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Abstract

We generalise the construction of infinite matroids from trees of
matroids to allow the matroids at the nodes, as well as the field over
which they are represented, to be infinite.

1 Introduction

In 2008, Bruhn et al [8] introduced several equivalent axiomatisations for
infinite matroids, providing a foundation on which a theory of infinite ma-
troids with duality can be built. We shall work with a slightly better behaved
subclass of infinite matroids, called tame matroids. This class includes all
finitary matroids and all the other motivating examples of infinite matroids
but is easier to work with than the class of infinite matroids in general [1],
[2], [3], [4], [5], [6]. In [3], we gave a construction by means of which finite
matroids can be stuck together to get infinite tame matroids. The construc-
tion of [3] was restricted to the countable setting. In this paper, we extend
it to the general setting.

A large collection of motivating examples of infinite matroids arises from
locally finite graphs G. First of all, two well-established matroids associated
to such a graph G are the finite cycle matroid MFC(G), whose circuits are
the finite cycles in G, and the topological cycle matroid MTC(G), whose
circuits are the edge sets of topological circles in the topological space |G|
obtained from G by adding the ends [7]. More generally, we say a tame
matroid is a G-matroid if all of its circuits are edge sets of topological circles
in |G| and all of its cocircuits are bonds of G. Thus both MFC(G) and
MTC(G) are G-matroids.

It turns out that any G-matroid M is determined by a set Ψ of ends of
G, in that the circuits of M are the Ψ-circuits, that is, the edge sets of those
topological circles that only use ends from Ψ [5]. Unfortunately, there are
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graphs G and sets Ψ of ends such that the set of Ψ-circuits is not the set
of circuits of a matroid [3]. But this can only happen if Ψ is topologically
unpleasant.

Theorem 1.1 ([3]). Let Ψ be a Borel set of ends of a locally finite graph G.
Then the Ψ-circuits of G are the circuits of a matroid.

Ψ-circuits in graphs are a special case of a more general construction: A
tree of presentations T over a field k consists of a tree TT with a matroid
presentaed over k at each node, where the ground sets of these matroids
are only allowed to overlap if they are at adjacent nodes. Very roughly, the
circuits of T are obtained by gluing together local circuits at the nodes of
some subtree. Given a set Ψ of ends of T , the Ψ-circuits are those circuits
of T for which the underlying subtree has all its ends in Ψ. The following
theorem implies Theorem 1.1.

Theorem 1.2 ([3]). Let k be a finite field and T be a tree of presentations1

over k. If Ψ is a Borel set of ends of TT , then the Ψ-circuits are the circuits
of a matroid, called the Ψ-matroid of T .

Ψ-matroids also appear naturally in the study of planar duality for in-
finite graphs [11] and in the reconstruction theorem of tame matroids from
their canonical decompositions into 3-connected minors [5].

The Ψ-matroid construction of Theorem 1.2 can be thought of as giving,
in a sense, a limit of the matroids induced from finite subtrees, but with the
advantage that we are able to freely specify a great deal of information ‘at
infinity’, namely the set Ψ. If we choose Ψ to be empty, this corresponds
to taking the direct limit. On the other hand, taking Ψ to be the set of all
ends corresponds to taking the inverse limit.

The purpose of this paper is to prove an extension of Theorem 1.2. We
have proved this extension with an application in mind: it is used as a tool
in the proof of an extension of Theorem 1.1 to arbitrary graphs [9]. We have
tried to avoid the need for further generalisations by making the version in
this paper as general as possible.

Next, let us discuss which of the restrictions from Theorem 1.2 we can
weaken. First, in that theorem all of the matroids at the nodes are required

1In [3] we worked with ‘trees of matroids’ instead of ‘trees of presentations’. We have
made this change since the set of Ψ-circuits we get for such a tree may in general not
only depend on the structure of the matroids attached to each node but also on their
presentations.
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to be finite. Allowing arbitrary infinite matroids at the nodes is unfortu-
nately not possible - in fact, even for infinite stars of matroids in which the
central node is infinite but all leaves are finite it is possible for our gluing
construction to fail to give a matroid. But this is the only problem - that
is, we are able to show that if the matroids at the nodes of the tree work
well when placed at the centre of such stars, then they can also be glued
together along arbitrary trees. The advantage of this approach is its great
generality, but the disadvantage is that the class of stellar matroids, that
is, those which fit well at the centre of stars, is not characterised in simpler
terms. However, since in all existing applications the matroids involved can
be easily seen to be stellar we do not see this as a great problem.

Second, in Theorem 1.2 the matroids at the nodes were required to be
representable over a common field k. This continues to play a necessary
role in our construction, because it is based on a gluing construction for
finite matroids which in turn relies on representability over a common field.
Because we now allow the matroids at the nodes to be infinite, we require
them to be representable in the sense of [1], which introduced a notion of
representability for infinitary matroids.

However, we are able to drop the requirement that k be finite. Thus we
obtain the following more general result.

Theorem 1.3. Let k be any field and let T be a stellar tree of presentations
presented over k, and let Ψ be a Borel set of ends of T . Then the Ψ-circuits
are the circuits of a matroid.

We not only extend Theorem 1.1, we also give a new and simpler proof
of it, see Section 3.

The paper is organised as follows. After recalling some preliminaries in
Section 2, in Section 3 we give a new proof of Theorem 1.1 which is simpler
than the original one. However, to understand the rest of this paper, it
is not necessary to read that section. In the proof of our main result, we
will rely on the determinacy of certain games, and in Section 4 we prove
a lemma that allows us to simplify winning strategies in these games. We
then introduce presentations of infinite matroids over a field in Section 5,
and the gluing construction along a tree in Section 6. The proof that this
construction gives rise to matroids is given in Sections 7 and 8.

2 Preliminaries

Throughout, notation and terminology for (infinite) graphs are those of [10],
and for matroids those of [12, 8]. We will rely on the following lemma from
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[10]:

Lemma 2.1 (König’s Infinity Lemma [10]). Let V0, V1, . . . be an infinite
sequence of disjoint non-empty finite sets, and let G be a graph on their
union. Assume that every vertex v in Vn with n ≥ 1 has a neighbour f(v)
in Vn−1. Then G includes a ray v0v1 . . . with vn ∈ Vn for all n.

Note that this is equivalent to the usual formulation of König’s Lemma,
namely that every locally finite rayless tree is finite.

Given a graph G, the set of its ends is denoted by Ω(G). An end ω is
in the closure of some edge set F if for each finite separator S, the unique
component of G\S including a tail of each ray in ω contains a vertex incident
with an edge of F in G.

A walk in a digraph is a sequence w1...wn of vertices such that wiwi+1

is an edge for each i < n. For a walk W = w1...wn and a vertex x in W , let
i be minimal with wi = x. Then we denote by Wx the walk w1...wi and by
xW the walk wi...wn.

In this paper we define tree decompositions slightly differently than in
[10]. Namely, we impose the additional requirement that each edge of the
graph is contained in a unique part of the tree decomposition. Clearly, each
tree decomposition in the sense of [10] can easily be transformed into such a
tree decomposition of the same width. Throughout this paper, even means
finite and a multiple of 2.

Having dealt with the graph theoretic preliminaries, we now define po-
sitional games. A positional game is played in a digraph D with a marked
starting vertex a. The vertices of the digraph are called positions of the
game. The game is played between two players between whom play alter-
nates. At any point in the game, there is a current position, which initially is
a. In each move, the player whose turn it is to play picks an out-neighbour x
of the current position, and then the current position is updated to x. Thus
a play in this game is encoded as a walk in D starting at an out-neighbour
of a. If a player cannot move, they lose. If play continues forever, then the
players between them generate an infinite walk starting at a neighbour of a.
Then the first player wins if this walk is in the set Φ of winning conditions,
which is part of the data of the positional game.

A strategy for the first player is a set σ of finite plays P all ending with
a move of the first player such that the following is true for all P ∈ σ: Let
m be a move of the second player such that Pm is a legal play. Then there
is a unique move m′ of the first player such that Pmm′ ∈ σ. Furthermore,
we require that σ is closed under 2-truncation, that is, for every nontrivial
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P ∈ σ there are some P ′ ∈ σ and moves m and m′ of the second player and
the first player, respectively, such that P ′mm′ = P .

An infinite play belongs to a strategy σ for the first player if all its odd
length finite initial plays are in σ. A strategy for the first player is winning
if the first player wins in all infinite plays belonging to σ. Similarly, one
defines strategies and winning strategies for the second player.

Finally, we summarise the matroid theoretic preliminaries. Given a ma-
troidM , by C(M) we denote the set of circuits ofM , and by S(M) we denote
the set of scrawls of M , where a scrawl is just any (possibly empty) union of
circuits.2 The orthogonality axioms, introduced in [3], are as follows, where
C and D are sets of subsets of a groundset E, and can be thought of as the
sets of circuits and cocircuits of some matroid, respectively.

(O1) |C ∩D| 6= 1 for all C ∈ C and D ∈ D.

(O2) For all partitions E = P ∪̇Q∪̇{e} either P + e includes an element of
C through e or Q+ e includes an element of D through e.

(O3) For every C ∈ C, e ∈ C and X ⊆ E, there is some Cmin ∈ C with
e ∈ Cmin ⊆ X ∪ C such that Cmin \X is minimal.

(O3∗) For every D ∈ D, e ∈ D and X ⊆ E, there is some Dmin ∈ D with
e ∈ Dmin ⊆ X ∪D such that Dmin \X is minimal.

Theorem 2.2 ([3, Theorem 4.2]). Let E be a countable set and let C,D ⊆
P(E). Then there is a unique matroid M such that C(M) ⊆ C ⊆ S(M) and
C(M∗) ⊆ D ⊆ S(M∗) if and only if C and D satisfy (O1), (O2), (O3) and
(O3∗).

We shall not be able to rely on this characterisation of matroids since we
will be dealing with possibly uncountable groundsets E. So we will need an
extra axiom. A set I ⊆ E is independent if it does not include any nonempty
element of C. Given X ⊆ E, a base of X is a maximal independent subset
of X. A base of (C,D) is a maximal independent subset of the ground set
E.

(IM) Given an independent set I and a superset X, there exists a base of
X including I.

The proof of Theorem 2.2 as in [3] also proves the following:

2Matroids can be axiomatised in terms of their scrawls [2].
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Corollary 2.3. Let E be a set and let C,D ⊆ P(E). Then there is a unique
matroid M such that C(M) ⊆ C ⊆ S(M) and C(M∗) ⊆ D ⊆ S(M∗) if and
only if C and D satisfy (O1), (O2), and (IM).

We say that (C,D) is tame if the intersection of any set in C with any set
in D is finite. In the proof of our main result we will be in the situation that
we have a pair (C,D) of subsets of the powerset of some set E that satisfies
(O1) and (O2) and is tame. We call such a pair an orthogonality system.

Theorem 2.4 ([3, Theorem 4.4]). Any orthogonality system satisfies (O3)
and (O3)∗.

Remark 2.5. A set B is a base for an orthogonality system (C,D) if and
only if for each x /∈ B, there is some o ∈ C with x ∈ o ⊆ B+ x and for each
x ∈ B, there is some d ∈ D with x ∈ d ⊆ (E \B) + x.

Given X ⊆ E, then the restriction C↾X of C to X consists of those
o ∈ C included in X. Similarly, the contraction C.X of C to X is the
set of those a ⊆ X such that there is some o ∈ C with a = o \ X. We
let (C,D)↾X = (C↾X ,D.X) and (C,D).X = (C.X,D↾X). As usual we let
(C,D) \X = (C,D)↾(E\X) and (C,D)/X = (C,D).(E \X).

Remark 2.6. If (C,D) is an orthogonality system, then for any X ⊆ E
both (C,D)↾X and (C,D).X are orthogonality systems.

Corollary 2.7. Let (C,D) be an orthogonality system such that for any two
disjoint sets A and B the orthogonality system (C,D)/A\B has a base. Then
(C,D) satisfies (IM).

Proof. Given I and X as in (IM), by assumption there is a base B of
(C,D)/I \ (E \ X). It is straightforward to check that I ∪ B is a base
of X with respect to (C,D).

In orthogonality systems we already have a notion of connectedness: We
say that two edges e and f are in the same connected component if there is
some minimal nonempty o ∈ C containing both e and f .

Lemma 2.8. Being in the same component is an equivalence relation.
Moreover, e is in the same connected component as f if and only if there

is some minimal nonempty d ∈ D containing both e and f .

Proof. Just as for finite matroids.
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A connected component of (C,D) is an equivalence class for the equiva-
lence relation “being in the same component”.

Lemma 2.9. Given a connected component X of (C,D), then (C,D)↾X =
(C,D).X.

Proof. Just as for finite matroids.

3 A simpler proof in a special case

The aim of this section is to give a simpler proof of a result from [3],
Theorem 3.1 below, which implies Theorem 1.1. Given a locally finite graph
G, a Ψ-circuit of G is the edge set of a topological cycle of G that only uses
ends from Ψ. A Ψ∁-bond of G is the edge set of a bond of G that only has
ends of Ψ∁ in its closure.

Theorem 3.1. Let G be a locally finite graph and Ψ a Borel set of ends.
Then there is a matroid MΨ(G) whose circuits are the Ψ-circuits and whose
cocircuits are the Ψ∁-bonds.

Given a locally finite graph G with a tree decomposition (T, P (t)|t ∈
V (T )), the torso P̄ (t) of a part P (t) is the multigraph obtained from P (t)
by adding for each neighbour t′ of t and any two v,w ∈ V (P (t))∩V (P (t′)) an
edge (tt′, v, w) between v and w. In this section, we shall only consider tree
decompositions with each torso finite. A precircuit is a pair (S, o) where S is
a connected subtree of T and o sends each t ∈ V (S) to some o(t) ⊆ E(P̄ (t))
that has even degree at each vertex such that for any neighbour t′ of t in T
we have o(t)∩E(P̄ (t′)) = ∅ if t′ /∈ V (S), and o(t)∩E(P̄ (t′)) = o(t′)∩E(P̄ (t))
otherwise. A precocircuit is the same as a precircuit except that here o(t)
is a cut of P̄ (t) instead of a set that has even degree at each vertex. Given
Ψ ⊆ Ω(T ), a precircuit (S, o) is a Ψ-precircuit if all ends of S are in Ψ.
Similarly, one defines a Ψ-precocircuit. We denote the set of underlying sets
of Ψ-precircuits by CΨ(G), and the set of underlying sets of Ψ∁-precocircuits
by DΨ(G).

The following follows from the fact that the finite circuits of any graph
are the circuits of a matroid.

Remark 3.2. The pair (C∅(G),D∅(G)) satisfies (O2).

It suffices to prove Theorem 3.1 for a graph G′ obtained from a locally
finite graph G by subdividing each edge. Indeed, then MΨ(G) is a contrac-
tion minor of MΨ(G

′). So from now on we fix a graph G′ obtained from a
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connected locally finite graph G by subdividing each edge.3 We abbreviate
CΨ = CΨ(G

′) and DΨ = DΨ(G
′).

Lemma 3.3. [Lemma 7.5, Lemma 7.6 and Lemma 7.7 from [3]] There is
a tree-decomposition (T, P (t)|t ∈ V (T )) of G′ with each part finite and a
homeomorphism ι between Ω(G′) and Ω(T ) such that for each Ψ ⊆ Ω(G′),
the set of minimal nonempty elements in Cι(Ψ) is the set of Ψ-circuits of G′

and set of minimal nonempty elements in Dι(Ψ) is the set of Ψ∁-bonds of G′.
Furthermore, each P (t) is connected and T is locally finite.

To simplify notation, we shall suppress the bijection ι from now on.

Lemma 3.4. [Lemma 7.2 and Lemma 7.7 from [3]] The pair (CΨ,DΨ) sat-
isfies (O1) and tameness.

Lemma 3.5. The pair (CΨ,DΨ) satisfies (O2) if and only if the pair con-
sisting of the set of Ψ-circuits and the set of Ψ∁-bonds does.

Proof. One implication is obvious, for the other assume that (CΨ,DΨ) satis-
fies (O1), (O2) and tameness. Then by Theorem 2.4 (CΨ,DΨ) satisfies (O3)
and (O3∗). Now let E = P ∪̇Q∪̇{e} be a partition. If there is some o ∈ CΨ
with e ∈ o ⊆ P + e, we can pick it minimal by (O3), thus o is a Ψ-circuit.
Otherwise by (O2), there is some d ∈ DΨ with e ∈ d ⊆ Q + e, and we
conclude in the same way as above, which completes the proof.

By Theorem 2.2, Lemma 3.4 and Lemma 3.5, the set of Ψ-circuits and
the set of Ψ∁-bonds are the sets of circuits and cocircuits of a matroid if and
only if CΨ and DΨ satisfy (O2). Thus to prove Theorem 3.1, it suffices to
show that (CΨ,DΨ) satisfies (O2). So let E(G′) = P ∪̇Q∪̇{e} be a partition.

We consider T as a rooted tree rooted at the unique node te such that
e ∈ E(P (te)). We consider the following positional game (D, a,Φ) played be-
tween two players called Sarah and Colin, where Sarah makes the first move.
D is a directed graph whose underlying graph is bipartite with bipartition
(D1,D2). The set D1 is the union of sets X(t), one for each t ∈ V (T ), where
X(t) is the set of those F ⊆ E(P̄ (t)) \Q that have even degree at each ver-
tex. The set D2 contains the singleton of the starting vertex a and includes
the union of sets Y (tt′) one for each tt′ ∈ E(T ), where Y (tt′) is the powerset
of E(P̄ (t))∩E(P̄ (t′)) without the empty set. We have a directed edge from
a to any x ∈ X(te) containing e. For tt′ ∈ E(T ) directed away from the

3Mathematically, it is not strictly necessary to work with G′ instead of G, but this way
we can cite a lemma from [3].
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root, we have an edge from x ∈ X(t) to y ∈ Y (tt′) if x ∩ E(P̄ (t′)) = y. We
have an edge from y ∈ Y (tt′) to x ∈ X(t) if x ∩ E(P̄ (t)) = y.

In order to complete the definition of the positional game, it remains
to define Φ. Given a play Z, by Z[n] we denote the unique node t with
distance n from te such that the 2n + 1st move of Z is in X(t). For each
infinite play Z, the sequence (Z[n]|n ∈ N) is a ray of T which belongs to
some end ωZ . Let f be the map from the space of infinite positional plays
to the space of ends of G defined via f(Z) = ωZ . It is straightforward to
check that the map f is continuous. Let Φ be the inverse image of Ψ under
f . As being Borel is preserved under inverse images of continuous maps, we
get the following.

Remark 3.6. If Ψ is Borel, then Φ is Borel and thus the positional game
is determined.

Lemma 3.7. If Sarah has a winning strategy, there is some o ∈ CΨ with
e ∈ o ⊆ P + e.

Given a winning strategy σ, then Sσ is the induced subforest of T whose
nodes t are those such that some F ∈ X(t) appears as a move in a play
according to σ or are te. Note that Sσ is connected.

Lemma 3.8. If Colin has a winning strategy σ, then Sσ has all ends in Ψ∁.

Proof. Assume that Sσ has an end and let ω be an arbitrary end of Sσ.
Then there is a ray t1t2... included in Sσ that belongs to ω with t1 = te. For
each titi+1, we pick some play Pi in σ with Colin’s last move in Y (titi+1).

For each titi+1, we denote by Zi the set of the initial plays of length i of
some Pj with j ≥ i. As T is locally finite and as each torso P̄ (t) is finite,
there are only finitely many possible plays ending with a move in Y (titi+1).
Hence Zi is finite.

We apply König’s Infinity Lemma to the graph H whose vertex set is
the union of the Zi. We join ai ∈ Zi with ai+1 ∈ Zi+1 by an edge if ai+1 is
an extension of ai. By the Infinity Lemma, we get a ray x1x2... in H. By
construction xi is in σ. As σ is winning, the union of all these plays is in
Φ∁. Thus ω is in Ψ∁, which completes the proof.

Proof of Theorem 3.1. As mentioned above, it suffices to show that (CΨ,DΨ)
satisfies (O2). By Remark 3.6, either Sarah or Colin has a winning strategy
in the positional game above. By Lemma 3.7 we may assume that Colin has
a winning strategy.
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Let H be the graph obtained from G′ by contracting all edges not in any
P (t) with t ∈ V (Sσ). We obtain P̃ (t) from P (t) by contracting all dummy
edges (tt′, v, w) with t′ /∈ V (Sσ). By the “Furthermore”-part of Lemma 3.3,
it is clear that H has a tree decomposition with tree Sσ whose torsos are
the P̃ (t).

Suppose for a contradiction that there is some o ∈ C∅(H) with e ∈ o ⊆
P + e. Let (S, ō) be an ∅-precircuit with underlying set o. If Sarah always
plays ō(t) in the positional game above, Colin always challenges her at some
v ∈ V (Sσ) when he plays according to σ. As S is rayless, eventually Colin
cannot challenge, which contradicts the fact that σ is winning.

Thus there cannot be such an o. Thus by Remark 3.2, there is some
d ∈ D∅(H) with e ∈ d ⊆ Q+ e. Then d ∈ DΨ(G

′) since all ends of Sσ are in
Ψ∁ by Lemma 3.8. This completes the proof.

4 Simplifying winning strategies

In this section we prove Lemma 4.1 which allows us to improve winning
strategies in positional games. Our proof of Theorem 1.3 will rely on the
determinacy of certain such games: this is why the set Ψ is required to be
Borel.

Given a set σ of plays, by σ(m) we denote the set of those moves that
appear as m-th moves in plays of σ. Given two finite or infinite plays
P = p1 . . . and Q = q1 . . . of the same length, then P ∼1 Q if the first player
makes the same moves in both plays, that is, pi = qi for all odd i. A winning
strategy σ for the first player is reduced if there exists a total ordering
≤ of the set of positions with the following property: for any two plays
P = p1...p2n+1 and Q = q1...q2n+1 in σ such that p1...p2n−1 ∼1 q1...q2n−1

and p1...p2nq2n+1 is a legal play, we have p2n+1 ≤ q2n+1.

Lemma 4.1. Let G be a positional game whose set Φ of winning conditions
is closed under ∼1. If the first player has a winning strategy σ, then the first
player has a reduced winning strategy.

Proof. First, we pick a well-order ≤ of the set of positions. Next we define a
reduced winning strategy σ̄ for the first player. The first player should play
as follows. His first move should be the same as in σ. Whenever he has just
made a move he should have in mind an auxiliary play according to σ which
ends at the same position. Assume that the first player and the second
player have already played 2n + 1 moves and let s be the current play, and
s′ the auxiliary play. Now assume that the second player’s response is m.
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As σ is winning, there is a move t of the first player such that s′mt ∈ σ. Let
X be the set of those pairs (m′, u) such that s′m′u ∈ σ and smu is a legal
play. X is nonempty since (m, t) ∈ X. The first player picks (m′, u) ∈ X
such that u is minimal with respect to ≤ and, subject to this, such that m′

is minimal with respect to ≤. He plays u and imagines the auxiliary play
(smu)′ = s′m′u.

It is clear that this defines a strategy for the first player. Next, we show
σ̄ is winning. So let (sn|n ∈ N) be a sequence of plays according to σ̄ with
sn of length 2n+ 1, each extending the previous one. By construction, it is
clear that s′n+1 extends s′n. As s′n ∈ σ, the union of the s′n is in Φ. As Φ is
closed under ∼1, the union of the sn is in Φ as well. Thus σ̄ is winning.

By induction, it is straightforward to check that if s, t ∈ σ̄ and s ∼1 t,
then s′ = t′.

It remains to show that σ̄ is reduced. So let P = p1...p2n+1 and Q =
q1...q2n+1 in σ̄ with p1...p2n−1 ∼1 q1...q2n−1 such that p1...p2nq2n+1 is a legal
play. Let s = p1 . . . p2n−1. Let Q′ = u1...u2n+1. Then as noted above we
have s′ = u1 . . . u2n−1, so s′u2nu2n+1 ∈ σ. So by the construction of p2n+1

we have p2n+1 ≤ u2n+1 = q2n+1. Thus σ̄ is reduced, which completes the
proof.

The following is a direct consequence of the definition of a reduced strat-
egy.

Remark 4.2. Let σ̄ be a reduced winning strategy for the first player. Let
p1...pn ∈ σ̄ and q1...qm ∈ σ̄ and assume there is some odd i such that
p1...pi ∼1 q1...qi. Then p1...piqi+1...qm ∈ σ̄.

5 Presentations

Fix a field k. For any set E and any element v of the vector space kE, the
support supp(v) is {e ∈ E|v(e) 6= 0}. To simplify our notation, we formally
consider such a vector v to be a function with domain the support of v.
This means that we can also consider v itself to be a member of other vector
spaces kF with supp(v) ⊆ F . Note that addition and scalar multiplication of
vectors are unambiguous with respect to this convention. If V is a subspace
of kE , we denote by S(V ) the set of supports of vectors in V .

For v,w ∈ kE we say that v and w are orthogonal, denoted v ⊥ w,
if
∑

e∈E v(e)w(e) = 0. Here and throughout the paper such equalities are
taken to include the claim that the sum on the left is well defined, in the
sense that only finitely many summands are nonzero. That is, if v ⊥ w then
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in particular supp(v)∩supp(w) is finite. If V andW are subspaces of kE then
we say they are orthogonal, denoted V ⊥ W , if (∀v ∈ V )(∀w ∈ W )v ⊥ w.

As in [3], we will need some extra linear structure over k to allow us to
stick together matroids along sets of dummy edges of size more than 1. In
fact, we will stick together presentations over k of the matroids in question
to obtain a presentation of the resulting matroid. Therefore we must specify
precisely what objects we will be taking as presentations of infinite matroids
over k.

Definition 5.1. Let E be any set. A presentation Π on E consists of a
pair (V,W ) of orthogonal subspaces of kE such that S(V ) and S(W ) satisfy
(O2). Elements of V are called vectors of Π and elements of W are called
covectors. We will sometimes denote the first element of Π by VΠ and the
second by WΠ. We say that Π presents the matroid M if the circuits of M
are the minimal nonempty elements of S(VΠ) and the cocircuits of M are
the minimal nonempty elements of S(WΠ).

It is clear from the results of [1] that a tame matroid M is representable
in the sense of that paper over k if and only if there is a presentation over
k which presents M .

Note that for any presentation Π, the pair (S(VΠ), S(WΠ)) is an or-
thogonality system. Accordingly, we say a set is Π-independent when it is
independent with respect to this orthogonality system.

Remark 5.2. If E is a countable set then any presentation on E presents
a matroid by Theorem 2.2.

Definition 5.3. If V is a subspace of kE then for X a subset of E we define
the restriction V ↾X of V to X to be {v ∈ V | supp(v) ⊆ X}. We denote the
restriction of V to E \Q by V \Q, and say it is obtained from V by removing
Q. Similarly, for X a subset of E we define the contraction V.X of V to X
to be {v↾X |v ∈ V }. We denote the contraction of V to E \ P by V/P , and
say it is obtained from V by contracting P . We also define these terms for
presentations as follows:

(V,W )↾X = (V ↾X ,W.X)

(V,W )\Q = (V \Q,W/Q)

(V,W ).X = (V.X,W ↾X)

(V,W )/P = (V/P,W\P )

12



All of these operations give rise to new presentations, called minors of the
original presentation.

We will need some basic lemmas about presentations.

Lemma 5.4. Let E be a finite set. Then a pair (V,W ) of subspaces of E is
a presentation on E if and only if V and W are orthogonal complements.

Proof. For any subspace U of kE, we will denote the orthogonal complement
of U by U⊥. Suppose first of all thatW = V ⊥. We must show that S(V ) and
S(W ) satisfy (O2), so suppose we have a partition E = P ∪̇Q∪̇{e}. If there is
no v ∈ V with e ∈ supp(v) ⊆ P+e then 1e 6∈ V +kP , so V ⊥∩(kP )⊥ 6⊆ 〈1e〉

⊥.
That is, there is some w which is in V ⊥ = W and is in (kP )⊥, so that
supp(w) ⊆ Q + e, but with w(e) 6= 0. Thus e ∈ supp(w) ⊆ Q + e, as
required.

Now suppose that (V,W ) is a presentation, so that S(V ) and S(W )
satisfy (O2). Suppose for a contradiction thatW 6= V ⊥, so that there is some
w ∈ V ⊥ \W . As E is finite, we can choose such a w with minimal support.
Since w 6= 0, we can pick some e ∈ supp(w). Let P = E \ supp(w) and
Q = supp(w)− e. Applying (O2) to the partition E = P ∪̇Q∪̇{e}, we either
get some v ∈ V with e ∈ supp(v) ⊆ P + e, so that supp(v)∩ supp(w) = {e},
contradicting our assumption that w ∈ V ⊥, or else we get some w′ ∈ W
with e ∈ supp(w′) ⊆ Q + e. But in that case, letting w′′ = w − w(e)

w′(e)w
′

we have that w′′ ∈ V ⊥ and supp(w′′) ( supp(w), so by minimality of the

support of w we have w′′ ∈ W . Thus w = w′′ + w(e)
w′(e)w

′ ∈ W , which is again
a contradiction.

Definition 5.5. Let Π = (V,W ) be a presentation on a set E and x ∈ kE .
Then Πx = (Vx,W

x) is the pair of orthogonal subspaces of kE+∗ given
by Vx = V + 〈x − 1∗〉 and Wx = {w ∈ kE+∗|w↾E ∈ W and w(∗) =∑

e∈E w(e)x(e)}.

Remark 5.6. If P and Q are disjoint subsets of E not meeting supp(x)
then

Πx/P\Q = (Π/P\Q)x .

If E is finite then it is clear (using the equivalent characterisation of
presentations in Lemma 5.4) that Πx is again a presentation. In fact this is
more generally true:

Lemma 5.7. Let Π = (V,W ) be a presentation on a set E and let x ∈ kE

have finite support. Then Πx is a presentation on E + ∗.
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Proof. It is clear that Vx ⊥ W x, so we just have to prove (O2). Suppose we
have some partition E+∗ = P ∪̇Q∪̇{e}. Let F be the finite set supp(x)+e+∗.
Now consider the presentation Π′ = (Π/(P \ F )\(Q \ F ))x on the finite set
F . By Remark 5.6, we have Π′ = Πx/(P \ F )\(Q \ F ). We now apply (O2)
in Π′ to the partition F = (P ∩F )∪̇(Q∩F )∪̇{e}. If we find a vector v of Π′

with e ∈ supp(v) ⊆ (P ∩ F ) + e then we can extend v to a vector v′ of Πx

which witnesses (O2) in that e ∈ supp(v) ⊆ P + e. The case that there is a
covector w of Π with e ∈ supp(w) ⊆ (Q ∩ F ) + e is dealt with similarly.

By Theorem 2.4, for any presentation (V,W ) we must have that S(V )
satisfies (O3). We are now in a position to prove a more general (O3)-like
principle.

Lemma 5.8. Let Π be a presentation on a set E, v0 a vector of Π, X a
subset of E and F a finite subset of E disjoint from X. Then amongst the set
LF,X
v0 (Π) of vectors v of Π such that v↾F = v0↾F and supp(v) ⊆ supp(v0)∪X,

there is one with supp(v) \X minimal.

Proof. We put a preordering on LF,X
v0 (Π) by v ≤ v′ if supp(v)\X ⊆ supp(v′)\

X. The function v 7→ v − v0↾F + 1∗ is an order-preserving bijection from

LF,X
v0 (Π) to L

{∗},X
v0−v0↾F+1∗

(Πv0↾F ). The latter collection has a minimal element

by (O3) applied to the set of supports of vectors of the presentation Πvo↾F .
Hence the former collection also has a minimal element.

Remark 5.9. Let v ∈ LF,X
v0 (Π) such that supp(v) \X is minimal. Then the

set supp(v) \X is Π/X-independent.

Corollary 5.10. Let Π be a presentation on a set E, F a finite subset of E
and P a subset of E disjoint from F . Then there is a Π-independent subset
P ′ of P such that (Π/P )↾F = (Π/P ′)↾F .

Proof. We successively apply Lemma 5.8 and Remark 5.9 to elements of a
base of (Π/P )↾F .

6 Trees of presentations

We can now mimic the construction of [3] to glue together trees of presen-
tations.

Definition 6.1. A tree of presentations T consists of a tree T , together
with functions V and W assigning to each node t of T a presentation Π(t) =
(V (t),W (t)) on the ground set E(t), such that for any two nodes t and t′ of
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T , E(t) ∩ E(t′) is finite and if E(t) ∩ E(t′) is nonempty then tt′ is an edge
of T .

For any edge tt′ of T we set E(tt′) = E(t) ∩ E(t′). We also define the

ground set of T to be E = E(T ) =
(⋃

t∈V (T )E(t)
)
\
(⋃

tt′∈E(T )E(tt′)
)
.

We shall refer to the edges which appear in some E(t) but not in E as
dummy edges of M(t): thus the set of such dummy edges is

⋃
tt′∈E(T )E(tt′).

In sticking together such a tree of presentations, we shall make use of
some additional information, namely a set Ψ of ends of T . We think of the
ends in Ψ as being available to be used by the new vectors and those in the
complement Ψ∁ of Ψ as being available to be used by the new covectors.
More formally:

Definition 6.2. Let T = (T, V ,W ) be a tree of presentations. A pre-vector
of T is a pair (S, v), where S is a subtree of T and v is a function sending
each node t of S to some v(t) ∈ V (t), such that for each t ∈ S we have
v(t)↾E(tu) = v(u)↾E(tu) 6= 0 if u ∈ S, and v(t)↾E(tu) = 0 otherwise. The

underlying vector (S, v) of (S, v) is the element of kE(T ) which at a given
e ∈ E(T ) takes the value v(t)(e) if there is some t ∈ S with e ∈ E(t), and
otherwise takes the value 0. The support supp(S, v) of a pre-vector is the
support of the underlying vector.

Now let Ψ be a set of ends of T . A pre-vector (S, v) is a Ψ-pre-vector if
all ends of S are in Ψ. The space VΨ(T ) of Ψ-vectors is the subspace of kE

generated4 by the underlying vectors of Ψ-pre-vectors.
A pre-covector of T is a pair (S,w), where S is a subtree of T and w

is a function sending each node t of S to some w(t) ∈ W (t), such that for
each t ∈ S we have w(t)↾E(tu) = −w(u)↾E(tu) 6= 0 if u ∈ S, and w(t)↾E(tu) =
0 otherwise (note the change of sign from the definition of pre-vectors).
Underlying covectors and supports are defined as above. A pre-covector
(S,w) is a Ψ-pre-covector if all ends of S are in Ψ. The space WΨ(T ) of
Ψ∁-covectors is the subspace of kE generated by the underlying covectors
of Ψ∁-pre-covectors. Finally, ΠΨ(T ) is the pair (VΨ(T ),WΨ(T )). We may
omit the subscripts from VΨ(T ), WΨ(T ) and ΠΨ(T ) if the set of ends of T
is empty.

Remark 6.3. Let P and Q be sets which don’t meet any of the sets E(tu)
with tu an edge of T . Then ΠΨ(T )/P\Q = ΠΨ(T, V /P\Q,W \P/Q), where
V /P\Q : t 7→ V (t)/P\Q and W\P/Q : t 7→ W (t)\P/Q.

4under finite linear combinations
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Our notation suggests that VΨ(T ) and WΨ(T ) should be orthogonal.
This is often true, but as the following example shows some extra restriction
is needed to ensure that intersections of supports of vectors with supports
of covectors are finite.

Example 6.4. Let (V,W ) be any presentation having some vector v of
infinite support and some covector w of infinite support. Let (ei|i ∈ N) be
an infinite sequence of distinct elements of supp(v) \ supp(w) and (fi|i ∈ N)
an infinite sequence of distinct elements of supp(w) \ supp(v). We also
introduce for each i ∈ N the presentation Πi = (Vi,Wi) on ground set
Ei = (ei, fi, gi, hi), where the gi and hi are all chosen distinct and outside
E, and where Vi = {v ∈ kEi |v(fi) = 0 and v(gi) = v(hi)} and Wi = {w ∈
kEi |w(ei) = 0 and w(gi) = −w(hi)}. Let vi ∈ Vi be the vector taking the
value v(ei) at ei, gi and hi and 0 at fi. Let wi ∈ Wi be the covector taking
the value 0 at ei, −w(fi) at fi and gi and w(fi) at hi.

Let T be the star with central node ∗ and whose leaves are the natural
numbers. Then we get a tree of presentations T = (T, V ,W ) by letting
V (∗) = V and V (i) = Vi for each i ∈ N and defining W similarly. We get a
pre-vector (T, v) by letting v(∗) = v and v(i) = vi and a pre-covector (T,w)
by letting w(∗) = w and w(i) = wi. Then the intersection of the supports
of (T, v) and (T,w) includes

⋃
i∈N {gi, hi}, and so is infinite.

In order to avoid this sort of situation, we introduce the following re-
striction:

Definition 6.5. Let Π be a presentation on a set E, and let F be a set
of disjoint subsets of E. We say that Π is neat with respect to F if for
any v ∈ VΠ and w ∈ WΠ there are only finitely many F ∈ F meeting the
supports of both v and w. We say that a tree T = (T, V ,W ) of presentations
is neat if for each node t of T the presentation Π(t) is neat with respect to
the set of sets E(tu) with u adjacent to t in T .

Lemma 6.6. Let T = (T, V ,W ) be a neat tree of presentations, and Ψ a
set of ends of T . Then VΨ(T ) ⊥ WΨ(T ).

Proof. It suffices to show that for any Ψ-pre-vector (S, v) and any Ψ∁-pre-
covector (S′, w) we have (S, v) ⊥ (S′, w). All ends of the tree S ∩ S′ must

be in Ψ ∩Ψ∁ = ∅: that is, S ∩ S′ is rayless. Since T is neat, each vertex of
S ∩ S′ has finite degree in S ∩ S′. Thus by König’s Lemma the tree S ∩ S′

is finite. The intersection of the supports of (S, v) and (S′, w) is a subset of
the finite set

⋃
t∈S∩S′(supp(v(t)) ∩ supp(w(t))) and so is finite.
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For any edge tu of S ∩ S′ and e ∈ E(tu) we have v(t)(e)w(t)(e) +
v(u)(e)w(u)(e) = 0, and so we have

∑

e∈E

(S, v)(e)(S′, w)(e) =
∑

t∈S∩S′

∑

e∈E(t)

v(t)(e)w(t)(e) = 0 .

However, our aim is to use the construction of ΠΨ(T ) to produce ma-
troids, so we are also interested in the question of when ΠΨ(T ) presents a ma-
troid, that is, the minimal nonempty Ψ-vectors and the minimal nonempty
Ψ∁-covectors satisfy (O2) and (IM). It is not even clear that our construction
will yield matroids when applied to the simplest sorts of trees, namely stars
with all leaves finite. More precisely:

Definition 6.7. Let Π be a presentation on a set E and let F be a set
of disjoint subsets of E. An F-star of presentations around Π is a tree
(T, V ,W ) of presentations where T is the star with central node ∗ and leaf
set F , (V (∗),W (∗)) = Π, and for each F ∈ F the set E(F ) is finite and
E(∗F ) = F . We say that Π is stellar with respect to F if for any F-star T
of presentations around Π, the pair Π∅(T ) is a presentation and presents a
matroid. We say that a tree T = (T, V ,W ) of presentations is stellar if for
each node t of T the presentation Π(t) is stellar with respect to the set of
sets E(tu) with u adjacent to t in T .

Remark 6.8. There are many examples of stellar presentations. For ex-
ample, if Π is finitary5 or F is finite then Π is stellar with respect to F .
If Π′ is a minor of Π on the set E′ and Π is stellar with respect to F then
Π′ is stellar with respect to {F ∩ E′|F ∈ F}. Furthermore, if Π is stellar
with respect to F and F ′ is a set of disjoint sets such that each F ′ ∈ F ′

is a subset of some F ∈ F then Π is also stellar with respect to F ′. This
fact, together with the construction given in Example 6.4, shows that if Π is
stellar with respect to F then it is necessarily also neat with respect to F .

Our strategy, aiming at maximal generality, is to leave the question of
precisely which presentations are stellar open but to reduce the question
of when sticking together trees of presentations gives a presentation of a
matroid to this problem. That is, we shall show that if T is a stellar tree
of presentations and Ψ is a Borel set of ends then ΠΨ(T ) is a presentation
of a matroid. (O2) will be proved in Section 7 and (IM) in Section 8. We
note, however, that the following question remains open:

5A presentation (V,W ) is finitary if every element in V is finite.
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Open Question 6.9. If a presentation Π is neat with respect to some F ,
must it also be stellar with respect to F?

We will rely on the following straightforward rearrangement of the defi-
nition of stellarity:

Lemma 6.10. Let Π = (V,W ) be a presentation on a set E which is stellar
with respect to F ⊆ P(E), and let F0 ∈ F and w0 ∈ kF0 . Let Q be a set
disjoint from all F ∈ F . For each F ∈ F − F0 let W (F ) be a subset of kF .
Suppose that for every v ∈ V with v 6⊥ w0 and supp(v) ∩ Q = ∅ there is
some F ∈ F−F0 and some w ∈ W (F ) such that w 6⊥ v. Then there is some
w ∈ W such that w↾F0

= w0, supp(w) ⊆ Q∪
⋃

F , and for each F ∈ F −F0

we have w↾F ∈ 〈W (F )〉.

Proof. Without loss of generality each W (F ) is a subspace of the corre-
sponding space kF . Let V (F ) = W (F )⊥, and Π(F ) = (V (F ),W (F )), which
is a presentation by Lemma 5.4. Let T = (T, V ,W ) be the (F −F0)-star of
presentations around Π, where the presentation at the leaf F is Π(F ). Since
Π is stellar, Π∅(T ) is a presentation. Now we consider the presentation
(Π∅(T )\Q).F0, which by Lemma 5.4 consists of a pair (V0,W0) of comple-
mentary subspaces of kF0 . What we have to prove is just that w0 ∈ W0.

Suppose not for a contradiction. Then there is some v0 ∈ V0 with v0 6⊥
w0. By definition this v0 must arise as v(∗)↾F0

for some pre-vector (S, v)
of T whose support does not meet Q. Then v(∗) 6⊥ w0, so there is some
F ∈ F−F0 and some w ∈ W (F ) such that w 6⊥ v(∗)↾F = v(F ), contradicting
the fact that v(F ) ∈ V (F ).

7 (O2) for trees of presentations

Our aim in this section is to show that, for any stellar tree T = (T, V ,W )
of presentations and any Borel set Ψ of ends of T , the sets S(VΨ(T )) and
S(WΨ(T )) satisfy (O2). Thus we begin by fixing such a T and Ψ. We also
fix a partition E(T ) = P ∪̇Q∪̇{e}. We shall consider the vertex t0 of T with
e ∈ E(t0) to be the root of T , and we consider T as a directed graph with
the edges directed away from t0. To prove (O2), it suffices to prove that
there is either a Ψ-pre-vector (S, v) with e ∈ supp(S, v) ⊆ P + e or else a
Ψ∁-pre-covector (S,w) with ∈ supp(S,w) ⊆ Q+e. To this end, we recall two
games, called the circuit game and cocircuit game, from [3]. To match the
formalism of Section 4, we shall present these games as positional games.
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To simplify notation in this section, we shall not distinguish between an
end ω of a rooted tree T and the unique ray belonging to ω that starts at
the root.

Definition 7.1. Let X be the set of pairs (t, v) with t a vertex of T and
v ∈ V (t) such that supp(v) ∩Q = ∅. Let Y be the set of pairs (tu,w) with
tu an edge of T and w ∈ kE(tu).

The circuit game G = G(T, V ,W ,Ψ, P,Q) is the positional game played
on the digraphD with vertex set X⊔Y ⊔{a} and with edges given as follows:

• an edge from a to (t0, v) ∈ X when e ∈ supp(v).

• an edge from (t, v) ∈ X to (tu,w) ∈ Y when v 6⊥ w.

• an edge from (tu,w) ∈ Y to (u,w) ∈ X when v 6⊥ w.

Any infinite walk from an outneighbour of a in D induces an infinite
walk from t0 in T , which is an end of T . The set Φ of winning conditions
of G is the set of infinite walks from outneighbours of a in D which induce
walks to ends in Ψ. We call the two players of the circuit game Sarah and
Colin, with Sarah playing first.

The cocircuit game is the game like the dual circuit game G(T,W , V ,Ψ∁, Q, P )
but with the roles of Sarah and Colin reversed.

It is not hard to see that this definition is just a reformulation of [3,
Definition 8.1]. Using the arguments of that paper, we may now obtain the
following results:

Lemma 7.2. Either Sarah or Colin has a winning strategy in the circuit
game.

Lemma 7.3. Colin has a winning strategy in the circuit game if and only
if he has one in the cocircuit game.

Proof. Just like the proof of [3, Lemma 8.5], but using Lemma 6.10 in place
of [3, Sublemma 8.6]

From now on we shall assume that Sarah has a winning strategy σ in the
circuit game: the argument if Colin has a winning strategy there is dual to
the one which follows. Let Sσ be the subtree of T consisting of those vertices
t for which there is some v such that Sarah might at some point play (t, v)
when playing according to σ. We would like to mimic the argument of [3,
Lemma 8.2] to construct a Ψ-precircuit from σ. In order to do this, we
would need all ends of Sσ to be in Ψ. Although there is no reason to expect
this to happen in general, it will happen if σ is reduced.
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Lemma 7.4. Let σ be a reduced winning strategy in the circuit game, and
let Sσ be defined as above. Then all ends of Sσ are in Ψ.

Proof. For any finite sequence s we denote the last element of s by l(s). For
any finite play s in G, let ŝ be the sequence of moves played by Sarah in s
(that is, the sequence (s2k+1|0 ≤ k ≤ length(s)/2)). Let τ = {ŝ|s ∈ σ}.

First of all we will show that for any edge tu of T and any s ∈ τ
with π1(l(s)) = t there are no more than |E(tu)| extensions s′ ∈ τ of s
with π1(l(s

′)) = u. Suppose for a contradiction that there are more than
this. Then each such s′ gives rise to a vector π2(l(s

′))↾E(tu) in kE(tu), and
there must be some linear dependence of these vectors. So suppose that∑n

i=1 λiπ2(l(s
i))↾E(tu) = 0, where for each i λi is nonzero and si is an ex-

tension of s in τ with π1(l(s
i)) = u. Let k be the length of s, and let j be

such that l(sj) is maximal in the order ≤. Without loss of generality j = n.
Let s′ = s′1...s

′
2k+1 ∈ σ with ŝ′ = sn. Then

π2(s
′
2k) 6⊥ π2(l(s

n))↾E(tu) = −
1

λn

n−1∑

i=1

λiπ2(l(s
i))↾E(tu) ,

so there is some i < n with π2(s
′
2k) 6⊥ π2(l(s

i))↾E(tu). But then s′1s
′
2...s

′
2kl(s

i)

is a legal play in G and l(si) < s′2k+1, contradicting our assumption that σ
is reduced. Thus there are at most |E(tu)| (and in particular only finitely
many) extensions s′ ∈ τ of s with π1(l(s

′)) = u.
Now let ω = (ti|i ∈ N) be any end of Sσ. For each n, let τn be the set of

those s ∈ τ with π1(l(s)) = tn. Then, repeatedly using what we have just
shown, it follows by induction on n that each τn is finite. Let fn : τn+1 → τn
be given by restriction. Then by König’s Infinity Lemma we can find sn ∈ σ

with ŝn ∈ τn for each n such that fn(ŝn+1) = ŝn for each n. Let s be the
infinite sequence s11s

1
2s

2
3s

2
4s

3
5s

3
6.... Then s is an infinite play according to σ

by Remark 4.2, so since σ is winning we have ω ∈ Ψ.

By Lemma 4.1, we may assume without loss of generality that Sarah’s
winning strategy σ is reduced, and so that all ends of Sσ are in Ψ. It follows,
using the argument of [3, Lemma 8.2], that there is a Ψ-pre-vector (S, v)
with e ∈ supp(S, v) ⊆ P + e. This completes our proof of (O2).

8 (IM) for trees of presentations

Our aim in this section is to show that gluing together stellar trees of presen-
tations gives presentations which satisfy (IM), which is the only remaining
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part of the task of showing that this construction gives rise to matroids.
To prove (IM), it suffices by Corollary 2.7 to show that we can construct a
base. We will do this recursively, successively building the parts of the base
at each node of the tree. When building the part of the base at a particular
node, we will want to ignore the details of the branches of the tree which
remain when this node is removed. To this end, we will replace each such
branch by a finite matroid which retains just enough information for our
argument. This will be done with the following Lemma:

Lemma 8.1. Let Π = (V,W ) be a presentation on a set E, and let F be
a finite subset of E. Then there are disjoint subsets PF and QF of E \ F
such that E \ (PF ∪QF ) is finite and Π′↾F = Π↾F and Π′.F = Π.F , where
Π′ = Π/PF \QF .

Proof. Let BV be a (linear) basis of V.F and BW a (linear) basis of W.F .
For each v ∈ BV , choose some v̂ ∈ V with v̂↾F = v. Similarly, for
each w ∈ BW choose some ŵ ∈ W with ŵ↾F = w. Let F ′ = F ∪[(⋃

v∈BV
supp(v̂)

)
∩
(⋃

w∈BW
supp(ŵ)

)]
, which is finite because it is the

union of F with a finite union of sets of the form supp(v̂) ∩ supp(ŵ). Let
PF =

⋃
v∈BV

supp(v̂) \ F ′, and QF = E \ (PF ∪ F ′). Thus PF and QF are
disjoint, and E \ (PF ∪QF ) = F ′ is finite.

For each v ∈ BV , we have supp(v̂) ⊆ E \QF , so v ∈ (V \QF ).F . Thus
V.F ⊆ (V \QF ).F . It is clear that the reverse inclusion (V \QF ).F ⊆ V.F
also holds, and so (V \QF ).F = V.F . Since by Lemma 5.4 any presentation
on a finite set is determined by its set of vectors, we may deduce that
Π′.F = (Π \QF ).F = Π.F . The proof that Π′↾F = Π↾F is similar.

Using this, we can now obtain the lemma which will be applied at each
node:

Lemma 8.2. Let Π be a presentation on a set E which is stellar with re-
spect to a set F of disjoint subsets of E. Let T = (T, V ,W ) be a tree
of presentations, where T is a star with central node ∗ and leaf set F ,
and (V (∗),W (∗)) = Π and for each F ∈ F we have E(∗F ) = F . Let
E′ = E \

⋃
F . Let X and Y be disjoint subsets of E(T ) such that X is

S(V (T ))-independent and Y is S(W (T ))-independent. Then there are dis-
joint subsets X ′ and Y ′ of E(T ) extending X and Y respectively such that:

• E′ ⊆ X ′ ∪ Y ′

• X ′ is S(V (T ))-independent and Y ′ is S(W (T ))-independent.
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• For any e ∈ E′ \X ′ there is some C ∈ S(V (T )) with e ∈ C ⊆ X ′ + e.

• For any e ∈ E′ \ Y ′ there is some D ∈ S(W (T )) with e ∈ D ⊆ Y ′ + e.

• There do not exist leaves F,F ′ ∈ F such that there is a connected
component of Π(T )/X ′\Y ′ meeting both E(F ) and E(F ′).

Proof. For each F ∈ F we will denote the presentation (V (F ),W (F )) by
ΠF . By Remark 6.3 we may assume without loss of generality that X and
Y are subsets of E′.

We begin by picking, for each F ∈ F , sets PF and QF as in Lemma 8.1
for the finite subset F of E(F ). Let Ṽ (F ) = V (F )/PF \QF and W̃ (F ) =
W (F )\PF /QF . Taking Ṽ (∗) = VΠ and W̃ (∗) = WΠ we get an F-star
T̃ = (T, Ṽ , W̃ ) of presentations around Π. By construction, X is S(V (T̃ ))-
independent and Y is S(W (T̃ ))-independent. Since Π is stellar, we can
choose a base B extending X and disjoint from Y for the matroid M pre-
sented by Π(T̃ ): let B′ be the base of the dual matroid M∗ given by taking
the complement of B. For each F ∈ F , let XF be an independent subset of
PF ∪ (B ∩E(F )) such that (ΠF /XF )↾F = (ΠF /(PF ∪ (B ∩E(F ))))↾F as in
Corollary 5.10 and let YF be a coindependent subset of QF ∪ (B′ ∩ E(F ))
such that (ΠF \YF ).F = (ΠF backslash(QF ∪ (B′ ∩ E(F )))).F . Note
that (ΠF \YF ).F = (ΠF /XF )↾F . Let X ′ = (B ∩ E′) ∪

⋃
F∈F XF and

Y ′ = (B′ ∩E′)∪
⋃

F∈F YF . It is clear that X
′ and Y ′ are disjoint, cover E′,

and respectively extend X and Y .
Now suppose for a contradiction that X ′ is S(V (T ))-dependent. Then

there is some T -prevector (S, v̂) whose support C is nonempty and included
in X ′. The tree S cannot consist of just a single leaf of T by independence
of of the sets XF , so it must contain ∗. For each leaf F of T in S, we have
v̂(∗)↾F ∈ V (F )/XF , so by the definition of XF we have v̂(∗) ∈ (V (F )/(PF ∪
(B∩E(F ))))↾F , that is, there is some vector v̂′(F ) of Ṽ (F ) whose support is
included in (B∩E(F ))∪F and with v̂′(F )↾F = v̂(∗)↾F . Letting v̂′(∗) = v̂(∗),
we obtain a T̃ -prevector (S, v̂′) whose support is included in B, and so must
be empty. So for each leaf F of T in S we have v̂′(F ) ∈ kF and so, by
our choice of PF and QF , v̂

′(F ) ∈ V (F ), so since v̂′(F ) = v̂(∗)↾F we have
v̂(∗)↾F ∈ V (F ). Also, C cannot meet E′, so since C is nonempty there is
some leaf F of T in S for which the support of v̂(F ) isn’t a subset of F .
Then v̂(F ) − v̂(∗)↾F is a vector in V (F ) whose support is nonempty and
included in XF , contradicting the independence of XF .

This shows that X ′ is S(V (T ))-independent, and a dual argument shows
that Y ′ is S(W (T ))-independent.
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Next we will show that for any e ∈ E′ \X ′ there is some C ∈ S(V (T ))
with e ∈ C ⊆ X ′ + e. Since e ∈ B′, there is some circuit C0 of M with
e ∈ C0 ⊆ B + e. Let (S, v̂) be a T̃ -prevector with support C0. Then for
each leaf F of T in S, we have v̂(∗)↾F ∈ (V (F )/(PF ∪ (B ∩ E(F ))))↾F =
(V (F )/XF )↾F , so that there is some v̂′(F ) ∈ V (F ) with supp(v̂′(F )) ⊆
XF ∪ F and v̂′(F )↾F = v̂(∗)↾F . Letting v̂′(∗) = v̂(∗), we get a T -prevector
(S, v̂′) whose support is the desired C. A dual argument shows that for any
e ∈ E′ \ Y ′ there is some D ∈ S(W (T )) with e ∈ D ⊆ Y ′ + e.

It remains to prove the final condition of the Lemma. Suppose for a
contradiction that this condition fails, and let F ∈ F such that there is a
connected component of Π(T )/X ′\Y ′ containing some edge e of E(F ) and
some edge e′ of E(F ′) for some F ′ 6= F . Let C be a minimal nonempty
element of S(V (T )/X ′\Y ′) containing both e and e′, and let (S, v̂) be a
T -prevector whose support includes C but is a subset of C ∪ X ′. Both F
and ∗ must be in S. Then the support of v̂(F ) can’t meet YF , so v̂(F )↾F is
a vector of (V (F )\YF ).F = (V (F )/XF )↾F , so that there is some v ∈ V (F )
with supp(v) ⊆ XF ∪ F and v↾F = v̂(F )↾F . Then ({F}, F 7→ v(F ) − v) is
a T -prevector whose support is a subset of C ∪X ′ containing e but not e′,
contradicting the minimality of C. This completes the proof.

We now apply this lemma recursively to build the necessary bases. We
will need a little notation for our recursive construction. For any tree T and
directed edge st of T , let Ts→t be the subtree of T on the set of vertices u
for which the unique path from s to u in T contains t. For T = (T, V̄ , W̄ )
a tree of presentations and st a directed edge of G, let Ts→t be the tree of
presentations (Ts→t, V̄ ↾Ts→t

, W̄ ↾Ts→t
).

Theorem 8.3. Let T = (T, V ,W ) be a stellar tree of presentations, and let
Ψ be a Borel set of ends of T . Then ΠΨ(T ) presents a matroid.

Proof. We have already shown that ΠΨ(T ) is a presentation. Indeed, our
results so far show that for each edge tt′ of T the pair ΠΨ(Tt→t′) is a pre-
sentation.

It remains to show that S(VΨ(T )) satisfies (SM), for which by Remark 6.3
and Corollary 2.7 it is enough to show that there is some partition of E(T )
into a base X and a cobase Y , that is, Y is a subset of the S(VΨ(T ))-span
of X and X is a subset of the S(WΨ)(T ))-span of Y . We build X and Y
recursively. More precisely, we pick a root t0 for T and order the vertices
of T by the tree order ≤ with respect to this root. This is a well-founded
order, and we construct subsets Xt and Yt of E(T ) for each node t of T by
recursion over ≤ such that:
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1. Xt and Yt are disjoint.

2. Xt ⊆ Xt′ and Yt ⊆ Yt′ for t ≤ t′.

3. Xt′ \Xt ⊆ E(Tt→t′) and Yt′ \ Yt ⊆ E(Tt→t′) for any edge tt′ of T with
t ≤ t′.

4. E(t) ∩E(T ) ⊆ Xt ∪ Yt.

5. Xt is S(VΨ(T ))-independent and Yt is S(WΨ(T ))-independent.

6. For any e ∈ E(t) ∩ E(T ) \ Xt there is some C ∈ S(V (T )) with e ∈
C ⊆ Xt + e

7. For any e ∈ E(t) ∩ E(T ) \ Yt there is some D ∈ S(W (T )) with e ∈
D ⊆ Yt + e

8. There is no edge tt′ of T with t ≤ t′ such that there is a connected
component of Π(T )/Xt\Yt meeting both E(Tt→t′) and E(Tt′→t).

If we can find such Xt and Yt then the sets X =
⋃

t∈V (T )Xt and Y =⋃
t∈V (T )(Yt) will give the base and cobase we require: they will be disjoint

by conditions 1, 2 and 3, will cover by condition 4 and will be respectively
spanning and cospanning by conditions 6 and 7. It remains to show that
this recursive construction can be carried out.

We construct Xt0 and Yt0 by applying Lemma 8.2 to the star of presen-
tations with central node Π(t0) and with a leaf for each neighbour t of t0 in
T labelled with the presentation ΠΨ(Tt0→t), and taking X = Y = ∅.

The construction of Xt and Yt for t 6= t0 is very similar. Let s be the
predecessor of t in the tree order. Let E′ be the set E(t) ∩ E(T ) of real
edges of E(t). Let T ′ be the subtree Tt→s + t of T . Let Π = (ΠΨ(T

′)/(Xs ∩
E(Tt→s)))↾E(t)\E(st). Note that by condition 8 applied at s we also have
Π = (ΠΨ(T

′)\(Ys ∩ E(Tt→s))).(E(t) \ E(st)). Then we build X ′ and Y ′ by
applying Lemma 8.2 to the star of presentations with central node Π and
with a leaf for each successor t′ of t in T labelled with the presentation
ΠΨ(Tt→t′). We take the X and Y of the Lemma to be the intersections of
Xs and Ys with E(Ts→t) respectively. Finally, we let Xt = Xs ∪ X ′ and
Yt = Ys ∪ Y ′.
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