicz dichotomy $A \cap C$ is a contained in a K_{κ} set K.

Lemma

Assume that all κ -analytic subsets of $\kappa \kappa$ satisfy the Hurewicz dichotomy. If $A \subseteq \kappa \kappa$ is κ -analytic, then for every closed copy C of $\kappa \kappa$ there is a closed copy $D \subseteq C$ of $\kappa \kappa$ such that eihter $D \subseteq A$ or $D \cap A = \emptyset$.

Proof.

If there is no such $D \subseteq A \cap C$, then by the Hurewicz dichotomy $A \cap C$ is a contained in a \mathbf{K}_{κ} set K. Since by our choice of C the set $C \setminus K$ cannot be contained in a \mathbf{K}_{κ} set, we get a closed copy $D \subseteq C \setminus K$ of ${}^{\kappa}\kappa$ by the Hurewicz dichotomy again.

Lemma

Assume that all κ -analytic subsets of $\kappa \kappa$ satisfy the Hurewicz dichotomy. If $A \subseteq \kappa \kappa$ is κ -analytic, then for every closed copy C of $\kappa \kappa$ there is a closed copy $D \subseteq C$ of $\kappa \kappa$ such that eihter $D \subseteq A$ or $D \cap A = \emptyset$.

Proof.

If there is no such $D \subseteq A \cap C$, then by the Hurewicz dichotomy $A \cap C$ is a contained in a \mathbf{K}_{κ} set K. Since by our choice of C the set $C \setminus K$ cannot be contained in a \mathbf{K}_{κ} set, we get a closed copy $D \subseteq C \setminus K$ of ${}^{\kappa}\kappa$ by the Hurewicz dichotomy again. Since $C \setminus K \subseteq C \setminus A$, D is as required. \Box

Question

Can we separate the κ -Miller regularity property from the κ -PSP (and if yes, at which level)?

Hurewicz dichotomy and regularity properties

Question

Can we separate the κ -Miller regularity property from the κ -PSP (and if yes, at which level)?

From the previous lemma it follows:

Theorem (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ and G be $\mathbb{P}(\kappa)$ -generic over V.

Hurewicz dichotomy and regularity properties

Question

Can we separate the κ -Miller regularity property from the κ -PSP (and if yes, at which level)?

From the previous lemma it follows:

Theorem (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ and G be $\mathbb{P}(\kappa)$ -generic over V.

 If κ is not weakly compact in V[G], then all κ-analytic and all co-κ-analytic sets are κ-Sacks measurable.

Question

Can we separate the κ -Miller regularity property from the κ -PSP (and if yes, at which level)?

From the previous lemma it follows:

Theorem (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ and G be $\mathbb{P}(\kappa)$ -generic over V.

- If κ is not weakly compact in V[G], then all κ-analytic and all co-κ-analytic sets are κ-Sacks measurable.
- If κ is weakly compact in V[G], then all κ-analytic and all co-κ-analytic sets are κ-Miller measurable.

Question

Can we separate the κ -Miller regularity property from the κ -PSP (and if yes, at which level)?

From the previous lemma it follows:

Theorem (Lücke-M.-Schlicht)

Let $\kappa = \kappa^{<\kappa} > \omega$ and G be $\mathbb{P}(\kappa)$ -generic over V.

- If κ is not weakly compact in V[G], then all κ-analytic and all co-κ-analytic sets are κ-Sacks measurable.
- If κ is weakly compact in V[G], then all κ-analytic and all co-κ-analytic sets are κ-Miller measurable.

Thus by forcing with $\mathbb{P}(\kappa)$ over L we can separate the κ -Sacks measurability and the κ -Miller measurability (for suitable κ 's) from the κ -PSP.

Assume V = L. If κ is an uncountable regular cardinal, then there is a **closed** subset of $\kappa \kappa$ which does not satisfy the Hurewicz dichotomy.

Assume V = L. If κ is an uncountable regular cardinal, then there is a **closed** subset of $\kappa \kappa$ which does not satisfy the Hurewicz dichotomy.

The (generalized) Hurewicz dichotomy is in fact extremely delicate.

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$, and suppose that x is a Cohen real over V. Then in V[x] there is a **closed** set $A \subseteq {}^{\kappa}\kappa$ which does not satisfy the Hurewicz dichotomy.

Assume V = L. If κ is an uncountable regular cardinal, then there is a **closed** subset of $\kappa \kappa$ which does not satisfy the Hurewicz dichotomy.

The (generalized) Hurewicz dichotomy is in fact extremely delicate.

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$, and suppose that x is a Cohen real over V. Then in V[x] there is a closed set $A \subseteq {}^{\kappa}\kappa$ which does not satisfy the Hurewicz dichotomy.

Proof.

Let
$$A = (\kappa \kappa)^{\mathrm{V}}$$
.

Assume V = L. If κ is an uncountable regular cardinal, then there is a **closed** subset of $\kappa \kappa$ which does not satisfy the Hurewicz dichotomy.

The (generalized) Hurewicz dichotomy is in fact extremely delicate.

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$, and suppose that x is a Cohen real over V. Then in V[x] there is a closed set $A \subseteq {}^{\kappa}\kappa$ which does not satisfy the Hurewicz dichotomy.

Proof.

Let $A = ({}^{\kappa}\kappa)^{V}$. Then A is the body (in V[x]) of the tree $T = ({}^{<\kappa}\kappa)^{V}$, it cannot contain a perfect subtree, but it is unbounded (hence not K_{κ}) in $({}^{\kappa}\kappa)^{V[x]}$.

Assume V = L. If κ is an uncountable regular cardinal, then there is a **closed** subset of $\kappa \kappa$ which does not satisfy the Hurewicz dichotomy.

The (generalized) Hurewicz dichotomy is in fact extremely delicate.

Theorem (Lücke-M.-Schlicht)

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$, and suppose that x is a Cohen real over V. Then in V[x] there is a closed set $A \subseteq {}^{\kappa}\kappa$ which does not satisfy the Hurewicz dichotomy.

Proof.

Let $A = ({}^{\kappa}\kappa)^{V}$. Then A is the body (in V[x]) of the tree $T = ({}^{<\kappa}\kappa)^{V}$, it cannot contain a perfect subtree, but it is unbounded (hence not K_{κ}) in $({}^{\kappa}\kappa)^{V[x]}$.

Remark: The Cohen real destroys the Hurewicz dichotomy everywhere!

Luca Motto Ros (Turin, Italy)

If we collapse an inaccessible $\lambda > \kappa$ to κ^+ with κ non-weakly compact, we get that all projective sets have the κ -PSP, and hence they satisfy the Hurewicz dichotomy. Until now, this is the unique technique that we have to force the Hurewicz dichotomy for co- κ -analytic sets, and we do not know if it works also for weakly compact cardinals κ .

If we collapse an inaccessible $\lambda > \kappa$ to κ^+ with κ non-weakly compact, we get that all projective sets have the κ -PSP, and hence they satisfy the Hurewicz dichotomy. Until now, this is the unique technique that we have to force the Hurewicz dichotomy for co- κ -analytic sets, and we do not know if it works also for weakly compact cardinals κ .

Question

If the Hurewicz dichotomy holds for co-κ-analytic sets, is there an inner model with an inaccessible cardinal?

If we collapse an inaccessible $\lambda > \kappa$ to κ^+ with κ non-weakly compact, we get that all projective sets have the κ -PSP, and hence they satisfy the Hurewicz dichotomy. Until now, this is the unique technique that we have to force the Hurewicz dichotomy for co- κ -analytic sets, and we do not know if it works also for weakly compact cardinals κ .

Question

- If the Hurewicz dichotomy holds for co-κ-analytic sets, is there an inner model with an inaccessible cardinal?
- If κ is weakly compact and we collapse an inaccessible λ > κ to κ⁺, do we still have that the Hurewicz dichotomy holds for all projective sets?

Unlike the case of non-weakly compact cardinals, it is not clear that the κ -PSP is stronger than the Hurewicz dichotomy when κ is weakly compact.

Unlike the case of non-weakly compact cardinals, it is not clear that the κ -PSP is stronger than the Hurewicz dichotomy when κ is weakly compact.

Question

Is it consistent that for a weakly compact κ , all κ -analytic sets have the κ -PSP but there is a closed set not satisfying the Hurewicz dichotomy?

If κ is weakly compact, then the Hurewicz dichotomy for κ -analytic sets implies that these sets are κ -Miller measurable.

If κ is weakly compact, then the Hurewicz dichotomy for κ -analytic sets implies that these sets are κ -Miller measurable.

Question

Is this still true when κ is not a weakly compact cardinal?

If κ is weakly compact, then the Hurewicz dichotomy for κ -analytic sets implies that these sets are κ -Miller measurable.

Question

Is this still true when κ is not a weakly compact cardinal?

We also ask about the converse.

Question

Is it consistent that all κ -analytic sets are κ -Miller measurable but there is a κ -analytic (closed?) set that does not satisfy the Hurewicz dichotomy?

27 / 28

If κ is weakly compact, then the Hurewicz dichotomy for κ -analytic sets implies that these sets are κ -Miller measurable.

Question

Is this still true when κ is not a weakly compact cardinal?

We also ask about the converse.

Question

Is it consistent that all κ -analytic sets are κ -Miller measurable but there is a κ -analytic (closed?) set that does not satisfy the Hurewicz dichotomy? Can such a κ be weakly compact?

27 / 28

If κ is weakly compact, then the Hurewicz dichotomy for κ -analytic sets implies that these sets are κ -Miller measurable.

Question

Is this still true when κ is not a weakly compact cardinal?

We also ask about the converse.

Question

Is it consistent that all κ -analytic sets are κ -Miller measurable but there is a κ -analytic (closed?) set that does not satisfy the Hurewicz dichotomy? Can such a κ be weakly compact?

Question

Can we separate the $\kappa\text{-Miller}$ measurability from the $\kappa\text{-PSP}$ in the non-weakly compact case?

Luca Motto Ros (Turin, Italy)

Thank you for your attention!