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Abstract

As part of the recent developments in infinite matroid theory, there
have been a number of conjectures about how standard theorems of fi-
nite matroid theory might extend to the infinite setting. These include
base packing, base covering, and matroid intersection and union. We
show that several of these conjectures are equivalent, so that each gives
a perspective on the same central problem of infinite matroid theory.
For finite matroids, these equivalences give new and simpler proofs for
the finite theorems corresponding to these conjectures.

This new point of view also allows us to extend, and simplify the
proofs of, some cases where these conjectures were known to be true.

1 Introduction

The well-known finite matroid intersection theorem of Edmonds states that
for any two finite matroids M and N the size of a biggest common indepen-
dent set is equal to the minimum of the rank sum rM (EM )+rN (EN ), where
the minimum is taken over all partitions E = EM ∪̇EN . The same statement
for infinite matroids is true, but for a silly reason [11], which suggests that
more care is needed in extending this statement to the infinite case.

Nash-Williams [4] proposed the following for finitary matroids.

Conjecture 1.1 (The Matroid Intersection Conjecture). Any two matroids
M and N on a common ground set E have a common independent set I
admitting a partition I = JM ∪ JN such that ClM (JM ) ∪ ClN (JN ) = E.

For finite matroids this is easily seen to be equivalent to the intersection
theorem, which is why we refer to Conjecture 1.1 as the Matroid Intersection
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Conjecture. If for a pair of matroids M and N on a common ground set
there are sets I, JM and JN as in Conjecture 1.1, we say that M and N
have the Intersection property, and that I, JM and JN witness this.

In [6], it was shown that this conjecture implies the celebrated Aharoni-
Berger-Theorem [1], also known as the Erdős-Menger-Conjecture. Call a
matroid finitary if all its circuits are finite and co-finitary if its dual is
finitary. The conjecture is true in the cases where M is finitary and N is
co-finitary [6].1 Aharoni and Ziv [4] proved the conjecture for one matroid
finitary and the other a countable direct sum of finite rank matroids.

In this paper we will demonstrate that the Matroid Intersection Conjec-
ture is a natural formulation by showing that it is equivalent to several other
new conjectures in unexpectedly different parts of infinite matroid theory.

Suppose we have a family of matroids (Mk|k ∈ K) on the same ground
set E. A packing for this family consists of a spanning set Sk for each Mk

such that the Sk are all disjoint. Note that not all families of matroids have
a packing. More precisely, the well-known finite base packing theorem states
that if E is finite then the family has a packing if and only if for every subset
Y ⊆ E the following holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

The Aharoni-Thomassen graphs [2, 12] show that this theorem does not
extend verbatim to finitary matroids. However, the base packing theorem
extends to finite families of co-finitary matroids [5]. This implies the topo-
logical tree packing theorems of Diestel and Tutte. Independently from our
main result, we close the gap in between by showing that the base packing
theorem extends to arbitrary families of co-finitary matroids (for example,
topological cycle matroids).

Similar to packings are coverings: a covering for the family (Mk|k ∈ K)
consists of an independent set Ik for each Mk such that the Ik cover E. And
analogously to the base packing theorem, there is a base covering theorem
characterising the finite families of finite matroids admitting a covering.

We are now in a position to state our main conjecture, which we will show
is equivalent to the intersection conjecture. Roughly, the finite base packing
theorem says that a family has a packing if it is very dense. Similarly, the
finite base covering theorem says roughly that a family has a covering if it is
very sparse. Although not every family of matroids has a packing and not
every family has a covering, we could ask: is it always possible to divide the

1In fact in [6] the conjecture was proved for a slightly larger class.
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ground set into a “dense” part, which has a packing, and a “sparse” part,
which has a covering?

Definition 1.2. We say that a family of matroids (Mk|k ∈ K) on a common
ground set E, has the Packing/Covering property if E admits a partition
E = P ∪̇C such that (Mk�P |k ∈ K) has a packing and (Mk.C|k ∈ K) has a
covering.

Conjecture 1.3. Any family of matroids on a common ground set has the
Packing/Covering property.

Here Mk�P is the restriction of Mk to P and Mk.C is the contraction of
Mk onto C. Note that if (Mk�P |k ∈ K) has a packing, then (Mk.P |k ∈ K)
has a packing, so we get a stronger statement by taking the restriction here.
Similarly, we get a stronger statement by contracting to get the family which
should have a covering than we would get by restricting.

For finite matroids, we show that this new conjecture is true and implies
the base packing and base covering theorems. So the finite version of Con-
jecture 1.3 unifies the base packing and the base covering theorem into one
theorem.

For infinite matroids, we show that Conjecture 1.3 and the intersection
conjecture are equivalent, and that both are equivalent to Conjecture 1.3 for
pairs of matroids. In fact, for pairs of matroids, we show that (M,N) has the
Packing/Covering property if and only if M and N∗ have the Intersection
property. As the Packing/Covering property is preserved under duality for
pairs of matroids, this shows the less obvious fact that the Intersection
property is also preserved under duality:

Corollary 1.4. If M and N are matroids on the same ground set then M
and N have the intersection property if and only if M∗ and N∗ do.

Conjecture 1.3 also suggests a base packing conjecture and a base cover-
ing conjecture which we show are equivalent to the intersection conjecture
but not to the above mentioned rank formula formulation of base packing
for infinite matroids.

The various results about when intersection is true transfer via these
equivalences to give results showing that these new conjectures also hold in
the corresponding special cases. For example, while the rank-formulation
of the covering theorem is not true for all families of co-finitary matroids,
the new covering conjecture is true in that case. This yields a base covering
theorem for the algebraic cycle matroid of any locally finite graph and the
topological cycle matroid of any graph. Similarly, we immediately obtain in
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this way that the new packing and covering conjectures are true for finite
families of finitary matroids. Thus we get packing and covering theorems
for the finite cycle matroid of any graph.

For finite matroids, the proofs of the equivalences of these conjectures
simplify the proofs of the corresponding finite theorems.

We show that Conjecture 1.3 might be seen as the infinite analogue of the
rank formula of the matroid union theorem. It should be noted that there
are two matroids whose union is not a matroid [5], so there is no infinite
analogue of the finite matroid union theorem as a whole.

This new point of view also allows us to give a simplified account of the
special cases of the intersection conjecture and even to extend the results a
little bit. Our result includes the following:

Theorem 1.5. Any family of matroids (Mk|k ∈ K) on the same ground
set E for which there are only countably many sets appearing as circuits of
matroids in the family has the Packing/Covering property.

This paper is organised as follows: In Section 2, we recall some basic
matroid theory and introduce a key idea, that of exchange chains. After
this, in Section 3, we restate our main conjecture and look at its relation
to the infinite matroid intersection conjecture. In Section 4, we prove a
special case of our main conjecture. In the next two sections, we consider
base coverings and base packings of infinite matroids. In the final section,
Section 7, we give an overview over the various equivalences we have proved.

2 Preliminaries

2.1 Basic matroid theory

Throughout, notation and terminology for graphs are that of [12], for ma-
troids that of [14, 9], and for topology that of [7]. M always denotes a
matroid and E(M), I(M), B(M), C(M) and S(M) denote its ground set
and its sets of independent sets, bases, circuits and spanning sets, respec-
tively.

Recall that the set I(M) is required to satisfy the followingindependence
axioms [9]:

(I1) ∅ ∈ I(M).

(I2) I(M) is closed under taking subsets.
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(I3) Whenever I, I ′ ∈ I(M) with I ′ maximal and I not maximal, there
exists an x ∈ I ′ \ I such that I + x ∈ I(M).

(IM) Whenever I ⊆ X ⊆ E and I ∈ I(M), the set {I ′ ∈ I(M) | I ⊆ I ′ ⊆
X} has a maximal element.

The axiom (IM) for the dual M∗ of M is equivalent to the following:

(IM∗) Whenever Y ⊆ S ⊆ E and S ∈ S(M), the set {S′ ∈ S(M) | Y ⊆ S′ ⊆
S} has a minimal element.

As the dual of any matroid is also a matroid, every matroid satisfies this.
We need the following facts about circuits, the first of which is commonly
referred to as the infinite circuit elimination axiom [9]:

(C3) Whenever X ⊆ C ∈ C(M) and {Cx | x ∈ X} ⊆ C(M) satisfies x ∈
Cy ⇔ x = y for all x, y ∈ X, then for every z ∈ C \

(⋃
x∈X Cx

)
there

exists a C ′ ∈ C(M) such that z ∈ C ′ ⊆
(
C ∪⋃x∈X Cx

)
\X.

(C4) Every dependent set contains a circuit.

A matroid is called finitary if every circuit is finite.

Lemma 2.1. A set S is M -spanning iff it meets every M -cocircuit.

Proof. We prove the dual version where I := E(M) \ S.

A set I is M∗-independent iff it does not contain an M∗-
circuit.

(1)

Clearly, if I contains a circuit, then it is not independent. Conversely, if I
is not independent, then by (C4) it also contains a circuit.

Let 2X denote the power set of X. If M = (E, I) is a matroid, then for
every X ⊆ E there are matroids M�X := (X, I ∩ 2X) (called the restriction
of M to X), M\X := M�E\X (which we say is obtained from M by deleting

X)2, M.X := (M∗�X)∗ (which we say is obtained by contracting onto X)
and M/X := M.(E \X) (which we say is obtained by contracting X). For
e ∈ E, we will also denote M/{e} by M/e and M\{e} by M\e.

Given a base B of X (that is, a maximal independent subset of X), the
independent sets of M/X can be characterised as those subsets I of E \X
for which B ∪ I is independent in M .

2We use the notation M�X rather than the conventional notation M |X to avoid con-
fusion with our notation (Mk|k ∈ K) for families of matroids.
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Lemma 2.2. Let M be a matroid with ground set E = C∪̇X∪̇D and let o′ be
a circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆ o′∪C.

Proof. Let s be any M -base of C. Then s ∪ o′ is M -dependent since o′ is
M ′-dependent. On the other hand, s ∪ o′ − e is M -independent whenever
e ∈ o′ since o′ − e is M ′-independent. Putting this together yields that
s∪ o′ contains an M -circuit o, and this circuit must not avoid any e ∈ o′, as
desired.

For a family (Mk|k ∈ K) of matroids, where Mk has ground set Ek,
the direct sum

⊕
k∈KMk is the matroid with ground set

⋃
k∈K Ek × {k},

with independent sets the sets of the form
⋃
k∈K Ik × {k} where for each k

the set Ik is independent in Mk. Contraction and deletion commute with
direct sums, in the sense that for a family (Xk ⊆ Ek|k ∈ K) we have⊕

k∈K(Mk/Xk) = (
⊕

k∈KMk)/(
⋃
k∈K Xk × {k}) and

⊕
k∈K(Mk\Xk) =

(
⊕

k∈KMk)\(
⋃
k∈K Xk × {k})

Lemma 2.3. Let M be a matroid and X ⊆ E(M). If S1 ⊆ X spans M�X
and S2 ⊆ E \X spans M/X, then S1 ∪ S2 spans M .

Proof. Let B be a maximal independent subset of S1. Then B spans S1 and
S1 spans X, so B spans X. Thus B is a base of X. Now let e ∈M \X \S2.
Since e ∈ ClM/X(S2) there is a set I ⊆ E\X such that I isM/X-independent
but I + e is not. Then B ∪ I is M -independent but B ∪ I + e is not, so that
e ∈ ClM (S1 + S2), as witnessed by the set B + I. Any other element of E
is either in S2 or is in X ⊆ ClM (S1), and so is in the span of S1 ∪ S2.

Lemma 2.4 ([10], Lemma 5). Let M be a matroid with a circuit C and a
co-circuit D, then |C ∩D| 6= 1.

A particular class of matroids we shall employ is the uniform matroids
Un,E on a ground set E, in which the bases are the subsets of E of size n.
In fact, the matroids we will use are those of the form U∗1,E , in which the
bases are all those sets obtained by removing a single element from E. Such
a matroid is said to consist of a single circuit, because C(U∗1,E) = {E}. A
subset is independent iff it isn’t the whole of E. Note that for a subset X
of E, U∗1,E�X is free (every subset is independent) unless X is the whole of
E, and U∗1,E .X = U∗1,X unless X is empty.

2.2 Exchange chains

Below, we will need a modification of the concept of exchange chains in-
troduced in [5]. The only modification is that we need not only exchange
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chains for families with two members but more generally exchange chains for
arbitrary families, which we define as follows: Let (Mk|k ∈ K) be a family
of matroids and let Bk ∈ I(Mk). A (Bk|k ∈ K)-exchange chain (from y0 to
yn) is a tuple (y0, k0; y1, k1; . . . ; yn) where Bkl + yl includes an Mkl-circuit
containing yl and yl+1. A (Bk|k ∈ K)-exchange chain from y0 to yn is called
shortest if there is no (Bk|k ∈ K)-exchange chain (y′0, k

′
0; y
′
1, k
′
1; . . . ; y

′
m) with

y′0 = y0, y
′
m = yn and m < n. A typical exchange chain is shown in Figure 1.

C1

C2

C3

C4

y0

y1

y2

y3

y4

I2 ∈ I(M2)

I1 ∈ I(M1)

(a) Before the exchange

C1

C2

C3

C4

y0

y1

y2

y3

y4

I1 + y0 − y1 + y2 − y3

I2 + y1 − y2 + y3 − y4

(b) After the exchange

Figure 1: An (I1, I2)-exchange chain of length 4.

Lemma 2.5. Let (Mk|k ∈ K) be a family of matroids and let Bk ∈ I(Mk).
If (y0, k0; y1, k1; . . . ; yn) is a shortest (Bk|k ∈ K)-exchange chain from y0 to
yn, then B′k ∈ I(Mk) for every k, where

B′k := Bk ∪ {yl|kl = k} \ {yl+1|kl = k}

Moreover, ClMk
Bk = ClMk

B′k.

Proof (Sketch). The proof that the B′k are independent is done by induc-
tion on n and is that of Lemma 4.5 in [5]. To see the second assertion,
first note that {yl|kl = k} ⊆ ClMk

Bk and thus B′k ⊆ ClMk
Bk. Thus it

suffices to show that Bk ⊆ ClMk
B′k. For this, note that the reverse tuple

(yn, kn−1; yn−1, kn−2; . . . ; y0) is a B′k-exchange chain giving back the original
Bk, so we can apply the preceding argument again.

Lemma 2.6. Let M be a matroid and I,B ∈ I(M) with B maximal and
B \ I finite. Then |I \B| ≤ |B \ I|.

Lemma 2.7. Let (Mk|k ∈ K) be a family of matroids, let Bk ∈ I(Mk) and
let C be a circuit for some Mk0 such that C \Bk0 only contains one element,
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e. If there is a (Bk|k ∈ K)-exchange chain from x0 to e, then for every
c ∈ C, there is a (Bk|k ∈ K)-exchange chain from x0 to c.

Proof. Let (y0 = x0, k0; y1, k1; . . . ; yn = e) be an exchange chain from x0
to e. Then (y0 = x0, k0; y1, k1; . . . ; yn = e, k0; c) is the desired exchange
chain.

3 The Packing/Covering conjecture

The matroid union theorem is a basic result in the theory of finite matroids.
It gives a way to produce a new matroid M =

∨
k∈KMk from a finite

family (Mk|k ∈ K) of finite matroids on the same ground set E. We take
a subset I of E to be M -independent iff it is a union

⋃
k∈K Ik with each Ik

independent in the corresponding matroid Mk. The fact that this gives a
matroid is interesting, but a great deal of the power of the theorem comes
from the fact that it gives an explicit formula for the ranks of sets in this
matroid:

rM (X) = min
X=P ∪̇C

∑
k∈K

rMk
(P ) + |C| (2)

Here the minimisation is over those pairs (P,C) of subsets of X which par-
tition X.

For infinite matroids, or infinite families of matroids, this theorem is no
longer true [5], in that M is no longer a matroid. However, it turns out, as
we shall now show, that we may conjecture a natural extension of the rank
formula to infinite families of infinite matroids.

First, we state the formula in a way which does not rely on the assump-
tion that M is a matroid:

max
Ik∈I(Mk)

∣∣∣∣∣ ⋃
k∈K

Ik

∣∣∣∣∣ = min
E=P ∪̇C

∑
k∈K

rMk
(P ) + |C| (3)

Note that this is really only the special case of (2) with X = E. However,
it is easy to deduce the more general version by applying (3) to the family
(Mk�X |k ∈ K).

Note also that no value |⋃k∈K Ik| appearing on the left is bigger than
any value

∑
k∈K rMk

(P ) + |C| appearing on the right. To see this, note that
|⋃k∈K(Ik ∩ P )| ≤∑k∈K rMk

(P ) and
⋃
k∈K(Ik ∩C) ⊆ C. So the formula is

equivalent to the statement that we can find (Ik|k ∈ K) and P and C with
P ∪̇C = E so that ∣∣∣∣∣ ⋃

k∈K
Ik

∣∣∣∣∣ =
∑
k∈K

rMk
(P ) + |C| . (4)
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For this, what we need is to have equality in the two inequalities above, so
we get ∣∣∣∣∣ ⋃

k∈K
(Ik ∩ P )

∣∣∣∣∣ =
∑
k∈K

rMk
(P ) and

⋃
k∈K

(Ik ∩ C) = C . (5)

The equation on the left can be broken down a bit further: it states that
each Ik ∩ P is spanning (and so a base) in the appropriate matroid Mk�P ,
and that all these sets are disjoint. This is the familiar notion of a packing:

Definition 3.1. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E. A packing for this family consists of a spanning set Sk for
each Mk such that the Sk are all disjoint.

So the Ik∩P form a packing for the family (Mk�P |k ∈ K). In fact, in this
case, each Ik ∩ P is a base in the corresponding matroid. In Definition 3.1,
we do not require the Sk to be bases, but of course if we have a packing we
can take a base for each Sk and so obtain a packing employing only bases.

Dually, the right hand equation in (5) corresponds to the presence of a
covering of C:

Definition 3.2. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E. A covering for this family consists of an independent set Ik
for each Mk such that the Ik cover E.

It is immediate that the sets Ik ∩ C form a covering for the family
(Mk�C |k ∈ K). In fact we get the stronger statement that they form a
covering for the family (Mk.C|k ∈ K) where we contract instead of restrict-
ing, since for each k we have that Ik ∩ P is an Mk-base for P , and we also
have that Ik, which is the union of Ik ∩ C with Ik ∩ P , is Mk-independent.

Putting all of this together, we get the following self-dual notion:

Definition 3.3. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. We say this family has the Packing/Covering property iff there is a
partition of E into two parts P (called the packing side) and C (called the
covering side) such that (Mk�P |k ∈ K) has a packing, and (Mk.C|k ∈ K)
has a covering.

We have established above that this property follows from the rank for-
mula for union, but the argument can easily be reversed to show that in
fact Packing/Covering is equivalent to the rank formula, where that for-
mula makes sense. However, Packing/Covering also makes sense for infinite
matroids, where the rank formula is no longer useful. We are therefore led
to the following conjecture:
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Conjecture 1.3. Every family of matroids on the same ground set has the
Packing/Covering property.

Because of this link to the rank formula, we immediately get a special
case of this conjecture:

Theorem 3.4. Every finite family of finite matroids on the same ground
set has the Packing/Covering property.

Packing/Covering for pairs of matroids is closely related to another prop-
erty which is conjectured to hold for all pairs of matroids.

Definition 3.5. A pair (M,N) of matroids on the same ground set E has
the Intersection property iff there is a subset J of E, independent in both
matroids, and a partition of J into two parts JM and JN such that

ClM (JM ) ∪ ClN (JN ) = E .

Conjecture 1.1. Every pair of matroids on the same ground set has the
Intersection property.

We begin by demonstrating a link between Packing/Covering for pairs
of matroids and Intersection.

Proposition 3.6. Let M and N be matroids on the same ground set E.
Then M and N have the Intersection property iff (M,N∗) has the Pack-
ing/Covering property.

Proof. Suppose first of all that (M,N∗) has the Packing/Covering property,
with packing side P decomposed as SM ∪̇SN∗ and covering side C decom-
posed as IM ∪̇IN∗ . Let JM be an M -base of SM , and JN an N -base of
C \ IN∗ . J = JM ∪ JN is independent in M since JN ⊆ IM is independent
in M.C and JM is independent in M�P . Similarly J is independent in N
since JM ⊆ P \ SN∗ is independent in N.P and JN is independent in N�C .
But also

ClM (JM ) ∪ ClN (JN ) = ClM (SM ) ∪ ClN (C \ IN∗) ⊇ P ∪ C = E .

Now suppose instead that M and N have the Intersection property,
as witnessed by J = JM ∪̇JN . Let JM ⊆ P ⊆ ClM (JM ) and JN ⊆ C ⊆
ClN (JN ) be a partition of E (this is possible since ClM (JM )∪ClN (JN ) = E).
We shall show first of all that M�P and N∗�P have a packing, with the
spanning sets given by SM = JM and SN

∗
= P \ JM . JM is spanning in
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M�P since P ⊆ ClM (JM ), so it is enough to check that P \ JM is spanning
in N∗�P , or equivalently that JM is independent in N.P . But this is true
since JN is an N -base of C and JM ∪ JN is N -independent.

Similarly, JN is independent in M.C, and since C ⊆ ClN (JN ) JN is
spanning in N�C and so C \ JN is independent in N∗.C. Thus the sets
IM = JN and IN

∗
= C \ JN form a covering for (M.C,N∗.C).

Corollary 3.7. If M and N are matroids on the same ground set then
(M,N) has the Packing/Covering property iff (M∗, N∗) does. �

This corollary is not too hard to see directly. However, the following
similar corollary is less trivial.

Corollary 1.4. If M and N are matroids on the same ground set then M
and N have the Intersection property iff M∗ and N∗ do. �

Proposition 3.6 shows that Conjecture 1.1 follows from Conjecture 1.3,
but so far we would only be able to use it to deduce that any pair of matroids
has the Packing/Covering property from Conjecture 1.1. However, this turns
out to be enough to give the whole of Conjecture 1.3.

Proposition 3.8. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E, and let M =

⊕
k∈KMk, on the ground set E ×K. Let N be

the matroid on the same ground set given by
⊕

e∈E U
∗
1,K . Then the Mk have

the Packing/Covering property iff M and N do.

Proof. First of all, suppose that the Mk have the Packing/Covering property
and let P , C, Sk and Ik be as in Definition 3.3. We can partition E × K
into P ′ = P × K and C ′ = C × K. Let SM =

⋃
k∈K Sk × {k}, and let

SN = P ′ \ SM . SM is spanning in M�P ′ by definition, and since the sets
Sk are disjoint, there is for each e ∈ P at most one k ∈ K with (e, k) 6∈ SN .
Thus SN is spanning in N�P ′ . Similarly, let IM =

⋃
k∈K Ik × {k} and let

IN = C ′ \ IM . IM is independent in M.C ′ by definition, and since the sets
Ik cover C there is for each e ∈ E at least one k ∈ K with (e, k) 6∈ IN . Thus
IN is independent in N.C ′.

Now suppose instead thatM andN have the Packing/Covering property,
with packing side P decomposed as SM ∪̇SN and covering side C decomposed
as IM ∪̇IN . First we modify these sets a little so that the packing and
covering sides are given by P ×K and C ×K for some sets P and C. To
this end, we let P = {e ∈ E|(∀k ∈ K)(e, k) ∈ P}, and C = {e ∈ E|(∃k ∈
K)(e, k) ∈ C}, so that P and C form a partition of E. Let S

N
= SN ∩ (P ×
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K) and I
N

= IN ∪ ((C×K)\C). We shall show that (SM , S
N

) is a packing

for (M�P×K , N�P×K) and (IM , I
N

) is a covering for (M.(C×K), N.(C×K)).

For any e ∈ C, the restriction of the corresponding copy of U∗1,K to

P ∩ ({e} × K) is free, and so since the intersection of SN with this set
is spanning there, it must contain the whole of P ∩ ({e} × K). So since
SM ⊆ P is disjoint from SN , it can’t contain any (e, k) with e ∈ C. That
is, SM ⊆ P ×K. It also spans P ×K in M , since it spans the larger set P .

For each e ∈ P , S
N ∩ ({e} ×K) = SN ∩ ({e} ×K) N -spans {e} ×K. Thus

S
N
N -spans P ×K, so (SM , S

N
) is a packing for (M�P×K , N�P×K).

To show that (IM , I
N

) is a covering for (M.(C × K), N.(C × K)), it

suffices to show that I
N

is N.(C × K)-independent. For each e ∈ C, the
set C ∩ ({e} × K) is nonempty, so the contraction of the corresponding
copy of U∗1,K to this set consists of a single circuit, so there is some point

in this set but not in IN . Then that same point is also not in I
N

, and so

I
N ∩ ({e} ×K) is independent in the corresponding copy of U∗1,K , so I

N
is

indeed N.(C × P )-independent.

Now that we have shown that P ×K, C ×K, (SM , S
N

) and (IM , I
N

)
also witness that M and N have the Packing/Covering property, we show
how we can construct a packing and a covering for (Mk�P |k ∈ K) and
(Mk.C|k ∈ K) respectively.

For each k ∈ K let Ik = {e ∈ E|(e, k) ∈ IM}. Since, as we saw above,
IM meets each of the sets {e}×K with e ∈ C, the union of the Ik is C. Since
also each Ik is independent in Mk.C, they form a covering for (Mk.C|k ∈ K).

Similarly, let Sk = {e ∈ E|(e, k) ∈ SM}. Since the intersection of S
N

with
{e} × K is spanning in the corresponding copy of U∗1,k for any e ∈ P , it
follows that for such e it misses at most one point of this set, so that there
can be at most one point in SM ∩ ({e} ×K), so the Sk are disjoint. Thus
they form a packing of (Mk�P |k ∈ K).

Corollary 3.9. The following are equivalent:

(a) Any two matroids have the Intersection property (Conjecture 1.1).

(b) Any two matroids in which the second is a direct sum of copies of U1,2

have the Intersection property.

(c) Any pair of matroids has the Packing/Covering property.

(d) Any pair of matroids in which the second is a direct sum of copies of
U1,2 has the Packing/Covering property.
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(e) Any family of matroids has the Packing/Covering property (Conjec-
ture 1.3).

Proof. We shall prove the following equivalences.

(b) oo // (d)
OO

��
(a) oo // (c) oo // (e)

The equivalences of (a) with (c) and (b) with (d) both follow from Propo-
sition 3.6. (c) evidently implies (d), but we can also get (c) from (d) by
applying Proposition 3.8. Similarly, (e) evidently implies (c) and we can get
(e) from (c) by applying Proposition 3.8.

4 A special case of the Packing/Covering conjec-
ture

In [4], Aharoni and Ziv prove a special case of the intersection conjecture.
Here we employ a simplified form of their argument to prove a special case
of the Packing/Covering conjecture. Our simplification also yields a slight
strengthening of their theorem.

Key to the argument is the notion of a wave.

Definition 4.1. Let (Mk|k ∈ K) be a family of matroids all on the ground
set E. A wave for this family is a subset P of E together with a packing
(Sk|k ∈ K) of (Mk�P |k ∈ K). In a slight abuse of notation, we shall
sometimes refer to the wave just as P or say that elements of P are in the
wave. A wave is a hindrance if the Sk don’t completely cover P . The family
is unhindered if there is no hindrance, and loose if the only wave is the empty
wave.

Remark 4.2. Those familiar with Aharoni and Ziv’s notion of wave should
observe that if (P, (S1, S2)) is a wave as above and we let F be an M2-base
of S2 then F is not only M2-independent but also M∗1 .P -independent, since
S1 ⊆ P \ F is M1�P -spanning. Now since P ⊆ ClM2(F ), we get that F is
also M∗1 .ClM2(F )-independent. Thus F is a wave in the sense of Aharoni
and Ziv for the matroids M∗1 and M2. There is a similar correspondence of
the other notions defined above.

Similarly, they say that the pair (M1,M2) is matchable iff there is a set
which is M1-spanning and M2-independent. Those interested in translating

13



between the two contexts should note that there is a covering for (M1,M2)
iff (M∗1 ,M2) is matchable.

We define a partial order on waves by (P, (Sk|k ∈ K)) ≤ (P ′, (S′k|k ∈ K))
iff P ⊆ P ′ and for each k ∈ K we have Sk ⊆ S′k. We say a wave is maximal
iff it is maximal with respect to this partial order.

Lemma 4.3. For any wave P there is a maximal wave Pmax ≥ P .

Proof. This follows from Zorn’s Lemma since for any chain ((Pi, (S
i
k|k ∈

K))|i ∈ I) the union (
⋃
i∈I Pi, (

⋃
i∈I S

i
k|k ∈ K)) is a wave.

Lemma 4.4. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E, and let (P, (Sk|k ∈ K)) and (P ′, (S′k|k ∈ K)) be two waves. Then
(P ∪ P ′, (Sk ∪ (S′k \ P )|k ∈ K)) is a wave.

Proof. Clearly, the Sk ∪ (S′k \ P ) are disjoint and clMk
Sk includes S′k ∩ P

and hence clMk
(Sk ∪ (S′k \ P )) includes P ∪ P ′, as desired.

Corollary 4.5. If Pmax is a maximal wave then anything in any wave P is
in Pmax.

Proof. We apply Lemma 4.4 to the pair (Pmax, P ).

Lemma 4.6. For any e ∈ E and k ∈ K, any maximal wave P satisfies
e ∈ ClMk

P whenever there is any wave P ′ with e ∈ ClMk
P ′.

In particular, if e is not contained in any wave, there are at least two k
such that, for every wave P ′, e /∈ ClMk

P ′.

Proof. Let (P, (Sk|k ∈ K)) be a maximal wave. By Corollary 4.5 for any
wave (P ′, (S′k|k ∈ K)) we have S′k ⊆ ClMk

Sk. Thus e ∈ ClMk
P ′ = ClMk

S′k
implies e ∈ ClMk

P , as desired.
For the second assertion, assume toward contradiction that there is at

most one k0 such that, for every wave P ′, e /∈ ClMk0
P ′. Then e ∈ ClMk

P
for all k 6= k0. But then the following is a wave and contains e:
X := (P + e, (Sk|k ∈ K)) where Sk0 = Sk0 + e and Sk = Sk for other values
of k. This is a contradiction.

Lemma 4.7. Let (P, (Sk|k ∈ K)) be a wave for a family (Mk|k ∈ K) of
matroids. Let (P ′, (S′k|k ∈ K)) be a wave for the family (Mk/P |k ∈ K).
Then (P ∪ P ′, (Sk ∪ S′k|k ∈ K)) is a wave for the family (Mk|k ∈ K). If
either P or P ′ is a hindrance then so is P ∪ P ′.
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Remark 4.8. In fact, though we will not need this, a similar statement can
be shown for an ordinal indexed family of waves P β, with P β a wave for the
family (Mk/

⋃
γ<β P

γ |k ∈ K).

Proof. For each k, the set S′k is spanning in Mk�P∪P ′/P and Sk is spanning
in Mk�P∪P ′�P , so by Lemma 2.3 each set Sk∪S′k spans P ∪P ′, and they are
clearly disjoint. If the Sk don’t cover some point of P then the Sk ∪ S′k also
don’t cover that point, and the argument in the case where P ′ is a hindrance
is similar.

Corollary 4.9. For any maximal wave Pmax, the family (Mk/Pmax|k ∈ K)
is loose.

We are now in a position to present another Conjecture equivalent to the
Packing/Covering Conjecture. It is for this new form that we shall present
our partial proof.

Conjecture 4.10. Any unhindered family of matroids has a covering.

Proposition 4.11. Conjecture 4.10 and Conjecture 1.3 are equivalent.

Proof. First of all, suppose that Conjecture 1.3 holds, and that we have an
unhindered family (Mk|k ∈ K) of matroids. Using Conjecture 1.3, we get
P , C, Sk and Ik as in Definition 3.3. Then (P, (Sk|k ∈ K)) is a wave, and
since it can’t be a hindrance the sets Sk cover P . They must also all be
independent, since otherwise we could remove a point from one of them to
obtain a hindrance. So the sets Sk ∪ Ik give a covering for (Mk|k ∈ K).

Now suppose instead that Conjecture 4.10 holds, and let (Mk|k ∈ K)
be any family of matroids on the ground set E. Then let (P, (Sk|k ∈ K))
be a maximal wave. By Corollary 4.9, (Mk/P |k ∈ K) is loose, and so in
particular this family is unhindered. So it has a covering (Ik|k ∈ K). Taking
covering side C = E \P , this means that the Mk have the Packing/Covering
property.

Lemma 4.12. Suppose that we have an unhindered family (Mk|k ∈ K) of
matroids on a ground set E. Let e ∈ E and k0 ∈ K such that for every
wave P we have e /∈ ClMk0

P . Then the family (M ′k|k ∈ K) on the ground
set E − e is also unhindered, where M ′k0 = Mk0/e but M ′k = Mk\e for other
values of k.

Proof. Suppose not, for a contradiction, and let (P, (Sk|k ∈ K)) be a hin-
drance for (M ′k|k ∈ K). Without loss of generality, we assume that the Sk
are bases of P . Let Sk be given by Sk0 = Sk0 + e and Sk = Sk for other
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values of k. Note that Sk0 is independent because otherwise, by the Mk0/e-
independence of Sk0 , we must have e ∈ ClMk0

(Sk0) (in fact, {e} must be an
Mk0-circuit), so that P ⊆ ClMk0

(Sk0), and thus (P, (Sk|k ∈ K)) is a wave
for the Mk with e ∈ ClMk0

P . Let P ′ be the set of x ∈ P such that there is

no (Sk|k ∈ K)-exchange chain from x to e.
Let x0 ∈ P \

⋃
k∈K Sk. If x0 ∈ P ′, then we will show that (P ′, (P ′∩Sk|k ∈

K)) is a wave containing x0. This contradicts the assumption that (Mk|k ∈
K) is unhindered. We must show for every k that every x ∈ P ′ \ P ′ ∩ Sk is
Mk-spanned by P ′ ∩ Sk. Since e 6∈ P ′ we cannot have x = e. Let C be the
unique circuit contained in x + Sk. If x ∈ P ′, then C ⊆ P ′ by Lemma 2.7,
so x ∈ ClMk

(P ′ ∩ Sk), as desired.
If x0 /∈ P ′, there is a shortest (Sk|k ∈ K)-exchange chain

(y0 = x0, k0; y1, k1; . . . ; yn = e)

from x0 to e. Let S
′
k := Sk ∪ {yl|kl = k} \ {yl+1|kl = k}. By Lemma 2.5,

S
′
k is Mk-independent and ClMk

Sk = ClMk
Sk
′

for all k ∈ K. Thus each S
′
k

Mk-spans P but avoids e, in other words: (P, (S
′
k|k ∈ K)) is an (Mk|k ∈ K)-

wave. But also e ∈ ClMk0
P since e ∈ Sk0 , a contradiction.

We will now discuss those partial versions of Conjecture 4.10 which we
can prove. We would like to produce a covering of the ground set by in-
dependent sets - and that means that we don’t want any of the sets in
the covering to include any circuits for the corresponding matroid. First of
all, we show that we can at least avoid some circuits. In fact, we’ll prove
a slightly stronger theorem here, showing that we can specify a countable
family of sets, which are to be avoided whenever they are dependent. In all
our applications, the dependent sets we care about will be circuits.

Theorem 4.13. Let (Mk|k ∈ K) be an unhindered family of matroids on
the same ground set E. Suppose that we have a sequence of subsets on of
E. Then there is a family (Ik|k ∈ K) whose union is E and such that for
no k ∈ K and n ∈ N do we have both on ⊆ Ik and on dependent in Mk.

Proof. If some wave includes the whole ground set, then as the family is
unhindered, this wave would yield the desired covering. Unfortunately, we
may not assume this. Instead, we recursively build a family (Jk|k ∈ K) of
disjoint sets such that some wave (P, (Sk|k ∈ K)) for the Mk/Jk\

⋃
l 6=k Jl

includes enough of E \⋃k Jk that any family (Ik|k ∈ K) whose union is E
and with Ik ∩ (P ∪⋃k∈K Jk) = Sk ∪ Jk will work.

We construct Jk as the nested union of some (Jnk |n ∈ N ∪ {0}) with the
following properties. Abbreviate Mn

k := Mk/J
n
k \
⋃
l 6=k J

n
l .
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(a) Jnk is independent in Mk.

(b) For different k, the sets Jnk are disjoint.

(c) (Mn
k |k ∈ K) is unhindered.

(d) Either the set on \
⋃
k∈K J

n
k is included in some (Mn

k |k ∈ K)-wave or
there are distinct l, l′ such that there is some e ∈ on ∩ Jnl and some
e′ ∈ on ∩ Jnl′ .

Put J0
k := ∅ for all k. These satisfy (a)-(c), and (d) is vacuous since

there is no term o0 (we are following the convention that 0 is not a natural
number). Assume that we have already constructed Jnk satisfying (a)-(d).

If (d) with on+1 in place of on is already satisfied by the (Jnk |k ∈ K) we
can simply take Jn+1

k := Jnk for all k.
Otherwise, if we let Pmax be a maximal wave, there is some e ∈ on+1 \⋃

k∈K J
n
k not in Pmax and so not in any (Mn

k |k ∈ K)-wave. By Lemma 4.6,
there are at least two k ∈ K such that e /∈ ClMn

k
P ′ for every wave P ′. In

particular, e is not a loop ({e} is independent) in Mn
k for those two k. Let l

be one of these two values of k. Now let Jn+1
l := Jnl + e and Jn+1

k := Jnk for

k 6= l. Then the Jn+1
k satisfy (a) and (b). By Lemma 4.12 and the choice of

e, we also have (c).

If the Jn+1
k already satisfy (d), then we are done. Else, to obtain (d),

repeat the induction step so far and find e′ ∈ on+1 \
⋃
k∈K J

n+1
k not in any

(Mn
k |k ∈ K)-wave. Here Mn

k is Mn
k /e if k = l and Mn

k \e otherwise. Further
we find, l′ 6= l such that {e′} is independent in Mn

l′ and e′ /∈ ClMl
P ′ for

every wave P ′. Now let Jn+1
l′ := Jn+1

l′ + e′ and Jn+1
k := Jn+1

k for k 6= l′.
Then the Jn+1

k satisfy (a) and (b) and now also (d). By Lemma 4.12 and
the choice of e′, we also have (c).

We now define a new family of matroids by M ′k := Mk/Jk\
⋃
l 6=k Jl, and

we construct an (M ′k|k ∈ K)-wave (P, (Sk|k ∈ K)). We once more do this
by taking the union of a recursively constructed nested family. Explicitly,
we take Sk =

⋃
n∈N S

n
k and P =

⋃
n∈N P

n, where for each n the wave
Wn = (Pn, (Snk |k ∈ K)) is a maximal wave for (Mn

k |k ∈ K) and the Snk are
nested. We can find such waves using Lemma 4.3: for each n we have that
Wn is also a wave for (Mn+1

k |k ∈ K) since in our construction we never
contract or delete anything which is in a wave.

Now let (Ik|k ∈ K) be chosen so that
⋃
Ik = E and for each k0 ∈ K we

have Ik0 ∩ (P ∪⋃k∈K Jk) = Sk0 ∪ Jk0 . Suppose for a contradiction that for
some pair (k0, n) we have on ⊆ Ik0 and on is dependent in Mk0 . Then by (d),
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either the set on \
⋃
k∈K J

n
k is included in some (Mn

k |k ∈ K)-wave or there
are distinct l, l′ such that there is some e ∈ on ∩ Jnl and some e′ ∈ on ∩ Jnl′ .
In the second case, clearly on * Ik0 .

In the first case, we will find a hindrance for (Mn
k |k ∈ K), which con-

tradicts (c). It suffices to show that Snk0 is dependent in Mn
k0

, since then
we can obtain a hindrance by removing a point from Snk0 in Wn. Let
o = on \

⋃
k∈K J

n
k = on \ Jnk0 . Note that o is dependent in Mn

k0
, since

on is dependent in Mn
k0

but Jnk0 is not by (a). By assumption, o ⊆ Pn,
and so since also o ⊆ on ⊆ Ik0 we have o ⊆ Ik0 ∩ Pn = Snk0 , so that Snk0 is
Mn
k0

-dependent as required.

Note that, in particular, if we have a countable family of matroids each
with only countably many circuits then Theorem 4.13 applies in order to
prove Conjecture 1.3 in that special case. Requiring only countably many
circuits might seem quite restrictive, but there are many cases where it holds:

Proposition 4.14. A matroid of any of the following types on a countable
ground set has only countably many circuits:

(a) A finitary matroid.

(b) A matroid whose dual has finite rank.

(c) A direct sum of matroids each with only countably many circuits.

Proof. (a) follows from the fact that the countable ground set has only count-
ably many finite subsets. For (b), since every base B has finite complement,
there are only countably many bases. As every circuit is a fundamental
circuit for some base, there can only be countably many circuits, as desired.
For (c), there can only be countably many nontrivial summands in the direct
sum since the ground set is countable, and the result follows.

In particular, Theorem 4.13 applies to any countable family of matroids
each of which is a direct sum of matroids that are finitary or whose duals
have finite rank. This includes the main result of Aharoni and Ziv in [4], if
the ground set E is countable, by Proposition 3.6.

If we have a family of sets (Ik|k ∈ K) which does not form a covering,
because some elements aren’t independent, how might we tweak it to make
them more independent? Suppose that the reason why Ik is dependent is
that it contains a circuit o of Mk, but that o also includes a cocircuit for
another matroid Mk′ from our family. Then we could move some point from
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Ik into Ik′ to remove this dependence without making Ik′ any more depen-
dent.3 We are therefore not so worried about circuits including cocircuits in
this way as we are about other sorts of circuits. Therefore we now consider
cases where most circuits do include such cocircuits:

Definition 4.15. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E. For each k ∈ K we let Wk be the set of all Mk-circuits that
do not contain an Mk′-cocircuit with k′ 6= k. Call the family (Mk|k ∈ K) of
matroids at most countably weird if

⋃
Wk is at most countable.

Note that if E is countable then (Mk|k ∈ K) is at most countably weird
if and only if

⋃
W∞k is countable where W∞k is the subset of Wk consisting

only of the infinite circuits in Wk.

Theorem 4.16. Any unhindered and at most countably weird family (Mk|k ∈
K) of matroids has a covering.

Proof. Apply Theorem 4.13 to (Mk|k ∈ K) where the on enumerate
⋃
Wk

where the Wk are defined as in Definition 4.15.
So far (Ik|k ∈ K) is not necessarily a covering since each Ik might still

contain circuits. But by the choice of the family of circuits each circuit
contained in Ik contains an Mk′-cocircuit with k′ 6= k.

In the following, we tweak (Ik|k ∈ K) to obtain a covering (Lk|k ∈ K).
First extend Ik into a minimal Mk-spanning set Bk by (IM)∗. We obtain
Lk from Bk by removing all elements in Ik ∩

⋃
l 6=k Bl. We can suppose

without loss of generality (Ik|k ∈ K) was a partition of E, and so the family
(Lk|k ∈ K) covers E. It remains to show that Lk is independent. For this,
assume for a contradiction that Lk contains an Mk-circuit C. By the choice
of Bk, the circuit C is contained in Ik. In particular, C contains an Ml-
cocircuit X for some l 6= k. By construction Bl meets X and thus C. As
C ⊆ Ik, the circuit C is not contained in Lk, a contradiction. So (Lk|k ∈ K)
is the desired covering.

Theorem 4.17. Any at most countably weird family (Mk|k ∈ K) of ma-
troids has the Packing/Covering property.

Proof. For each k ∈ K, let Wk be the set of all Mk-circuits that do not
contain an Mk′-cocircuit with k′ 6= k. Let (P, (Sk|k ∈ K)) be a maximal
wave. We may assume that each Sk is a base of P . It suffices to show that
the family (Mk/P |k ∈ K) has a covering.

3We may assume that the Ik are disjoint. Then any new circuits in Ik′ would have to
meet the cocircuit in just one point, which is impossible by Lemma 2.4.

19



By Theorem 4.16, it suffices to show that the family (Mk/P |k ∈ K) is
at most countably weird . Let W k be the set of Mk/P -circuits that do not
include some Mk′/P -cocircuit for some k′ 6= k. By Lemma 2.2, for each
o ∈W k, there is an Mk-circuit ô included in o ∪ Sk with o ⊆ ô.

Next we show that if ô includes some Mk′-cocircuit b, then b ⊆ o. In par-
ticular o includes some Mk′/P -cocircuit. Indeed, otherwise b∩P is nonempty
and includes some Mk′�P -cocircuit. This cocircuit would be included in Sk,
which is impossible since Sk′ spans P , and is disjoint from Sk. Thus if ô is
in Wk, then o is in W k.

For each o ∈ ⋃W k, we pick some k ∈ K such that o ∈ W k, and let
ι(o) = ô. Then ι :

⋃
W k →

⋃
Wk is an injection since if ι(o) = ι(q), then

o = ι(o) \ P = ι(q) \ q = q. Thus (Mk/P |k ∈ K) is at most countably weird
and so (Mk/P |k ∈ K) has a covering by Theorem 4.16, which completes the
proof.

However, there are still some important open questions here.

Definition 4.18 ([6]). The finitarisation of a matroid M is the matroid
Mfin whose circuits are precisely the finite circuits of M .4 A matroid is
called nearly finitary if every base misses at most finitely many elements of
some base of the finitarisation.

From Proposition 3.6 and the corresponding case of Matroid Intersection
[6] we obtain the following:

Corollary 4.19. Any pair of nearly finitary matroids has the Packing/Covering
property.

By Proposition 3.8 Corollary 4.19 implies that any finite family of nearly
finitary matroids has the Packing/Covering property. Since every countable
set has only countably many finite subsets, any family of finitary matroids
supported on a countable ground set is at most countably weird, and thus
has the Packing/Covering property by Theorem 4.17. On the other hand
any family of two cofinitary matroids has the Packing/Covering by Corol-
lary 4.19 since the pairwise Packing/Covering Property is self-dual. By
Proposition 3.8, this implies that any family of cofinitary matroids has the
Packing/Covering property. We sum up these results in the following table.

Type of family cofinitary finitary nearly finitary

finite X X X
countable ground set X X ?

arbitrary X ? ?

4It is easy to check that Mfin is indeed a matroid [6].
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In particular, we do not know the answer to the following open questions.

Open Question 4.20. Must every family of nearly finitary matroids on a
countable common ground set have the Packing/Covering property?

Open Question 4.21. Must every family of finitary matroids have the
Packing/Covering property?

5 Base covering

The well-known base covering theorem reads as follows.

Theorem 5.1. Any family of finite matroids (Mk|k ∈ K) on a finite com-
mon ground set E has a covering if and only if for every finite set X ⊆ E
the following holds. ∑

k∈K
rMk

(X) ≥ |X|

Taking the family to contain only one matroid, consisting of one infinite
circuit, we see that this theorem does not extend verbatim to infinite ma-
troids. However, Theorem 5.1 extends verbatim to finite families of finitary
matroids by compactness [5].5 The requirement that the family is finite is
necessary as (Uk = U1,R|k ∈ N) satisfies the rank formula but does not have
a covering.

In the following, we conjecture an extension of the finite base covering
theorem to arbitrary infinite matroids. Our approach is to replace the rank
formula by a condition that for finite sets X is implied by the rank for-
mula but is still meaningful for infinite sets. A first attempt might be the
following:

Any packing for the family (Mk�X |k ∈ K) is already a cov-
ering.

(6)

Indeed, for finite X, if (Mk�X |k ∈ K) has a packing and there is an
element of X not covered by the spanning sets of this packing, then this
violates the rank formula. However, there are infinite matroids that violate
(6) and still have a covering, see Figure 2.

We propose to use instead the following weakening of (6).

If (Mk�X |k ∈ K) has a packing, then it also has a covering. (7)

5The argument in [5] is only made in the case where all Mk are the same but it easily
extends to finite families of arbitrary finitary matroids.
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B2 B1

B′
2 B′

1

Figure 2: Above is a base packing which isn’t a base covering. Below that
is a base covering for the same matroids, namely the finite cycle matroid for
the graph, taken twice.

To see that (7) does not imply the rank formula for some finite X,
consider the family (M,M), where M is the finite cycle matroid of the
graph

• • •
This graph has an edge not contained in any cycle (so that (M,M) does not
have a packing) but enough parallel edges to make the rank formula false.

Using (7), we obtain the following:

Conjecture 5.2 (Covering Conjecture). A family of matroids (Mk|k ∈ K)
on the same ground set E has a covering if and only if (7) is true for every
X ⊆ E.

Proposition 5.3. Conjecture 1.3 and Conjecture 5.2 are equivalent.

Proof. For the “only if” direction, note that Conjecture 5.2 implies Conjec-
ture 4.10, which by Proposition 4.11 implies Conjecture 1.3.

For the “if” direction, note that by assumption we have a partition
E = P ∪̇C such that there exist disjoint Mk�P -spanning sets Sk and Mk.C-
independent sets Ik whose union is C. By (7), (Mk�P |k ∈ K) has a covering
with sets Bk, where Bk ∈ I(Mk�P ). As Ik ∪ Bk ∈ I(Mk), the sets Ik ∪ Bk
form the desired covering.
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As Packing/Covering is true for finite matroids, Proposition 5.3 implies
the non-trivial direction of Theorem 5.1. By Theorem 4.17 we obtain the
following applications.

Corollary 5.4. Any at most countably weird family of matroids (Mk|k ∈ K)
has a covering if and only if (7) is true for every X ⊆ E.

Let us now specialise to graphs. A good introduction to the algebraic
and the topological cycle matroids of infinite graphs is [8]. We rely on the
fact that the algebraic cycle matroid of any locally finite graph and the
topological cycle matroid of any graph are co-finitary.

Definition 5.5. The bases of the topological cycle matroid are called topo-
logical trees and the bases of the algebraic cycle matroid are called algebraic
trees. Using this we define topological tree-packing, topological tree-covering,
algebraic tree-packing, algebraic tree-covering.

Corollary 5.6 (Base covering for the topological cycle matroids). A family
of multigraphs (Gk|k ∈ K) on a common ground set E has a topological
tree-covering if and only if the following is true for every X ⊆ E.

If (Gk[X]|k ∈ K) has a topological tree-packing, then it also
has a topological tree-covering.

(8)

Corollary 5.7 (Base covering for the algebraic cycle matroids of locally
finite graphs). A family of locally finite multigraphs (Gk|k ∈ K) on a com-
mon ground set E has an algebraic tree-covering if and only if the following
is true for every X ⊆ E.

If (Gk[X]|k ∈ K) has an algebraic tree-packing, then it also
has an algebraic tree-covering.

(9)

6 Base packing

The well-known base packing theorem reads as follows.

Theorem 6.1. Any family of finite matroids (Mk|k ∈ K) on a finite com-
mon ground set E has a packing if and only if for every finite set Y ⊆ E
the following holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

Aigner-Horey, Carmesin and Fröhlich [5] extended this theorem to fam-
ilies consisting of finitely many copies of the same co-finitary matroid. We
extend this to arbitrary co-finitary families.
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Theorem 6.2. Any family of co-finitary matroids (Mk|k ∈ K) on a common
ground set E has a packing if and only if for every finite set Y ⊆ E the
following holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

Proof by a compactness argument. We will think of partitions of the ground
set E as functions from E to K - such a function f corresponds to a partition
(Sfk |k ∈ K), given by Sfk = {e ∈ E|f(e) = k}. Endow K with the co-finite
topology where a set is closed iff it is finite or the whole of K. Then endow
KE with the product topology, which is compact since the topology on K
is compact.

By Lemma 2.1 a set S is spanning for a matroid M iff it meets every
cocircuit of that matroid. So we would like a function f contained in each of
the sets Ck,B = {f |Sfk ∩B 6= ∅}, where B is a cocircuit for the matroid Mk.
We will prove the existence of such a function by a compactness argument:
we need to show that each Ck,B is closed in the topology given above and
that any finite intersection of them is nonempty.

To show that Ck,B is closed, we rewrite it as
⋃
e∈B{f |f(e) = k}. Each of

the sets {f |f(e) = k} is closed since their complements are basic open sets,
and the union is finite since Mk is co-finitary.

Now let (ki|1 ≤ i ≤ n) and (Bi|1 ≤ i ≤ n) be finite families with each Bi
a cocircuit in Mki . We need to show that

⋂
1≤i≤nCki,Bi

is nonempty. Let
X =

⋃
1≤i≤nBi. Since the rank formula holds for each subset of X, we have

by the finite version of the base packing Theorem a packing (Sk|k ∈ K)
of (Mk.X|k ∈ K). Now any f such that f(e) = k for e ∈ Sk will be in⋂

1≤i≤nCki,Bi
by Lemma 2.1, since each Bi is an Mki .X-cocircuit. This

completes the proof.

Theorem 6.1 does not extend verbatim to arbitrary infinite matroids.
Indeed, for every integer k there exists a finitary matroid M on a ground
set E with no three disjoint bases yet satisfying |Y | ≥ krM.Y (Y ) for every
finite Y ⊆ E [2, 12].

In the following we conjecture an extension of the finite base packing
theorem to arbitrary infinite matroids. This extension uses the following
condition, which for finite sets Y is implied by the rank formula of the base
packing theorem but is still meaningful for infinite sets:

If (Mk.Y |k ∈ K) has a covering, then it also has a packing. (10)
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Indeed, if (Mk.Y |k ∈ K) has a covering and there is an element of Y
contained in several of the corresponding independent sets, then this violates
the rank formula.

Using our new condition, we obtain the following:

Conjecture 6.3 (Packing Conjecture). A family of matroids (Mk|k ∈ K)
on the same ground set E has a packing if and only if (10) is true for every
Y ⊆ E.

Proposition 6.4. Conjecture 1.3 and Conjecture 6.3 are equivalent.

Proof. Since by Lemma 2.1 condition (10) for a pair of matroids is equivalent
to (7) for the duals of those matroids and a pair of matroids have a packing
if and only if their duals have a covering, Conjecture 6.3 implies that any
pair of matroids satisfying (7) has a covering, and in particular that any
unhindered pair of matroids has a covering. As in the proof of (4.11), this
implies that any pair of matroids has the Packing/Covering property, which
implies Conjecture 1.3 by Corollary 3.9.

The converse is proved as in the proof of Proposition 5.3.

As Packing/Covering is true for finite matroids, Proposition 6.4 implies
the non-trivial direction of Theorem 6.1. By Theorem 4.17 we obtain the
following applications.

Corollary 6.5. Any at most countably weird family of matroids on ground
set E has a packing if and only if (10) is true for every Y ⊆ E.

Now let us specialise to graphs. The question if there is a packing the-
orem for the finite cycle matroid of an infinite graph was raised by Nash-
Williams in 1967 [13] , who suggested that a countable graph G has k edge-
disjoint spanning trees if and if k ·rM.Y (Y ) ≤ |Y | for every finite edge set Y .
Here M is the finite cycle matroid of G. However, Aharoni and Thomassen
constructed a counterexample in 1989 [3]. Our approach gives the following
two packing theorems for finite cycle matroids of infinite graphs. We rely
on the fact that the finite cycle matroid of any graph is finitary.

Corollary 6.6 (Base packing theorem for the finite cycle matroid). Any
family of countable multigraphs (Gk|k ∈ K) with a common edge set E has
a tree-packing if and only if (11) is true for every Y ⊆ E.

If (Mk.Y |k ∈ K) has a tree-covering, then it also has a tree-
packing.

(11)
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Corollary 6.7 (Base packing theorem for the finite cycle matroid). Any
finite family of multigraphs (Gk|k ∈ K) with common edge set E has a
tree-packing if and only if (11) is true for every Y ⊆ E.

A similar result was obtained by Aharoni and Ziv [4]. However, their
argument is different and they have the additional assumption that the
ground set is countable.

Note that the covering conjecture for arbitrary finitary families is still
open and equivalent to Open Question 4.21.

7 Overview

We have shown that a great many natural conjectures are equivalent, which
we will review in this section. We are indebted to a reviewer for pointing out
the importance of the fact that many of the equivalences we have proved
specialise to smaller classes than the class of all matroids. We therefore
consider the following conjectures, each of which could be made relative to
a class M of matroids.

The Intersection conjecture: Any two matroids inM on the same ground
set have the Intersection property

The pairwise Packing/Covering conjecture: Any pair of matroids from
M on the same ground set has the Packing/Covering property

The Packing/Covering conjecture: Any family of matroids fromM on
the same ground set has the Packing/Covering property

The Packing conjecture: A family of matroids (Mk ∈M|k ∈ K) on the
same ground set E has a packing if and only if the following condition
is true for every Y ⊆ E:

If (Mk.Y |k ∈ K) has a covering, then it also has a packing.

The Covering conjecture: A family of matroids (Mk ∈M|k ∈ K) on the
same ground set E has a covering if and only if the following condition
is true for every Y ⊆ E:

If (Mk�Y |k ∈ K) has a packing, then it also has a covering.
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Most crudely, if M is a class of matroids containing all matroids U∗1,K
and closed under duality, minors and direct sums then all of the above con-
jectures are equivalent to each other, with proofs exactly as in this paper.
However, particular equivalences only depend on weaker conditions on the
classM. For the equivalence of the Intersection conjecture with the pairwise
Packing/Covering conjecture, both relative to M, we just need that M is
closed under duality. For the equivalence of the pairwise Packing/Covering
conjecture with the Packing/Covering conjecture, we just need thatM con-
tains all the matroids U∗1,K and is closed under direct sums. This equivalence
also holds for classes of matroids of bounded size:

Lemma 7.1. Let M<κ be the class of all matroids on ground sets of car-
dinality less than κ for some regular6 cardinal κ. Then the pairwise Pack-
ing/Covering conjecture for Mκ is equivalent to the Packing/Covering con-
jecture for Mκ.

Proof (assuming the axiom of choice). It is clear that the pairwise Pack-
ing/Covering conjecture follows from the Packing/Covering conjecture. For
the converse, suppose the pairwise Packing/Covering conjecture holds, and
let (Mk|k ∈ K) be a family of matroids on the same ground set E of car-
dinality less than κ. For each e ∈ E, let Ke be the set of k ∈ K for
which {e} is independent in Mk. Let E′ = {e ∈ E|#(Ke) < κ}, and let
K ′ =

⋃
e∈E′ Ke. Then K ′ has cardinality less than κ, so by Proposition 3.8

the family (Mk�E′ |k ∈ K ′) has the Packing/Covering property: call the
packing side P and the covering side C, and let the packing and the cover-
ing be (Ik|k ∈ K ′) and (Sk|k ∈ K ′).

Let C ′ = E \ P , and for any k ∈ K \K ′ let Sk = ∅, which is spanning
in Mk�E′ by the definition of K ′. Using some well-ordering of E \ E′, we
can choose recursively for each e ∈ E \ E′ an element k(e) of Ke such that
all of the k(e) are distinct. For each k ∈ K \ K ′, we now set Ik = {e ∈
E \ E′|k(e) = k}, which is either empty or has size 1 and is independent in
Mk. Then the Sk form a packing of P and the Ik form a covering of C ′, so
(Mk|k ∈ K) has the Packing/Covering property.

For the equivalence of the Packing/Covering conjecture with the Cov-
ering conjecture, both relative to M, we just need that M is closed under
contraction. For the equivalence of the Packing/Covering conjecture with
the Packing conjecture, both relative to M, we just need that M is closed
under deletion. To see this, it is not enough to use the argument in the proof

6Recall that an infinite cardinal κ is regular if and only if no set of cardinality κ can
be expressed as a union of fewer than κ sets, all of cardinality less than κ.
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of Proposition 6.4, for that argument goes via the pairwise Packing/Covering
conjecture. Instead, an argument dual to that for the Covering conjecture
must be used, relying on the existence of maximal cowaves, where a cowave
is a pair (C, (Ik|k ∈ K)) with the Ik forming a covering of (Mk.C|k ∈ K).
The existence of maximal cowaves can be demonstrated by an argument
dual to that for Lemma 4.3.
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