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Abstract. We call a 2-partite digraph D homogeneous if every isomorphism
between finite induced subdigraphs that respects the 2-partition of D extends
to an automorphism of D that does the same. In this note, we classify the
homogeneous 2-partite digraphs.

1. Introduction

A structure is homogeneous if every isomorphism between finite induced sub-
structures extends to an automorphism of the whole structure. This notion is
due to Fräıssé [4], see also [5]. Since his work appeared, several classification re-
sults of countable homogeneous structures have been proved. These include results
on partial orders by Schmerl [13], graphs by Gardiner [6] and by Lachlan and
Woodrow [11], tournaments by Lachlan [10], directed graphs by Lachlan [9] and
Cherlin [2, 3], bipartite graphs by Goldstern, Grossberg, and Kojman [7], and, re-
cently, ordered graphs by Cherlin [1]. For more details on homogeneous structures,
we refer to Macpherson’s survey [12].

In this note, we classify the homogeneous 2-partite digraphs (Theorem 3.1). This
classification problem occured during the classification of the countable connected-
homogeneous digraphs [8], where a digraph is connected-homogeneous if every iso-
morphism between finite induced connected subdigraphs extends to an automor-
phism of the whole digraph.

2. Preliminaries

In this note, a bipartite graph is a triple G = (X,Y,E) of pairwise disjoint sets
such that every e 2 E is a set consisting of one element of X and one element of Y .
We call V (G) = X [ Y the vertex set of G and E the edge set of G. A 2-partite
digraph is a triple D = (X,Y,E) of pairwise disjoint sets with E ✓ (X⇥Y )[(Y ⇥X)
and such that (u, v) 2 E implies (v, u) /2 E. Again, V (D) = X [ Y are the vertices
of D and E are the edges of D. We write uv instead of (u, v) for edges of D.
A 2-partite digraph (X,Y,E) is bipartite if either E ✓ X ⇥ Y or E ✓ Y ⇥X. The
underlying undirected bipartite graph of a 2-partite digraph (X,Y,E) is defined by

(X,Y, {{u, v} | uv 2 E}).

Two vertices u, v of a 2-partite digraph D = (X,Y,E) are adjacent if either uv 2
E or vu 2 E. The successors of u 2 V (D) are the elements of the out-neighbourhood
N+(u) := {w 2 V (D) | uw 2 E} and its predecessors are the elements of its in-
neighbourhood N�(u) := {w 2 V (D) | wu 2 E}. For x 2 X, we define

x? = {y 2 Y | y not adjacent to x}
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and, for y 2 Y , we define

y? = {x 2 X | x not adjacent to y}.
A bipartite graph G = (X,Y,E) is homogeneous if every isomorphism ' between

finite induced subgraphs A and B with (V (A) \X)' ✓ X and (V (A) \ Y )' ✓ Y
extends to an automorphism ↵ of G with X↵ = X and Y ↵ = Y . Similarly, a
2-partite digraph D = (X,Y,E) is homogeneous if every isomorphism ' between
finite induced subdigraphs A and B with (V (A)\X)' ✓ X and (V (A)\Y )' ✓ Y
extends to an automorphism ↵ of D with X↵ = X and Y ↵ = Y .

A first step towards the classification of the homogeneous 2-partite digraphs was
already done when Goldstern et al. [7] classified the homogeneous bipartite graphs.
Thus, before moving on, we cite their result and discuss its e↵ects towards the
classification of the homogeneous 2-partite digraphs.

Theorem 2.1. [7, Remark 1.3] A bipartite graph is homogeneous if and only if it
is isomorphic to one of the following bipartite graphs:

(i) a complete bipartite graph;
(ii) an empty bipartite graph;
(iii) a perfect matching;
(iv) the bipartite complement of a perfect matching;
(v) a generic bipartite graph. ⇤

The bipartite complement of a perfect matching is a complete bipartite graph
with sides of equal cardinality where a perfect matching is removed from the edge
set. A bipartite graph G = (X,Y,E) is generic if for any two disjoint finite subsets
UX ,WX of X and any two disjoint finite subsets UY , VY of Y there exist y 2 Y
and x 2 X with UX ✓ N(y) and VX \ N(y) = ; as well as with UY ✓ N(x) and
VY \N(x) = ;.

For bipartite digraphs (X,Y,E), Theorem 2.1 applies analogously in the follow-
ing sense: as we have either E ✓ X ⇥ Y or E ✓ Y ⇥X, the underlying undirected
bipartite graph is homogeneous, so belongs to some class of the list in Theorem 2.1.
Conversely, every orientation of a homogeneous bipartite graph that results in a
bipartite digraph gives a homogeneous bipartite digraph. Note that homogeneous
bipartite digraphs are in particular homogeneous 2-partite digraphs. Hence, the
above classification gives us a partial classification in the case of the homogeneous
2-partite digraphs in that it gives a full classification of the homogeneous bipartite
digraphs. In the remainder of this note we extend this partial classification by
classifying those homogeneous 2-partite digraphs that are not bipartite.

3. The main result

In this section, we shall prove our main theorem, the classification of the homo-
geneous 2-partite digraphs (Theorem 3.1).

Theorem 3.1. A 2-partite digraph is homogeneous if and only if it is isomorphic
to one of the following 2-partite digraphs:

(i) a homogeneous bipartite digraph;
(ii) an M for some cardinal  � 2;
(iii) a generic 2-partite digraph;
(iv) a generic orientation of a generic bipartite graph.
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For a cardinal  � 2, let M be a bipartite digraph (X,Y,E) with |X| =  = |Y |
such that either (X,Y,E\(X⇥Y )) or (X,Y,E\(Y ⇥X)) is a perfect matching and
the other is the bipartite complement of the same perfect matching. In particular,
the underlying undirected bipartite graph is a complete bipartite graph.

We call a 2-partite digraph (X,Y,E) generic if its underlying undirected bipartite
graph is a complete bipartite graph and if for all pairwise disjoint finite subsets
AX , BX ✓ X and AY , BY ✓ Y there are vertices y 2 Y and x 2 X with AX ✓
N+(y) and BX ✓ N�(y) as well as with AY ✓ N+(x) and BY ✓ N�(x). Similarly,
we call a 2-partite digraph (X,Y,E) a generic orientation of a generic bipartite
graph if for all pairwise disjoint finite subsets AX , BX , CX ✓ X and AY , BY , CY ✓
Y there are vertices y 2 Y and x 2 X with AX ✓ N+(y), BX ✓ N�(y) and
CX ✓ y? as well as with AY ✓ N+(x), BY ✓ N�(x) and CY ✓ x?. It is easy to
verify that its underlying undirected graph is a generic bipartite graph.

Note that standard back-and-forth arguments show that, up to isomorphism,
there are a unique countable generic 2-partite digraph and a unique countable
generic orientation of the (unique) countable generic bipartite graph.

It is worthwhile noting that by Theorem 3.1 the underlying undirected bipartite
graph of a homogeneous 2-partite digraph is always homogeneous, which is false for
arbitrary homogeneous digraphs and their underlying undirected graphs.

The fact that the listed 2-partite digraphs in Theorem 3.1 are homogeneous
is already discussed in the previous section for case (i), while in case (ii) it is
a consequence of the fact that the bipartite complement of a perfect matching is
homogeneous. The cases (iii) and (iv) can be easily verified by the above mentioned
back-and-forth argument. (This can also be applied if they are not countable to
show that they are homogeneous.) Before we start with the remaining direction of
the proof of Theorem 3.1, we show some lemmas.

Lemma 3.2. Let D = (X,Y,E) be a homogeneous 2-partite digraph. If N+(v) and
N�(v) are infinite and v? is finite for some v 2 V (D), then v? = ;.

Proof. Let x 2 X and m = |x?|. First, let us suppose m = 1. We note that any
automorphism of D that fixes x must also fix the unique element xY 2 x?. Let y
be a successor of x. As N+(x) is infinite, we find two vertices y1, y2 in Y that have
a common predecessor. Homogeneity then implies that the two vertices y and xY

in Y have a common predecessor z. Let z0 be a successor of xY . By homogeneity,
we find an automorphism � of D that fixes x and maps z to z0. As mentioned
above, � must fix xY as it fixes x. But we have zxY 2 E and (zxY )↵ = z0xY /2 E
because of xY z0 2 E, which is impossible.

Now let us suppose m � 2. By homogeneity and as m is finite, we find for any
subset A of Y of cardinality m a vertex a 2 X with a? = A. As Y is infinite,
there are two subsets A1, A2 of Y of cardinality m with |A1 \ A2| = m � 1 and
two such subsets B1, B2 with |B1 \B2| = m� 2. Let ai, bi 2 X with a?i = Ai and
b?i = Bi, respectively, for i = 1, 2. Then there is no automorphism of D that maps
a1 to b1 and a2 to b2 even though D is homogeneous as the number of vertices
that are not adjacent to a1 and a2 is larger than the corresponding number for b1

and b2. Analogous contradictions for any vertex in Y instead of x 2 X show the
assertion. ⇤
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Lemma 3.3. Let D = (X,Y,E) be a homogeneous 2-partite digraph. If N+(v)
and N�(v) are infinite and v? = ; for all v 2 V (D), then D is a generic 2-partite
digraph.

Proof. It su�ces to show that for any two disjoint finite subsets A and B of X we
find a vertex v 2 Y with A ✓ N+(v) and B ✓ N�(v). Indeed, the corresponding
property for subsets of Y then follows analogously. Note that we find for every
y 2 Y two sets Ay ✓ N+(y) and By ✓ N�(y) with |A| = |Ay| and |B| = |By|.
As D is homogeneous and as A [B and Ay [By induce (empty) isomorphic finite
subdigraphs of D, there exists an automorphism ↵ of D that maps Ay to A and
By to B. So y↵ is a vertex we are searching for. ⇤

Lemma 3.4. Let D = (X,Y,E) be a homogeneous 2-partite digraph. If N+(v),
N�(v), and v? are infinite for all v 2 V (D), then D is a generic orientation of a
generic bipartite graph.

Proof. Similarly to the proof of Lemma 3.3, it su�ces to show that for any three
pairwise disjoint finite subsets A,B,C of X we find a vertex v 2 Y with A ✓ N�(v)
and B ✓ N+(v) and C ✓ v?. For every y 2 Y , we find (pairwise disjoint) subsets
Ay ✓ N+(y) and By ✓ N�(y) and Cy ✓ y? with |A| = |Ay| and |B| = |By| and
|C| = |Cy|. Note that each of the two sets A [ B [ C and Ay [ By [ Cy has no
edge. Applying homogeneity, we find an automorphism ↵ of D that maps Ay to A
and By to B and Cy to C. So y↵ is a vertex that has the desired properties. ⇤

Now we are able to prove our main theorem.

Proof of Theorem 3.1. Let D = (X,Y,E) be a homogeneous 2-partite digraph that
is not bipartite. Then we find in X some vertex with a predecessor in Y and some
vertex with a successor in Y . By homogeneity, we can map the first onto the second
and conclude the existence of a vertex in X that has a predecessor and a successor
in Y . Analogously, we obtain the same for some vertex of Y . By homogeneity,
every vertex of D has predecessors and successors. In particular, we have |X| � 2
and |Y | � 2.

Let us suppose that two vertices u, v 2 X have the same successors, that is,
N+(u) = N+(v). By homogeneity, we can fix u and map v onto any vertex w
of X r{u} by some automorphism of D and thus obtain N+(w) = N+(u) for every
w 2 X. So no vertex in N+(u) has successors in X, which is impossible as we saw
earlier. Hence, we have N+(u) 6= N+(v) for any two distinct vertices u, v 2 X.
Analogously, the same holds for any two distinct vertices in Y and also for the set
of predecessors of every two vertices either in X or in Y . Thus, we have shown

(1) N+(u) 6= N+(v) and N�(u) 6= N�(v) for all u 6= v 2 X

and

(2) N+(u) 6= N+(v) and N�(u) 6= N�(v) for all u 6= v 2 Y.

Let us assume that n := |N+(u)| is finite for some u 2 X. Note that, for any
subset A of Y of cardinality n, we find a vertex a 2 X with N+(a) = A by homo-
geneity. If |Y | > n + 1 and n � 2, then we find two subsets of Y of cardinality n
whose intersection has n � 1 elements and two such sets whose intersection has
n� 2 elements. So we find two vertices in X with n� 1 common successors and we
also find two vertices in X with n� 2 common successors. This is a contradiction
to homogeneity, because we cannot map the first pair of vertices onto the second
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pair. Thus, we have either n = 1 or |Y | = n + 1. If |Y | = n + 1, then we directly
obtain D ⇠= Mn+1 since every vertex in X also has some predecessor in Y . So let us
assume n = 1. If we have 1 < k 2 N for k := |N�(u)|, then we obtain D ⇠= Mk+1,
analogously. So let us assume that either |N�(u)| = 1 or N�(u) is infinite. First,
we consider the case that N�(u) is infinite. An empty set u? directly implies
D ⇠= M|Y |. So let us suppose u? 6= ;. Let u+ be the unique vertex in N+(u). Since
u? 6= ;, we find for some and hence by homogeneity for every vertex in Y some
vertex in X it is not adjacent to. Let w 2 (u+)? and let v 2 N+(u+). By homo-
geneity, we find an automorphism ↵ of D that fixes u and maps v to w. Since ↵
fixes u, it must also fix u+. But since u+v 2 E and (u+v)↵ = u+w /2 E, this is not
possible. Hence, if N+(u) is finite, it remains to consider the case n = 1 = k. Due
to (1), no two vertices of X have a common predecessor or a common successor.
Thus, also every vertex in Y has precisely one predecessor and one successor. Let
v 2 Y and w 2 X with uv, vw 2 E. Then we can map the pair (u,w) onto any
pair of distinct vertices of X, as D is homogeneous. Thus, for all x 6= z 2 X, there
exists y 2 Y with xy, yz 2 E. This shows |X| = 2 as every vertex of D has precisely
one successor. Hence, D is a directed cycle of length 4, which is isomorphic to M2.

Analogous argumentations in the cases of finite N�(u), N+(v) or N�(v) with
u 2 X and v 2 Y show that the only remaining case is that every vertex in D has
infinite in- and infinite out-neighbourhood. Due to Lemma 3.2, we know that |u?|
is either 0 or infinite and that |v?| is either 0 or infinite. Since x? 6= ; if and only if
y? 6= ; for all x 2 X and y 2 Y , the assertion follows from Lemmas 3.3 and 3.4. ⇤
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