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Basic Notions

|κ<κ| = κ > ω fixed throughout the presentation; basic open set
[p] = {η ∈ κκ | η ⊃ p}, p ∈ κ<κ.

Borel sets: close basic open sets under unions and intersections of
length κ.

Standard Borel space, a space homeomorphic to a Borel subset of κκ.

Σ1
1 a projection of a Borel set.

A function is Borel if inverse image of every Borel set is Borel.

For equivalence relations E and E ′ on standard Borel spaces B and B ′

respectively, E is Borel reducible E ′, if there is a Borel map
f : B → B ′ which induces a one-to-one map from B/E to B ′/E ′.

If a set contains an intersection of length 6 κ of open dense sets, it is
co-meager. A complement of such a set is meager.

If G is a topological group which is a standard Borel space and acts in
a Borel way on some standard Borel space X , denote by EX

G the orbit
equivalence relation.
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Basic Notions

Fact

(Halko-Shelah [HS01]) κκ is not meager and Borel sets have the
property of Baire.

A Borel function is continuous on a co-meager set.
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Basic Notions

E0 e.r. on 2κ: ∃α∀β > α(η(β) = ξ(β)),

E1 e.r. on (2κ)κ: ∃α∀β > α(ηβ = ξβ).
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Results

We will prove this in the end of the talk if there is time left:

Theorem

If G is a discrete group of size at most κ and acts in a Borel way on a
standard Borel space X . Then EX

G 6B E0.

The converse is not true:

Theorem

There is E with E 6B id which is not induced by a Borel action of such a
group. In fact the equivalence classes of E have size 2.
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Compare

Compare to the classical results for κ = ω:

Theorem (Dougherty-Jackson-Kechris)

The following are equivalent:

1 E 6B E0,

2 E is hyperfinite.

3 E is realizable be a Borel action of Z.

Theorem (Feldman-Moore)

If E is countable e.r., then it can be realized by a Borel action of a
countable group.

Theorem (Thm 7.4.10 in [Gao09])

E0 < E∞, where the latter is the universal countable e.r.
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Results

Theorem

E1 6B E0.

Compare to the classical κ = ω result:

Theorem

(Kechris-Louveau) E1 is not reducible to any equivalence relation induced
by a Borel action of a Polish group.
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Proof of E1 6B E0

Think of E0 on κκ.
For all limit α let Eα

1 be the e.r. on (2α)α defined analogously to E1. Let
f :

⋃
α∈lim(κ)(2α)α → κ be such that

if p ∈ (2α)α and q ∈ (2β)β with α 6= β, then f (α) 6= f (β),

if p, q ∈ (2α)α, then f (p) = f (q) ⇐⇒ (p, q) ∈ Eα
1 .

For every (ηα)α<κ ∈ (2κ)κ let ξ = F ((ηα)α<κ) be defined by ξ(β) = 0 for
successor β and ξ(β) = f ((ηα �β)α<β) for limit β.
——————————–

If (ηα)α<κ and (ξα)α<κ are E1-equivalent, then (ηα �β)α<β and
(ξα �β)α<β are Eα

1 -equivalent for all β > γ for the γ which witnesses the
E1-equivalence.

If (ηα)α<κ and (ξα)α<κ are not E1-equivalent, then there is a cub-set of β
for which (ηα �β)α<β and (ξα �β)α<β are not Eα

1 -equivalent.
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Iterated Jump Operation

Definition

If E is an equivalence relation on 2κ, its jump is e.r. on (2κ)κ: Two
sequences (xα)α<κ and (yα)α<κ are E+-equivalent, if

{[xα]E | α < κ} = {[yα]E | α < κ}.

Suppose α is a limit and Eβ+ is defined to be an equivalence relation on
2κ for β < α. Then E+α =

⊕
β<α Eβ+.
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Results

Theorem

E0 <B id+ (strict inequality).

This implies E1 6B id+ based on which (together with the fact that an
isomorphism relation can be Σ1

1-complete in L [HK14]) one expects
Hjorth’s turbulence theory to be non-generalizable.
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Results

Definition

For a regular cardinal µ < κ and λ ∈ {2, κ} let Eλ
µ−cub be the equivalence

relation on λκ such that η and ξ are Eλ
µ−cub-equivalent if the set

{α | η(α) = ξ(α)} contains a µ-cub,

Theorem

Every jump of identity id+α, α < κ+, is reducible to Eκ
µ .

Corollary

If M is a Borel set of structures with domain κ (in particular the models
of a countable complete first-order classifiable shallow theory [FHK14])
and ∼=M the isomorphism relation on M, then ∼=M 6B Eκ

µ−cub.
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Proof of id+α 6B E κ
µ−cub

The previous proof was based on the idea that E1 can be approximated by
relations Eα

1 such that both, the E1-non-equivalence and E1-equivalence
reflect in a cub-set, the latter being in fact a final segment. This idea can
be generalized. Borel sets can be coded by pairs (t, h) where t is a
well-founded subtree of κ<ω and h is a function on the leafs. Define
(t, h)�α to be (t ∩ α<ω, h �α<ω) for suitable (“good”) α < κ.
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Proof of id+α 6B E κ
µ−cub

Lemma

Suppose (t, h) codes a Borel subset B(t,h) of 2κ × 2κ. Then

(η, ξ) ∈ B ⇐⇒ (η �α, ξ �α) ∈ B(t,h)�α

for cub-many α and (η, ξ) /∈ B ⇐⇒ (η �α, ξ �α) /∈ B(t,h)�α for cub-many
α.

Lemma

Let S be the set of Borel equivalence relations E such that for some Borel
code (t, h), E = B(t,h) and B(t,h)�α is an equivalence relation for cub-many
good α < κ. Then S contains id and is closed under jump and the join
operation

⊕
.
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Question

It has been shown that Eκ
µ−cub is Σ1

1-complete in L [HK14]. On the other
hand it has been shown in [FHK14] that under some cardinality
assumprions, T is classifiable if and only if E 2

µ−cub 66B
∼=κ

T for all regular
µ < κ. Thus a set of questions would be answered if the following
question is answered positively:

Question

Is Eκ
µ−cub reducible to E 2

µ−cub?

For example the following would follow: Suppose T1 and T2 are complete
first-order theories with T1 classifiable and shallow and T2 non-classifiable.
Also suppose that κ = λ+ = 2λ > 2ω where λ<λ = λ. Then ∼=κ

T1
is Borel

reducible to ∼=κ
T2

.
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Proof of EX
G 6B E0 for |G | 6 κ

Steps:

1 EX
G 6B E

P(G)κ

G .

2 E
P(G)κ

G 6B E
P(Fκ)κ

Fκ
.

3 E
P(Fκ)κ

Fκ
6B E0.
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Proof of EX
G 6B E0 for |G | 6 κ

Step 1: EX
G 6B E

P(G)κ

G .

Assume without loss of generality that X is a Borel subset of 2κ. Let
π : κ→ 2<κ be a bijection. Let x ∈ X and for each α < κ let

Zα(x) = {g ∈ G | gx ∈ [π(α)]}.

This defines a reduction: an element x ∈ X is mapped to (Zα(x))α<κ.
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Proof of EX
G 6B E0 for |G | 6 κ

Step 2: E
P(G)κ

G 6B E
P(Fκ)κ

Fκ
.

There is a normal subgroup N ⊆ Fκ such that G ∼= Fκ/N. Assume
without loss of generality that G = Fκ/N. Let pr be the canonical
projection map Fκ → Fκ/N. For (Aα)α<κ ∈ P(G )κ, let

F ((Aα)α<κ) = (pr−1[Aα])α<κ.
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Proof of EX
G 6B E0 for |G | 6 κ

Step 3: E
P(Fκ)κ

Fκ
6B E0.

The action of Fκ on P(Fκ)κ induces an action of Fα on P(Fα)α. Denote
Xα = P(Fα)α for all α 6 κ. Let f :

⋃
α<κ Xα → κ be a function such that

if x , y ∈ Xα and are E
P(Fα)α

Fα
-equivalent, then f (x) = f (y) and

f (x) 6= f (y) otherwise. For x ∈ Xκ let x(α) = f (x �α). Then
x 7→ (x(α))α<κ is the reduction.

Note: the basic idea is that |Fα| < |Fκ| = κ for α < κ unlike in the case
κ = ω.
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