Regularity properties on the generalized reals Yurii Khomskii KGRC, Vienna joint with Sy Friedman and Vadim Kulikov Amsterdam, 03 November 2014 ## The Baire property A subset of ω^{ω} or 2^{ω} has the **Baire property** iff it is equal to an **open** set modulo a **meager** set. ## The Baire property A subset of ω^{ω} or 2^{ω} has the **Baire property** iff it is equal to an **open** set modulo a **meager** set. - All analytic sets satisfy the Baire property (Suslin 1917). - "All projective sets satisfy the Baire property" is independent of ZFC (Gödel 1938 + Solovay 1970). ## The generalized Baire property Assume κ regular, uncountable, $\kappa^{<\kappa}=\kappa$ and consider κ^{κ} and 2^{κ} with the standard topology. ## The generalized Baire property Assume κ regular, uncountable, $\kappa^{<\kappa}=\kappa$ and consider κ^{κ} and 2^{κ} with the standard topology. Call a subset κ -meager iff it is the κ -union of nowhere dense sets. Say that A has the κ -Baire property iff it is equal to an **open** set modulo a κ -meager set. ## The generalized Baire property Assume κ regular, uncountable, $\kappa^{<\kappa}=\kappa$ and consider κ^{κ} and 2^{κ} with the standard topology. Call a subset κ -meager iff it is the κ -union of nowhere dense sets. Say that A has the κ -Baire property iff it is equal to an **open** set modulo a κ -meager set. Generalize descriptive set theory in the standard way: - Borel = smallest collection containing open sets and closed under complements and κ -unions. - Σ_1^1 = projections of closed. - $\Pi_n^1 = \text{complements of } \Sigma_n^1$. #### Observation All $(\kappa$ -)Borel sets have the κ -Baire property. #### Observation All $(\kappa$ -)Borel sets have the κ -Baire property. ### Theorem (Halko-Shelah 2001) There is a Σ_1^1 set without the κ -Baire property. #### Observation All $(\kappa$ -)Borel sets have the κ -Baire property. ### Theorem (Halko-Shelah 2001) There is a Σ_1^1 set without the κ -Baire property. Idea: let C denote the **club filter** on κ , considered as a subset of 2^{κ} , i.e., $$C = \{x \in 2^{\kappa} \mid \{i < \kappa \mid x(i) = 1\} \text{ contains a club}\}.$$ #### Note that: - "To be closed" is (topologically) closed. - "To be unbounded" is G_{δ} . - $lackbox{ } \Rightarrow$ "To be in the club filter" is Σ^1_1 . Show that C does not have the κ -Baire property (we will see a more general proof later). ### Theorem (Friedman-Hyttinen-Kulikov 2014) A κ^+ -product of κ -Cohen forcing (forcing with $2^{<\kappa}$) with supports of size $<\kappa$, forces that all Δ^1_1 sets have the κ -Baire property. (Remember that $\Delta_1^1 \neq \text{Borel}$). ### Theorem (Friedman-Hyttinen-Kulikov 2014) A κ^+ -product of κ -Cohen forcing (forcing with $2^{<\kappa}$) with supports of size $<\kappa$, forces that all Δ^1_1 sets have the κ -Baire property. (Remember that $\Delta_1^1 \neq \text{Borel}$). Also, it is easy to see that in L there is a Δ_1^1 set without the κ -Baire property. ### Theorem (Friedman-Hyttinen-Kulikov 2014) A κ^+ -product of κ -Cohen forcing (forcing with $2^{<\kappa}$) with supports of size $<\kappa$, forces that all Δ^1_1 sets have the κ -Baire property. (Remember that $\Delta_1^1 \neq \text{Borel}$). Also, it is easy to see that in L there is a Δ_1^1 set without the κ -Baire property. So $\Delta_1^1(\kappa$ -Baire) is independent. ## Combinatorial regularity properties In the classical setting, people have studied many regularity properties: Lebesgue measure, Ramsey property, Sacks property etc. A lot of them can be cast in a unifying framework in terms of **forcing partial orders** (Brendle, Löwe, Ikegami, Kh, Laguzzi). There is a rich theory of such properties for projective sets beyond the analytic $(\Delta_2^1, \Sigma_2^1 \text{ etc.})$ We wanted to conduct a systematic study of what happens with such properties in the setting of **generalized reals**. ## Why is this interesting? ## Why is this interesting? ### Some possible answers... - Applications to forcing theory. - ullet Understanding "what makes ω so special". - Importance of the club-filter. - Understanding the importance of "absoluteness" in DST. - Developing new forcing techniques - ... ### Classical vs. Generalized DST | Classical DST | Generalized DST | |-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------| | $Borel = \boldsymbol{\Delta}_1^1.$ | Borel $ eq \mathbf{\Delta}_1^1$. | | Σ_1^1 -absoluteness for all models and Shoenfield absoluteness for models containing ω_1 . | Σ_1^1 -absoluteness may fail even for forcing extensions (destroy stationary set by shooting club); however, it holds for $<\kappa$ -closed forcing. | | Σ^1_2 -good w.o. of the reals in L . | Σ^1_1 -good w.o. of the generalized reals in L . | | "Proper forcing" is well-understood. | " κ -proper forcing" is not well-understood and no general iteration theorems. | ### **Definition** #### Definition We call a forcing poset \mathbb{P} κ -tree-like if the conditions are trees on κ^{κ} or 2^{κ} , ordered by inclusion, with some additional assumptions: - **1** If $T \in \mathbb{P}$ and $\sigma \in T$ then $T \uparrow \sigma \in \mathbb{P}$. - ② All $T \in \mathbb{P}$ are pruned (no terminal nodes) and $<\kappa$ -closed (increasing sequences of length $<\kappa$ of nodes in T have a limit in T). - **3** The definition of \mathbb{P} is absolute. ### **Examples** • κ -Cohen \mathbb{C}_{κ} : basic open sets $[\sigma]$ for $\sigma \in \kappa^{<\kappa}$ or $2^{<\kappa}$. ### **Examples** - κ -Cohen \mathbb{C}_{κ} : basic open sets $[\sigma]$ for $\sigma \in \kappa^{<\kappa}$ or $2^{<\kappa}$. - κ -Sacks \mathbb{S}_{κ} : trees $T \subseteq 2^{<\kappa}$ s.t. - every node has a splitting extension, and - if $\{\sigma_i \mid i < \lambda\}$ is an increasing sequence of splitting nodes of length $\lambda < \kappa$, then $\bigcup_{i < \lambda} \sigma_i$ is a splitting node. (Kanamori 1980) ### **Examples** - κ -Cohen \mathbb{C}_{κ} : basic open sets $[\sigma]$ for $\sigma \in \kappa^{<\kappa}$ or $2^{<\kappa}$. - κ -Sacks \mathbb{S}_{κ} : trees $T \subseteq 2^{<\kappa}$ s.t. - every node has a splitting extension, and - if $\{\sigma_i \mid i < \lambda\}$ is an increasing sequence of splitting nodes of length $\lambda < \kappa$, then $\bigcup_{i < \lambda} \sigma_i$ is a splitting node. (Kanamori 1980) - κ -Miller \mathbb{M}_{κ} : forcing conditions are trees $T \subseteq \kappa^{<\kappa}$ s.t. - every node has a (club-)splitting extension, and - if $\{\sigma_i \mid i < \lambda\}$ is an increasing sequence of club-splitting nodes of length $\lambda < \kappa$, then $\bigcup_{i < \lambda} \sigma_i$ is a club-node. (Friedman & Zdomskyy 2010) ## Other examples Other (more artificial?) examples: - κ -Laver \mathbb{L}_{κ} : every $\sigma \in \mathcal{T}$ extending the stem is club-splitting. - κ -Mathias \mathbb{R}_{κ} : uniform version of \mathbb{L}_{κ} . - κ -Silver \mathbb{V}_{κ} : uniform version of \mathbb{S}_{κ} (only makes sense for inaccessible κ). ## Other examples Other (more artificial?) examples: - κ -Laver \mathbb{L}_{κ} : every $\sigma \in \mathcal{T}$ extending the stem is club-splitting. - κ -Mathias \mathbb{R}_{κ} : uniform version of \mathbb{L}_{κ} . - κ -Silver \mathbb{V}_{κ} : uniform version of \mathbb{S}_{κ} (only makes sense for inaccessible κ). NB: **random forcing** is missing from the list—we don't know how to generalize random forcing to generalized Baire spaces (cf. Giorgio's talk tomorrow). ## P-measurability For $A \subseteq \kappa^{\kappa}$ or 2^{κ} , we follow the abstract approach of Ikegami and define: #### **Definition** - *A* is \mathbb{P} -nowhere dense iff $\forall T \in \mathbb{P} \exists S \leq T ([S] \cap A = \emptyset)$. - A is \mathbb{P} -meager iff it is the countable union of \mathbb{P} -null sets. - *A* is \mathbb{P} -measurable iff $\forall T \in \mathbb{P}\exists S \leq T \ ([S] \subseteq^* A \text{ or } [S] \cap A =^* \varnothing)$, where \subseteq^* and $=^*$ stand for "modulo \mathbb{P} -meager". For $\mathbb{P} = \kappa$ -Cohen, this generalizes the Baire property. ## P-measurability of projective sets - Are Borel sets P-measurable? - **2** Are Σ_1^1 -sets \mathbb{P} -measurable? - **3** Are Δ_1^1 -sets \mathbb{P} -measurable? - Imitating classical Δ^1_2 -theory on Δ^1_1 -level? ### **Borel** 1. Are Borel sets P-measurable? ### **Borel** #### 1. Are Borel sets P-measurable? In the ω^ω -setting we can use **forcing** and **Shoenfield absoluteness** to prove that all Σ^1_1 -sets are $\mathbb P$ -measurable (for a wide class of $\mathbb P$). But in the generalized setting Shoenfield absoluteness may fail, so we need to rely on more primitive methods. #### **Definition** \mathbb{P} is **topological** iff $\{[T] \mid T \in \mathbb{P}\}$ forms a topology base on κ^{κ} (i.e., $T \perp S \Rightarrow [T] \cap [S] = \emptyset$). #### **Definition** \mathbb{P} satisfies **Axiom A** iff there are orderings $\{\leq_{\alpha} | \alpha < \kappa\}$, with $\leq_0 = \leq$, satisfying: - **1** $T \leq_{\beta} S$ implies $T \leq_{\alpha} S$, for all $\alpha \leq \beta$. - ② If $\langle T_{\alpha} \mid \alpha < \lambda \rangle$ is a sequence of conditions, with $\lambda \leq \kappa$ (in particular $\lambda = \kappa$) satisfying $T_{\beta} \leq_{\alpha} T_{\alpha}$ for all $\alpha \leq \beta$, then there exists $T \in \mathbb{P}$ such that $T \leq_{\alpha} T_{\alpha}$ for all $\alpha < \lambda$. - **3** For all $T \in \mathbb{P}$, D dense below T, and $\alpha < \kappa$, there exists an $E \subseteq D$ and $S \leq_{\alpha} T$ such that $|E| \leq \kappa$ and E is predense below S. #### Definition \mathbb{P} satisfies **Axiom A*** if in 3 of the definition above, additionally we have " $[S] \subseteq \bigcup \{[T] \mid T \in E\}$ ". #### Lemma If \mathbb{P} is topological then A is \mathbb{P} -measurable iff A has the Baire property in the \mathbb{P} -topology. In particular, Borel sets are \mathbb{P} -measurable. #### Lemma If \mathbb{P} is topological then A is \mathbb{P} -measurable iff A has the Baire property in the \mathbb{P} -topology. In particular, Borel sets are \mathbb{P} -measurable. #### Lemma If \mathbb{P} satisfies Axiom A* then the algebra of \mathbb{P} -measurable sets is closed under κ -unions and -intersections. In particular, Borel sets are \mathbb{P} -measurable. #### Lemma If \mathbb{P} is topological then A is \mathbb{P} -measurable iff A has the Baire property in the \mathbb{P} -topology. In particular, Borel sets are \mathbb{P} -measurable. #### Lemma If \mathbb{P} satisfies Axiom A^* then the algebra of \mathbb{P} -measurable sets is closed under κ -unions and -intersections. In particular, Borel sets are \mathbb{P} -measurable. In all practical cases \mathbb{P} satisfies one of the above conditions. #### Lemma If \mathbb{P} is topological then A is \mathbb{P} -measurable iff A has the Baire property in the \mathbb{P} -topology. In particular, Borel sets are \mathbb{P} -measurable. #### Lemma If \mathbb{P} satisfies Axiom A^* then the algebra of \mathbb{P} -measurable sets is closed under κ -unions and -intersections. In particular, Borel sets are \mathbb{P} -measurable. In all practical cases \mathbb{P} satisfies one of the above conditions. NB: This is completely analogous to the classical situation! # Σ_1^1 2. Are Σ_1^1 sets \mathbb{P} -measurable? # Σ_1^1 ### 2. Are Σ_1^1 sets \mathbb{P} -measurable? Recall the **club filter** used by Halko & Shelah: $$C = \{x \in 2^{\kappa} \mid \{i < \kappa \mid x(i) = 1\} \text{ contains a club}\}.$$ # Σ_1^1 ### 2. Are Σ_1^1 sets \mathbb{P} -measurable? Recall the **club filter** used by Halko & Shelah: $$C = \{x \in 2^{\kappa} \mid \{i < \kappa \mid x(i) = 1\} \text{ contains a club}\}.$$ For $S \subseteq \kappa$ stationary, co-stationary, define: $$C_S = \{x \in \kappa^{\kappa} \mid \{i < \kappa \mid x(i) \in S\} \text{ contains a club}\}.$$ Clearly C_S is also Σ_1^1 . ## Generalizing Halko-Shelah #### Theorem (Friedman-Kh-Kulikov) - **1** If \mathbb{P} is any tree-like forcing on 2^{κ} refining \mathbb{S}_{κ} , then C is not \mathbb{P} -measurable. - 2 If $\mathbb P$ is any tree-like forcing on κ^{κ} refining $\mathbb M_{\kappa}$, then C_S is not $\mathbb P$ -measurable. ## Generalizing Halko-Shelah ### Theorem (Friedman-Kh-Kulikov) - **1** If \mathbb{P} is any tree-like forcing on 2^{κ} refining \mathbb{S}_{κ} , then C is not \mathbb{P} -measurable. - 2 If \mathbb{P} is any tree-like forcing on κ^{κ} refining \mathbb{M}_{κ} , then C_S is not \mathbb{P} -measurable. #### Proof. - (1) Suppose C is \mathbb{P} -measurable, let $T \in \mathbb{P}$ be s.t. $[T] \subseteq^* C$ or $[T] \cap C =^* \emptyset$, w.l.o.g. the former. Let $\{X_i \mid i < \kappa\}$ be \mathbb{P} -nowhere dense sets such that $[T] \setminus C = \bigcup_{i < \kappa} X_i$. Construct a decreasing sequence of trees as follows: - $T_0 := T$, - $T_{i+1} \leq T_i$ is s.t. $[T_{i+1}] \cap X_i = \emptyset$ and $|\text{stem}(T_{i+1})| > |\text{stem}(T_i)|$, - at limits λ , first let $T'_{\lambda} := \bigcap_{i < \lambda} T_i$, which is in \mathbb{P} by assumption. Choose $T_{\lambda} \leq T'_{\lambda}$ such that $\operatorname{stem}(T_{\lambda}) \supseteq \operatorname{stem}(T'_{\lambda}) \cap \langle 0 \rangle$. Now $x := \bigcup_{i < \kappa} \operatorname{stem}(T_i)$ is a branch through T, $x \notin X_i$ for all $i < \kappa$, and x(i) = 0 for club-many $i < \kappa$, hence $x \notin C$ —contradiction. ## Generalizing Halko-Shelah #### Theorem (Friedman-Kh-Kulikov) - **1** If \mathbb{P} is any tree-like forcing on 2^{κ} refining \mathbb{S}_{κ} , then C is not \mathbb{P} -measurable. - 2 If \mathbb{P} is any tree-like forcing on κ^{κ} refining \mathbb{M}_{κ} , then C_S is not \mathbb{P} -measurable. #### Proof. (2) Proceed analogously, except that at limit stages choose $T_{\lambda} \leq T'_{\lambda}$ such that $\operatorname{stem}(T_{\lambda}) \supseteq \operatorname{stem}(T'_{\lambda}) \cap \langle \alpha \rangle$, where α is in S or not in S depending on what we want. ## Generalizing Halko-Shelah #### Theorem (Friedman-Kh-Kulikov) - **1** If \mathbb{P} is any tree-like forcing on 2^{κ} refining \mathbb{S}_{κ} , then C is not \mathbb{P} -measurable. - **2** If \mathbb{P} is any tree-like forcing on κ^{κ} refining \mathbb{M}_{κ} , then C_S is not \mathbb{P} -measurable. #### Proof. (2) Proceed analogously, except that at limit stages choose $T_{\lambda} \leq T'_{\lambda}$ such that $\operatorname{stem}(T_{\lambda}) \supseteq \operatorname{stem}(T'_{\lambda}) \cap \langle \alpha \rangle$, where α is in S or not in S depending on what we want. ### Corollary For all \mathbb{P} refining \mathbb{S}_{κ} or \mathbb{M}_{κ} , $\Sigma_{1}^{1}(\mathbb{P}$ -measurability) is false. # $oldsymbol{\Delta}^1_1$ sets 3. Are Δ_1^1 sets \mathbb{P} -measurable? # $oldsymbol{\Delta}_1^1$ sets ## 3. Are Δ_1^1 sets \mathbb{P} -measurable? In L, use the Σ^1_1 -good wellorder to construct counterexamples to $\Delta^1_1(\mathbb{P})$, for any \mathbb{P} , by diagonalization. # $oldsymbol{\Delta}^1_1$ sets ## 3. Are Δ_1^1 sets \mathbb{P} -measurable? In L, use the Σ^1_1 -good wellorder to construct counterexamples to $\Delta^1_1(\mathbb{P})$, for any \mathbb{P} , by diagonalization. **Question:** Is $\Delta_1^1(\mathbb{P}$ -measurability) consistent? ## Forcing Δ_1^1 - \mathbb{P} -measurability ## Theorem (Friedman-Kh-Kulikov) Let \mathbb{P} be a $<\kappa$ -closed, κ -tree-like forcing. - **1** Suppose \mathbb{P} satisfies the κ^+ -c.c., and let \mathbb{P}_{κ^+} be the κ^+ -iteration of \mathbb{P} with supports of size $<\kappa$. Then $V^{\mathbb{P}_{\kappa^+}} \models \Delta^1_1(\mathbb{P}$ -measurability). - ② Suppose \mathbb{P} satisfies Axiom A^* , and let \mathbb{P}_{κ^+} be the κ^+ -iteration of \mathbb{P} with supports of size $\leq \kappa$. Moreover, assume that for every $x \in \kappa^{\kappa} \cap V^{\mathbb{P}_{\kappa^+}}$, there is $\alpha < \kappa^+$ such that $x \in \kappa^{\kappa} \cap V^{\mathbb{P}_{\alpha}}$. Then $V^{\mathbb{P}_{\kappa^+}} \models \Delta^1_1(\mathbb{P}$ -measurability). ## Forcing Δ_1^1 - \mathbb{P} -measurability ## Theorem (Friedman-Kh-Kulikov) Let \mathbb{P} be a $<\kappa$ -closed, κ -tree-like forcing. - Suppose \mathbb{P} satisfies the κ^+ -c.c., and let \mathbb{P}_{κ^+} be the κ^+ -iteration of \mathbb{P} with supports of size $<\kappa$. Then $V^{\mathbb{P}_{\kappa^+}} \models \Delta^1_1(\mathbb{P}$ -measurability). - ② Suppose \mathbb{P} satisfies Axiom A^* , and let \mathbb{P}_{κ^+} be the κ^+ -iteration of \mathbb{P} with supports of size $\leq \kappa$. Moreover, assume that for every $x \in \kappa^{\kappa} \cap V^{\mathbb{P}_{\kappa^+}}$, there is $\alpha < \kappa^+$ such that $x \in \kappa^{\kappa} \cap V^{\mathbb{P}_{\alpha}}$. Then $V^{\mathbb{P}_{\kappa^+}} \models \Delta^1_1(\mathbb{P}$ -measurability). All forcings we consider are $<\kappa$ -closed and satisfy either the κ^+ -c.c. or Axiom A*. However, the red condition is essentially about "preservation of κ -properness", which is a very difficult problem in the generalized setting. ## Towards the proof For the proof, we need a lemma which is proved similarly to the ω^ω -case. #### Lemma Let $\mathbb P$ be as in the theorem. For every elementary submodel $M \prec \mathcal H_\theta$ of a sufficiently large $\mathcal H_\theta$, with $|M| = \kappa$ and $M^{<\kappa} \subseteq M$, and for every $T \in \mathbb P \cap M$, there is $T' \leq T$ such that $$[T'] \subseteq^* \{x \in \kappa^{\kappa} \mid x \text{ is } \mathbb{P}\text{-generic over } M\}.$$ (where \subseteq^* means "modulo \mathbb{P} -meager" and a κ -real x is \mathbb{P} -generic over M iff $\{S \in \mathbb{P} \cap M \mid x \in [S]\}$ is a \mathbb{P} -generic filter over M.) #### Proof. In $V[G_{\kappa^+}]$, let A be Δ^1_1 , defined by Σ^1_1 -formulas ϕ and ψ . Let $S \in \mathbb{P}$ be arbitrary. We must find $T \leq S$ such that $[T] \subseteq^* A$ or $T \cap A =^* \varnothing$. #### Proof. In $V[G_{\kappa^+}]$, let A be Δ^1_1 , defined by Σ^1_1 -formulas ϕ and ψ . Let $S \in \mathbb{P}$ be arbitrary. We must find $T \leq S$ such that $[T] \subseteq^* A$ or $T \cap A =^* \varnothing$. By assumption, there exists $\alpha < \kappa^+$ s.t. S and the parameters of ϕ and ψ belong to $V[G_{\alpha}]$. Moreover, there is a $\beta > \alpha$ s.t. S belongs to $G(\beta+1)$. Let $x_{\beta+1}$ be the $(\beta+1)$ -th generic real. #### Proof. In $V[G_{\kappa^+}]$, let A be Δ^1_1 , defined by Σ^1_1 -formulas ϕ and ψ . Let $S \in \mathbb{P}$ be arbitrary. We must find $T \leq S$ such that $[T] \subseteq^* A$ or $T \cap A =^* \varnothing$. By assumption, there exists $\alpha < \kappa^+$ s.t. S and the parameters of ϕ and ψ belong to $V[G_{\alpha}]$. Moreover, there is a $\beta > \alpha$ s.t. S belongs to $G(\beta+1)$. Let $x_{\beta+1}$ be the $(\beta+1)$ -th generic real. In $V[G_{\kappa^+}]$, either $\phi(x_{\beta+1})$ or $\psi(x_{\beta+1})$ holds. By symmetry, we may w.l.o.g. assume the former. Since (the iteration of) $\mathbb P$ is $<\kappa$ -closed, we have Σ^1_1 -absoluteness between $V[G_{\kappa^+}]$ and $V[G_{\beta+1}]$. In particular, $V[G_{\beta+1}] \models \phi(x_{\beta+1})$. By the forcing theorem there exists $T \in V[G_{\beta}]$, $T \leq S$ and $T \Vdash_{\mathbb P} \phi(\dot{x}_{\text{gen}})$. #### Proof. In $V[G_{\kappa^+}]$, let A be Δ^1_1 , defined by Σ^1_1 -formulas ϕ and ψ . Let $S \in \mathbb{P}$ be arbitrary. We must find $T \leq S$ such that $[T] \subseteq^* A$ or $T \cap A =^* \varnothing$. By assumption, there exists $\alpha < \kappa^+$ s.t. S and the parameters of ϕ and ψ belong to $V[G_{\alpha}]$. Moreover, there is a $\beta > \alpha$ s.t. S belongs to $G(\beta+1)$. Let $x_{\beta+1}$ be the $(\beta+1)$ -th generic real. In $V[G_{\kappa^+}]$, either $\phi(x_{\beta+1})$ or $\psi(x_{\beta+1})$ holds. By symmetry, we may w.l.o.g. assume the former. Since (the iteration of) $\mathbb P$ is $<\kappa$ -closed, we have Σ^1_1 -absoluteness between $V[G_{\kappa^+}]$ and $V[G_{\beta+1}]$. In particular, $V[G_{\beta+1}] \models \phi(x_{\beta+1})$. By the forcing theorem there exists $T \in V[G_{\beta}]$, $T \leq S$ and $T \Vdash_{\mathbb P} \phi(x_{\text{gen}})$. Take an elementary M of size κ containing T. By elementarity, $M \models "T \Vdash_{\mathbb{P}} \phi(\dot{\mathbf{x}}_{\mathrm{gen}})"$. Going back to $V[G_{\kappa^+}]$, use the previous lemma to find $T' \leq T$ such that $[T'] \subseteq^* \{x \mid x \text{ is } \mathbb{P}\text{-generic over } M\}$. Now note that if x is $\mathbb{P}\text{-generic over } M$ and $x \in [T]$, then $M[x] \models \phi(x)$. By upwards- Σ^1_1 -absoluteness between M and $V[G_{\kappa^+}]$ we conclude that $\phi(x)$ really holds. Since this was true for arbitrary $x \in [T']$, we obtain $[T'] \subseteq^* \{x \mid \phi(x)\} = A$. ## Independence for Δ_1^1 sets ### Corollary Let $\mathbb P$ be as in the assumption of the theorem. Then $\Delta^1_1(\mathbb P$ -measurability) is independent. # Independence for Δ_1^1 sets ### Corollary Let $\mathbb P$ be as in the assumption of the theorem. Then $\Delta^1_1(\mathbb P$ -measurability) is independent. The proof of the above theorem is related to classical proofs for Δ_2^1 sets. So a natural question is: how much of the theory for classical Δ_2^1 sets holds for Δ_1^1 sets in the generalized context? 4. Imitating classical Δ_2^1 -theory for Δ_1^1 -level? ## 4. Imitating classical Δ_2^1 -theory for Δ_1^1 -level? ### Theorem (Judah-Shelah 1989) $\Delta_2^1(Baire\ property)$ holds iff for every $r \in \omega^\omega$ there exists a Cohen real over L[r]. ## 4. Imitating classical Δ_2^1 -theory for Δ_1^1 -level? ## Theorem (Judah-Shelah 1989) $\Delta_2^1(Baire\ property)$ holds iff for every $r\in\omega^\omega$ there exists a Cohen real over L[r]. Does this hold for Δ_1^1 sets in the generalized context? No! ## Theorem (Friedman, Wu & Zdomskyy 2014) Suppose κ is successor. There is a forcing iteration starting from L, in which cofinally many iterands have the κ^+ -c.c., such that in the extension the club filter is Δ^1_1 . No! ## Theorem (Friedman, Wu & Zdomskyy 2014) Suppose κ is successor. There is a forcing iteration starting from L, in which cofinally many iterands have the κ^+ -c.c., such that in the extension the club filter is Δ^1_1 . One can verify that this iteration adds κ -Cohen reals cofinally often! Hence, in that model there are κ -Cohen reals over L[r], for every $r \in 2^{\kappa}$, however $\Delta^1_1(\kappa$ -Baire property) fails. Still, there are a few things we can say. #### Fact $\Delta_1^1(\kappa$ -Baire property) $\Rightarrow \forall r \in \kappa^{\kappa} \exists \kappa$ -Cohen real over L[r]. Still, there are a few things we can say. #### **Fact** $\Delta_1^1(\kappa$ -Baire property) $\Rightarrow \forall r \in \kappa^{\kappa} \exists \kappa$ -Cohen real over L[r]. #### Lemma Suppose κ inaccessible. Then $\Delta_1^1(\mathbb{M}_{\kappa}$ -measurability) $\Rightarrow \forall r \in \kappa^{\kappa} \exists x \ (x \ is \ unbounded \ over \ L[r]).$ (This means $\{i \mid x(i) > y(i)\}$ is unbounded in κ , for every $y \in L[r]$). ### Proof. Based on the ω^{ω} -proof of Brendle & Löwe, but very technical. Still, there are a few things we can say. #### **Fact** $\Delta_1^1(\kappa$ -Baire property) $\Rightarrow \forall r \in \kappa^{\kappa} \exists \kappa$ -Cohen real over L[r]. #### Lemma Suppose κ inaccessible. Then $\Delta_1^1(\mathbb{M}_{\kappa}$ -measurability) $\Rightarrow \forall r \in \kappa^{\kappa} \exists x \ (x \ is \ unbounded \ over \ L[r]).$ (This means $\{i \mid x(i) > y(i)\}$ is unbounded in κ , for every $y \in L[r]$). #### Proof. Based on the ω^{ω} -proof of Brendle & Löwe, but very technical. We do not have any similar results for the other forcings notions. # Implication diagram on Δ_1^1 level $\mathbb{C}_\kappa = \mathsf{Cohen}, \, \mathbb{S}_\kappa = \mathsf{Sacks}, \, \mathbb{M}_\kappa = \mathsf{Miller}, \, \mathbb{L}_\kappa = \mathsf{Laver}, \, \mathbb{R}_\kappa = \mathsf{Mathias}, \, \mathbb{V}_\kappa = \mathsf{Silver}.$ The proofs are straightforward but quite technical. ## Are the implications strict? Can we prove that some/any of these implications are strict, i.e., cannot be reversed? ## Are the implications strict? Can we prove that some/any of these implications are strict, i.e., cannot be reversed? ## Theorem (Friedman-Kh-Kulikov) Suppose κ is inaccessible. Then $\operatorname{Con}(\Delta^1_1(\mathbb{V}_{\kappa}\text{-measurability}) + \neg \Delta^1_1(\mathbb{M}_{\kappa}))$. ### Proof. Perform a κ^+ -iteration of κ -Silver forcing, starting in L, with supports of size κ . Then $\Delta^1_1(\mathbb{V}_{\kappa}$ -measurability) holds by our previous theorem. Next, show that " κ -properness" is preserved (similar to Kanamori's κ -Sacks). Using inaccessibility of κ , the iteration is " κ^{κ} -bounding". As a result, the generic extension does not satisfy the statement " $\forall r \exists x \ (x \text{ is unbounded over } \kappa^{\kappa} \cap L[r])$ ", so $\Delta^1_1(\mathbb{M}_{\kappa}$ -measurability) fails. ## Implication diagram on Δ_1^1 level However, there are still many open questions! $\mathbb{C}_\kappa = \mathsf{Cohen}, \, \mathbb{S}_\kappa = \mathsf{Sacks}, \, \mathbb{M}_\kappa = \mathsf{Miller}, \, \mathbb{L}_\kappa = \mathsf{Laver}, \, \mathbb{R}_\kappa = \mathsf{Mathias}, \, \mathbb{V}_\kappa = \mathsf{Silver}.$ ## General question ### Question Are we looking at the right properties? ## General question ### Question Are we looking at the right properties? All the properties we looked at are determined by **forcing** posets. We want these forcings to be $<\kappa$ -closed, so the trees $\mathcal{T}\in\mathbb{P}$ are required to have a certain shape. ## General question #### Question Are we looking at the right properties? All the properties we looked at are determined by **forcing** posets. We want these forcings to be $<\kappa$ -closed, so the trees $T\in\mathbb{P}$ are required to have a certain shape. In particular, all our trees T satisfy: $$\forall x \in [T] (\{i < \kappa \mid x | i \text{ is a split-node of } T\} \text{ is club}).$$ What if we drop this property? ### Some results • If we drop the assumption on κ -Sacks trees that "limits of split-nodes are split-nodes", we obtain a propery weaker than \mathbb{S}_{κ} -measurability, which consistently holds for all generalized projective sets, (Schlicht). ## Some results - If we drop the assumption on κ -Sacks trees that "limits of split-nodes are split-nodes", we obtain a propery weaker than \mathbb{S}_{κ} -measurability, which consistently holds for all generalized projective sets, (Schlicht). - ② If we drop the assumption on κ -Miller trees that "limits of club-splitting-nodes are club-splitting", we obtain a propery weaker than \mathbb{M}_{κ} -measurability, which consistently holds for all generalized projective sets (Laguzzi, independently Lücke-Motto Ros-Schlicht). ## Some results - If we drop the assumption on κ -Sacks trees that "limits of split-nodes are split-nodes", we obtain a propery weaker than \mathbb{S}_{κ} -measurability, which consistently holds for all generalized projective sets, (Schlicht). - ② If we drop the assumption on κ -Miller trees that "limits of club-splitting-nodes are club-splitting", we obtain a propery weaker than \mathbb{M}_{κ} -measurability, which consistently holds for all generalized projective sets (Laguzzi, independently Lücke-Motto Ros-Schlicht). - **3** If we drop the assumption on κ -Silver trees that "splitting levels from a club" and replace it by "splitting levels form a stationary set", we obtain a property weaker than \mathbb{V}_{κ} -measurability, which consistently holds for all generalized projective sets (Laguzzi). ### Even more results These weaker properties are not useful for forcing theory, because the corresponding forcing notions are **not** $<\kappa$ -**closed.** ### Even more results These weaker properties are not useful for forcing theory, because the corresponding forcing notions are **not** $<\kappa$ -**closed.** ## Work in progress (Friedman & Laguzzi) Assume κ is measurable. Consider a version of Silver forcing in which the trees are required to split **on a set positive with respect to a normal measure on** κ . The corresponding forcing is κ -proper and κ -closed, and the corresponding regularity property is consistent for all projective sets. ## Thank you! Yurii Khomskii yurii@deds.nl