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Abstract

We introduce a strengthening of the notion of transience for pla-
nar maps in order to relax the standard condition of bounded degree
appearing in various results, in particular, the existence of Dirichlet
harmonic functions proved by Benjamini & Schramm. As a corollary
we obtain that every planar non-amenable graph admits Dirichlet har-
monic functions.

1 Introduction

A well-known result of Benjamini & Schramm states that every transient
planar graph with bounded vertex degrees admits non-constant harmonic
functions with finite Dirichlet energy; we will call such a function a Dirichlet
harmonic function from now on. In particular, such a graph does not have
the Liouville property. Two independent proofs of this theorem were given
in [5, 6], one using circle packings and one using square tilings.

The bounded degree condition was essential in both these proofs, and is
in fact necessary: consider for example a ray where the nth edge has been
duplicated by 2n parallel edges. Still, there are natural classes of unbounded
degree graphs where such obstructions do not occur, and it is interesting to
ask whether the above result remains true in them. Recently, planar graphs
with unbounded degrees have been attracting a lot of interest, in particular
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due to research on coarse geometry [9], random walks [4, 13] and random
planar graphs related to Liouville quantum gravity [1, 21, 2, 3, 4, 8, 12,
14, 15, 18]. Motivated by this, our main result extends the aforementioned
result of Benjamini & Schramm to unbounded degree graphs by replacing
the transience condition with a stronger one, which we call UK-transience
and explain below

Theorem 1.1. Let G be a locally finite UK-transient planar map. Then G
admits a Dirichlet harmonic function.

A planar map G, also called a plane graph, is a graph endowed with an
embedding in the plane. The roundabout graph G◦ is obtained from G by
replacing each vertex v with a cycle v◦ in such a way that the edges incident
with v are incident with distinct vertices of v◦ (of degree 3), preserving their
cyclic ordering; see also Section 4. We say that G is UK-transient if G◦ is
transient1. In Section 4 we relate G◦ with circle packings of G.

Another way how one might try to strengthen the transience condition
is to require that there is a flow f witnessing the transience which does
not only have finite Dirichlet energy but finite norm in a different Hilbert
space, where we give weights to the edges depending on the degrees of their
endvertices. Following up, these ideas, we could show that Theorem 1.1
implies the following

Corollary 1.2. Let G be a locally finite planar graph G such that there is
a flow f of intensity 1 out of some vertex v such that
∑

vw∈E(G)[deg(v)
2 + deg(w)2]f(vw)2 is finite. Then G has a non-constant

Dirichlet harmonic function.

As shown in Section 8, the order of magnitude of the weights here is
best-possible. Hence Corollary 1.2 is best-possible, which indicates a way in
which Theorem 1.1 is tight.

Our work was partly motivated by a problem from [13], asking whether
every simple planar graph with the Liouville property is (vertex-)amenable,
by which we mean that for every ǫ > 0 there is a finite set S of vertices of
G such that less than ǫ|S| vertices outside S have a neighbour in S. As we
show in Section 8,

Theorem 1.3. Every locally finite non-amenable planar map is UK-transient.

Combining this with Theorem 1.1 yields a positive answer to the afore-
mentioned problem, and much more. This strengthens a result of North-
schield [19], stating that every bounded degree non-amenable planar graph

1The authors coined this term in Warwick, UK, where there are many roundabouts.
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T1

T2

Figure 1: The two subgraphs T1, T2 delimited by the dashed curves are transient
because of the green flow. The dual of the black flow (dashed) witnesses the fact
that the effective conductance between T1 and T2 is finite because it has finite
energy.

admits non-constant bounded harmonic functions, in two ways: it relaxes
the bounded degree condition, and provides Dirichlet rather than bounded
harmonic functions.

We think of Theorems 1.1 and 1.3 as indications that the notion of UK-
transience is satisfied in many cases, and has strong implications. We expect
it to find further applications, and propose some problems in Section 9.

We now give an overview of the proof of Theorem 1.1. As shown in [11],
a graph admits Dirichlet harmonic functions if and only if it has two dis-
joint transient subgraphs T1, T2 such that the effective conductance between
T1 and T2 is finite; see Theorem 3.1. To show that our graphs satisfy this
condition, we start with a flow provided by T. Lyons’ transience criterion
(Theorem 2.1)—this flow lives in an auxiliary graph which for the purposes
of this illustration can be thought of as a superimposition of G with its
dual— we split that flow into four sub-flows using the square tiling tech-
niques of [13], we use two subflows to obtain T1, T2, and we apply a duality
argument to the other two subflows to show that the effective conductance
between T1 and T2 is finite; see Figure 1.

The latter step can be thought of as an occurence of the idea that the
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effective resistance from the top to the bottom of a rectangle equals the effec-
tive conductance (or extremal length [23]) from left to right, with the afore-
mentioned subflows showing finiteness of the top-to- bottom effective resis-
tance. This idea was triggered by another result of Benjamini & Schramm
[7], stating that every non-amenable graph contains a non-amenable tree.

2 Preliminaries

A graph, or network , G is a pair (V,E) where V is a set, called the set of
vertices (or nodes) of G, and E is a set of pairs of elements of V , called the
edges. In this paper all graphs are simple.

Given a vertex set X, by E(X) we denote those edges with both end-
vertices in X. A locally finite graph G is 1-ended if for every finite vertex
S, the graph G− S has only one infinite component.

2.1 Electrical network basics

All graphs in this paper are undirected. However, as we will want to de-
scribe flows of electrical current in our networks, we will need to be able to
distinguish between the two possible orientations of an edge in order to be
able to say in which direction current flows along that edge. A convenient

solution is to introduce the set
−−−→
E(G) ( or just ~E) of directed edges of G to be

the set of ordered pairs (x, y) such that xy ∈ E. Thus any edge xy = yx ∈ E
corresponds to two elements of ~E, which we will denote by −→xy and −→yx.

An antisymmetric function i : ~E → R satisfies i(−→xy) = −i(−→yx) for every
edge xy ∈ E. All functions on ~E we will consider will have this property.

Given two dual plane graphs G and G∗ and an orientation of the plane,
there is a unique bijection ∗ between the directed edges of G and G∗ re-
specting this orientation. If we use ∗ below we shall always assume that we
picked some orientation - even if we do not say this explicitly. If F is an
edge set, then F ∗ denotes image of F under ∗. The function ∗ induces an
operator on antisymmetric functions f on the directed edges of G. Given

f :
−−−→
E(G) → R, we denote the induced function from

−−−−→
E(G∗) to R by f∗.

Given a function i : ~E → R, we say that i satisfies Kirchhoff’s node law
at a vertex x if

∂i(x) :=
∑

y∈N(x) i(
−→xy) = 0 (1)

holds, where N(x) denotes the set of vertices sharing an edge with x (called
the neighbours of x).
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If i satisfies Kirchhoff’s node law at everywhere except at one vertex o,
then i is called a flow from o. By the intensity of i we will mean ∂i(o).
Usually we will assume that ∂i(o) > 0 when we use this term. Similarly, we
define a Kirchhoff’s node law at finite vertex sets and flow from a finite set
A ⊂ V (G).

Given u : V → R, the induced antisymmetric function ∂u is given by

∂u(−→xy) = u(x)− u(y) (2)

If i = ∂u, we say that the pair i, u satisfies Ohm’s law .

Suppose that a pair i, u as above satisfies Ohm’s law, and i satisfies Kirch-
hoff’s node law. Then, combining (1) with (2) we obtain

∑

y∈E(x)(u(x) −
u(y)) = 0, and solving for u(x) this can be rewritten as

u(x) =
∑

y∈E(x) u(y)

d(x) , (3)

where the degree d(x) of x is the number of edges incident with x.
If a function u satisfies the formula (3), then we say that u is harmonic

at x. Note that the above implication can be reversed to yield that if u is
harmonic at a vertex then it satisfies Kirchhoff’s node law there. In other
words, if the pair i, u satisfies Ohm’s law, then u is harmonic at a vertex x
if and only if i satisfies Kirchhoff’s node law at x.

A function u : V → R is harmonic if it is harmonic at every x ∈ V .
The (Dirichlet) energy of i : ~E → R is defined by

E(i) :=
∑

e∈ ~E

i2(e).

Similarly, we define the energy of a function u : V → R by
E(u) :=

∑

xy∈E (v(x)− v(y))2 . We call u a Dirichlet harmonic function if u
is harmonic and E(u) < ∞. We write OHD for the class of graphs on which
all Dirichlet harmonic functions are constant.

A potential on the network N is a function u : V → R. The boundary of
the potential u is the set of vertices at which u is not harmonic.

A walk inG is a sequence of incident vertices and edges x0e01x1e12x2 . . . xk
(where the xj are vertices and the ejl edges). A walk as above is closed if
xk = x0. Kirchhoff’s cycle law postulates that for every closed walk as above
we have

∑

0≤n<k i(
−−−−→xnxn+1) = 0. (4)
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It is not hard to check that i satisfies Kirchhoff’s cycle law if it does so
for every injective closed walk, i.e. one for which the xj are distinct for
0 ≤ j < k. Moreover, this is the case if and only if there is a potential u
with i = ∂u.

2.2 Random walk basics

All random walks in this paper are simple and take place in discrete time,
that is, if our the random walker is at a vertex x of our graph G at time
n, then it is at each of the d(x) neighbours of x with equal probability
1/d(x) at time n + 1. The starting vertex of our random walk will always
be deterministic, and usually denoted by o.

G is called transient , if the probability to visit any fixed vertex is strictly
less than 1. We will make heavy use of T. Lyons classical characterisation
of transience in terms of flows:

Theorem 2.1 ([17, 16]). A locally finite graph G is transient if and only if
for some (and hence for every) vertex o ∈ V (G), G admits a flow from o
with finite energy.

If G is transient, then we can define a flow i out of any vertex o as follows.
For every vertex v ∈ V , let h(v) be the probability pv(o) that random walk
from v will ever reach o. Thus h(o) = 1. Note that h is harmonic at every
v 6= o. Let i(−→xy) := h(x) − h(y). By our discussion in Subsection 2.1, i is a
flow out of o, and we call it the random walk flow out of o.

3 Known facts

3.1 HD facts

We shall use following characterisation of the locally finite graphs admitting
Dirichlet harmonic functions:

Theorem 3.1 ([11]). A locally finite graph G is not in OHD if and only if
there are transient vertex-disjoint subgraphs A and B such that there is a
potential ρ of finite energy which is constant on A and B but takes different
values on them.

Corollary 3.2. A locally finite graph G is not in OHD if and only if there
is a flow f and a potential ρ both of finite energy such that the supports of
f and ∂(ρ) intersect in precisely one edge.
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Proof. We may without loss of generality assume that the two graphs A
and B of Theorem 3.1 are joined by an edge xy. Given two vertex-disjoint
subgraphs A and B, there is a flow f of finite energy with f(−→xy) nonzero
and whose support is included in (A ∪ B) + xy if and only if A and B are
transient. Thus Corollary 3.2 follows from Theorem 3.1.

Next, we give a new independent functional analytic proof of the ‘if’-
implication of Corollary 3.2. For that we need the following:

Lemma 3.3. Let H be a Hilbert space space and V and W two orthogonal
subspaces such that the orthogonal complement V ⊥ of V is not orthogonal
to W⊥. Then V ⊥ ∩W⊥ is nontrivial.

Proof. Then V ⊥ +W⊥ = V ⊕W ⊕ (V ⊥ ∩W⊥). By assumption, there are
v ∈ V ⊥ and w ∈ W⊥ with < v|w > 6= 0. Thus v ∈ W ⊕ (V ⊥ ∩ W⊥) and
w ∈ V ⊕ (V ⊥ ∩W⊥). Since V and W are orthogonal, the projection of v to
V ⊕ (V ⊥ ∩W⊥) is contained in (V ⊥ ∩W⊥). This projection is a nontrivial
by assumption, completing the proof.

Proof of the ‘if ’-implication of Corollary 3.2. We consider the Hilbert space
of antisymmetric functions on the edges with finite Dirichlet energy. Its
scalar product is given by 〈f | g〉 =

∑

e∈E(G) f(e)g(e). Let C be its subspace
generated by the characteristic functions of the finite cycles, and D be its
subspace generated by the atomic bonds b(v) given by the characteristic
functions of the set of edges incident with a vertex v. Note that f ∈ D⊥

and ∂(ρ) ∈ C⊥. Thus by Lemma 3.3, there is some nontrivial h ∈ C⊥∩D⊥,
which is an antisymmetric function induced by a non-constant Dirichlet
harmonic function.

A cut of a graph G is the set of edges between a set of vertices U ⊂ V (G)
and its complement V (G) \ U .

Corollary 3.4 ([22]). Let G be a locally finite graph with a finite cut b such
that G− b has two transient components. Then G is not in OHD.

Proof. Just apply Theorem 3.1 with any potential ρ which is constant on any
component of G−b and assigns different values on two transient components
of G− b.

Theorem 3.5 ([11]). Let H be a connected locally finite graph. Let G be a
locally finite graph obtained from H by adding for each n ∈ N a path Pn of
length 2n such that Pn meets H and the other Pn only in its starting vertices.
Then G ∈ OHD if and only if H ∈ OHD.
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Given a locally finite graph G, an antisymmetric function f on
−−−→
E(G)

witnesses that a subgraph H of G is transient if the restriction f̄ of f to
−−−→
E(H) is a flow from some finite vertex set of finite energy. We can change
f̄ at finitely many edges to get a flow from a single vertex of finite energy.
Thus f̄ implies that H is transient by Theorem 2.1.

Recall that a bond of a graph is a minimal separating edge-set (i.e. a
minimal nonempty cut).

Remark 3.6. Let G and G∗ be locally finite dual plane graphs. Let f be a
flow of G of finite energy. Then one of the following is true.

A) The function f∗ satisfies Kirchhoff’s cycle law;

B) there is a finite bond b of G such that f witnesses that the two components
of G− b are transient.

Proof. If f∗ violates Kirchhoff’s cycle law at a finite cycle C of G∗, then
C considered as an edge set of G is a bond b and f witnesses that the two
components of G− b are transient.

3.2 Electrical network facts

The following ‘Monotone-Voltage Paths’ lemma can be found in [16, Corol-
lary 3.3]

Lemma 3.7. Let G be a transient connected network and v the voltage
function from the unit current flow i from a vertex o to ∞ with v(∞) = 0.
For every vertex x, there is a path from o to x along which v is monotone.

4 UK-transience

Given a locally finite plane graph G, informally the roundabout graph G◦ is
obtained from G by replacing each vertex v by a roundabout of length equal
to the degree of v so that every vertex gets degree 3. Formally, the vertex
set of G◦ is the set of pairs (v, e) where e is an edge and v is an endvertex
of e. The embedding of G gives us a cyclic order Cv of the set of edges
incident with the vertex v. The edges of G◦ are of two types, for each edge
e = vw we have an edge joining (v, e) and (w, e). For any two edges e and f
adjacent in the cyclic order Cv, we have an edge between (v, e) and (v, f).

Note that the roundabout graph G◦ is like G a plane graph.
In a slight abuse of notation, we shall suppress the inclusion map which

maps the edge e = vw to {(v, e), (w, e)} in our notation, and we will just
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write things like E(G) ⊆ E(G◦). The edges going out off a roundabout are
those with precisely one endvertex in the roundabout. We say that a graph
G is UK-transient if its roundabout graph G◦ is transient.

Remark 4.1. Every cut of G is a cut of G◦. Conversely, every cut b of G◦

with b ⊆ E(G) is also a cut of G.

Remark 4.2. We remark that the roundabout graph depends on the em-
bedding of G. Thus UK-transience is a property of plane graphs and not of
planar graphs. Indeed, let G be the graph obtained from T2 by attaching 2n

leaves at each vertex at level n. It is straightforward to check that there is
a non-UK-transient embedding of G in the plane as well as a UK-transient
one. Still UK-transience implies transience, in the sense that if G admits a
UK-transient embedding, then G is transient:

Lemma 4.3. If G◦ is transient, then so is G.

Proof. Since G◦ is transient, it admits a flow f of finite energy from some
vertex o ∈ V (G◦) by Lyons’ criterion, Theorem 2.1. We will show that f
induces a flow of finite energy in G.

For a vertex v ∈ V (G◦), let us denote by v◦ the set of vertices lying in the
same roundabout as v. Note that f satisfies Kirchhoff’s node law at every

v◦ except o◦. Therefore, the restriction f ′ of f to
−−−→
E(G) satisfies Kirchhoff’s

node law at every vertex of G except the vertex o◦. In other words, f ′ is a
flow from o◦. Its energy is bounded from above by that of f , and so G is
transient by Theorem 2.1.

In the following we will often use the notation G∗◦, by which we mean
that we apply first ∗ and then ◦. Thus G∗◦ is the roundabout graph of the
dual of G.

The plane line graph G⋄ of a plane graph G is the plane graph obtained
from the roundabout graph G◦ by contracting all non-roundabout edges.
Another way to define G⋄, explaining the name we chose, is by letting the
vertex set of G⋄ be the set of midpoints of edges of G and joining two such
points with an arc whenever the corresponding edges are incident with a
common vertex v of G and lie in the boundary of a common face of v. It is
clear from this definition that

G⋄ = G∗⋄. (5)

A third equivalent definition of G⋄ can be given by considering a circle
packing P of G, letting V (G⋄) be the set of intersection points of circles of
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P , and letting the arcs in P between these points be the edges of G⋄. A
fourth definition of G⋄ is as the dual of the bipartite graph G′, with V (G′)
consisting of the vertices and faces of G, and E(G′) joining each vertex of
G to each of its incident faces. see this

Lemma 4.4. Let G be a locally finite plane graph. Then G◦ is transient if
and only if G⋄ is.

Proof. This follows easily from Theorem 2.1: if G◦ has a flow f of finite
energy from o ∈ V (G◦), then f induces such a flow f ′ in G⋄ from the vertex
corresponding to o by just restricting f to E(G⋄) ⊂ E(G◦).

Conversely, given a flow f ′ in G⋄ as above, we can construct a flow f on
G◦ by letting f(e) = f ′(e) for every e ∈ E(G⋄) and letting f(e) be the unique
value that makes both endvertices of e satisfy Kirchhoff’s node law, unless
those vertices correspond to o in which case we let f(e) be the unique value
that makes exactly one endvertex of e satisfy Kirchhoff’s node law. That
such values always exist is an easy fact about Kirchhoff’s node law. The
energy E(f) of f is finite because the contribution of each vertex to E(f)
is bounded above by a constant times the contribution of its corresponding
vertex in G⋄ to E(f ′).

Lemma 4.4, combined with the fact that G⋄ = G∗⋄ (5), immediately
yields

Corollary 4.5. If G◦ is transient, then so is G∗◦.

Another way to state Corollary 4.5 is to say that G is UK-transient if
and only if G∗ is UK-transient.

5 Square tilings and the two crossing flows

In this section we use the theory of square tilings of transient planar graphs
in order to find the special flows in our UK-transient G mentioned in the
introduction. Square tilings in our sense were introduced in [5], and gener-
alise a classical construction of Brooks et. al. [10] from finite plane graphs
to infinite transient ones.

Let C denote the cylinder (R/Z) × {0, 1], or more generally, a cylinder
(R/Z) × {0, a] for some real a > 0 (which turns out to coincide with the
effective resistance from a vertex o to infinity). A square tiling of a plane
graph G is a mapping τ assigning to each edge e of G a square τ(e) contained
in C, where we allow τ(e) to be a ‘trivial square’ consisting of just a point
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(see Figure 2 for an example). A nice property of square tilings is that every
vertex x ∈ V can be associated with a horizontal line segment τ(x) ⊂ C such
that for every edge e incident with x, τ(e) is tangent to τ(x).

The construction of this τ is based on the random walk flow i out of a
root vertex o (as defined in Subsection 2.2): the side length of the square
τ(e) is chosen to be |i(e)|, and the placement of that square incide C is
decided by a coordinate system where potentials of vertices induced by the
flow i are used as coordinates. For example, the top circle of the cylinder C
is the ‘line segment’ corresponding to o, because o has the highest potential.
All other vertices and edges accumulate towards the base of C, because
their potentials (which equal the probability for random walk to return to
o, normalised by the height of C) converge to 0; see [13] for details.

We let w(τ(e)) denote the width of the square τ(e). Our square tilings
always have the following properties which we will use below:

1. Two of the sides of τ(e) are always parallel to the boundary circles of
C;

2. w(τ(e)) = |i(e)| for every e ∈ ~E, where i denotes the random walk
flow out of o;

3. the interiors of any two such squares τ(e), τ(f) are disjoint;

4. every point of C lies in τ(e) for some e ∈ E;

5. every vertex x can be associated with a horizontal line segment τ(x) ⊂
C so that for every edge e incident with x, τ(e) is tangent to τ(x), and
every point of τ(x) is in τ(f) for some edge f incident with x, and

6. every face F can be associated with a vertical line segment τ(F ) ⊂ C
so that for every edge e in the boundary of F , τ(e) is tangent to τ(F ).

It was shown in [5] that a plane graph G admits a square tiling exactly
when G is uniquely absorbing. We say that G is uniquely absorbing , if for
every finite subgraph G0 there is exactly one connected component D of
R
2 \ G0 which is absorbing , that is, random walk on G visits G \ D only

finitely many times with positive probability (in particular, G is transient).
A meridian of C is a vertical line of the form {x} × {0, 1] ⊂ C for some

x ∈ R/Z. An important property of meridians that we will use below is that
the net flow i crossing any meridian is zero; see [13, Lemma 6.6] for a more
precise statement.
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Lemma 5.1. Let G and G∗ be locally finite dual plane graphs. If G◦ is
transient, then there are flows f and h of finite energy in the roundabout
graphs G◦ and G∗◦ respectively whose supports intersect in a single edge (of
E(G) = E(G∗)).

Here the graphs G◦ and G∗◦ have precisely the edge set E(G) = E(G∗)
in common. In the proof below we think of G⋄ as being constructed from
G◦ and G∗◦ by contracting E(G) = E(G∗). This way we can consider the
roundabout of v ∈ V (G) as a cycle of G⋄ .

Proof. We will first find appropriate auxiliary flows f ′, h′ in G⋄ and use
them to induce the desired flows f on G◦ and h on G∗◦ by sending some
flow along E(G).

We distinguish two cases, according to whether G⋄ is uniquely absorbing.
If G⋄ is uniquely absorbing, then [5] provides a square tiling of G⋄ on a

cylinder C as described above, with o being an arbitrary vertex of G⋄.
Given a vertex x ∈ V (G⋄), we let |x| denote the ‘strip’ of the cylinder

C whose horizontal span coincides with that of the line segment τ(x) (as
described in item 5). Then τ(x) separates |x| into two rectangles, and we
denote the bottom one (that is, the one not meeting τ(o)) by ⌈x⌉.

Next, we associate to this x a flow x̌ out of x that ‘lives in ⌈x⌉’. To
define the flow x̌, for every e ∈ ~E(G⋄) with i(e) ≥ 0, where i is the random
walk flow out of o, let x̌(e) := w(τ(e) ∩ ⌈x⌉) be the width of the rectangle
τ(e) ∩ ⌈x⌉ ⊂ C corresponding to e. (Thus if τ(e) is contained in ⌈x⌉, then
x̌(e) = i(e) by (2), and if ⌈x⌉ dissects τ(e) then x̌(e) < i(e).) Naturally, we
extend x̌ to the remaining directed edges in the unique way that makes x̌
antisymmetric. By the aforementioned property of meridians proved in [13,
Lemma 6.6], x̌ is indeed a flow out of x.

More generally, if M,M ′ are two meridians intersecting τ(x), we let
⌈MxM ′⌉ denote the rectangle of C bounded by M,x,M ′ and the bottom
circle of C, and define the flow out of x that lives in ⌈MxM ′⌉ similarly to x̌,
except that we replace the rectangle ⌈x⌉ with ⌈MxM ′⌉ in that definition.

Our plan is to find four vertices x1, . . . , x4 far enough from each other
on C and flows fi out of those vertices that live in appropriate disjoint
rectangles, and combine these flows pairwise to obtain f ′, h′.

Now more precisely, we claim that we can choose four vertices xi, 1 ≤
i ≤ 4 in G⋄, a flow fi out of each xi, and a path Pi from xi to o, so that
these objects satisfy the following properties

1. supp(fi)∩ supp(fj) = ∅ for i 6= j; even stronger, no roundabout of G◦

meets both supp(fi) and supp(fj);
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Figure 2: An example of a square tiling, with the four meridians Mi of Lemma 5.1
in dotted lines.

2. for every i and every edge e of Pi, no edge of the roundabout of G◦

containing e is in the support of any fj, 1 ≤ j ≤ 4, and

3. the roundabout of G◦ containing the first edge of Pi does not contain
xj and does not contain any edge of Pj for j 6= i.

Before proving that such a choice is possible, let us first see how it helps
us construct the desired flows f, h.

We claim that there is a tree T contained in G (we really mean G and
not G⋄) such that the set of leaves of T is {r1, r2, r3, r4}, where ri denotes
the roundabout of G◦ containing xi, and such that no edge of G⋄ lying in
a roundabout corresponding to a vertex in T is in the support of any fi.
Indeed, consider the subgraph H of G induced by the vertices of G whose
roundabouts meet

⋃

1≤i≤4 Pi; that subgraph is connected since all Pi meet
o, and its roundabouts avoid the supports of the fi by (2). Letting T be a
spanning tree of H, we can now use (3) to deduce that each ri is a distinct
leaf of T . If T has any further leaves, we can recursively prune them untill
its set of leaves is {r1, r2, r3, r4}. Let T

⋄ denote the subgraph of G⋄ spanned
by the roundabouts in T .

There are two possible shapes for this T ⋄ depending on whether T has a
vertex of degree 4, as depicted in Figure 3. Assume without loss of generality
that x1, x2, x3, x4 appear in that cyclic order along the outer face of T ⋄.
Consider first the case where T has no vertex of degree 4. Easily, we can
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z

z1
z2

x1

x2

x3

x4

Figure 3: The ‘tree’ T ⋄ and the paths P,Q.

find an x3-x1 path P and an x4-x2 path Q such that E(P )∩E(Q) = ∅, and
there is a unique vertex z ∈ T ⋄ at which P,Q cross, that is, P contains two
opposite edges of z and Q contains the other two (and so for every other
vertex v in P ∩Q, we have no crossing at v). Figure 3 shows how to choose
these paths P,Q.

In the other case, where T has a vertex of degree 4, we choose P,Q so
that we have exactly two vertices z1, z2 meeting P ∪Q in three edges, and
all other vertices meet P ∪ Q in at most two edges; see the right side of
Figure 3.

We can now construct the desired flow f ′ from a finite flow along P
and an appropriate linear combination of f1, f3, where the coefficients, one
positive and one negative, are tuned in such a way that Kirchhoff’s node
law (1) is satisfied at x1 and x3. Similarly, the flow h′ can be constructed
using a linear combination of f2, f4, and a finite flow along Q.

Note that f ′ induces a flow f on G◦ and h′ induces a flow h on G∗◦

by sending appropriate amounts of flow along the edges of G or G∗ (as
explained in the proof of Lemma 4.4). We claim that, in the case where T
has no vertex of degree 4, the only edge in supp(f)∩supp(h) is the edge ez of
G corresponding to the vertex z of T ⋄, while in the case where T does have
a vertex of degree 4, the only edge in supp(f) ∩ supp(h) is one of the two
edges ez1 , ez2 . Indeed, the supports of the fi meet no common roundabouts
by (1), and as P,Q lie in T , the choice of T combined with (2) implies that
no edge in supp(fi) contributes to supp(f)∩supp(h). Thus the only possible
intersections come from vertices of G⋄ in P ∩Q.

Now in the case where T has no vertex of degree 4, note that every vertex
in P ∩Q has all its 4 edges in P ∪Q. It is now straightforward to check using
the definitions of the graphs G◦, G⋄, G∗◦ that z is the only vertex whose edge
is in supp(f) ∩ supp(h), as z was the only vertex at which P and Q cross.

In the case where T does have a vertex of degree 4, similar arguments
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apply, and it is again straightforward to check that exactly one of ez1 , ez2 is
in supp(f)∩ supp(h) (which of the two depends on which of f ′, h′ we use to
induce a flow in G◦ and which in G∗◦).

Thus, in the uniquely absorbing case, it only remains to prove that we
can indeed choose vertices xi, flows fi, and paths Pi with properties (1), (2)
and (3) above.

For this, recall that the length of the circumference of C is 1, and let
Mi, 1 ≤ 4 denote the meridian of C whose width coordinate is i/4 ( mod 1).
For each i, let hi ∈ (0, 1

16) be small enough that every roundabout of G◦

meeting Mi at a point whose height coordinate is less than hi has width less
than 1/8, where the width of a roundabout O is defined to be the maximum
width of a line segment contained in τ [O]; such a choice is possible because
τ [O] is two squares wide at each horizontal level by (6) (where we use the
fact that O bounds a face of G⋄), and a square that starts close to the
bottom of C cannot be very wide. In addition, we choose hi even smaller, if
needed, to ensure that if x is a vertex such that τ(x) meets Mi below height
hi, then w(τ(x)) < 1/8; this is possible because there are are only finitely
many edges e with w(τ(e)) greater than any fixed constant since C has finite
area, and τ(x) is at most three squares τ(e) wide by (5) and the fact that
G⋄ is 4-regular.

Let ⌈hiMi⌉ denote the subset of Mi with height coordinates ranging
between zero and hi, and ⌊hiMi⌋ the subset of Mi with height coordinates
ranging between hi and 1.

For every i ≤ 4, there is a lowermost edge ei meeting ⌈hiMi⌉ such that the
roundabout Oi of G

◦ containing ei also contains an edge gi meeting ⌊hiMi⌋
(Figure 4); this is true because ⌊hiMi⌋, being closed, only meets finitely
many squares of positive area, and so there are finitely many roundabouts
to choose from. There is at least one to choose from: a roundabout whose
image contains the point of Mi at height hi.

Let xi denote the endvertex of ei whose height coordinate is lower, and
note that τ(xi) meets Mi. Let M ′

i be a meridian meeting τ(ei) (and in
particular τ(xi)) close enough toMi, but distinct fromMi, that the rectangle
⌈MixiM

′
i⌉ bounded by Mi, xi,M

′
i and the bottom circle of C, meets the

τ image of no roundabout meeting ⌊hiMi⌋; such a M ′
i exists because, by

the choice of ei, Oi, no roundabout meeting ⌊hiMi⌋ has an edge e meeting
⌈MixiM

′
i⌉, or we would have chosen e instead of ei. As we can choose M ′

i as
close to Mi as we wish, we may assume that d(Mi,M

′
i) < 1/16, which will

be useful later.
Let fi be the flow out of xi that lives in ⌈MixiM

′
i⌉, as defined above. We
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Figure 4: The choice of xi, fi and Pi.

claim that

If e ∈ supp(fi), then τ(e) is contained in the open vertical strip of
radius 1/8 centered at Mi.

(6)

Indeed, by the definition of fi, if e ∈ supp(fi), then τ(e) intersects the
interior of ⌈MixiM

′
i⌉. Then τ(e) cannot have a point at height higher that

hi, which we recall is less than 1/16, because it would have to intersect the
interior of τ(ei) in that case, contradicting (3). Thus the height of τ(e)
is at most 1/16, and being a square, so is its width. Together with our
assumption that d(Mi,M

′
i) < 1/16, this proves our claim.

Note that (6), combined with the choice of the Mi, immediately implies
that supp(fi) ∩ supp(fj) = ∅ for i 6= j; in fact, it even implies the stronger
statement of (1), because by (6) if edges e, f lie in a common roundabout
then τ(e), τ(f) must meet a common meridian.

It remains to construct the paths Pi: we let Pi start with the xi-gi path
in Oi containing ei, and continue with the gi-o path consisting of all the
edges whose τ -image meets Mi above τ(fi). To make the later path well-
defined, we would like Mi to meet no trivial squares τ(e) of zero width. This
can easily be achieved: since G⋄ has only countably many edges, and every
trivial square meets just one meridian, we can arrange for our 4 Mi to be
among the uncountably many remaining ones by rotating C appropriately.
The fact that the edges whose τ -image meets Mi above τ(gi) form a gi-o
path now follows from (5) and the fact that τ(o) is the top circle of C. In
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fact, by the above argument, we can even assume that Mi does not meet
the boundary of any square τ(e), and so Mi uniquely determines that gi-o
path. Note that by construction,

every edge of Pi is in a roundabout O such that τ [O] meets Mi. (7)

To see that (2) is satisfied, recall that we chose hi small enough that
every roundabout of G◦ meeting Mi at a point whose height coordinate is
less than hi has width less than 1/8, and Pi only uses roundabouts meeting
Mi. Thus for e ∈ E(Pi), τ(e) is contained in the vertical strip of radius
1/8 centered at Mi. On the other hand, (6) says that the support of fj is
contained in the strip of radius 1/8 centered at Mj , and so (2) follows from
the fact that d(Mi,Mj) ≥ 1/4.

Finally, we can prove (3) by a similar argument, now using the fact that
w(τ(xj)) < 1/8 by the second part of our definition of hj , and the fact that
the roundabout containing the first edge ei of Pi is contained in the strip of
radius 1/8 centered at Mi and every roundabout containing an edge of Pj

meets Mj by (7).

Suppose now G⋄ is not uniquely absorbing. Then for some finite sub-
graph G0 we have at least two absorbing components D1,D2 in R

2 \G0. By
elementary topological arguments, G0 contains a cycle C such that both the
interior I and the exterior O of C contain transient subgraphs of G⋄.

If any of these subgraphs I,O is uniquely absorbing, then we can repeat
the above arguments to that subgraph to obtain the two desired flows.

Hence it remains to consider the case where there is a cycle CI in I and
a cycle CO in O that further separate each of I,O into two transient sides.
In fact, we can iterate this argument as often as we like, to obtain many
distinct transient subgraphs separated from any given cycle. Let us iterate
it often enough to obtain four disjoint cycles Ci, 1 ≤ 4, and inside each Ci a
cycle Di such that the interior of Di is transient and no roundabout ot G◦

meets any two of these eight cycles.
We now apply Theorem 2.1 to each of the four interior sides of the Di to

obtain four transience currents fi out of vertices xi, such that the support
of fi is contained in Di. We can then combine those flows pairwise in a way
similar to the uniquely absorbing case to obtain the two desired flows f ′, h′,
and from them f, h: we can let o be an arbitrary vertex outside all Ci, and
define T and the paths P,Q similarly. The fact that | supp(f)∩supp(h)| = 1
follows from the same graph-theoretic arguments about the structure of G⋄,
for which we did not need the square tiling.
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6 Harmonic functions on plane graphs

In this section, we use Theorem 3.1 to prove a new existence criterion for
Dirichlet harmonic functions, Theorem 6.3 below, which is used in the proof
of Theorem 1.1. Before proving Theorem 6.3, we prove the following which
we think is interesting in its own right, and which motivated the main result
of this section.

Theorem 6.1. Let G and G∗ be locally finite 1-ended dual plane graphs.
Then the following are equivalent:

1. G 6∈ OHD;

2. G∗ 6∈ OHD;

3. there are flows f and h of finite energy of G and G∗ respectively whose
supports intersect in a single edge.

Proof. By symmetry, it suffices to show that 1 is equivalent to 3. If G 6∈
OHD, then let f and ρ be as in Corollary 3.2. Then f and ∂ρ witness 3.

For the converse suppose there are flows f and h as in 3. Then h∗ sat-
isfies Kirchhoff’s cycle law by Remark 3.6 because 2 in that remark cannot
be fulfilled as G is 1-ended and transient graphs are infinite. Thus h∗ is
induced by a potential ρ, which together with f witnesses that G 6∈ OHD

by Corollary 3.2.

Example 6.2. We give a simple example that neither 2 nor 3 imply 1 in
Theorem 6.1 if we leave out the assumption that G and G∗ are 1-ended. Let
H be the graph obtained from disjoint cycles Cn of length 2n by gluing Cn

and Cn+1 together at a single edge for each n that are distinct for different
n. We obtain the graph G from a triangle by gluing two copies of H at
distinct edges of the triangle.

In the next theorem, we propose a strengthening of 3 which implies that
G 6∈ OHD - even if G has more than one end.

Theorem 6.3. Let G and G∗ be locally finite dual plane graphs such that
there are flows f and h of finite energy in the roundabout graphs G◦ and
G∗◦ respectively whose supports intersect in a single edge. Then G 6∈ OHD.

Proof. Let h[G∗] be the restriction of h to E(G∗), which is a flow of G∗ as
h satisfies Kirchhoff’s node law at the set of vertices of each roundabout.

Case 1: h[G∗]∗ satisfies Kirchhoff’s cycle lawin G. Then let ρ be a
potential induced by h[G∗]∗, and let f [G] be restriction of f to E(G), which
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is a flow of G as f satisfies Kirchhoff’s node law at the set of vertices of each
roundabout. Then f and ρ witnesses that G 6∈ OHD by Corollary 3.2.

Having dealt which case 1, the remaining case is by Remark 3.6:
Case 2: There is a finite bond b of G∗ such that h[G∗] witnesses

that the two components D1 and D2 of G∗ − b are transient. The
bond b considered as an edge set of G is the set of edges of a cycle C, see
Figure 5.

bC

D1,V1

D2,V2

Figure 5: The cycle C, drawn thick, separates V1 from V2. In the dual, the
bond b, drawn grey, separates D1 from D2.

Without loss of generality all edges of D1 are contained in the interior of
C, and the edges of D2 in the exterior of C. Let V1 be the set of vertices of
G contained in the interior of C, and V2 those vertices in the exterior. Since
the set X of edges incident with a vertex of C contains a cut X ′ separating
V1 from V2, by Corollary 3.4 it remains to show that G[V1] and G[V2] are
both transient.

To see that G[V1] is transient, it suffices to show that G[V1]
◦ is transient

by Lemma 4.3. Note that G[V1] and G∗[D1] are both locally finite and have
locally finite duals. Moreover, the dual of G[V1] can be obtained from G∗

by contracting all edges not in G[V1] (considered as edges of G∗). Thus
the dual of G[V1] can be obtained from G∗[D1] by identifying finitely many
vertices (and deleting finitely many loops). Since transience is invariant
under changing finitely many edges or vertices, it remains to show that
G∗[D1]

◦ is transient by Corollary 4.5. However, this is witnessed by h[G∗].
Summing up, the transience of G[V1] is inherited from G∗[D1]

◦ via G[V1]
◦.

Similarly, G[V2] is transient. Thus G 6∈ OHD by Lemma 4.3 applied to
X ′ and the G[Vi].
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7 Proof of the main result

Before proving Theorem 1.1, we need the following.

Lemma 7.1. Let G be a locally finite plane UK-transient graph. Then there
is a locally finite plane UK-transient supergraph H of G such that its dual
H∗ is locally finite, and H ∈ OHD if and only if G ∈ OHD.

Proof. To make sure that H∗ is locally finite, we let G′ be a supergraph of G
obtained by ‘triangulating’ every infinite face of G in such a way that each
vertex of G receives at most 2 new edges per incident face (any finite number
would do in place of 2); this is easy to do. As V (G) is countable, the set of
newly added edges is countable. Take an enumeration of the set of newly
added edges and subdivide the n-th edge 2n-times. Call the resulting graph
H. Note that H is locally finite and all its faces are finite. The roundabout
graph of H has a subgraph which can be obtained from the roundabout
graph of G by subdividing each edge at most twice.

Thus H is UK-transient. By Theorem 3.5 H is in OHD if and only if G
is in OHD, thus H has the desired properties.

Proof of Theorem 1.1. By Lemma 7.1, we may assume without loss of gen-
erality that G∗ is locally finite. Thus the theorem follows from combining
Lemma 5.1 with Theorem 6.3.

8 Applications

A vertex is in the boundary ∂X of some vertex set X if it is not in X but
adjacent to a vertex in X. An infinite graph G is non-amenable if there
is a constant γ > 0 such that the boundary ∂S has size at least γ · |S| for
every finite vertex set S of G. The supremum of such values for γ is the
Cheeger-constant Ch(G) of G.

Lemma 8.1. If a locally finite plane graph G is non-amenable, then so is
its roundabout graph.

Proof. Let X be a finite vertex set of the roundabout graph of G. Let X be
the set of those vertices of G whose roundabouts meet X.

Sublemma 8.2. Less than 6 · |X | vertices of X have all their neighbours in
X.
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Proof. Let Y be the set of those vertices of X with all their neighbours in
X. If (v, e) ∈ Y , then (w, e) ∈ X where w is the other endvertex of e. Thus
|Y | ≤ 2 · |E(X)|. As (X,E(X)) is plane, it has average degree less than 6.
Thus |E(X)| < 3 · |X |, and thus |Y | < 6 · |X |.

If |X| ≥ 12 · |X |, then at least |X|/2 vertices of X have a neighbour out-
side X. As the roundabout graph has maximal degree 3, the neighbourhood
of X has then size at least |X|/6. Thus we may assume that |X| < 12 · |X |.

Let X be the set of those vertices of X whose whole roundabout is in X.
Let ǫ = (|X | − |X|)/|X |.

Sublemma 8.3. |∂X| > ǫ
12 |X|

Proof. The roundabout of some x ∈ X \ X contains a vertex of ∂X, in

formulas: |∂X| ≥ |X \ X| = ǫ · |X |. Thus the lemma follows from the
assumption that |X| < 12 · |X |.

Sublemma 8.4. |∂X| ≥ K(ǫ) · |X|, where K(ǫ) = Ch(G)·(1−ǫ)−ǫ
12 .

Proof. Each vertex in ∂X is in X \X or its roundabout contains a vertex
of ∂X. Thus we estimate:

|∂X| ≥ |∂X | − |X \X| ≥ Ch(G) · |X | − ǫ|X |

Note that |X | = (1 − ǫ) · |X|. Thus |∂X| ≥ K(ǫ) · |X|, where K(ǫ) =
Ch(G)(1−ǫ)−ǫ

12 .

There is a positive constant δ - only depending on Ch(G) - such that

K(δ′) ≥ Ch(G)/24 for all δ′ ≤ δ. Let γ be the minimum of δ
12 and Ch(G)

24 .
Then |∂X| ≥ γ · |X| by Sublemma 8.3 and Sublemma 8.4. Hence the round-
about graph of G is non-amenable.

Proof of Theorem 1.3 (already mentioned in the Introduction). If G is non-
amenable, then so is G◦ by Lemma 8.1. Every non-amenable locally finite
graph is transient as it contains a subtree with positive Cheeger-constant by
a result of Benjamini and Schramm [7].

Corollary 8.5. Every locally finite planar non-amenable graph G admits a
non-constant Dirichlet harmonic function.

Proof. Just combine Theorem 1.3 and Theorem 1.1.
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Corollary 8.6. Let G be a locally finite planar graph G such that there is a

flow f of intensity 1 out of some vertex v such that
∑

v∈V (G) deg(v)
(

∑

e|v∈e |f(e)|
)2

is finite. Then G has a non-constant Dirichlet harmonic function.

Proof. For a vertex z of G◦, we denote by ~ez the unique directed edge not
in any roundabout and pointing towards z.

By Theorem 1.1, it remains to extend f to a flow of G◦ from some vertex
v′ in the roundabout of v of finite energy by assigning values to the edges
of the roundabout. At each roundabout C for a vertex w 6= v of G, this is
a finite Dirichlet-Problem: We want to find a function gw assigning values
to the directed edges of C such that at the vertex z it accumulates −f(~ez).
As f satisfies Kirchhoff’s node law at w, the sum of the f(~ez) is 0.

It is well-known that there is such a gw and it is unique up to adding
a multiple of the constant flow around C. Choosing gw of minimal energy
ensures for every k ∈ C that |gw(k)| ≤

∑

e|w∈e |f(e)| since otherwise we

could add a constant flow to gw decreasing the energy. Pick a vertex v′ in
the roundabout for v. As above, there is a function gv at the roundabout for
v which at the vertex z 6= v′ accumulates −f(~ez), and accumulates 1−f( ~ev′)
at v′.

Then f together with the gx defines a flow of G◦ from v′ of intensity

1, whose energy is bounded by
∑

v∈V (G) deg(v)
(

∑

e|v∈e |f(e)|
)2

, and thus

finite.

Given a locally finite graphG, for e = vw we let r(e) = deg(v)2+deg(w)2.
The graph G is super transient if there is a flow from some vertex of intensity
1 such that its r-weighted energy is finite, that is,

∑

e∈E(G) f(e)
2r(e) is finite.

Note that super transience implies transience. Note that G is super transient
if and only if the graph G[r] is transient, where we obtain G[r] from G by
subdividing each edge e r(e)-many times.

Corollary 8.7. Every super transient planar locally finite graph G has a
non-constant Dirichlet harmonic function.

Proof. By Cauchy-Schwarz,
(

∑

e|v∈e |f(e)|
)2

≤ deg(v)
∑

e|v∈e f(e)
2. Thus

this follows from Corollary 8.6

We can now re-prove the result of [5] that motivated our work:

Corollary 8.8 ([5]). Every transient planar graph of bounded degree has a
non-constant Dirichlet harmonic function.
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Proof. A transient bounded degree graph is super transient, so this follows
from Corollary 8.7.

We remark that if we omit the assumption of planarity, then Corollary 8.7
and Corollary 8.6 become false as the example of the 3-dimensional grid Z

3

shows. Indeed, it is in OHD but transient and thus super transient as its
degrees are uniformly bounded. The next example shows that Corollary 8.6
is best-possible.

Example 8.9. In this example, we show that the order of magnitude in
Corollary 8.6 is best possible. More precisely, we construct a locally finite
planar graph G without non-constant Dirichlet-harmonic functions but still
with a flow f out of some vertex such that for every ǫ > 0 the term

Eǫ(f) =
∑

v∈V (G) deg(v)
(1−ǫ)

(

∑

e|v∈e |f(e)|
)2

is finite.

In this construction, we rely on the fact that the 2-dimensional grid Z
2

has a subdivision T of the infinite binary tree T2 such that edges at level
n are subdivided at most 2n-times. It is straightforward to construct this
subdivision T recursively and we leave the details to the reader. We obtain
G from Z

2 by contracting for each edge e of T2 all but one of its subdivision
edges.

As the branch set of each vertex of G is finite, G and its dual are 1-ended.
Moreover, the dual of G is obtained from Z

2 by deleting edges. Thus by
Theorem 6.1, G ∈ OHD.

Next we construct f . The subtree S of G consisting of those edges of T
that are not contracted is isomorphic to T2. Let f be the flow on T2 which
assigns edges at level n the value 2−n. Thus f induces a flow on G with
support S.

Next we estimate Eǫ(f). A vertex v at level n of S has degree at most
8 · 2n. Thus

Eǫ(f) ≤ 1000 ·
∑

n∈N

2n · 2n(1−ǫ) · 2−2n = 1000 ·
∑

n∈N

2−ǫn

Hence Eǫ(f) is finite, completing this example.

9 Further remarks

As mentioned in the introduction, we expect our notion of UK-transience
to find further applications. For example, we expect that the results of
[20, Section 2] generalise from bounded-degree non-amenable planar maps
to UK-transient ones.
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A lot of this paper is motivated by [13], the main result of which states
that the Poisson boundary of every bounded degree, uniquely absorbing,
plane graph coincides with the boundary of the square tiling; this had been
asked by Benjamini & Schramm [6]. We can now ask whether this generalises
to graphs of unbounded degree using UK-transience:

Problem 1. Does the Poisson boundary of every uniquely absorbing, UK-
transient plane graph coincide with the boundary of its square tiling?

A closely related result of [1] states that the Poisson boundary of every
1-ended triangulation of the plane coincides with the boundary of its circle
packing. Again, we ask for a similar generalisation:

Problem 2. Does the Poisson boundary of every 1-ended, UK-transient,
triangulation of the plane coincide with the boundary of its circle packing?
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