$\mathbf{\Delta}_1^1$ subsets of $\kappa \kappa$

Peter Holy

University of Bonn

presenting joint work with Philipp Lücke

November 2, 2014

Can set-theoretically interesting objects, which are (in some intuitive sense) complicated, have simple definitions over $\kappa \kappa$ - or, equivalently, over $H(\kappa^+)$, while certain properties of canonical inner models fail to hold?

Can set-theoretically interesting objects, which are (in some intuitive sense) complicated, have simple definitions over $\kappa \kappa$ - or, equivalently, over $H(\kappa^+)$, while certain properties of canonical inner models fail to hold?

Sample Objects: Wellorders of $H(\kappa^+)$, Bernstein subsets of $\kappa\kappa$. Sample Properties: GCH, non-existence of large large cardinals.

Can set-theoretically interesting objects, which are (in some intuitive sense) complicated, have simple definitions over $\kappa \kappa$ - or, equivalently, over $H(\kappa^+)$, while certain properties of canonical inner models fail to hold?

Sample Objects: Wellorders of $H(\kappa^+)$, Bernstein subsets of $\kappa\kappa$. Sample Properties: GCH, non-existence of large large cardinals.

Summary Preview

If $\kappa = \omega$, classical results show that the Σ_1 -definability of such objects over $H(\omega_1)$ implies strong L-like properties.

Can set-theoretically interesting objects, which are (in some intuitive sense) complicated, have simple definitions over $\kappa \kappa$ - or, equivalently, over $H(\kappa^+)$, while certain properties of canonical inner models fail to hold?

Sample Objects: Wellorders of $H(\kappa^+)$, Bernstein subsets of $\kappa\kappa$. Sample Properties: GCH, non-existence of large large cardinals.

Summary Preview

If $\kappa = \omega$, classical results show that the Σ_1 -definability of such objects over $H(\omega_1)$ implies strong L-like properties. However if κ is uncountable with $\kappa^{<\kappa} = \kappa$, it is consistent for such objects to be Δ_1 -definable over $H(\kappa^+)$ while certain inner model properties fail.

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Theorem (Mansfield, 1975)

The existence of a Σ_1 -definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in L[x]. In particular, if there is a Σ_1 -definable wellordering of $H(\omega_1)$, CH holds.

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Theorem (Mansfield, 1975)

The existence of a Σ_1 -definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in L[x]. In particular, if there is a Σ_1 -definable wellordering of $H(\omega_1)$, CH holds.

Theorem (Brendle - Löwe, 1999)

The same holds for Bernstein subsets of ${}^{\omega}\omega$.

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Theorem (Mansfield, 1975)

The existence of a Σ_1 -definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in L[x]. In particular, if there is a Σ_1 -definable wellordering of $H(\omega_1)$, CH holds.

Theorem (Brendle - Löwe, 1999)

The same holds for Bernstein subsets of ${}^{\omega}\omega$.

Theorem (Martin - Steel, 1985)

If there are infinitely many Woodin cardinals, then Projective Determinacy holds. The latter implies that there is no definable wellorder of $H(\omega_1)$.

Peter Holy (Bonn)

Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a small, cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a small, cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a small, cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a small, cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a small, cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Holy - Lücke, 2013)

The assumption $2^{\kappa} = \kappa^+$ can be dropped in the above theorem, replacing preservation of $2^{\kappa} = \kappa^+$ by preservation of the value of 2^{κ} .

Reminder (Mansfield)

If there is a Σ_1 -definable wellordering of $H(\omega_1)$, then CH holds.

Reminder (Mansfield)

If there is a Σ_1 -definable wellordering of $H(\omega_1)$, then CH holds.

Question

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, does the existence of a Σ_1 -definable wellordering of $H(\kappa^+)$ imply that $2^{\kappa} = \kappa^+$?

Reminder (Mansfield)

If there is a Σ_1 -definable wellordering of $H(\omega_1)$, then CH holds.

Question

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, does the existence of a Σ_1 -definable wellordering of $H(\kappa^+)$ imply that $2^{\kappa} = \kappa^+$?

We will answer this question negatively. To motivate our approach, we want to show how one can (quite easily) introduce a Σ_2 -definable wellordering of $H(\kappa^+)$ when κ is uncountable and $\kappa^{<\kappa} = \kappa$, using a very well-behaved notion of forcing.

Given some suitable enumeration $\langle s_{\alpha} | \alpha < \kappa \rangle$ of $\langle \kappa_{\kappa}$, forcing with Solovay's almost disjoint coding forcing (or rather, its generalization to κ) makes a given set $A \subseteq {}^{\kappa}\kappa \Sigma_2^0$ -definable over ${}^{\kappa}\kappa$ - it adds a function $t: \kappa \to 2$ such that in the generic extension, for every $x \in {}^{\kappa}\kappa$,

$$x \in A \iff \exists \beta < \kappa \ t(\alpha) = 1$$
 for all $\beta < \alpha < \kappa$ with $s_{\alpha} \subseteq x$.

Moreover this forcing is $<\kappa$ -closed, κ^+ -cc and a subset of $H(\kappa^+)$.

Given some suitable enumeration $\langle s_{\alpha} | \alpha < \kappa \rangle$ of $\langle \kappa_{\kappa}$, forcing with Solovay's almost disjoint coding forcing (or rather, its generalization to κ) makes a given set $A \subseteq {}^{\kappa}\kappa \Sigma_2^0$ -definable over ${}^{\kappa}\kappa$ - it adds a function $t: \kappa \to 2$ such that in the generic extension, for every $x \in {}^{\kappa}\kappa$,

$$x \in A \iff \exists \beta < \kappa \ t(\alpha) = 1 \text{ for all } \beta < \alpha < \kappa \text{ with } s_{\alpha} \subseteq x.$$

Moreover this forcing is $<\kappa$ -closed, κ^+ -cc and a subset of $H(\kappa^+)$.

Using this, we could pick any wellordering < of $H(\kappa^+)$ and make it Δ_1 -definable over $H(\kappa^+)$ of a *P*-generic extension. But forcing with *P* adds new subsets of κ , so < is not a wellordering of $H(\kappa^+)$ anymore.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$. Apply the almost disjoint coding forcing (denote it by P) to make $< \Delta_1$ -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$. Apply the almost disjoint coding forcing (denote it by P) to make $< \Delta_1$ -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$. Apply the almost disjoint coding forcing (denote it by P) to make $< \Delta_1$ -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model. This allows us to define

$$x <^* y \iff \exists \dot{x} \forall \dot{y} \left[(\dot{x}^G = x \land \dot{y}^G = y) \rightarrow \dot{x} < \dot{y} \right],$$

where G is the P-generic filter.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$. Apply the almost disjoint coding forcing (denote it by P) to make $< \Delta_1$ -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model. This allows us to define

$$x <^* y \iff \exists \dot{x} \forall \dot{y} \left[(\dot{x}^G = x \land \dot{y}^G = y) \rightarrow \dot{x} < \dot{y} \right],$$

where G is the P-generic filter. Using Σ_1 -definability of P and G over the new $H(\kappa^+)$, <* is a Σ_2 -definable wellordering of the new $H(\kappa^+)$. \Box

If $2^{\kappa} = \kappa^+$, it is possible to pull a small trick and spare one quantifier in the above (by coding all initial segments of <, which in that case have size at most κ and are thus elements of $H(\kappa^+)$). Otherwise however, the above suggests that one cannot hope for a wellordering of the $H(\kappa^+)$ of the ground model to *induce* a Σ_1 -definable wellordering of the $H(\kappa^+)$ of some generic extension, at least not *directly* via names.

By different means, we obtained the following.

Theorem

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a partial order P which is $<\kappa$ -closed, κ^+ -cc and a subset of $H(\kappa^+)$, which introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

Moreover, the same can be done for a Δ_1^1 Bernstein subset of κ_{κ} .

By different means, we obtained the following.

Theorem

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a partial order P which is $<\kappa$ -closed, κ^+ -cc and a subset of $H(\kappa^+)$, which introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

Moreover, the same can be done for a Δ_1^1 Bernstein subset of κ_{κ} .

The basic idea of our solution is to build a forcing P that, in the course of an iteration, adds a wellordering of $H(\kappa^+)$ of the P-generic extension while simultaneously making (larger and larger fragments of) this wellordering nicely definable.

Let $\lambda = 2^{\kappa}$. We inductively construct a sequence $\langle P_{\gamma} | \gamma \leq \lambda \rangle$ of partial orders such that P_{δ} is a complete subforcing of P_{γ} whenever $\delta \leq \gamma \leq \lambda$ (i.e. an iteration of length λ) and let $P = P_{\lambda}$.

A condition p in P_{γ} specifies a_p , a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_{γ} we require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \dot{x}_{\delta}$.

A condition p in P_{γ} specifies a_p , a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_{γ} we require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \dot{x}_{\delta}$. Moreover p specifies components in a certain coding forcing, namely one that makes (some canonical code for) $\{(\delta, \alpha, x_{\delta}(\alpha)) \mid (\delta, \alpha) \in a_p)\}$ definable over $H(\kappa^+)$, where $p \Vdash x_{\delta}(\alpha) = \dot{x}_{\delta}(\alpha)$.

A condition p in P_{γ} specifies a_p , a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_{γ} we require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \dot{x}_{\delta}$. Moreover p specifies components in a certain coding forcing, namely one that makes (some canonical code for) $\{(\delta, \alpha, x_{\delta}(\alpha)) \mid (\delta, \alpha) \in a_p)\}$ definable over $H(\kappa^+)$, where $p \Vdash x_{\delta}(\alpha) = \dot{x}_{\delta}(\alpha)$.

The coding forcing C(A) is capable of coding some $A \subseteq \lambda$ by a generically added subset of κ in a Σ_1 -way over $H(\kappa^+)$ s.t. if $B \supseteq A$ then C(A) is a complete subforcing of C(B) (we need this to obtain the complete subforcing property above).

A condition p in P_{γ} specifies a_p , a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_{γ} we require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \dot{x}_{\delta}$. Moreover p specifies components in a certain coding forcing, namely one that makes (some canonical code for) $\{(\delta, \alpha, x_{\delta}(\alpha)) \mid (\delta, \alpha) \in a_p)\}$ definable over $H(\kappa^+)$, where $p \Vdash x_{\delta}(\alpha) = \dot{x}_{\delta}(\alpha)$.

The coding forcing C(A) is capable of coding some $A \subseteq \lambda$ by a generically added subset of κ in a Σ_1 -way over $H(\kappa^+)$ s.t. if $B \supseteq A$ then C(A) is a complete subforcing of C(B) (we need this to obtain the complete subforcing property above). Then by a density argument $(q \le p \to a_q \supseteq a_p)$, we eventually code the whole sequence of evaluations of the \dot{x}_{γ} .

Peter Holy (Bonn)

Club Coding

joint work with David Asperó and Philipp Lücke

The Coding Problem

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

The Coding Problem

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

This requirement is not satisfied by the Almost Disjoint Coding forcing P:

The Coding Problem

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

This requirement is not satisfied by the Almost Disjoint Coding forcing P:

Assume P(A) is a complete subforcing of $P(\kappa \kappa)$ for every $A \subseteq \kappa \kappa$. Thus in a $P(\kappa \kappa)$ -generic extension, we have generic filters for P(A) for every $A \subseteq \kappa \kappa$.

The Coding Problem

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

This requirement is not satisfied by the Almost Disjoint Coding forcing P:

Assume P(A) is a complete subforcing of $P(\kappa \kappa)$ for every $A \subseteq \kappa \kappa$. Thus in a $P(\kappa \kappa)$ -generic extension, we have generic filters for P(A) for every $A \subseteq \kappa \kappa$. Since Borel definitions are absolute (for models containing the parameters used), we obtain a model where every ground model subset of $H(\kappa^+)$ is definable from a subset of κ .

The Coding Problem

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

This requirement is not satisfied by the Almost Disjoint Coding forcing P:

Assume P(A) is a complete subforcing of $P(\kappa \kappa)$ for every $A \subseteq \kappa \kappa$. Thus in a $P(\kappa \kappa)$ -generic extension, we have generic filters for P(A) for every $A \subseteq \kappa \kappa$. Since Borel definitions are absolute (for models containing the parameters used), we obtain a model where every ground model subset of $H(\kappa^+)$ is definable from a subset of κ . A simple counting argument shows that there are more of the former than there are of the latter and thus yields a contradiction.

Peter Holy (Bonn)

We thus choose C(A) to be a variation of the Almost Disjoint Coding forcing for A (that could in fact rather be seen as a generalization of the Canonical Function Coding by Asperó and Friedman to a non-GCH context), that combines the classic forcing with iterated club shooting and has the desired property that $A \subseteq B$ implies that C(A) is a complete subforcing of C(B). In particular, C(A) will make $A \Sigma_1$ -definable, but not Borel. Thus the argument from the previous slide does not apply here.

Club Coding

Definition

Given $A \subseteq {}^{\kappa}\kappa$, we let C(A) be the partial order whose conditions are tuples

$$p = (s_p, t_p, \langle c_x^p \, | \, x \in a_p \rangle)$$

such that the following hold for some successor ordinal $\gamma_p < \kappa$.

s_p: γ_p → ^{<κ}κ, t_p: γ_p → 2 and a_p ∈ [A]^{<κ}.
If x ∈ a_p, then c^p_x is a closed subset of γ_p and s_p(α) ⊆ x → t_p(α) = 1 for all α ∈ c^p_x.
We let q ≤ p if s_p = s_q ↾ γ_p, t_p = t_q ↾ γ_p, a_p ⊆ a_q and c^p_x = c^q_x ∩ γ_p for every x ∈ a_p.

Lemma

Assume G is C(A)-generic, $s = \bigcup_{p \in G} s_p$ and $t = \bigcup_{p \in G} t_p$. Then $s \colon \kappa \to {}^{<\kappa}\kappa, t \colon \kappa \to 2$ and A is equal to the set of all $x \in ({}^{\kappa}\kappa)^{V[G]}$ such that

$$\forall \alpha \in C \ [s(\alpha) \subseteq x \to t(\alpha) = 1]$$

holds for some club subset C of κ in V[G].

Moreover, C(A) is $<\kappa$ -closed, κ^+ -cc, a subset of $H(\kappa^+)$ and whenever $A \subseteq B \subseteq {}^{\kappa}\kappa$, then C(A) is a complete subforcing of C(B).

Simplifying the parameter

joint work with Philipp Lücke

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve our earlier result to a Σ_1 -definition for a wellorder that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -sequence of disjoint stationary subsets of κ on cof(λ).

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve our earlier result to a Σ_1 -definition for a wellorder that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -sequence of disjoint stationary subsets of κ on cof(λ). If sufficiently close to **L**, one may choose a canonically $\Sigma_1(\kappa)$ -definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$.

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve our earlier result to a Σ_1 -definition for a wellorder that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -sequence of disjoint stationary subsets of κ on cof(λ). If sufficiently close to **L**, one may choose a canonically $\Sigma_1(\kappa)$ -definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$. Similar results are possible for inaccessible κ , but one needs to assume the existence of a κ -sequence of disjoint fat stationary subsets of κ .

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve our earlier result to a Σ_1 -definition for a wellorder that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -sequence of disjoint stationary subsets of κ on cof(λ). If sufficiently close to **L**, one may choose a canonically $\Sigma_1(\kappa)$ -definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$. Similar results are possible for inaccessible κ , but one needs to assume the existence of a κ -sequence of disjoint fat stationary subsets of κ .

Theorem

If κ is a regular uncountable L-cardinal, then there is a cofinality-preserving forcing extension of L with a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$ and $2^{\kappa} > \kappa^+$.

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve our earlier result to a Σ_1 -definition for a wellorder that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -sequence of disjoint stationary subsets of κ on cof(λ). If sufficiently close to **L**, one may choose a canonically $\Sigma_1(\kappa)$ -definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$. Similar results are possible for inaccessible κ , but one needs to assume the existence of a κ -sequence of disjoint fat stationary subsets of κ .

Theorem

If κ is a regular uncountable L-cardinal, then there is a cofinality-preserving forcing extension of L with a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$ and $2^{\kappa} > \kappa^+$. Such results are also possible in the presence of mild large cardinals, for example the above can also be carried out over L[U], the canonical inner model for a measurable cardinal.

Even milder large cardinal assumptions (like the existence of 0^{\sharp}) imply that the parameter κ cannot be dropped.

Even milder large cardinal assumptions (like the existence of 0^{\sharp}) imply that the parameter κ cannot be dropped. Assume $H(\kappa^+)$ has a Σ_1 -definable wellorder without parameters for some $\kappa \geq \omega_1$.

Even milder large cardinal assumptions (like the existence of 0^{\sharp}) imply that the parameter κ cannot be dropped. Assume $H(\kappa^+)$ has a Σ_1 -definable wellorder without parameters for some $\kappa \geq \omega_1$. Using that $H(\omega_1) \prec_{\Sigma_1} H(\kappa^+)$, it follows that the same formula gives a Σ_1 -definable wellorder of $H(\omega_1)$ and thus by Mansfield's theorem, all reals are in **L**. Even milder large cardinal assumptions (like the existence of 0^{\sharp}) imply that the parameter κ cannot be dropped. Assume $H(\kappa^+)$ has a Σ_1 -definable wellorder without parameters for some $\kappa \geq \omega_1$. Using that $H(\omega_1) \prec_{\Sigma_1} H(\kappa^+)$, it follows that the same formula gives a Σ_1 -definable wellorder of $H(\omega_1)$ and thus by Mansfield's theorem, all reals are in **L**.

Strong large cardinal assumptions imply that for $H(\omega_2)$, a defining parameter for a Σ_1 -definable wellordering cannot even be *simple*.

Theorem (A Corollary of results by Woodin)

Assume that there are infinitely many Woodin cardinals with a measurable cardinal above. If there is a wellordering of $H(\omega_2)$ that is Σ_1 -definable over $H(\omega_2)$ with parameter $z \subseteq \omega_1$, then $z \notin L(\mathbb{R})$.

We hope to be able to show that Δ_1^1 -definability of certain interesting subsets of κ_{κ} is compatible with the negation of other **L**-like properties, such with large cardinal strength, by mixing the forcing presented in this talk with large cardinal collapses.

We hope to be able to show that Δ_1^1 -definability of certain interesting subsets of κ_{κ} is compatible with the negation of other **L**-like properties, such with large cardinal strength, by mixing the forcing presented in this talk with large cardinal collapses. For example, we hope to be able to give a positive answer to the following.

Open Question

Is it consistent that the perfect set property holds for all κ -Borel subsets of $\kappa \kappa$ while it fails for a $\mathbf{\Delta}_1^1$ set?

Thank you.