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The Baire property

A subset of ωω or 2ω has the Baire property iff it is equal to an open set
modulo a meager set.

All analytic sets satisfy the Baire property (Suslin 1917).

“All projective sets satisfy the Baire property” is independent of ZFC
(Gödel 1938 + Solovay 1970).
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(Gödel 1938 + Solovay 1970).

Yurii Khomskii Regularity properties on the generalized reals Amsterdam 2014 2 / 35



The generalized Baire property

Assume κ regular, uncountable, κ<κ = κ and consider κκ and 2κ with the
standard topology.

Call a subset κ-meager iff it is the κ-union of nowhere dense sets. Say
that A has the κ-Baire property iff it is equal to an open set modulo a
κ-meager set.

Generalize descriptive set theory in the standard way:

Borel = smallest collection containing open sets and closed under
complements and κ-unions.

Σ1
1 = projections of closed.

Π1
n = complements of Σ1

n.
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Baire property for generalized projective sets

Observation

All (κ-)Borel sets have the κ-Baire property.

Theorem (Halko-Shelah 2001)

There is a Σ1
1 set without the κ-Baire property.

Idea: let C denote the club filter on κ, considered as a subset of 2κ, i.e.,

C = {x ∈ 2κ | {i < κ | x(i) = 1} contains a club}.

Note that:

“To be closed” is (topologically) closed.

“To be unbounded” is Gδ.

⇒ “To be in the club filter” is Σ1
1.

Show that C does not have the κ-Baire property (we will see a more general proof later).
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Baire property for generalized projective sets

Theorem (Friedman-Hyttinen-Kulikov 2014)

A κ+-product of κ-Cohen forcing (forcing with 2<κ) with supports of size
<κ, forces that all ∆1

1 sets have the κ-Baire property.

(Remember that ∆1
1 6= Borel).

Also, it is easy to see that in L there is a ∆1
1 set without the κ-Baire

property.

So ∆1
1(κ-Baire) is independent.
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Combinatorial regularity properties

In the classical setting, people have studied many regularity properties:
Lebesgue measure, Ramsey property, Sacks property etc. A lot of them
can be cast in a unifying framework in terms of forcing partial orders
(Brendle, Löwe, Ikegami, Kh, Laguzzi).

There is a rich theory of such properties for projective sets beyond the
analytic (∆1

2, Σ1
2 etc.)

We wanted to conduct a systematic study of what happens with such
properties in the setting of generalized reals.
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Why is this interesting?

Some possible answers...

Applications to forcing theory.

Understanding “what makes ω so special”.

Importance of the club-filter.

Understanding the importance of “absoluteness” in DST.

Developing new forcing techniques

...
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Classical vs. Generalized DST

Classical DST Generalized DST

Borel = ∆1
1. Borel 6= ∆1

1.

Σ1
1-absoluteness for all models and

Shoenfield absoluteness for models
containing ω1.

Σ1
1-absoluteness may fail even for

forcing extensions (destroy station-
ary set by shooting club); however,
it holds for <κ-closed forcing.

Σ1
2-good w.o. of the reals in L. Σ1

1-good w.o. of the generalized reals
in L.

“Proper forcing” is well-understood. “κ-proper forcing” is not well-
understood and no general iteration
theorems.
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Definition

Definition

We call a forcing poset P κ-tree-like if the conditions are trees on κκ or
2κ, ordered by inclusion, with some additional assumptions:

1 If T ∈ P and σ ∈ T then T ↑ σ ∈ P.

2 All T ∈ P are pruned (no terminal nodes) and <κ-closed (increasing
sequences of length < κ of nodes in T have a limit in T ).

3 The definition of P is absolute.
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Examples

κ-Cohen Cκ: basic open sets [σ] for σ ∈ κ<κ or 2<κ.

κ-Sacks Sκ: trees T ⊆ 2<κ s.t.

every node has a splitting extension, and
if {σi | i < λ} is an increasing sequence of splitting nodes of length
λ < κ, then

⋃
i<λ σi is a splitting node.

(Kanamori 1980)

κ-Miller Mκ: forcing conditions are trees T ⊆ κ<κ s.t.

every node has a (club-)splitting extension, and
if {σi | i < λ} is an increasing sequence of club-splitting nodes of
length λ < κ, then

⋃
i<λ σi is a club-node.

(Friedman & Zdomskyy 2010)
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Other examples

Other (more artificial?) examples:

κ-Laver Lκ: every σ ∈ T extending the stem is club-splitting.

κ-Mathias Rκ: uniform version of Lκ.

κ-Silver Vκ: uniform version of Sκ (only makes sense for inaccessible
κ).

NB: random forcing is missing from the list—we don’t know how to
generalize random forcing to generalized Baire spaces (cf. Giorgio’s talk
tomorrow).
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P-measurability

For A ⊆ κκ or 2κ, we follow the abstract approach of Ikegami and define:

Definition

A is P-nowhere dense iff ∀T ∈ P∃S ≤ T ([S ] ∩ A = ∅).

A is P-meager iff it is the countable union of P-null sets.

A is P-measurable iff ∀T ∈ P∃S ≤ T ([S ] ⊆∗ A or [S ] ∩ A =∗ ∅),
where ⊆∗ and =∗ stand for “modulo P-meager”.

For P = κ-Cohen, this generalizes the Baire property.
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P-measurability of projective sets

1 Are Borel sets P-measurable?

2 Are Σ1
1-sets P-measurable?

3 Are ∆1
1-sets P-measurable?

4 Imitating classical ∆1
2-theory on ∆1

1-level?
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Borel

1. Are Borel sets P-measurable?

In the ωω-setting we can use forcing and Shoenfield absoluteness to
prove that all Σ1

1-sets are P-measurable (for a wide class of P). But in the
generalized setting Shoenfield absoluteness may fail, so we need to rely on
more primitive methods.
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Topological or Axiom A

Definition

P is topological iff {[T ] | T ∈ P} forms a topology base on κκ (i.e.,
T⊥S ⇒ [T ] ∩ [S ] = ∅).
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Topological or Axiom A

Definition

P satisfies Axiom A iff there are orderings {≤α| α < κ}, with ≤0=≤,
satisfying:

1 T ≤β S implies T ≤α S , for all α ≤ β.

2 If 〈Tα | α < λ〉 is a sequence of conditions, with λ ≤ κ (in particular
λ = κ) satisfying Tβ ≤α Tα for all α ≤ β, then there exists T ∈ P
such that T ≤α Tα for all α < λ.

3 For all T ∈ P, D dense below T , and α < κ, there exists an E ⊆ D
and S ≤α T such that |E | ≤ κ and E is predense below S .

Definition

P satisfies Axiom A∗ if in 3 of the definition above, additionally we
have“[S ] ⊆

⋃
{[T ] | T ∈ E}”.
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Topological or Axiom A

Lemma

If P is topological then A is P-measurable iff A has the Baire property in
the P-topology. In particular, Borel sets are P-measurable.

Lemma

If P satisfies Axiom A∗ then the algebra of P-measurable sets is closed
under κ-unions and -intersections. In particular, Borel sets are
P-measurable.

In all practical cases P satisfies one of the above conditions.

NB: This is completely analogous to the classical situation!

Yurii Khomskii Regularity properties on the generalized reals Amsterdam 2014 17 / 35



Topological or Axiom A

Lemma

If P is topological then A is P-measurable iff A has the Baire property in
the P-topology. In particular, Borel sets are P-measurable.

Lemma

If P satisfies Axiom A∗ then the algebra of P-measurable sets is closed
under κ-unions and -intersections. In particular, Borel sets are
P-measurable.

In all practical cases P satisfies one of the above conditions.

NB: This is completely analogous to the classical situation!

Yurii Khomskii Regularity properties on the generalized reals Amsterdam 2014 17 / 35



Topological or Axiom A

Lemma

If P is topological then A is P-measurable iff A has the Baire property in
the P-topology. In particular, Borel sets are P-measurable.

Lemma

If P satisfies Axiom A∗ then the algebra of P-measurable sets is closed
under κ-unions and -intersections. In particular, Borel sets are
P-measurable.

In all practical cases P satisfies one of the above conditions.

NB: This is completely analogous to the classical situation!

Yurii Khomskii Regularity properties on the generalized reals Amsterdam 2014 17 / 35



Topological or Axiom A

Lemma

If P is topological then A is P-measurable iff A has the Baire property in
the P-topology. In particular, Borel sets are P-measurable.

Lemma

If P satisfies Axiom A∗ then the algebra of P-measurable sets is closed
under κ-unions and -intersections. In particular, Borel sets are
P-measurable.

In all practical cases P satisfies one of the above conditions.

NB: This is completely analogous to the classical situation!

Yurii Khomskii Regularity properties on the generalized reals Amsterdam 2014 17 / 35



Σ1
1

2. Are Σ1
1 sets P-measurable?

Recall the club filter used by Halko & Shelah:

C = {x ∈ 2κ | {i < κ | x(i) = 1} contains a club}.

For S ⊆ κ stationary, co-stationary, define:

CS = {x ∈ κκ | {i < κ | x(i) ∈ S} contains a club}.

Clearly CS is also Σ1
1.
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Generalizing Halko-Shelah

Theorem (Friedman-Kh-Kulikov)

1 If P is any tree-like forcing on 2κ refining Sκ, then C is not P-measurable.

2 If P is any tree-like forcing on κκ refining Mκ, then CS is not P-measurable.

Proof.

(1) Suppose C is P-measurable, let T ∈ P be s.t. [T ] ⊆∗ C or [T ] ∩ C =∗ ∅, w.l.o.g.
the former. Let {Xi | i < κ} be P-nowhere dense sets such that [T ] \ C =

⋃
i<κ Xi .

Construct a decreasing sequence of trees as follows:

T0 := T ,

Ti+1 ≤ Ti is s.t. [Ti+1] ∩ Xi = ∅ and |stem(Ti+1)| > |stem(Ti )|,
at limits λ, first let T ′λ :=

⋂
i<λ Ti , which is in P by assumption. Choose

Tλ ≤ T ′λ such that stem(Tλ) ⊇ stem(T ′λ)_ 〈0〉.
Now x :=

⋃
i<κ stem(Ti ) is a branch through T , x /∈ Xi for all i < κ, and x(i) = 0 for

club-many i < κ, hence x /∈ C—contradiction.
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1 If P is any tree-like forcing on 2κ refining Sκ, then C is not P-measurable.

2 If P is any tree-like forcing on κκ refining Mκ, then CS is not P-measurable.

Proof.

(2) Proceed analogously, except that at limit stages choose Tλ ≤ T ′λ such that
stem(Tλ) ⊇ stem(T ′λ)_ 〈α〉, where α is in S or not in S depending on what we
want.

Corollary

For all P refining Sκ or Mκ, Σ1
1(P-measurability) is false.
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∆1
1 sets

3. Are ∆1
1 sets P-measurable?

In L, use the Σ1
1-good wellorder to construct counterexamples to ∆1

1(P),
for any P, by diagonalization.

Question: Is ∆1
1(P-measurability) consistent?
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Forcing ∆1
1-P-measurability

Theorem (Friedman-Kh-Kulikov)

Let P be a <κ-closed, κ-tree-like forcing.

1 Suppose P satisfies the κ+-c.c., and let Pκ+ be the κ+-iteration of P
with supports of size <κ. Then V Pκ+ |= ∆1

1(P-measurability).

2 Suppose P satisfies Axiom A∗, and let Pκ+ be the κ+-iteration of P
with supports of size ≤κ. Moreover, assume that for every
x ∈ κκ ∩ V Pκ+ , there is α < κ+ such that x ∈ κκ ∩ V Pα . Then
V Pκ+ |= ∆1

1(P-measurability).

All forcings we consider are <κ-closed and satisfy either the κ+-c.c. or
Axiom A∗. However, the red condition is essentially about “preservation of
κ-properness”, which is a very difficult problem in the generalized setting.
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Towards the proof

For the proof, we need a lemma which is proved similarly to the ωω-case.

Lemma

Let P be as in the theorem. For every elementary submodel M ≺ Hθ of a
sufficiently large Hθ, with |M| = κ and M<κ ⊆ M, and for every
T ∈ P ∩M, there is T ′ ≤ T such that

[T ′] ⊆∗ {x ∈ κκ | x is P-generic over M}.

(where ⊆∗ means “modulo P-meager” and a κ-real x is P-generic over M iff

{S ∈ P ∩M | x ∈ [S]} is a P-generic filter over M.)
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Proof of theorem

Proof.

In V [Gκ+ ], let A be ∆1
1, defined by Σ1

1-formulas φ and ψ. Let S ∈ P be arbitrary. We
must find T ≤ S such that [T ] ⊆∗ A or T ∩ A =∗ ∅.

By assumption, there exists α < κ+ s.t. S and the parameters of φ and ψ belong to
V [Gα]. Moreover, there is a β > α s.t. S belongs to G(β + 1). Let xβ+1 be the
(β + 1)-th generic real.

In V [Gκ+ ], either φ(xβ+1) or ψ(xβ+1) holds. By symmetry, we may w.l.o.g. assume the
former. Since (the iteration of) P is <κ-closed, we have Σ1

1-absoluteness between
V [Gκ+ ] and V [Gβ+1]. In particular, V [Gβ+1] |= φ(xβ+1). By the forcing theorem there
exists T ∈ V [Gβ ], T ≤ S and T 
P φ(ẋgen).

Take an elementary M of size κ containing T . By elementarity, M |= “T 
P φ(ẋgen)”.
Going back to V [Gκ+ ], use the previous lemma to find T ′ ≤ T such that [T ′] ⊆∗ {x | x
is P-generic over M}. Now note that if x is P-generic over M and x ∈ [T ], then
M[x ] |= φ(x). By upwards-Σ1

1-absoluteness between M and V [Gκ+ ] we conclude that
φ(x) really holds. Since this was true for arbitrary x ∈ [T ′], we obtain
[T ′] ⊆∗ {x | φ(x)} = A.
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P φ(ẋgen).

Take an elementary M of size κ containing T . By elementarity, M |= “T 
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Independence for ∆1
1 sets

Corollary

Let P be as in the assumption of the theorem. Then ∆1
1(P-measurability)

is independent.

The proof of the above theorem is related to classical proofs for ∆1
2 sets.

So a natural question is: how much of the theory for classical ∆1
2 sets

holds for ∆1
1 sets in the generalized context?
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More on ∆1
1.

4. Imitating classical ∆1
2-theory for ∆1

1-level?

Theorem (Judah-Shelah 1989)

∆1
2(Baire property) holds iff for every r ∈ ωω there exists a Cohen real

over L[r ].

Does this hold for ∆1
1 sets in the generalized context?
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More on ∆1
1.

No!

Theorem (Friedman, Wu & Zdomskyy 2014)

Suppose κ is successor. There is a forcing iteration starting from L, in
which cofinally many iterands have the κ+-c.c., such that in the extension
the club filter is ∆1

1.

One can verify that this iteration adds κ-Cohen reals cofinally often!
Hence, in that model there are κ-Cohen reals over L[r ], for every r ∈ 2κ,
however ∆1

1(κ-Baire property) fails.
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More on ∆1
1

Still, there are a few things we can say.

Fact

∆1
1(κ-Baire property) ⇒ ∀r ∈ κκ ∃κ-Cohen real over L[r ].

Lemma

Suppose κ inaccessible. Then ∆1
1(Mκ-measurability) ⇒ ∀r ∈ κκ ∃x (x is

unbounded over L[r ]).
(This means {i | x(i) > y(i)} is unbounded in κ, for every y ∈ L[r ]).

Proof.

Based on the ωω-proof of Brendle & Löwe, but very technical.

We do not have any similar results for the other forcings notions.
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Implication diagram on ∆1
1 level

∆1
1(Vκ) +3 ∆1

1(Sκ)

∆1
1(Rκ)

? +3

?

;C

:B∆1
1(Lκ) +3 ∆1

1(Mκ)

;C

∆1
1(Cκ)

κ inacc.

S[

KS

Cκ = Cohen, Sκ = Sacks, Mκ = Miller, Lκ = Laver, Rκ = Mathias, Vκ = Silver.

The proofs are straightforward but quite technical.
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Are the implications strict?

Can we prove that some/any of these implications are strict, i.e., cannot
be reversed?

Theorem (Friedman-Kh-Kulikov)

Suppose κ is inaccessible. Then Con(∆1
1(Vκ-measurability) + ¬∆1

1(Mκ)).

Proof.

Perform a κ+-iteration of κ-Silver forcing, starting in L, with supports of size κ. Then

∆1
1(Vκ-measurability) holds by our previous theorem. Next, show that “κ-properness” is

preserved (similar to Kanamori’s κ-Sacks). Using inaccessibility of κ, the iteration is

“κκ-bounding”. As a result, the generic extension does not satisfy the statement

“∀r ∃x (x is unbounded over κκ ∩ L[r ])”, so ∆1
1(Mκ-measurability) fails.
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Implication diagram on ∆1
1 level

However, there are still many open questions!

∆1
1(Vκ) +3 ∆1

1(Sκ)

∆1
1(Rκ)

? +3

?

;C

:B∆1
1(Lκ) +3 ∆1

1(Mκ)

;C

∆1
1(Cκ)

κ inacc.

S[

KS

Cκ = Cohen, Sκ = Sacks, Mκ = Miller, Lκ = Laver, Rκ = Mathias, Vκ = Silver.
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General question

Question

Are we looking at the right properties?

All the properties we looked at are determined by forcing posets. We
want these forcings to be <κ-closed, so the trees T ∈ P are required to
have a certain shape.

In particular, all our trees T satisfy:

∀x ∈ [T ] ({i < κ | x�i is a split-node ofT} is club).

What if we drop this property?
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Some results

1 If we drop the assumption on κ-Sacks trees that “limits of split-nodes
are split-nodes”, we obtain a propery weaker than Sκ-measurability,
which consistently holds for all generalized projective sets,
(Schlicht).

2 If we drop the assumption on κ-Miller trees that “limits of
club-splitting-nodes are club-splitting”, we obtain a propery weaker
than Mκ-measurability, which consistently holds for all generalized
projective sets (Laguzzi, independently Lücke-Motto Ros-Schlicht).

3 If we drop the assumption on κ-Silver trees that “splitting levels from
a club” and replace it by “splitting levels form a stationary set”, we
obtain a property weaker than Vκ-measurability, which consistently
holds for all generalized projective sets (Laguzzi).
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Even more results

These weaker properties are not useful for forcing theory, because the
corresponding forcing notions are not <κ-closed.

Work in progress (Friedman & Laguzzi)

Assume κ is measurable. Consider a version of Silver forcing in which the
trees are required to split on a set positive with respect to a normal
measure on κ. The corresponding forcing is κ-proper and <κ-closed, and
the corresponding regularity property is consistent for all projective sets.
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Thank you!

Yurii Khomskii

yurii@deds.nl
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