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1 Introduction

Definition 1. The unordered pair (A,B) is a separation of a graph G = (V,E)
if A ∪ B = V and G has no edge between A\B and B\A. Clearly the latter
is equivalent to saying that A ∩ B separates A from B. If both A\B and B\A
are non-empty, the separation is proper. The number |A ∩B| is the order of
the separation (A,B). Informally we think of (A,B) pointing towards B and
away from A and call B the big side of (A,B). We call (B,A) the inverse of
the separation (A,B).

Definition 2. Let (A,B), (C,D) be two separations.

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D

Note that this is equivalent to (D,C) ≤ (B,A). If (A,B) ≤ (C,D), then we
think of (A,B) pointing towards (C,D) and (D,C), while (C,D) points away
from (A,B) and (B,A).

Definition 3. A set P of separations is consistent if it contains no two separa-
tions pointing away from each other: if (C,D) ≤ (A,B) ∈ P implies (D,C) /∈ P .
Note that this does not imply (C,D) ∈ P . It may also happen that P contains
neither (C,D) nor (D,C).

Definition 4. A Set P of separations of a Graph G is a profile if it satisfies:

• P is consistent

• for all (A,B), (C,D) ∈ P : (B ∩D,A ∪ C) /∈ P

Definition 5. Let G be a graph. A profile P of G is a k-profile if all separations
in P have order less than k and if for every separation (A,B) of G of order less
than k either (A,B) ∈ P or (B,A) ∈ P .

In this master´s thesis we will deal with some characteristics of profiles. In the
first section we will introduce a more ’abstract’ notion of separations. In the
following section we give another definition of profiles and we will show some
general properties of profiles. The advantage of this new definition of profiles
is, that it can be made symmetric. By doing so we get a weakened notion of
profiles. In section six we will study some aspects of these weakened profiles.
Some profiles, e.g. k-profiles, can be thought of as indicating highly connected
parts of a graph. ”There are a number of theorems in the structure theory of
sparse graphs that assert a duality between high connectivity present somewhere
in the graph and an overall tree strucuture [1,p.1]”. Diestel and Oum proved in
[1] a general duality theorem for width parameters in combinatorical structures
such as graphs. Our aim in the fourth and fifth section of this master´s thesis is
to proof that this general duality theorem can be applied to k-profiles. Diestel
and Oum are working in [1] with a slightly weaker definition of consistent. We
will cover the differences between their definition consistent and the definition
of consistent in this paper in section seven. In this master´s thesis we will work
with finite graphs and sets.
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2 Abstract separations

Diestel and Oum are working in [1] with a more ’abstract’ axiomatic definition
of separations. As we will see separations of a graph are separations in terms of
these ’abstract’ separations. As we will work with these ’abstract’ separations
in most parts of this thesis, we will cover the definition of these separation in
this section.

Definition 6. A separation system (
−→
S ,≤, ∗) is a partially ordered set

−→
S with

an order reversing involution *. Its elements are called oriented separations.

When a given element of
−→
S is denoted as −→s , its inverse −→s ∗ will be denoted as

←−s and vice versa. The assumption that * be order-reversing means that, for all
−→r ,−→s ∈

−→
S ,

−→r ≤ −→s ⇔←−r ≥ ←−s

Definition 7. A separation is a set of the form {−→s ,←−s }, and then denoted by

s. We call −→s and ←−s the orientations of s. The set of all such sets {−→s ,←−s } ⊆
−→
S

will be denoted by S. If −→s =←−s , we call both −→s and s degenerate.

As easy to be seen the separations defined in chapter one are separations in
terms of the definition above.

Definition 8. If there are binary operations ∧ and ∨ on a separation system−→
S , such that −→r ∧ −→s is the infimum and −→r ∨ −→s the supremum of −→r ,−→s in

−→
S ,

we call (
−→
S ,≤, ∗,∧,∨) a universe of (oriented) separations.

As * is order-reversing it satisfies De Morgan´s law [cf. 1, p.4]:

(−→r ∨ −→s )∗ = (←−r ∧←−s )

”The oriented separations of a set V form such a universe: if −→r = (A,B) and
−→s = (C,D), say, then −→r ∨−→s := (A∪C,B∩D) and −→r ∧−→s := (A∩C,B∪D) are
again oriented separations of V, and are the supremum and infimum of −→r and
−→s . Similarly, the oriented separations of a graph form a universe. Its oriented
separations of order < k for some fixed integer k, however, form a separation
system inside this universe that may not itself be a universe with respect to ∨
and ∧ as defined above.” [1,p.4]

Definition 9. A set O ⊆
−→
S is consistent if there are no r, s ∈ S with orienta-

tions −→r < −→s such that ←−r ,−→s ∈ O.1

Definition 10. An orientation of a set S of separations is a set O ⊆
−→
S that

contains for every s ∈ S exactly one of its orientations −→s ,←−s .

1This definition is slightly stronger than the definition of consistent in [1, p.5]. We will cover
the differences of these two definitions and their impact on the proofs in Section seven. For
now it is sufficient to know that every set of separations that is consistent by the Definition
9 is consistent by the definition of consistent in [1, p.5].
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Definition 11. A nonempty set σ of oriented separations is a star of separations
if they point towards each other: if −→r ≤ ←−s for all distinct −→r ,−→s ∈ σ.

Lemma 1. For every star σ that is not consistent there exists a separation r
such that {−→r ,←−r } ⊆ σ.

Proof. Let σ be a non-consistent star. As σ is non-consistent there exists
oriented separations −→r ,−→s ∈ σ such that ←−r ≤ −→s . Given that σ is a star it is
also −→s ≤ ←−r . Thus it is −→s =←−r .

Corollar 1. Let O be an orientation of a set of separation. Then O cannot
contain a non-consistent star.

Proof.

With the new characterisation of separations, which is used in [1], we have to
adjust the definition of a k-profile.

Definition 12. Let us call a real function −→s 7→ |−→s | on a universe

(
−→
U ,≤, ∗,∨,∧) of oriented separations an order function if it is non-negative,

symmetric and submodular, that is, if 0 ≤ |−→s | = |←−s | and

|−→r ∨ −→s |+ |−→r ∧ −→s | ≤ |−→r |+ |−→s |

for all −→r ,−→s ∈
−→
U We then call |s| := |−→s | the order of s and of −→s . For every

positive integer k,

−→
Sk := {−→s ∈

−→
U : |−→s | < k}

is a separation system (though not necessarily a universe).

Definition 13. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a

separation system (
−→
S ,≤, ∗). A set P ⊆

−→
S is a profile if it satisfies:

• P is consistent

• ∀−→r ,−→s ∈ P : (←−r ∧←−s ) /∈ P (P )

Definition 14. A profile P is an S-profile if for all separations −→r ∈ P also
r ∈ S and if for every separation s ∈ S either −→s ∈ P or ←−s ∈ P .

Definition 15. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a

separation system (
−→
S ,≤, ∗) We say

−→
S is submodular if and only if for every

−→r ,−→s ∈
−→
S either (−→r ∨ −→s ) ∈

−→
S or (−→r ∧ −→s ) ∈

−→
S .
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Lemma 2. Every Sk is submodular.

Proof. This follows directly of the submodularity of the order function of Sk.

Lemma 3. Let S be a submodular set of separations and P be an S-profile.
Then P is a consistent orientation of S.

Proof. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a separation

system (
−→
S ,≤, ∗). And let P ⊆

−→
S be a profile. We have to show that P is

consistent (by definition) and that P contains for every s ∈ S exactly one of
−→s and ←−s . As P is an S-profile P contains at least one of −→s and ←−s for every
s ∈ S. Let −→s ∈ P . By (P) we know that ←−s ∧←−s = ←−s /∈ (P ). Thus P cannot
contain both −→s and ←−s .
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3 Another definition of profiles

In this section we will give a definition of profiles, which can be made symmetric.

Definition 16. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a

separation system (
−→
S ,≤, ∗). A set of oriented separations P ⊆

−→
S satisfies (P3)

if and only if:
∀−→r ,−→s ,∈ P ∀−→t ≤ (−→r ∨ −→s ) :

←−
t /∈ P

Definition 17. We call a universe (
−→
U ,≤, ∗,∧,∨) of separations distributive if

for every −→r ,−→s ,−→t ∈
−→
U the following holds:

• (−→r ∧ −→s ) ∨ −→t = (−→r ∨ −→t ) ∧ (−→s ∨ −→t )

• (−→r ∨ −→s ) ∧ −→t = (−→r ∧ −→t ) ∨ (−→s ∧ −→t )

We call it associative if for every −→r ,−→s ,−→t ∈
−→
U the following holds:

• (−→r ∧ −→s ) ∧ −→t = −→r ∧ (−→s ∧ −→t )

• (−→r ∨ −→s ) ∨ −→t = −→r ∨ (−→s ∨ −→t )

Theorem 1. Let (
−→
U ,≤, ∗,∧,∨) be a distributive and associative universe of

separations containing a submodular separation system (
−→
S ,≤, ∗). Let P be an

orientation of
−→
S . P satisfies (P3) if and only if P is consistent and satisfies

(P).

Proof. ”⇒ ”
Let P be an orientation of a submodular separation system satisfying (P3). Let
−→r ,−→s ∈ P , such that −→r ≤ −→s . Then ←−r /∈ P , as −→r ≤ (−→s ∨ −→s ) = −→s . Thus P is

consistent. Let −→r ,−→s ∈ P and
←−
t = (←−r ∧←−s ) Then

←−
t /∈ P as

−→
t = (−→r ∨ −→s ).

We are now proving ⇐.

Let P be an orientation of a submodular separation system
−→
S . We assume that

P is consistent and satisfies (P ) but not (P3).

Then there exist −→r ,−→s ,←−t ∈ P such that
−→
t ≤ (−→r ∨−→s ). If (

−→
t ∧−→r ), (

−→
t ∧−→s ) ∈ P

(P) is violated, as

(
−→
t ∧−→r )∗∧(

−→
t ∧−→s )∗ = (

←−
t ∨←−r )∧(

←−
t ∨←−s ) =

←−
t ∨(←−r ∧←−s ) =

←−
t given that

−→
S is

distributive and
←−
t ≥ (←−r ∧←−s ). We are showing now that (

−→
t ∧−→r ), (

−→
t ∧−→s ) ∈ P .

Let us assume that (
−→
t ∧ −→r ) /∈ P . Then either (

−→
t ∧ −→r )∗ = (

←−
t ∨ ←−r ) ∈ P

or (
−→
t ∧ −→r ) /∈

−→
S . As ←−r ≤ (

←−
t ∨ ←−r ) and −→r ∈ P , it is (

−→
t ∧ −→r ) /∈

−→
S by the

consistency of P. This implies due to the submodularity of
−→
S that (

−→
t ∨−→r ) ∈

−→
S .

Given that
−→
t ≤ (

−→
t ∨ −→r ) and

←−
t ∈ P , it is (

−→
t ∨ −→r )∗ = (

←−
t ∧←−r ) ∈ P by the

consistency of P. Again due to the submodularity of
−→
S one of the following

holds:

1. (
←−
t ∧←−r ) ∨←−s ∈

−→
S
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2. (
←−
t ∧←−r ) ∧←−s ∈

−→
S

If 1. holds, then ((
←−
t ∧←−r )∨←−s )∗ = ((

−→
t ∨−→r )∧−→s ) ∈ P , as←−s ≤ ((

←−
t ∧←−r )∨←−s ).

Thus ((
←−
t ∧←−r ) ∨←−s ) ∧←−r /∈ P , due to (P). But

((
←−
t ∧ ←−r ) ∨ ←−s ) ∧ ←−r = ((

←−
t ∧ ←−r ) ∧ ←−r ) ∨ (←−s ∧ ←−r ) = (

←−
t ∧ ←−r ) ∨ (←−s ∧ ←−r ) =

(
←−
t ∧←−r ). This follows from the fact that (

−→
U ,≤, ∗,∧,∨) is distributive and that

(←−s ∧←−r ) ≤ ←−t as well as (←−s ∧←−r ) ≤ ←−r , hence (←−s ∧←−r ) ≤ (
←−
t ∧←−r ). This is a

contradiction to (
←−
t ∧←−r ) ∈ P .

If 2 holds, then (
←−
t ∧←−r ) ∧←−s ∈ P as

−→
t ≤ ((

−→
t ∨ −→r ) ∨ −→s ) = ((

←−
t ∧←−r ) ∧←−s )∗.

Due to (P) it is (←−r ∧←−s ) /∈ P . But ((
←−
t ∧←−r )∧←−s ) = (

←−
t ∧ (←−r ∧←−s )) = (←−r ∧←−s )

as
←−
t ≥ (←−r ∧ ←−s ). This is a contradiction. A similiar argument shows that

(
−→
t ∧ −→s ) ∈ P , hence (P) is violated.

By Theorem 1 and Lemma 3 a k-profile of a graph G is equivalent to an F-
avoiding orientation of Sk for the set F := {{−→r ,−→s ,←−t } ⊆ 2Sk :

−→
t ≤ (−→r ∧ −→s )}

as Sk is submodular and ∩,∪ are distributive and associative. If (
−→
U ,≤, ∗,∧,∨)

is not distributive, Theorem 1 is not true as the following example shows:

−→r

−→y

−→s −→
t

−→x

−→u

←−r

←−y

←−s←−
t

←−x

←−u

Figure 1: A universe of separations shown as a Hasse-diagramm
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Theorem 2. Let (
−→
U ,≤, ∗,∧,∨) be the universe in figure 1 containing the sep-

aration system
−→
S =

−→
U \u. Then

−→
S is a submodular separation system that has

a consistent orientation O, which satisfies (P ) but violates (P3).

Proof. It is (←−x ∨ −→s ) ∧ −→t = (−→u ∧ −→t ) =
−→
t 6= −→r = (←−x ∧ −→t ) ∨ (−→s ∧ −→t ), thus

−→
U is not distributive.
As easy to be seen

−→
S has an order-reversing involution, hence

−→
S is a sepa-

ration system.
−→
S is submodular, given that there exist no −→a ,

−→
b ∈

−→
S with

(−→a ∧
−→
b ), (−→a ∨

−→
b ) /∈

−→
S .

Suppose it does, then (−→a ∧
−→
b ) ∈ {−→u ,←−u } as well as (−→a ∨

−→
b ) ∈ {−→u ,←−u }, given

that
−→
U is a universe and the only separation of U that is not contained in S is

u. It is (−→a ∨
−→
b ) 6= (−→a ∧

−→
b ), otherwise both −→a and

−→
b would be an orientation

of u, given that (−→a ∧
−→
b ) ≤ −→a ≤ (−→a ∨

−→
b ) The same is true for

−→
b . This cannot

be as u /∈ S. Thus either −→u ≤ −→a ≤ ←−u or ←−u ≤ −→a ≤ −→u . The same is true for−→
b . Therefore a ∈ {x, y} and b ∈ {x, y}. But for all combination of orientations

of the separations x and y even both the supremum and the infimum are again
in S.
Let O := {−→r ,−→s ,−→t ,−→y ,←−x }. Then O is an orientation of

−→
S . Further O is

consistent as for every −→a ∈
−→
S , such that −→a ≤

−→
b ∈ O, −→a ∈ O. Suppose

O violates (P2), hence there exist −→a ,
−→
b ,−→c ∈ O such that −→c = (←−a ∧

←−
b ).

Whenever −→a ,
−→
b ∈ O\←−x then (←−a ∧

←−
b ) ∈ {←−u ,←−a ,

←−
b }. Thus one of −→a ,

−→
b has to

be←−x . In this case (←−a ∧
←−
b ) ∈ {−→x ,←−u }, but neither ←−x ∈ O nor −→u ∈ O. Further

O violates (P3), as {←−x ,−→s ,−→t } ⊆ O, and −→x ≤ (−→s ∨ −→t ).
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3.1 Interesting properties of profiles

In this section we will cover some interestings properties of profiles.

Theorem 3. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a sub-

modular separation system (
−→
S ,≤, ∗). Let O be an orientation of

−→
S with the

following properties:

• O is consistent.

• Every star Σ ⊆ O is subset of an
−→
S -profile.

Then O is an
−→
S -profile.

Proof. Suppose that O is not an
−→
S -profile. Then there exist −→r ,−→s ∈ O, such

that (←−r ∧ ←−s ) ∈ O. Due to the submodularity of
−→
S either (←−r ∧ −→s ) ∈

−→
S or

(←−r ∨ −→s ) ∈
−→
S . If (←−r ∧ −→s ) ∈

−→
S then (←−r ∧ −→s ) ∈ O as O is consistent and

(←−r ∧ −→s ) ≤ −→s . But now (←−r ∧ −→s ), (←−r ∧ ←−s ) and −→r form a star. This star

has to be a subset of an
−→
S -profile. This

−→
S -profile P also contains either −→s

or ←−s . In both cases P violates (P), hence P is not a profile. Therefore O is

an
−→
S -profile. In the case that (←−r ∨ −→s ) ∈

−→
S the orientation O has to contain

(←−r ∨ −→s )∗ = (−→r ∧ ←−s ) as (−→r ∧ ←−s ) ≤ −→r due to consistency of O. But now

(−→r ∧←−s ), (←−r ∧←−s ),−→s form a star. This star has to be a subset of an
−→
S -profile.

This
−→
S -profile P also contains either −→r or ←−r . In both cases P violates (P),

hence P is not a profile. Therefore O is a
−→
S -profile.

For k-blocks we get a similar result.

Definition 18. Given k ∈ N, a set I of at least k vertices of a graph G is
(< k)-inseparable if no set W of fewer than k vertices of G separates any two
vertices of I\W in G. A maximal (< k)-inseparable set is a k-block.

Definition 19. A set of separations is nested if each of them is comparable with
every other or its inverse. Thus, two nested separations are either comparable,
or point towards each other, or point away from each other. Two separations
that are not nested are said to cross.

Definition 20. Let S, P be two sets of separation. We say S ≤ P , if a function
f : S 7→ P exists, such that (A,B) ≤ f(A,B) for every (A,B) ∈ S.

Definition 21. Let us say a separation (A,B) lies on the small side of an
oriented separation (C,D) if there exists an orientation (A,B) of this separation
such that (A,B) ≤ (C,D)⇔ (D,C) ≤ (B,A).
Let us say a separation (A,B) lies on the big side of an oriented separation
(C,D) if there exists an orientation (A,B) of this separation such that (C,D) ≤
(A,B)⇔ (B,A) ≤ (D,C)

Definition 22. A set of S oriented separations points towards a k-block if the
k-block is contained in the big side of every separation (A,B) ∈ S

9



Theorem 4. Let G be a Graph and S a nested set of separations of G. Let O
be an orientation of S with the following properties:

• O is consistent.

• Every star Σ ⊆ O points towards a k-block.

Then every subset S ⊆ O points towards a k-block.

Proof. Let Σ ⊆ O be a maximal star (with respect to Definition 20). This
star Σ points towards a k-block R. We now show that every other separation
(A,B) ∈ O points towards this k-block as well. Given that S is nested every
separation in S is lying either on the small side of a separation of Σ or on the
big side of all separations of Σ. Let (A,B) ∈ O\Σ be a separation, which lies
on the small side of a separation (C,D) ∈ Σ. Then it is (A,B) ≤ (C,D),
because otherwise O would not be consistent. Thus (A,B) points to the k-
block R as well. Let (A,B) ∈ O\Σ be a separation, which lies on the big side
of all separations (C,D) ∈ Σ. As Σ is a maximal star, Σ ∪ (A,B) is not a star.
Hence for at least one of the separations (C,D) ∈ Σ holds (C,D) < (A,B).
Let P := {(C,D) ∈ Σ : (C,D) < (A,B)}. Then (A,B) ∪ Σ\P is a bigger star
than Σ, as P < (A,B), hence Σ < (A,B)∪Σ\P . This is a contradiction to the
maximality of Σ. Therefore no separation (A,B) ∈ O lies on the big side of all
separations (C,D) ∈ Σ.
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4 Terminology for the general duality theorem
in [1]

Diestel and Oum proved in [1] the following duality theorem:

Theorem 5. [cf.1, Theorem 4.4] Let (
−→
U ,≤, ∗,∧,∨) be a universe of separa-

tions containing a separation system (
−→
S ,≤, ∗). Let F⊆ 2

−→
S be a standard set of

stars. If
−→
S is F-separable, exactly one of the following assertions holds:

• There exists an S-tree over F .

• There exists an F-tangle of S.

To understand this theorem we need some more definitions, which we will give
in the following section.

4.1 Further definitions

Definition 23. Given a separation system (
−→
S ,≤, ∗) and a set F⊆ 2

−→
S , let us

call an orientation O of S an F-tangle if it is consistent and avoids F , that is
2O ∩ F= ∅.

Definition 24. A separation −→r ∈
−→
S is trivial in

−→
S , and ←−r is co-trivial, if

there exists s ∈ S such that −→r < −→s as well as −→r <←−s

Note that if −→r is trivial in
−→
S then so is every

−→
r′ ≤ −→r . If −→r is trivial, witnessed

by −→s , then −→r < −→s < ←−r by De Morgan´s law. Hence if −→r is trivial, then ←−r
cannot be trivial. [cf.1, p.4]

Definition 25. We say F forces a separation −→r ∈
−→
S if {←−r } ∈ F or r is

degenerate. We call F standard if it forces every trivial separation in
−→
S .

Definition 26. Let −→r ≤ −→s0 be some non-trivial elements of a separation system

(
−→
S ,≤, ∗) contained in some universe (

−→
U ,≤, ∗,∧,∨) and

−→
S ≥−→r be the set of all

separations s ∈ S that have an orientation −→s ≥ −→r . Then

f ↓
−→r−→s0 (−→s ) := (−→s ∨ −→s0)

f ↓
−→r−→s0 (←−s ) := (−→s ∨ −→s0)∗ = (←−s ∧←−s0)

defines a shifting map f ↓−→r−→s0 :
−→
S ≥−→r →

−→
U .
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Definition 27. Let us say that −→s0 ∈
−→
S is linked to −→r ∈

−→
S if −→s0 ≥ −→r and

every −→s ≥ −→r in
−→
S satisfies −→s ∨ −→s0 ∈

−→
S . Let us call

−→
S separable if for every

two non-trivial −→r ,
←−
r′ ∈

−→
S , such that −→r ≤

−→
r′ there exists an s0 ∈ S with an

orientation −→s0 linked to −→r and its inverse ←−s0 linked to
←−
r′ . Let us say that a

separation −→s0 ∈
−→
S is F-linked to a non-trivial −→r ∈

−→
S if −→s0 is linked to −→r and

the image under f ↓−→r−→s0 of any star σ ⊆
−→
S ≥−→r in F that has an element −→s ≥ −→r

is again in F . We say that
−→
S is F-separable if for all non-trivial −→r ,

←−
r′ ∈

−→
S

such that −→r ≤
←−
r′ there exists an s0 ∈ S with an orientation −→s0 that is F-linked

to −→r and such that ←−s0 is F-linked to
←−
r′ .

Definition 28. Let S be a set of separations. An S − tree is a pair (T, α) of a

tree T with at least one edge and a function α :
−→
E (T )→

−→
S from the set

−→
E (T ) := {(x, y) : {x, y} ∈ E(T )}

of the orientations of its edges to
−→
S such that

• for every edge xy of T, if α(x, y) = −→s then α(y, x) =←−s .

It is an S-tree over F⊆ 2
−→
S if, in addition,

• for every node t of T we have α(
−→
Ft) ∈ F , where

−→
Ft := {(x, t) : xt ∈ E(T )}

12



5 Applying the general duality theorem from [1]
to Sk-profiles

In this section we proof that we can apply Theorem 5 to Sk-profiles. Therefore
we have to show that Sk-profiles are F-tangles, at which F has to be a standard
set of stars. Furthermore we also have to proof, for this particular F , that the
set of all separations, which have order < k, is F-separable.

Lemma 4. [1, Lemma 5.2] ”Every Sk, as in Definition 12 is separable.”

Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations and α :

−→
U 7→ N be an order

function. Let
−→
Sk := {−→s ∈

−→
U : |−→s | < k} denote all separations in

−→
U that have

an order < k. Let us define F0 := {{−→r , (←−r ∧←−s ), (←−r ∧ −→s )} ⊆ 2Sk : r, s ∈ Sk}.
As easy to be seen F0 is a set of stars. Furthermore Sk-profiles are F0-tangles,
as the following results show.

Theorem 6. Any consistent F0-avoiding orientation O of Sk is a Sk-profile.

Proof. Let O be a consistent F 0-avoiding orientation of Sk. Suppose that O
is not an Sk-profile. Then O violates (P), as O is consistent. Thus there exist
−→r ,−→s ,−→t ∈ O with

−→
t = (←−r ∧←−r ). As Sk is submodular either (←−r ∧ −→s ) ∈ Sk

or (←−r ∨ −→s ) ∈ Sk. If (←−r ∧ −→s ) ∈ Sk then due to the consistency of O it
is (←−r ∧ −→s ) ∈ O, as ←−s ≤ (←−r ∧ −→s )∗ = (−→r ∨ ←−s ) and −→s ∈ O. But now
{−→r , (←−r ∧ ←−s ), (←−r ∧ −→s )} ⊆ O and {−→r , (←−r ∧ ←−s ), (←−r ∧ −→s )} ∈ F0, hence O
is not avoiding F0. If (←−r ∨ −→s ) ∈ Sk then due to the consistency of O it
is (←−r ∨ −→s )∗ = (−→r ∧ ←−s ) ∈ O as ←−r ≤ (←−r ∨ −→s ) and −→r ∈ O. But now
{−→s , (←−r ∧←−s ), (−→r ∧←−s )} ⊆ O and {−→s , (←−r ∧←−s ), (−→r ∧←−s )} ∈ F0, hence O is not
avoiding F0.

Theorem 7. Any Sk-profile O avoids F0.

Proof. Let O be a Sk-profile. Suppose that O has a subset σ with σ ∈ F0.
Then σ has the form {−→r , (←−r ∧←−s ), (←−r ∧−→s )}. It is s ∈ Sk, as σ ∈ F0, hence O
has to contain either ←−s or −→s . If −→s ∈ O then {−→s ,−→r , (←−r ∧←−s )} ⊆ O, hence O
is not an Sk profile as it violates (P). A similar argument shows that O violates
(P) if ←−s ∈ O.

From Theorem 6 and Theorem 7 follows that Sk-profiles are indeed
F0-tangles. To apply Theorem 5 to Sk-profiles we have to prove that Sk

is F0-separable.

Definition 29. F is closed under shifting if whenever −→s0 ∈
−→
S is linked to some

non-trivial −→r ≤ −→s0 it is even F-linked to −→r .

Lemma 5. [1, Lemma 4.2.] If
−→
S is separable and F is closed under shifting,

then
−→
S is F-separable.

Proof.
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We would like F0 to be closed under shifting, thus Sk would be F0-separable
by Lemma 5. Unfortenately F0 is not closed under shifting.

If −→s0 ∈
−→
Sk is linked to some non-trivial −→r ≤ −→s and

σ = {−→t , (←−t ∧←−u ), (
←−
t ∧−→u )} ∈ F∗ be a star with (

←−
t ∧←−u ) ≥ −→r then f ↓−→r−→s0 (σ)

need not be in F0 again. But we can assure that it does by making F0 bigger.
We are doing this recursive. We start with F0 and define

Fn := {{(−→a ∨ −→x ), (
−→
b ∧←−x ), (−→c ∧←−x )} ⊆ 2

−→
Sk : {−→a ,

−→
b ,−→c } ∈ Fn−1, x ∈ Sk} .

We are iterating this process until
n−1⋃
i=0

F i =
n⋃

i=0

F i. As Sk is finite this iteration

will end after finite many steps.

Finally let F∗ :=
⋃
Fn.

Lemma 6. Fn is a set of stars for every integer n .

Proof. We are showing this by induction. For n = 0 this is clear. Let n > 0 and

σ = {(−→a ∨−→x ), (
−→
b ∧←−x ), (−→c ∧←−x )} ∈ Fn. It is (

−→
b ∧←−x ) ≤ (←−c ∨−→x ) = (−→c ∧←−x )∗,

as (
−→
b ∧←−x ) ≤

−→
b ≤ ←−c ≤ (←−c ∨ −→x ), as {−→a ,

−→
b ,−→c } ∈ Fn−1, hence they form a

star. The same argument shows (−→c ∧←−x ) ≤ (
←−
b ∨ −→x ) = (

−→
b ∧←−x )∗

Furthermore it is (−→a ∨ −→x ) ≤ (
←−
b ∨ −→x ) = (

−→
b ∧ ←−x )∗, given that −→a ≤

←−
b ,

as {−→a ,
−→
b ,−→c } ∈ Fn−1, hence they form a star. Doing so for every missing

combination of two separations in σ yields the claim.

As a result of Lemma 6 we get that the set F∗ is a set of stars
Now we proof that Sk-profiles are F∗-tangles.

Theorem 8. Any consistent F∗-avoiding orientation O of Sk is an Sk-profile

Proof. This follows directly from Theorem 6.

Theorem 9. Any Sk-profile avoids F∗.

Proof. Let O be an Sk-profile. Suppose O does not avoid F∗. Then O contains
a subset that is an element of some Fn. Let m denote the smallest integer such
that O contains a subset of some Fn. Let σ ∈ Fm denote this subset. If m = 0
then we are done (Theorem 7), hence m > 0. We now show that O also
contains a subset that is an element of Fm−1 contradicting our choice of m. We

know σ is of the form {(−→a ∨−→x ), (
−→
b ∧←−x ), (−→c ∧←−x )}. As σ ∈ Fm, we also know

that {a, b, c, x} ∈ Sk. As −→a ≤ (−→a ∨ −→x ) and O is consistent O has to contain
−→a . Further O contains

−→
b . Suppose not. Then O contains

←−
b . Due to the

consistency O also contains −→x as −→x ≤ (−→a ∨−→x ). Thus O violates (P), hence is

not a profile, as {−→x ,
←−
b , (
−→
b ∧←−x )} ∈ O. The same argument shows that −→c ∈ O,

hence O contains an element of Fm−1.
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Theorem 5 requires that the set F is standard. Therefore it has to contain ←−r
for every r ∈ Sk such that −→r is trivial. We are making F∗ standard by adding
←−r for every r ∈ Sk such that −→r is trivial.

F∗∗ := F∗ ∪ {{←−r } : r ∈ Sk,
−→r is trivial}

Theorem 10. Sk-profiles are F∗∗-tangles.

Proof. This follows directly from Theorem 8 and Theorem 9 and the fact
that for every consistent orientation O of S it is ←−r /∈ O if −→r ∈ S is small, as
−→r ≤ ←−r . Given that every trivial separation is a small separation O does not
contain ←−r if −→r is trivial.

The last thing we have to show to apply Theorem 5 to Sk-profiles is that Sk

is F∗∗-separable. By Lemma 5 it is sufficient if we proof that F∗∗ is closed
under shifting, as we already know that Sk is separable (Lemma 4).

Theorem 11. F∗∗ is closed under shifting.

Proof. Let −→s0 ∈
−→
Sk be linked to some non-trivial −→r ≤ −→s .

Let σ = {−→t ,−→u ,−→v } ∈ F∗∗ be a star with σ ⊆
−→
S ≥−→r . Then σ ∈ F∗, as −→r

is non-trivial. Let −→r ≤ −→t and n be an integer, such that σ ∈ Fn. We now have
to show that f ↓−→r−→s0 (σ) ∈ F∗∗. It is f ↓−→r−→s0 (

−→
t ) = (−→s0 ∨

−→
t ) as −→r ≤ −→t and

f ↓
−→r−→s0 (−→u ) = (←−u ∨ −→s0)∗ = (−→u ∧←−s0)

f ↓
−→r−→s0 (−→v ) = (←−v ∨ −→s0)∗ = (−→v ∧←−s0)

as −→r ≤ −→u ∗ and −→r ≤ −→v ∗. Given that −→s0 is linked to −→r , hence f ↓−→r−→s0 (σ) ⊆
−→
Sk

and given that −→s0 ∈
−→
Sk it is f ↓−→r−→s0 (σ) = {(−→t ∨ −→s0), (−→u ∧ ←−s0), (−→v ∧ ←−s0)} ∈

Fn+1.
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6 Weak tangles

In this section we introduce a weakened definition of profiles and we will show
some properties of these weakened profiles. For this whole section we will work
again with separations of a graph G.

Definition 30. Call an unordered triple {(A1, B1), (A2, B2), (A3, B3)} of sepa-
rations bad if {h, i, j} = {1, 2, 3} exist, such that:
(Bh, Ah) ≤ (Ai ∪Aj , Bi ∩Bj)

This triples are exactly the set of separations, which violate the property (P3).
Profiles of a graph can be seen as sets of separations, which does not contain
bad triples (Theorem1). Bad triples can be made symmetrical in the following
way.

Definition 31. Call an unordered triple {(A1, B1), (A2, B2), (A3, B3)} of sepa-
rations awful if {h, i, j} = {1, 2, 3} exist, such that:
(Bh, Ah) ≤ (Ai ∪Aj , Bi ∩Bj) holds for every {h, i, j} = {1, 2, 3}.

Definition 32. A Set P of separations of a Graph G is a weak-tangle if:

• P is consistent

• P contains no awful triple

A weak-tangle P is a weak-k-tangle if all separations in P have order less than
k and if for every separation (A,B) of G of order less than k either (A,B) ∈ P
or (B,A) ∈ P .

6.1 Awful stars

Definition 33. Call a bad triple S, that is also a star, a bad star. Call an awful
triple S, that is also a star, an awful star.

In this section we will study some properties of bad an awful stars. The main
result in this section gives us a characterisation for awful stars in an orientation
of a graph G, that contains no 3-separation. (A separation (A,B), such that
G\(A ∩B) consists of at least three components).

Lemma 7. Let S = {(A1, B1), (A2, B2), (A3, B3)} be a bad star with
A3 ⊇ (B1∩B2) and B3 ⊆ (A1∪A2). Then A3 = (B1∩B2) and B3 = (A1∪A2).

Proof. It is A3 ⊇ (B1 ∩ B2). As S is also a star it is A3 ⊆ B1 and A3 ⊆ B2,
hence A3 ⊆ (B1 ∩ B2), therefore A3 = (B1 ∩ B2). Similar we can show that
B3 = A1 ∪A2.

Corollar 2. Let S = {(A1, B1), (A2, B2), (A3, B3)} be an awful star. Then
Ah = Bj ∩Bk and Bh = Ai ∪Aj for every {h, i, j} = {1, 2, 3}.

Proof.
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Lemma 8. Let S = {(A1, B1), (A2, B2), (A3, B3)} be a bad star
(with A3 ⊇ (B1 ∩B2), B3 ⊆ (A1 ∪A2)). Then

• A1\A3 = B2\A3

• A2\A3 = B1\A3

Proof. ”A1\A3 ⊆ B2\A3”

Let x ∈ A1\A3. As S is a star A1 ⊆ B2, hence x ∈ B2\A3.

”B2\A3 ⊆ A1\A3”

We may assume that B2\A3 6= ∅, as otherwise it would be A1\A3 = B2\A3 = ∅,
given that A1 ⊆ B2. Let ∅ 6= x ∈ B2\A3. With A3 = (B1 ∩ B2) fol-
lows x /∈ B1\A3, hence x ∈ A1\A3 as (A1, B1) is a separation. This shows
A1\A3 = B2\A3. With a similar argument we show A2\A3 = B1\A3.

The next theorem implies that every awful star contains either a 3-separation
or the awful star is of the form {(X,Y ), (Z, V ), (Y,X)} with Z = (X ∩ Y ).

Theorem 12. Let S = {(A1, B1), (A2, B2), (A3, B3)} be an awful star. Then
either G\(A3 ∩ B3) consists of at least three components or S is of the form
{(X,Y ), (Z, V ), (Y,X)} with Z = (X ∩ Y ).

Proof. Let A1\A3 6= ∅, A2\A3 6= ∅ and A3\B3 6= ∅ and let xy be an edge with
x ∈ A1\A3 and y ∈ A2\A3 = B1\A3 (Lemma 8). Then either x ∈ (A1∩B1)\A3

or y ∈ (A1∩B1)\A3, as (A1, B1) is a separation. It is x ∈ A1\A3 = B2\A3, hence
x /∈ B1\A3, as A3 = (B1∩B2). Thus x /∈ (A1∩B1)\A3. With a similar argument
we can show that y /∈ (A1 ∩ B1)\A3. This is a contradiction. Therefore there
exists no edge between A1\A3 and A2\A3. There exists no edge between A3\B3

and A1\A3 or A2\A3, as (A3, B3) is a separation and A1\A3, A2\A3 ⊆ B3\A3,
hence G\(A3 ∩B3) consist of at least three components.

Now we are proving that if at least one of A1\A3, A2\A3, A3\B3 is empty, S has
got the form {(X,Y ), (Z, V ), (Y,X)} with Z = (X ∩ Y ).

Let A3\B3 = ∅. Then A3 ⊆ B3, hence B3 = V , as (A3, B3) is a separation.
With Lemma 7 follows, A1 = (B2 ∩ B3) = (B2 ∩ V ) = B2, A2 = (B1 ∩ B3) =
(B1 ∩ V ) = B1 and A3 = (B1 ∩B2) = (A1 ∩B1) = (A2 ∩B2). We get a star of
the form {(A1∩B1, V ), (A1, B1), (B1, A1)} = {(A2∩B2, V ), (A2, B2), (B2, A2)}.
Now let A2\A3 = ∅ or A1\A3 = ∅. Without loss of generality let A2\A3 = ∅.
With Lemma Lemma 8 follows A2\A3 = B1\A3 = ∅, hence B1 ⊆ A3. As S is a
star B1 ⊇ A3 holds, hence B1 = A3. Given that S is an awful star with Corollar
2 follows A1 = (B2 ∩B3) = (A3 ∪A1)∩B3 = (B1 ∪A1)∩B3 = (V ∩B3) = B3,
hence (A3, B3) = (B1, A1). Further B2 = (A1 ∪ A3) = (B3 ∪ A3) = V and
A2 = (B3 ∩B1) = (A1 ∩B1) = (A3 ∩B3).
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6.2 Canonical tree-decomposition for weak-tangles

In [2] Carmesin, Diestel, Hamann, and Hundertmark constructed a tree de-
composition for a given graph that distinguishes all their k-profiles for a fixed
integer k. An interesting question to ask is, whether there exists such a tree-
decomposition for weak-tangles. In this section we will give a counterexample.

Definition 34. A separation (A,B) is nested with a separation (C,D), written
as (A,B)||(C,D), if it is ≤-comparable with either (C,D) or (D,C). Since

(A,B) ≤ (C,D)⇔ (D,C) ≤ (B,A)

, the relation || is reflexive and symmetric. Two separations that are not nested
are said to cross.

Definition 35. A separation (A,B) is nested with a set S of separations, written
as (A,B)||S, if (A,B)||(C,D) for every (C,D) ∈ S. A set S of separations is
nested with a set S’ of separations, written as S||S′, if (A,B)||S′ for every
(A,B) ∈ S; then also (C,D)||S for every (C,D) ∈ S′.

Definition 36. A set of separation is called nested if every two of its elements
are nested.

Definition 37. A separation (A,B) separates a set X ⊆ V if X meets both A\B
and B\A. Given a set S of separations, we say that X is S-inseparable if no
separation in S separates X. An S-block of G is a maximal S-inseparable set of
vertices.

Definition 38. A tree decomposition of G is a pair (T,V) of a tree T and a
family V= (Vt)t∈T of vertex sets Vt ⊆ V (G), one for every node of T, such that:

• V (G) =
⋃

t∈T Vt;

• for every edge e ∈ G there exists a t ∈ T such that both ends of e lie in Vt;

• Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the t1 − t3 path in T.

The sets Vt in such a tree-decomposition are its parts. Their intersections Vt∩Vt′
for edges tt’ of the decoposition tree T are the adhesion sets of (T,V); their maxi-
mum size is the adhesion of (T,V). Deleting an oriented edge −→e = t1, t2 of T di-
vides T −e into two components T1 3 t1 and T2 3 t2. Then (

⋃
t∈T1

Vt,
⋃

t∈T2
Vt)

is a separation of G with separator Vt1 ∩Vt2 [4, Lemma 12.3.1]; we say our edge
−→e induces this separation.

Definition 39. A node t ∈ T is a hub node if the corresponding part Vt is the
separator of a separation induced by an edge of T at t. If t is a hub node, we
call Vt a hub.

The separations induced by a tree-decomposition (T,V) are nested. Conversely
Carmesin, Diestel, Hamann, and Hundertmark proved in [3] that every nested
separation system is induced by some tree-decomposition.
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Theorem 13. [3, Theorem 4.8] Every nested proper separation system N is
induced by a tree-decomposition (T,V) of G such that:

• every N-block of G is a part of the decompositions;

• every part of the decomposition is either an N-block of G or a hub.

This theorem implies that we can construct a tree-decomposition that distin-
guishes all weak-k-tangles, whenever we can find a nested set N of separations
which distinguishes all weak-k-tangles.

Definition 40. A separation (A,B) distinguishes two sets P,P’ of separations
if (A,B) ∈ P\P ′ and (B,A) ∈ P ′\P , or vice versa.

Only proper separations can distuinguish two consistent sets of separations [cf.
2, p.6], as a consistent set of separations never contains a separation of the form
(V,A). A consistent set of separations containing (V,A) must not contain the
inverse of (A, V ), which is (V,A), as (A, V ) ≤ (V,A).
We show now that there exist graphs, such that their weak-k-tangles cannot be
separated by a nested set of separations.

1 2 3

4 5 6

7 8 9

Figure 2: A graph, whose weak-4-tangles cannot be distiguished by a nested set
of separations

Let G be the graph shown in figure 2 and let S be the set of all the separa-
tions of G of order < 4. Let A,B,C,D ⊆ V (G) denote the following vertex sets:
A := {1, 2, 3, 4, 5, 6}, B := {4, 5, 6, 7, 8, 9}, C := {1, 2, 4, 5, 7, 8},D := {2, 3, 5, 6, 8, 9}.
It is easily checked that the unordered pairs (A,B), (C,D), (B ∩ C,A ∪ D),
(B ∪C,A ∩D), (B ∩D,A ∪C), (B ∪D,A ∩C) are the only proper separations
of order < 4 of G. Let us define the following separation sets:

• S1 := {(A,B), (C,D), (B ∩ C,A ∪ D), (A ∩ D,B ∪ C), (B ∩ D,A ∪ C),
(A ∩ C,B ∪D)} ∪ {(X,V ) : (X,V ) ∈ S, |X| < 4}

• S2 := {(B,A), (C,D), (B ∩ C,A ∪ D), (A ∩ D,B ∪ C), (B ∩ D,A ∪ C),
(A ∩ C,B ∪D)} ∪ {(X,V ) : (X,V ) ∈ S, |X| < 4}
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• S3 := {(A,B), (D,C), (B ∩ C,A ∪ D), (A ∩ D,B ∪ C), (B ∩ D,A ∪ C),
(A ∩ C,B ∪D)} ∪ {(X,V ) : (X,V ) ∈ S, |X| < 4}

The following results show that S1, S2 and S3 each are a weak 4-tangle of G.
But we cannot distinguish them by a nested set of separations.

Lemma 9. Let P be a consistent set of separations of a graph G. Let (X,V )
be a separation of G. Then P ∪ (X,V ) is still consistent.

Proof. Let P be a consistent set of separations of a graph G = (V,E) and
(X,V ) a separation with X ⊂ V . As P is consistent P does not contain any
separation of the Form (V, Y ) with Y ⊂ V , hence (V,X) 6≤ (A,B) ∈ P . Let us
assume there exists a separation (C,D) ∈ P , such that (D,C) ≤ (X,V ). Then
C = V , hence P is not consistent, given that no consistent set of separations
can contain a separation of the form (V,Z) with Z ⊆ V .

Lemma 10. The separation sets S1, S2, S3 are weak-4-tangles.

Proof. We are going to prove this for S1. The proofs for S2 and S3 are ana-
log. For every separation (X,Y ) of order < 4 of G, the separation set S1

contains exactly one of its orientations. Therefore S1 is an orientation of the
set of all separations of G that have order < 4. Further S1 is consistent.

Suppose not, then there exist separations (Y1, X1), (X2, Y2) ∈ S1 such that
(X1, Y1) ≤ (X2, Y2). By Lemma 9 and the fact that σ := {(B ∩ C,A ∪ D),
(A ∩D,B ∪C), (B ∩D,A ∪C), (A ∩C,B ∪D)} is a consistent star (Corollar
1) either (Y1, X1) ∈ {(A,B), (C,D)} or (X2, Y2) ∈ {(A,B), (C,D)}. They can-
not both be contained in {(A,B), (C,D)}, as (A,B), and (C,D) cross each
other. Let (A,B) = (Y1, X1), then (X2, Y2) ∈ σ, by Lemma 9 and the fact
that (A,B), (C,D) cross each other. But for every separation (E,F ) ∈ σ it
is either (E,F ) ≤ (A,B) or {(A,B), (E,F )} form a consistent star, hence
(X1, Y1) = (B,A) 6≤ (E,F ) = (X2, Y2), contradicting our assumption. If
(X2, Y2) = (A,B) then again (Y1, X1) ∈ σ. And equally for every seperation
(E,F ) ∈ σ it is either (E,F ) ≤ (A,B) or {(A,B), (E,F )} form a consistent
star, hence (X1, Y1) = (F,E) 6≤ (A,B) = (X2, Y2) contradicting our assump-
tion. The same arguments hold if either (Y1, X1) = (C,D) or (X2, Y2) = (C,D).
S1 does not contain any awful triple. By Theorem 12 it does not contain an

awful star, as it contains no 3-separation and it is consistent. An awful triple
cannot contain a separation of the form (X,V ), as the union of the small sides
of the two other separations would have to cover the whole graph, but S1 does
not contain any such two separations. Hence every awful triple has to contain
(A,B) and (C,D). The small side of the third separation (A3, B3) of the awful
triple has to satisfy (B∩D ⊆ A3). The only separation satisfying this condition
is (B ∩D,A∪C), but (A∪C)∩B 6⊆ C, hence {(A,B), (C,D), (B ∩D,A∪C)}
is no awful triple. This proves the claim.
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Theorem 14. Let G be the graph shown in figure 2. The weak-4-tangles cannot
be distiguished by a nested set of separations.

Proof. Let N be a set that distinguishes all the weak-4-tangles of G. Given that
S1, S2 and S3 are weak k-tangles N has to distinguish them. The weak-4-tangles
S1 and S2 differ only in the orientation of the separation (A,B). Thus N has to
contain an orientation of the separation (A,B). The weak-4-tangles S1 and S3

differ only in the orientation of the separation (C,D). Thus N has to contain
an orientation of the separation (C,D). As (A,B) and (C,D) cross, N is not

nested.
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7 New definition of consistent

In [1] Diestel and Oum are using a weaker definition of consistent as the one
in Definition 9. To distinguish the two definitions of consistent we will say
that a set of separations is weak consistent if it is consistent by the definition
of consistent in [1, p.5].

Definition 41. [cf.1, p.5] Let (
−→
S ,≤, ∗) be a separation system. A set O ⊆

−→
S

is weak consistent if there are no distinct r, s ∈ S with orientations −→r < −→s
such that ←−r ,−→s ∈ O.

7.1 Differences between consistent and weak consistent

In this section we will cover the differences of these two definitions and their
impact on the proofs in this paper.

Theorem 15. Let (
−→
S ,≤, ∗) be a separation system and let O ⊆

−→
S be a con-

sistent set of oriented separations. Then O is also weak consistent.

Proof. As O is consistent there exist no r, s ∈ S with orientations −→r < −→s such
that ←−r ,−→s ∈ O. Thus O contains no distinct r, s ∈ S with orientations −→r < −→s
such that ←−r ,−→s ∈ O.

Definition 42. Let us call an oriented separation −→r maximal with respect to a
set of oriented separations P if and only if

∀−→s ∈ P, such that r 6= s either −→s ≤ −→r or −→r and −→s are incomparable.

Let us call a separation r maximal with respect to P if both orientations −→r and
←−r are maximal with respect to P.

Lemma 11. Let S be a set of separations. Every weak consistent orientation
O of S has to contain −→r for every r ∈ S such that −→r is trivial.

Proof. As −→r is trivial, there exists s ∈ S, such that −→r < −→s and −→r < ←−s ,
hence ←−r /∈ O, given that O has to contain one orientation of s.

Theorem 16. Every consistent set of oriented separations
−→
O , that is not a weak

consistent set of oriented separations, contains either the inverse of a small sep-

aration −→s , such that s is maximal with respect to
−→
O or there exists a separation

r, such that {−→r ,←−r } ⊆
−→
O and r is maximal with respect to

−→
O .

Proof. Let
−→
O be a set of oriented separations that is weak consistent but not

consistent. As
−→
O is not consistent there exist separations r, s with orientations

−→r ≤ −→s such that ←−r ,−→s ∈
−→
O . As

−→
O is weak consistent r = s. Thus either

−→s = −→r or −→s =←−r .
If −→s = ←−r then −→r ≤ ←−r , hence −→r is small. Suppose r is not maximal with

respect to
−→
O . Then there exists

−→
t ∈

−→
O such that either −→r ≤ −→t or ←−r ≤ −→t
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and r 6= t. In both cases
−→
O is not weak consistent given that O contains ←−r but

it is −→r ≤ ←−r ≤ −→t or −→r ≤ −→t .
If −→s = −→r , then {−→r ,←−r } ⊆

−→
O . If either −→r or ←−r is not maximal with respect

to
−→
O , then there exists a separation t 6= r with

−→
t ∈

−→
O such that −→r <

−→
t or

←−r <
−→
t . Thus

−→
O is not weak consistent as it contains −→r ,←−r and

−→
t .

Theorem 17. Let
−→
O be a weak consistent set of oriented separations, that

contains neither the inverse of a small separation −→s , such that s is maximal

with respect to
−→
O nor there exists a separation r, such that {−→r ,←−r } ⊆

−→
O and r

is maximal with respect to
−→
O , then

−→
O is a consistent set of oriented separations.

Proof. Suppose not, then there exist separations r, s with orientations −→r ≤ −→s
such that ←−r ,−→s ∈

−→
O . Given that O is weak consistent it is r = s. Thus either

−→s = −→r or −→s =←−r .
If −→s = ←−r then −→r ≤ ←−r , hence −→r is small. Suppose r is not maximal with

respect to
−→
O . Then there exists

−→
t ∈

−→
O such that either −→r ≤ −→t or ←−r ≤ −→t

and r 6= t. In both cases
−→
O is not weak consistent as it contains ←−r and

−→r ≤ ←−r ≤ −→t or −→r ≤ −→t .
If −→s = −→r , then {−→r ,←−r } ⊆

−→
O . If either −→r or ←−r is not maximal with respect

to
−→
O , then there exists a separation t 6= r with

−→
t ∈

−→
O such that −→r <

−→
t or

←−r <
−→
t . Thus

−→
O is not weak consistent as it contains −→r ,←−r and

−→
t .

Definition 43. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a

separation system (
−→
S ,≤, ∗). A set P ⊆

−→
S is a weak profile if it satisfies:

• P is weak consistent

• ∀−→r ,−→s ∈ P : (←−r ∧←−s ) /∈ P (P )

Definition 44. A weak profile P is a weak S-profile if for all separations −→r ∈ P
also r ∈ S and if for every separation s ∈ S either −→s ∈ P or ←−s ∈ P .

Definition 45. Let G be a graph. A weak profile P of G is a weak k-profile if
all separations in P have order less than k and if for every separation (A,B) of
G of order less than k either (A,B) ∈ P or (B,A) ∈ P .

Corollar 3. Every weak profile
−→
P , that is not a profile, contains the inverse of

a small separation −→s , such that s is maximal with respect to
−→
P

Proof. This follows directly from Theorem 16 and Lemma 3.

For k-profiles, such that k > 2, both definitions of consistent are equivalent.
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Lemma 12. Let G be a graph. The small separations of G are exactly the
separations of the form (A, V ) with A ⊆ V .

Proof. ”⇒”
Let (A,B) be a small separation of G. Then (A,B) ≤ (B,A). Thus B = V , as
A ⊆ B and (A,B) is a separation.
”⇐”
It is (A, V ) ≤ (V,A), hence (A, V ) is a small separation.

Theorem 18. Let G be a graph and let P be a weak k-profile of G, such that
k > 2, then P is a k-profile.

Proof. Suppose not, then P contains a separation of the form (V,A) by
Lemma 12. Given that (V,A) and (A, V ) are maximal with respect to P
(Corollar 3), the set A contains at least two vertices. Thus we can find
X 6= Y 6= A ⊆ V , such that X ∪ Y = A. As P is a weak k-profile it has
to contain (X,V ) and (Y, V ), as a weak k-profile cannot contain two distinct
separations of the form (V,Z), with Z ⊆ V .

If a weak k-profile P does contain two distinct separations (V,Z1) and (V,Z2)
they both have to be maximal with respect to P by Corollar 3. By (P) it is
(Z1 ∩Z2, V ) /∈ P . Given that |Z1 ∩Z2| < k the weak-k-profile P has to contain
(V,Z1 ∩ Z2). But as P is weak consistent (V,Z1 ∩ Z2) /∈ P , given that either
(V,Z1) < (V,Z1 ∩ Z2) or (V,Z2) < (V,Z1 ∩ Z2), since Z1 6= Z2. Thus either
(V,Z1) or (V,Z2) is not maximal with respect to P. This is a contradiction.

By (P) it is (V,X ∪ Y ) = (V,A) /∈ P . Hence X=Y=A. This is a contradiction.

7.2 Impact on the proofs if we require only weak consis-
tency instead of consistency

If we require only weak consistency in our proofs whenever consistency is re-
quired, some of the results will be false. But in some cases only the proof gets
a bit more difficult.

Lemma 13. Let S be a submodular set of separations and P be a weak S-profile.
Then P is a weak consistent orientation of S.

Proof. This follows directly from the proof of Lemma 3, if we replace consis-
tent by weak consistent.

Lemma 1 changes to the following: Stars are weak consistent: if ←−r ,−→s lie in
the same star we cannot have −→r < −→s , since also −→s ≤ −→r by the star property.
If we consider the new definition of consistent Theorem 1 is not true anymore.
Let G=(V,E) be a graph and S := {(A, V ), (V,A)} a set of separations. Then
P := {(V,A)} is an orientation of S. As easy to be seen P is a weak profile, but
not a profile. S is clearly submodular. But it is (A, V ) ≤ (V ∪V,A∩A) = (V,A).
Hence to satisfy (P3) P must not contain the separation (V,A), but it does.
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Definition 46. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a

submodular separation system(
−→
S ,≤, ∗). Let −→r ,−→s ∈

−→
S .

Then [−→r ∧−→s ] := {(−→r ∧−→s ), (−→r ∧−→s )∗} and [−→r ∨−→s ] := {(−→r ∨−→s ), (−→r ∨−→s )∗}.

With the following Lemma we can fix some of our proofs in this master´s thesis.

Lemma 14. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a sub-

modular separation system (
−→
S ,≤, ∗). Let O be a weak consistent orientation of

S. Whenever −→r ,−→s , (←−r ∧←−s ) ∈ O and [−→r ∧←−s ] ∈ S then (−→r ∧←−s ) ∈ O.

Proof. Suppose not. Then (−→r ∧ ←−s )∗ = (←−r ∨ −→s ) ∈ O given that O is an
orientation of S. As O is weak consistent and (−→r ∧←−s ) ≤ −→r , it is [−→r ∧←−s ] = r.
Thus (←−r ∨ −→s ) = −→r as O contains −→r . With −→s ≤ (←−r ∨ −→s ) = −→r follows
(−→s ∨ −→r ) = −→r , hence (←−r ∧ ←−s ) = ←−r . This is a contradiction as O cannot
contain both ←−r and −→r .

Theorem 19. Let (
−→
U ,≤, ∗,∧,∨) be a universe of separations containing a sub-

modular separation system (
−→
S ,≤, ∗). Let O be an orientation of

−→
S with the

following properties:

• O is weak consistent.

• Every star Σ ⊆ O is subset of a weak
−→
S -profile.

Then O is a weak
−→
S -profile.

Proof. The proof of Theorem 3 together with Lemma 14.

Theorem 20. Let G be a Graph and S a nested set of separations of G. Let O
be an orientation of S with the following properties:

• O is weak consistent.

• Every star Σ ⊆ O points towards a k-block.

Then every subset S ⊆ O points towards a k-block.

Proof. The proof of Theorem 4.

Definition 47. [cf.1, p.11] Given a separation system (
−→
S ,≤, ∗) and a set

F⊆ 2
−→
S , let us call an orientation O of S a weak F-tangle if it is weak con-

sistent and avoids F , that is, 2O ∩ F= ∅.

In section five we proved that Sk-profiles are F∗∗-tangles. Weak Sk-profiles are
equally weak F0-tangles, but unfortunately they are not weak F∗∗-tangles, as
the following results show.
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Theorem 21. Any weak consistent F0-avoiding orientation O is a weak Sk-
profile.

Proof. The proof of Theorem 6 together with Lemma 14.

Theorem 22. Any weak Sk-profile O avoids F0.

Proof. The proof of Theorem 7.

Theorem 21 and Theorem 22 show that weak Sk-profiles are indeed weak
F0-tangles.

Theorem 23. Any weak consistent F∗-avoiding orientation O of Sk is a weak
Sk-profile.

Proof. This follows directly from Theorem 21.

The converse of Theorem 23 fails, as the following example shows.

−→
b

−→a −→x

←−a←−x

←−
b

Figure 3: A universe of separations

Theorem 24. Let (
−→
U ,≤, ∗,∧,∨) be the universe of separations as in figure 3.

Let α :
−→
U → N be a function with −→r 7→ 1. Then α is an order function of

−→
U

and P := {←−a ,−→x ,
−→
b } is a weak S2-profile that contains a star σ ∈ F∗.

Proof. α is nonnegative, symmetric and submodular, hence α is an order func-

tion of
−→
U . It can easily be checked, that P is weak consistent and satisfies (P),

hence P is a weak S2-profile. Let σ := {←−a ,
−→
b }. It is σ ⊆ P and σ ∈ F∗, as

{←−a ,
−→
b } = {−→a ∨−→x ,−→x ∧←−x } and {−→a ,−→x } = {−→a , (←−a ∧←−x ), (←−a ∧−→x )} ∈ F0.
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8 Open Questions

In this master´s thesis we managed to proof that the duality theorem (Theorem
5) can be applied to k-profiles. A question we have not answered in this paper
is, whether the duality theorem can be applied to profiles wich are induced by
k-blocks as well.
Given that every profile, which is induced by a k-block, is still a profile our
choice of F has at least to contain F∗∗. But this set of stars is not sufficient as
there exist profiles, which are not induced by a k-block ([cf. 2, p.5]). A good
extension for F∗∗ might be the set of all stars σ, such that the intersection of
all the big sides of the separations in σ has less than k vertices. The problem
here is to show that every profile that is not induced by a k-block contains such
a star. Furthermore these stars have to be closed under shifting or at least can
be made closed under shifting.

In section 6 we introduced weak k-tangles which are slightly weaker than k-
profiles. A natural question to ask is whether the duality theorem can be applied
to weak k-tangles as well. To do that we have to find a set of stars F such that
weak k-tangles are F-tangles. This is probably not the case as the following
example might suggest.

Figure 4: A graph with all its proper separations of order < 8 that have a
minimal order

Let G be a graph as in figure 4. That means the proper separations of G of
order < 8 that have a minimal order are exactly the separations shown in figure
4, whereas a proper separation (A,B) has a minimimal order if there exists no
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proper separation (A1, B) 6= (A,B) such that (A1, B) ≤ (A,B) nor a proper
separation (A,B1) 6= (A,B) such that (A,B) ≤ (A,B1). The Pi denote k-blocks
such that k > 7. Let O be an orientation of all the separations of G which have
order < 8 such that O contains (A1, B1), (A2, B2), (A3, B3) and for every other
separation (X,Y ) the orientation such that P5 lies in the big side of (X,Y ).
The separations (A1, B1), (A2, B2), (A3, B3) form an awful triple. Suppose weak
k-tangles are F-tangles. If O is consistent (which it should be), then O con-
tains a star σ ∈ F . This star σ has to contain exactly one of the separations
(A1, B1), (A2, B2), (A3, B3). It cannot contain two of these separations given
that they cross each other. If σ would not contain any of them σ would be
subset of the profile P which is induced by the k-block P5. Thus weak k-tangles
would not be F-tangles given that no profile contains an awful triple. Without
loss of generality (G is symmetric) let (A1, B1) be this separations.
Let O1 be equal to P with the exception that O1 contains (A1, B1) instead of
(B1, A1). Then O1 contains every possible choice of σ, given that both O1 and
P orientate all separations (X,Y ) but (A1, B1), (A2, B2), (A3, B3) in a way, such
that P5 lies in the big side of (X,Y ). Suppose O1 is consistent (which it should
be), then O1 has to contain an awful triple if weak k-tangles are F-tangles.
Otherwise O1 would be a weak 8-tangle which would contain a star σ ∈ F .
This awful triple has to contain the separation (A1, B1), given that P is a
profile and differs in O1 only in the orientation of the separation (A1, B1). The
remaining two separations (X1, Y1), (X2, Y2) in this awful triple have to satisfy
B1 ⊆ (X1 ∪X2). That means the union of their small sides cover the big side
of (A1, B1). It is only possible to find such two separations if one of them is
the separation (B1 ∩ A3, A1 ∪ B3), as the small side of every other separation
covers only one of the k-blocks P1, P2 and P3. But to cover B1 the union of the
small sides of (X1, Y1) and (X2, Y2) has to cover all three of them. Without loss
of generality let (X1, Y1) = (B1 ∩ A3, A1 ∪ B3). Then (X2, Y2) has to satisfy,
X2 ⊇ (A1 ∪ B3) ∩ B1. But for all possible choices of (X2, Y2) that satisfy
X2 ∪ (B1 ∩ A3) ⊇ B1 (the possible choices are (B3, A3), (B1 ∩ B3, A1 ∪ A3),
(A1 ∩ B3, B1 ∪ A3)) it is (Y2 ∩ (A1 ∪ B3)) 6⊆ A1. Thus O1 contains no awful
triple. This shows that there exist weak tangles which do not avoid F for every
choice of F , hence weak tangles are no F-tangles.

The difficulties in the approach above are to show that O and O1 are consistent.
Further it has to be shown that there exists a graph which satisfies all the
properties needed. At last we have to proof that we covered all possible choices
of (X2, Y2).

28



References

[1] Diestel, R., Oum, S.: Unifying duality theorems for width parameters in
graphs and matroids I. Weak and strong duality. , 2015.

[2] Carmesin, J, Diestel, R., Hamann, M., Hundertmark F.: Canonical tree-
decompositions of finite graphs I. Existence and algorithms, 2014.

[3] Carmesin, J, Diestel, R., Hamann, M., Hundertmark F.: Connectivity and
tree structure in finite graphs. Combinatorica, 34(1):1-35, 2014.

[4] Diestel, R.:Graph Theory. Springer, 4th edition, 2010

29



Erklärung

Die vorliegende Arbeit habe ich selbständig verfasst und keine anderen als die
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