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Introduction

In [23], Bruhn, Diestel, Kriesell, Pendavingh and Wollan gave axiomatic foun-
dations for infinite matroids with duality in terms of independent sets, bases,
circuits, closure and rank. This opened the way for the development of a theory
of infinite matroids with duality, the beginnings of which are explained in this
thesis.

It had previously been traditional to define infinite matroids like finite ones
(see, for example, [56]), but with the following additional axiom:

(I4) An infinite set is independent as soon as all of its finite subsets are.

From now on, we shall refer to collections of independent sets satisfying the
usual independence axioms and (I4) as finitary matroids. It is clear that in
any finitary matroid, all circuits must be finite, since any infinite dependent set
must have some finite dependent subset, and so cannot be a minimal dependent
set. Thus one could also define finitary matroids by means of the usual circuit
axioms, together with the additional axiom that all circuits be finite. Similarly,
finitary matroids may easily be axiomatised in terms of their sets of bases, of
their closure operators or of their rank functions.

Example 0.0.1. Let (ve|e ∈ E) be a (possibly infinite) family of vectors in a
vector space V . We say a subset I of E is independent if the family (ve|e ∈ I)
is linearly independent in V . This construction gives the set of independent
sets of a finitary matroid with ground set E. Such finitary matroids are called
representable.

Example 0.0.2. Let G be a (possibly infinite) graph. Then there is a finitary
matroid MFC(G) with ground set E(G), whose circuits are precisely the edge
sets of finite cycles in G. This matroid is called the finite-cycle matroid of G.

Example 0.0.3. Let E be a set and let n ∈ N. Then the set Un,E of subsets
of X of size n is the set of bases of a finitary matroid with ground set E. Such
finitary matroids are called uniform.

There are, however, a number of examples of non-finitary objects which it
would be sensible to call matroids, beginning with the duals of the matroids
listed above. The dual of U2,E , for example, cannot be finitary for any infinite
set E. If it were, then since all finite subsets of E would be independent, E
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itself would be forced to be independent, although it is included in no base.
More worryingly, the duals of finite cycle matroids of infinite graphs are often
not finitary, even when the graphs are planar and have well-defined duals in the
plane. The infinite grid, for example, is self-dual as a graph, but its finite cycle
matroid doesn’t have a finitary dual.

If G is a finite graph, then the circuits of the dual of MFC(G) are precisely
the bonds of G, that is, the minimal nonempty cuts. If G is infinite, the circuits
of the dual of MFC(G) would again have to be the bonds, since the bonds are
the minimal nonempty sets of edges which never meet a circuit in just one edge
[27]. Since the infinite grid has many infinite bonds, it cannot have a finitary
dual. More generally, if G and G∗ are dual infinite graphs, then the bonds in
G∗ no longer correspond to finite cycles in G, but they do still correspond to
infinite cycle-like objects. In fact, they are the edge sets of topological circles
in a topological space obtained by adjoining certain points ‘at infinity’, called
ends to the graph G. This construction will be discussed in more detail in [27].
This construction can be carried out even when G is not planar and so has no
dual graph. We still obtain a well-behaved collection of topological cycles in G,
which ought to give the circuits of a matroid.

These topological cycles were introduced in order to allow the generalisation
to infinite graphs of a number of results about cycles in finite graphs which no
longer hold for the finite cycles of an infinite graph. A good overview of this
field is [33]. In order to apply matroidal ideas in this area, it would be necessary
to be able to form a matroid whose circuits were the (edge sets of) topological
cycles in G. If our collection of infinite matroids were closed under duality, this
would be easily possible: we could obtain the desired matroid as the dual of the
finite bond matroid MFC(G), whose circuits are the finite bonds in G.

However, as mentioned before, the collection of finitary matroids is not closed
under duality. In fact, duality fails for this collection as badly as it possibly
could: a finitary matroid can only have a finitary dual if it is a direct sum of
finite matroids [69, 10, 26]. Duality is such a fundamental concept and tool in
the theory of finite matroids that much of this theory would not make sense
for the class of finitary matroids. Those ideas which do extend, tend to do so
‘by compactness’. At the time when finitary matroids were first introduced,
combinatorial compactness arguments were new and fashionable. Nowadays
the use of compactness arguments has become so standard that results about
infinite objects proved in this way may be seen as nothing but reformulations
of the corresponding finite results, so that the theory of finitary matroids can
be considered a reformulation, rather than an extension, of the theory of finite
matroids.

The problem lies in the crude way in which the infinite independent sets
are chosen, given the finite independent sets. Given the collection of finite
independent sets, (I4) throws in as many infinite independent sets as possible,
subject to the axiom that subsets of independent sets should be independent.
Ideally, we would like to allow the collection of infinite independent sets to have
a more refined structure.

Aware of the crudity of the definition and of the disastrous failure of duality,
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Rado asked in 1966 whether a theory of infinite matroids with duality was
possible [57, Problem P531]. In response a number of definitions were proposed,
amongst which we will focus on B-matroids, which were introduced by Higgs
[43]. Higgs’ belief that B-matroids give a natural class of infinite matroids was
confirmed by Oxley, who showed that the class of B-matroids is the largest class
of preindependence spaces1 on which duality and minors are defined and which
is closed under those operations [55]. Nevertheless, the class of B-matroids
remained difficult to work with because no simple axiomatisation of the class
was known.

This problem was resolved by the axiomatisations developed by Bruhn et al.,
because the objects fulfilling their axioms are precisely the B-matroids. How-
ever, Bruhn et al. had not set out to resolve this problem. They were initially
unaware of the concept of B-matroids, and were simply trying to produce nat-
ural axiomatisations according to which the (edge sets of) topological cycles in
an infinite graph would give the circuits of some matroid.

Since the development of these axiomatisations, most basic finite matroid
theory has been extended to infinite matroids, as will be explained in the coming
chapters. In contrast to the case of finitary matroids, it is no longer possible
to extend the results using straightforward compactness arguments, and even
the formulation of the proper definitions is often a subtle matter (as it was for
infinite matroids themselves).

After laying down some foundations in chapter 1, we will turn to one of the
most basic questions one could ask about infinite matroids, namely: must all
bases have the same cardinality? Higgs showed that the answer is ‘yes’ if we
assume the generalised continuum hypothesis. In chapter 2 we show that it is
also consistent with ZFC that there is a matroid with bases of two different car-
dinalities. We explore how to generalise the notion of representability in chapter
3 and two different but closely related approaches to infinite graphic matroids in
chapters 4 and 5. We conclude by discussing the most important open problem
in the theory of infinite matroids, the Packing/Covering Conjecture, in chapter
6.

0.0.1 Acknowledgements and discussion of the extent to
which this thesis is my own work

This thesis is based in small part on a lecture course given at the University of
Hamburg in the summer semester of 2012, but in large part on 9 papers with
various of the following coauthors: Hadi Afzali, Johannes Carmesin, Robin
Christan and Stefen Geschke. I am grateful to all of these coauthors, but espe-
cially to Johannes Caremesin, with whom I collaborated closely, and who is a
joy to work with.

I’m also grateful to the Humboldt foundation for giving me the opportunity
to take a couple of years to work on this project, and to Reinhard Diestel, who

1a candidate set I of independent sets is a preindependence space if it satisfies the inde-
pendence axioms for finite matroids
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has provided consistent support and regular suggestions about possible research
directions.

I contributed a fair share of the ideas to all of the papers which form the
foundation for this thesis. I’ll now sketch in more detail which results are my
own, though because my collaboration with Johannes has been so close it is
often not possible to separate his ideas cleanly from my own. In such cases, I’ll
simply state that the ideas were produced in close collaboration. So in cases
where I make this statement, I am confirming that my own contribution was
roughly half.

Chapter 1 is largely a summary of previous research, and as such is not based
on my own ideas, apart from Sections 1.3, 1.4. 1.6 and 1.7. Section 1.3 is based
on ideas produced together with Johannes, though the main result is my own.
Sections 1.4, 1.6 and 1.7 are my own work, though Johannes also contributed
to the original texts on which these Sections are based.

The construction of uniform matroids in chapter 2 is my own, but Stefan
Geschke is the one who realised that this construction still works even if we
only assume Martin’s Axiom (as conjectured by Adrian Mathias). I recognised
that this gave an answer to Higgs’ main question, and Stefan was the one who
answered Higgs’ other problem and showed that self-dual uniform matroids give
rise to non-Baire sets.

I developed much of the theory in 3.1-3.6, though Hadi Afzali also con-
tributed to this work, especially Sections 3.1 and 3.2. Johannes’s ideas are
behind Section 3.7, and mine behind 3.8 and 3.9.

The concept of trees of matroids and the proofs using determinacy that
Psi-matroids are matroids are my own, though Johannes also contributed to
the proof in the case of larger overlap. My ideas here were also influenced by
discussions with both Johannes Carmesin and Julian Pott. The extension from
the locally finite to the countable case is due to Johannes, as are the applications
(thought the argument for non-well-quasiorderability is mine). Sections 4.8-4.11
were produced in close collaboration with Johannes, though Section 4.9 is just
a recapitulation of older ideas of Aigner-Horev, Diestell and Postle.

The concept of graph-like space used here is my own, but is closely based on
ideas of Thomassen and Vella. Sections 5.2-5.4 are my own work, though both
Johannes Carmesin and Robin Christian contributed ideas here. 5.5-5.7 were
produced in close collaboration with Johannes, though again Robin Christian
contributed some ideas.

The idea of exchange chains in Section 6.1 is due to Johannes. Sections 6.2
and 6.3 were produced in close collaboration with Johannes. Sections 6.4 and
6.5 are again due to Johannes. The details of the argument from 6.7 onwards
were produced in close collaboration with Johannes, though the overall strategy
is mine.
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Chapter 1

Foundations

Before we begin our explorations, we will get a rough idea of the lay of the land
by looking at the various equivalent perspectives from which matroids can be
seen (and axiomatised). We will further equip ourselves by developing some
basic concepts and tools which we will need later on.

1.1 Axiomatisations

In [23], Bruhn et. al provided axiomatisations of matroids in terms of their
independent sets, bases, circuits, closure operators and rank functions. Many
of these axiomatisations involve the following potential property of a set I of
subsets of a set E:

(M) For any I ⊆ X ⊆ E with I ∈ I, the set {I ′ ∈ I|I ⊆ I ′ ⊆ X} has a
maximal element.

The axiomatisations and conversion rules they provided are listed below. It may
be wise to skip this section at first, and return to it as a reference later.

1.1.1 Independence axioms

Suppose I is a set of subsets of E. Then I is the set of independent sets of a
matroid with ground set E if and only if:

(I1) ∅ ∈ I.

(I2) For I ∈ I and I ′ ⊆ I we have I ′ ∈ I.

(I3) For any non-maximal element I of I and any maximal element I ′ of I
there is an e ∈ I ′ \ I such that I + e ∈ I.

(IM) I satisfies (M).

Sets not in I are called dependent sets of the matroid. The axiom (I3) is called
the exchange axiom for independent sets.
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1.1.2 Basis axioms

Suppose B is a set of subsets of E. Then B is the set of bases of a matroid with
ground set E if and only if:

(B1) B 6= ∅.
(B2) For B,B′ ∈ B and e ∈ B\B′, there is some e′ ∈ B\B′ with B−e+e′ ∈ B.

(BM) The set I of all subsets of elements of B satisfies (M).

The axiom (B2) is called the base exchange axiom.

1.1.3 Circuit axioms

Suppose C is a set of subsets of E. Then C is the set of circuits of a matroid
with ground set E if and only if:

(C1) ∅ 6∈ C.
(C2) No element of C is a subset of another.

(C3) Let e ∈ C ∈ C, let X ⊆ C − e and let (Cx ∈ C|x ∈ X) satisfy e 6∈ Cx and
Cx ∩X = {x} for all x ∈ X. Then there is some C ′ ∈ C with

e ∈ C ′ ⊆
(
C ∪

⋃
x∈X

Cx

)
\X .

(CM) The set I of subsets of E which don’t include any element of C satisfies
(M).

The axiom (C3) is called the circuit elimination axiom. If {e} is a circuit then
e is called a loop.

1.1.4 Closure axioms

An operator Cl : PE → PE is the closure operator of a matroid with ground
set E if and only if:

(CL1) For all X ⊆ E we have X ⊆ Cl(X).

(CL2) For all X ⊆ Y ⊆ E we have Cl(X) ⊆ Cl(Y ).

(CL3) For all X ⊆ E we have Cl(Cl(X)) = Cl(X).

(CL4) For all X ⊆ E and all e, e′ ∈ E with e′ ∈ Cl(X + e) \ Cl(X) we have
e ∈ Cl(X + e′).

(CLM) The set I = {I ⊆ E|(∀e ∈ I)e 6∈ Cl(I − e)} satisfies (M).

Sets of the form Cl(X) are called closed sets. Thus by (CL3) a subset X of E
is closed if and only if X = Cl(X). A subset X of E is said to be spanning if
Cl(X) = E.
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1.1.5 Rank axioms

Let [⊆]E be the set of pairs (A,B) of sets with A ⊆ B ⊆ E. Then a function
r : [⊆]E → N0 +∞ is the relative rank function of a matroid with ground set E
if and only if:

(R1) For all A ⊆ B ⊆ E we have r(A,B) ≤ |B \A|.

(R2) For all A,B ⊆ E we have r(A ∩B,A) ≥ r(B,A ∪B).

(R3) For all A ⊆ B ⊆ C ⊆ E we have r(A,C) = r(A,B) + r(B,C).

(R4) For any subset A of E and any family (A ⊆ Bk ⊆ E|k ∈ K) with
r(A,Bk) = 0 for all k ∈ K we have r(A,

⋃
k∈K Bk) = 0

(RM) The set I = {I ⊆ E|(∀x ∈ I)r(I − x, I) > 0} satisfies (M).

1.1.6 Conversions

If I is the set of independent sets of a matroid then the set of maximal in-
dependent sets is the set of bases of the same matroid, the set C of mini-
mal dependent sets is the set of circuits of the same matroid, the operator
Cl : PE → PE;X 7→ X ∪ {e 6∈ X|(∃I ∈ I)I ⊆ X and I + e 6∈ I} is the closure
operator of the same matroid and the function

r : [⊆]E → N0 +∞; (A,B) 7→ min
I∈I
I⊆A

max
I′∈I

I⊆I′⊆B

|I ′ \ I|

is the relative rank function of the same matroid on E.
In the other direction, if B is the set of bases of a matroid then the set of

subsets of elements of B is the set of independent sets of the same matroid. For
any family C of subsets of E, we say a set I is C-independent if it includes no
element of C. If C is the set of circuits of a matroid then the set of C-independent
sets is the set of independent sets of the same matroid. If Cl : PE → PE is
an operator, we say a set I ⊆ E is Cl-independent if there is no e ∈ I with
e ∈ Cl(I − e). If Cl is the closure operator of a matroid then the set of Cl-
independent sets is the set of independent sets of the same matroid. If r is
the relative rank function of a matroid with ground set E then {I ⊆ E|(∀x ∈
I)r(I − x, I) > 0} is the set of independent sets of the same matroid. We can
also define the closure operator in terms of the circuits: if C is the set of circuits
of a matroid, then ClC : PE → PE;X 7→ X ∪ {e 6∈ X|(∃C ∈ C)e ∈ C ⊆ X + e}
is the closure operator of the same matroid.

The main result of [23] is that all of the above makes sense: the conversions
really do convert between objects satisfying the appropriate axiomatisations,
and furthermore applying any two of the above conversions brings you back
to the object that you started with. Thus it makes sense to see all of these
axiomatisations as different descriptions of the same sort of mathematical object.
If M is a matroid then we will refer to the set of independent sets of M as I(M),
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the set of bases of M as B(M), the set of circuits of M as C(M), the closure
operator of M as ClM and the relative rank function of M as rM . We will
abbreviate rM (∅, A) as rM (A), and call the resulting unary function the rank
function of M . If M is a matroid with ground set E then the rank of M is
r(M) = rM (E).

1.1.7 Spanning sets

By the definitions of the closure operator and bases in terms of independent sets
in the last subsection, it is clear that an independent set is a base if and only
if it is spanning. Thus any set including a base is spanning. Conversely, if X is
a spanning set and B is a maximal independent subset of X then X ⊆ Cl(B)
and so Cl(B) ⊇ Cl(Cl(B)) ⊇ Cl(X) = E, so that B is both independent and
spanning, and hence is a base. Thus the bases are precisely the minimal spanning
sets.

1.1.8 The circuit elimination axiom

The circuit elimination axiom (C3) is an extension of the usual circuit elimina-
tion axiom for finite matroids, which it extends:

(C3’) For any C,C ′ ∈ C and any e ∈ C \C ′ and x ∈ C∩C ′ there is some C ′′ ∈ C
with e ∈ C ′′ ⊆ (C ∪ C ′)− x.

This is simply the special case of (C3) with |X| = 1. This axiom can be seen as
saying that an independent set can span an edge in at most one way.

Lemma 1.1.1. Let C be a set of subsets of E satisfying (C3’), x an edge of E
and I a C-independent set. Then there is at most one nonempty C ∈ C with
C ⊆ I + x.

Proof. Suppose for a contradiction that there are two such subsets, say C and
C ′. Then x ∈ C ∩ C ′ and without loss of generality there is some e ∈ C \ C ′.
Thus by circuit elimination there is some C ′′ ∈ C with e ∈ C ′′ ⊆ (C∪C ′)−x ⊆ I,
contradicting C-independence of I.

In particular, if B is a base and e 6∈ B then there is a unique circuit CBe
with e ∈ CBe ⊆ B + e. This circuit is called the fundamental circuit of e with
respect to B.

If C is a set of subsets of E, then Cmin is the set of minimal nonempty
elements of C.
Lemma 1.1.2. Let C be a system of sets satisfying (C3) and (CM). Then for
any C ∈ C and any e ∈ C there is some C ′ ∈ Cmin with e ∈ C ′ ⊆ C.

Proof. Let I be a maximal C-independent subset of C−e, and let X = (C−e)\I.
Then for each x ∈ X the set I+x is not C-independent, so there is some Cx ∈ C
with x ∈ Cx ⊆ I + x. Then Cx ∩ (X + e) = {x}. Thus by circuit elimination
there is some C ′ ∈ C with e ∈ C ′ ⊆

(
C ∪⋃x∈X Cx) \ X ⊆ I + e. This C ′ is

minimal among the nonempty elements of C by Lemma 1.1.1.
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Corollary 1.1.3. If C satisfies both (C3) and (CM) then so does Cmin.

The axiom (C3) also has a close relation to the axiom (O2), which will appear
again later in Section 1.3. The axiom (O2) is a condition on two sets C and D
of subsets of a set E:

(O2) For any partition of E as P ∪̇Q∪̇e one of the following holds:

– There is some C ∈ C with e ∈ C ⊆ P + e

– There is some D ∈ D with e ∈ D ⊆ Q+ e.

For any set C of subsets of E, we define C⊥ to be the set of subsets of E
which never meet an element of C in just one point.

Lemma 1.1.4. C satisfies (C3) if and only if C and C⊥ satisfy (O2).

Proof. For the “only if” implication, suppose we are given a partition E =
P ∪̇Q∪̇{e} such that P + e does not include an element of C containing e.

Let D consist of those elements x of Q+ e such that P + x does not include
an element of C containing x.

Suppose for a contradiction that D /∈ C⊥. Then there is some C ∈ C meeting
D only in a single element e′. Let X = C ∩ ((Q+ e) \D). For any x ∈ X pick
an element Cx of C such that x ∈ Cx ⊆ P + x. Applying (C3) to e′, C,X and
the Cx yields an element of C meeting Q+ e exactly in e′, which contradicts the
fact that e′ ∈ D.

It remains to show the “if”-implication. Suppose we are given e, C,X and
(Cx|x ∈ X) as in (C3). Put P = (C ∪⋃x∈X Cx) \ (X + e) and Q = (E \P )− e.

To prove circuit elimination, it remains to show that there is no element
D ⊆ Q + e of C⊥ containing e. Since e ∈ C and C ∩D ⊆ X + e, any such set
D would contain some x ∈ X since D ∈ C⊥. But then Cx ∩D = {x}, which is
impossible since D ∈ C⊥. This completes the proof.

Corollary 1.1.5. If a set C of subsets of E satisfies (C3), then so does C⊥.

If C is a set of subsets of E then the closure 〈C〉 of C is the set of unions of
elements of C. Evidently, 〈C〉⊥ = C⊥.

Corollary 1.1.6. If a set C of subsets of E satisfies (C3), then so does 〈C〉.

1.1.9 The scrawl axioms

A subset of the ground set of a matroid is a scrawl if and only if it is a union of
circuits. The set of scrawls of a matroid M is denoted S(M). Using the results
of the last subsection, we can axiomatise matroids in terms of their scrawls.
More precisely, if S is a set of subsets of E then S is the set of scrawls of a
matroid with ground set E if and only if:

(S1) S is closed under taking unions.

(S2) S satisfies (C3).

12



(SM) S satisfies (CM).

The set of circuits of this matroid is Smin. In fact, something a little stronger
is true. If C is a set of subsets of E satisfying (C3) and (CM) then there is a
matroid whose set of circuits is Cmin and whose set of scrawls is 〈C〉.

1.2 Minors and duality

1.2.1 Restriction

If I is a set of subsets of a set E and X ⊆ E then we write I�X for I ∩ P(X).
If I is the set of independent subsets of a matroid M with ground set E and
X ⊆ E then I�X is the set of independent subsets of a matroid with ground set
X, called the restriction of M to X and denoted M�X [23]. Bases of M�X are
just maximal independent subsets of X, and are often called simply bases of X.
For any set Q, the matroid M�E\Q is denoted M\Q and is said to be obtained
from M by deleting Q. The following identities are easily verified:

• C(M�X) = C(M)�X

• ClM�X(Y ) = ClM (Y ) ∩X

• rM�X (A,B) = rM (A,B)

• S(M�X) = S(M)�X

• M\Q1\Q2 = M\Q2\Q1 = M \ (Q1 ∪Q2).

1.2.2 Duality

If B is the set of bases of a matroid M with ground set E, then the set of
complements of elements of B is the set of bases of a matroid M∗ with ground
set E, called the dual of M [23]. Clearly M∗∗ = M . Independent sets of M∗ are
called coindependent subsets of M . Similarly, bases, circuits, loops, the closure
operator, closed sets, spanning sets, the (relative) rank function and scrawls of
M∗ are called respectively cobases, cocircuits, coloops, the coclosure operator,
coclosed sets, cospanning sets, the (relative) corank function and coscrawls ofM .
It is immediate from the definition of duality and the remarks in subsection 1.1.7
that the coindependent sets are precisely the complements of the spanning sets,
and that r(M) + r(M∗) = |E|.

If B is a base of M and e ∈ B then the fundamental circuit of e with respect
to the complement of B in M∗ is denoted DB

e , and called the fundamental
cocircuit of e with respect to B. No circuit and cocircuit of a matroid can ever
meet in just a single element [23]. It follows that if B is a base of M with e 6∈ B
and f ∈ B then f ∈ CBe if and only if e ∈ DB

f . We denote the relation this
defines between edges outside of B and those in B by RB . Note that eRBf if
and only if B − f + e is again a base of M .

13



Lemma 1.2.1. S(M∗) = C(M)⊥.

Proof. We know that C(M∗) ⊆ C(M)⊥. Thus S(M∗) = 〈C(M∗)〉 ⊆ C(M)⊥.
For the other direction, suppose that S ∈ C(M)⊥, and let e ∈ S. In particu-

lar, e cannot be a loop of M , for then S would meet this loop in only e. So {e}
is independent. Let I be a maximal independent set with e ∈ I ⊆ (E \ S) + e.
Let B be a base of M extending I. Suppose for a contradiction that DB

e 6⊆ S,
and let f ∈ DB

e \ S. Then since f ∈ (E \ S) \ I, by maximality of I there
must be some circuit C with f ∈ C ⊆ I + f . Since C ⊆ B + f , we have
C = CBf , and so e ∈ C because f ∈ DB

e . Thus C ∩ S = {e}, which gives the
desired contradiction. Thus DB

e ⊆ S. Since this was true for all e ∈ S, we have
S =

⋃
e∈S D

B
e ∈ S(M∗).

Corollary 1.2.2. C(M∗) = (C(M)⊥)min.

Corollary 1.2.3. An edge is a coloop if and only if it is not contained in any
circuits.

Corollary 1.2.4. A set of elements of E is a coscrawl if and only if its com-
plement is closed.

1.2.3 Contraction

Contraction is the dual operation to restriction: if M is a matroid with ground
set E and X ⊆ E then the contraction M.X of M to X is the matroid (M∗�X)∗.
If P is any set then the matroid M/P = M.(E \ P ) is said to be obtained from
M by contracting P . A matroid N is a minor of a matroid M if it is (isomorphic
to) a matroid which can be obtained from M by contracting some elements and
deleting some others.

The following characterisations of the contraction are taken from [23]:

Lemma 1.2.5. Let M be a matroid with ground set E, and let X ⊆ E and
I ⊆ E \X. Then the following are equivalent:

• I is independent in M.X.

• There is a base B of M\X such that B ∪ I is independent in M .

• For any independent set I ′ of M\X, the set I ∪ I ′ is independent in M .

Lemma 1.2.6. Let M be a matroid with ground set E, and let X ⊆ E and
B ⊆ E \X. Then the following are equivalent:

• B is a base of M.X.

• There is a base B′ of M\X such that B ∪B′ is a base of M .

• For any base B′ of M\X, the set B ∪B′ is a base of M .
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The circuits of M.X cannot be so easily characterised, but we can get a
handle on them as follows: first, for any set C of subsets of a set E and any
subset X of E, we write C.X for {C ∩X|C ∈ C}.

Lemma 1.2.7. C(M.X) ⊆ C(M).X ⊆ S(M.X).

Proof. First, let C be any circuit of M.X, and let B be any base of M \ X.
Let e be any edge of C. Then B ∪ C − e is independent in M , but B ∪ C is
not, so there is some circuit C ′ of M with e ∈ C ′ ⊆ B ∪ C. For any other
f in C, we know that B ∪ C − f is independent, so C ′ 6⊆ B ∪ C − f , so that
f ∈ C ′. Thus C = C ′∩X ∈ C(M).X. For the second part, note that no element
C∩X of C.X can meet any element D of C(M∗)�X just once, for then we would
also have |C ∩ D| = 1, which is impossible. Thus C(M).X ⊆ (C(M∗)�X)⊥ =
C((M.X)∗)⊥ = S(M.X).

Corollary 1.2.8. C(M.X) = (C(M).X)min and S(M.X) = 〈C(M).X〉 = S(M).X.

Corollary 1.2.9. Let M be a matroid, and let P and Q be disjoint sets. Then
M/P\Q = M\Q/P .

Corollary 1.2.10. Let M ′ be a minor of M . Further let C ′ be an M ′-circuit
and D′ be an M ′-cocircuit. Then there is an M -circuit C ⊆ C ′∪(E(M)\E(M ′))
and an M -cocircuit D ⊆ D′ ∪ (E(M) \ E(M ′)) such that o ∩ b = o′ ∩ b′.

Proof. Extend C ′ using contracted edges only and D′ using deleted edges only
as in Lemma 1.2.7 and its dual.

We have seen that a set is closed in M if and only if it is the complement of
a scrawl in M∗. Thus ClM (Y ) = E \⋃{C ∈ C(M∗)|C ∩ Y = ∅}, from which it
follows that ClM.X(Y ) = ClM (X ∪ Y ) \X.

From the above definitions, it is clear that rM (A,B) = r(M/A\(E \B)), so
that rM/P\Q(A,B) = rM (A ∪ P,B ∪ P ) and rM∗(A,B) + rM (E \ B,E \ A) =
|M/A\(E \B)| = |B \A|.

1.3 The orthogonality axioms

The axiomatisations we have seen so far had few axioms, but they all relied on
the condition (M). If we restrict ourselves to a countable ground set, then it
is possible to give an axiomatisation involving more axioms, each of which is
simpler to check. This makes the process of testing whether a given system is a
matroid more straightforward.

The orthogonality axioms are as follows, where C and D are sets of subsets
of a set E (intended to be the sets of circuits of some matroid and of its dual,
respectively).

(C1) ∅ /∈ C
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(C2) No element of C is a subset of another.

(C1∗) ∅ /∈ D

(C2∗) No element of D is a subset of another.

(O1) |C ∩D| 6= 1 for all C ∈ C and D ∈ D.

(O2) For all partitions E = P ∪̇Q∪̇{e} either P + e includes an element of C
through e or Q+ e includes an element of D through e.

(O3) For every C ∈ C, e ∈ C and X ⊆ E, there is some Cmin ∈ C with
e ∈ Cmin ⊆ X ∪ C such that Cmin \X is minimal.

(O3∗) For every D ∈ D, e ∈ D and X ⊆ E, there is some Dmin ∈ D with
e ∈ Dmin ⊆ X ∪D such that Dmin \X is minimal.

The axiom (IM) can be seen as saying that there are bases (that is, maximal
independent sets) in all minors. Similarly, the axiom (O3) can be seen as saying
that there are circuits (that is, minimal dependent sets) in all minors.

In (O3), which will usually be applied in cases with e 6∈ X, the set Cmin \X
is chosen to be minimal subject to the condition that it contains e. But when
C satisfies (C3’), this set is necessarily also minimal in a stronger sense:

Lemma 1.3.1. Let C be a set of subsets of E satisfying (C3′), let X be a subset
of E and let e ∈ E \ X. Let C ∈ C be such that C \ X is minimal subject to
e ∈ C. Then C \X is also minimal subject to C \X 6= ∅.

Proof. Suppose for a contradiction that there is some C ′ ∈ C with ∅ ( C ′ \X (
C \ X. By minimality of C, e 6∈ C ′. Let x ∈ C ′ \ X. So x ∈ C ∩ C ′ and
we may apply (C3’) to obtain C ′′ ∈ C with e ∈ C ′′ ⊆ C ∪ C ′ − x. Then
C ′′ \X ⊆ (C \X)− x, contradicting the minimality of C.

The first aim of this section will be to show the following:

Theorem 1.3.2. Let E be a countable set and let C,D ⊆ P(E).
Then C is the set of circuits of a matroid and D is the set of cocircuits of

the same matroid if and only if C and D satisfy the orthogonality axioms.

The second aim will be to show that the axioms (O3) and (O3∗) follow from
a much simpler condition:

(T) For any C ∈ C and D ∈ D, the set |C ∩D| is finite.

This condition is called tameness, and matroids M for which C(M) and C(M∗)
satisfy (T) are called tame. Thus a matroid is tame if and only if all of its
circuit-cocircuit intersections are finite.

To determine, rather than define, a matroid, the last four of the orthogonality
axioms suffice. What we mean by this slightly subtle distinction is captured by
the following strengthening of the theorem above:
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Theorem 1.3.3. Let E be a countable set and let C,D ⊆ P(E).
Then there is a matroid M such that C(M) ⊆ C ⊆ S(M) and C(M∗) ⊆ D ⊆

S(M∗) if and only if C and D satisfy the last four orthogonality axioms.

Proof. First we show the “only if”-implication. The axiom (O1) is just the fact
that no circuit can meet a cocircuit in a single element. To show (O2) consider
the matroid Me on {e} obtained from M by contracting P and deleting Q. If
Me is a loop, then by Lemma 1.2.7 P +e includes a circuit through e, and if Me

is a co-loop, then by the dual of Lemma 1.2.7 Q+e includes a cocircuit through
e.

By duality, it remains to show (O3). For this we consider the matroid MX

obtained from M by contracting X − e. Note that (C \ X) + e is an MX -
scrawl by Lemma 1.2.7. Hence we may pick any MX -circuit through e included
in (C \ X) + e. By Lemma 1.2.7 again, this circuit extends to an M -circuit
Cmin, which has the desired properties. This completes the proof of the “only
if”-implication.

For the “if”-implication, our aim is to show that the set Cmin of minimal
non-empty elements of C is the set of circuits of a matroid M . Note that
circuit elimination (C3) for C follows from Lemma 1.1.4, and this implies circuit
elimination for Cmin using (O3) and Lemma 1.3.1.

Next, we prove (CM) for Cmin. Suppose we are given a set I not including
an element of Cmin and a set X with I ⊆ X ⊆ E. Put I0 = I and J0 = E \X.

Let e1, e2, . . . be an enumeration of X. We shall construct a partition of E
into I∞ and J∞ such that I∞ is a maximal Cmin-independent subset of X. The
construction will be recursive. So we take I∞ =

⋃
n∈N In and J∞ =

⋃
n∈N Jn

where we construct the In and Jn both at step n to satisfy the following condi-
tions:

1. In and Jn are disjoint.

2. Ij ⊆ In for all j ≤ n.

3. Jj ⊆ Jn for all j ≤ n.

4. en ∈ In ∪ Jn.

5. If en ∈ In, then there is some D ∈ D with D ⊆ Jn + en through en.

6. If en ∈ Jn, then there is some C ∈ C with C ⊆ In + en through en.

7. If Jn includes any D ∈ D, then D ⊆ J0.

8. If In includes any C ∈ C, then C ⊆ I0. (That is, C = ∅: this condition
says that In is C-independent.)

What we do at step n depends on whether there is any C ∈ C with en ∈
C ⊆ In−1 + en. If there is such a C, we let In = In−1 and Jn = Jn−1 + en.
The only nontrivial condition in this case is (7). By the induction hypothesis,
any D violating this condition would contain en and so would meet C just once,
contradicting (O1).
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Next, we consider the case that en /∈ Jn−1. In this case, we let In = In−1+en,
but the construction of Jn is more complex. First, we note that by (O2) applied
to en, In−1 and E\In−1−en we can obtain some D ∈ D with en ∈ D ⊆ E\In−1.
Then using (O3∗) we may assume that D is chosen with these properties so that
D \ Jn−1 is minimal. We take Jn = (Jn−1 ∪D)− en.

Once more, the only nontrivial condition is (7). Suppose for a contradiction
that there is some D′ violating this condition. Then D′ must meet D \ Jn−1 in
some element x. We showed above that C satisfies (C3), and by symmetry we
may also show that D satisfies (C3). We apply this with X = {x} to D and D′

to obtain D′′ ∈ D with en ∈ D′′ ⊆ (D∪Jn−1)−x, contradicting the minimality
of D \ Jn−1.

The remaining case is that en ∈ Jn−1. In this case, we let Jn = Jn−1

and, dualising the construction from the last case, we choose C ∈ C such that
en ∈ C ⊆ E \ (Jn−1 − en) and C \ In−1 is minimal subject to these conditions.
This construction succeeds for a reason dual to that given in the last case.

This completes the recursive construction. As promised, we take I∞ =⋃
n∈N In and J∞ =

⋃
n∈N Jn. It is clear that this is a partition of E. Next, we

show that I∞ includes no element C of Cmin. Suppose for a contradiction that
there is such a C. Then there is some n with en in C. Then by (5) there is
some D ∈ D with en ∈ D ⊆ Jn+ en ⊆ J∞+ en, so that C ∩D = {en}, violating
(O1).

We can also show that I∞ is maximal amongst the Cmin-independent subsets
of X. Suppose for a contradiction that there is a bigger Cmin-independent set
I ′, and pick some n with en ∈ I ′ \ I. Then by (6) there is C ∈ C with en ∈
C ⊆ In + en ⊆ I ′, contradicting the Cmin-independence of I ′ as, by (O3), C is
a union of elements of Cmin. This completes the proof that Cmin is the set of
circuits of some matroid M .

By (O3), every element of C is a union of circuits of M . Hence C(M) ⊆ C ⊆
S(M). (O1) and Lemma 1.2.1 imply that D ⊆ S(M∗). It remains only to show
that C(M∗) ⊆ D. So let D be any cocircuit of M . Let e ∈ D, and apply (O2)
to e, E \ D and D − e. There can’t be C ∈ C with e ∈ C ⊆ (E \ D) + e, as
then we would have C ∩D = {e}, which is impossible with C a scrawl and D a
cocircuit. So there is some D′ ∈ D with e ∈ D′ ⊆ D, and we must have D′ = D
since no nonempty proper subset of D can be a scrawl of M∗.

We are left with the open questions of whether the restriction that E should
be countable can be removed from Theorems 1.3.2 and 1.3.3, or if not whether
there is a simple axiom which can be added to fix this defect.

We now show that for tame matroids we do not need (O3) or (O3∗). More
precisely:

Theorem 1.3.4. Let C and D be sets of subsets of a countable set E satisfying
(O1), (O2) and (T). Then C and D also satisfy (O3) and (O3∗), so that they
induce a matroid as above.

Proof. By symmetry, it is enough to show (O3). Let C ∈ C, e ∈ C and X ⊆ E.
Let Y be the set of subsets Y of C \X such that e ∈ Y and for every D ∈ D
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with D ∩X = ∅ we have |Y ∩D| 6= 1. We will use Zorn’s Lemma to show that
Y has a minimal element. Y is nonempty because it contains C \ X by (O1).
Let Z be a nonempty chain of elements of Y. We shall show that

⋂Z is in Y
and so forms a lower bound for Z there. Evidently e ∈ ⋂Z. For any D ∈ D
with D ∩X = ∅ we know that D ∩ (C \X) is finite and so we can find a finite
subset Z ′ of Z such that for any f ∈ D ∩ C \ ⋂Z there is Z ∈ Z ′ such that
f 6∈ Z. Let Z be the least element of Z ′. Then |⋂Z ∩D| = |Z ∩D| 6= 1.

Let Y be a minimal element of Y. We apply (O2) to the partition E =
(X ∪ Y − e)∪̇(E \X \ Y )∪̇{e}. By the definition of Y there is no D ∈ D with
e ∈ D ⊆ E \ X \ Y , so there is some Cmin ∈ C with e ∈ Cmin ⊆ X ∪ Y . For
any other C ′ ∈ C with e ∈ C ′ ⊆ X ∪ C, we have C ′ \ X ∈ Y by (O1) and so
Cmin \X ⊆ C ′ \X.

Note that the above theorem does not require E to be countable.
We conclude with a helpful consequence of these axioms, which also holds

even when E is uncountable.

Lemma 1.3.5. Let C and D be sets of subsets of E satisfying (O1), (O2) and
(O3∗). Let C ∈ Cmin and let e, f ∈ C be distinct. Then there is D ∈ Dmin with
C ∩D = {e, f}.
Proof. Let P = C \ e, f and Q = E \ P − e. By minimality of C, there is
no C ′ ∈ C with e ∈ C ′ ⊆ P + e. Thus by (O2) there is some D ∈ D with
e ∈ D ⊆ Q + e. By (O3∗) and Lemma 1.3.1 we may assume that D ∈ Dmin.
Then e ∈ C ∩D ⊆ {e, f} so by (O1) we have f ∈ D

This lemma has a partial converse:

Lemma 1.3.6. Let W be a dependent set in a matroid. Then W is a circuit if
and only if for any edges e and f of W there is a cocircuit D with W∩D = {e, f}.
Proof. The ‘only if’ direction is immediate from Lemma 1.3.5. For the ‘if’
direction, pick a circuit C ⊆ W . If C 6= W then we can find e ∈ C and
f ∈W \C, and choosing D a cocircuit with D∩W = {e, f}, we get D∩C = {e},
which is impossible.

Lemma 1.3.7. Let M be a matroid and C,D ⊆ P(E) such that every M -circuit
is a union of elements of C, every M -cocircuit is a union of elements of D and
|C ∩D| 6= 1 for every C ∈ C and every D ∈ D.

Then C(M) ⊆ C ⊆ S(M) and C(M∗) ⊆ D ⊆ S(M∗), so that Cmin = C(M)
and Dmin = C(M∗)
Proof. We begin by showing that C(M) ⊆ C. For any circuit C of M , pick
an element e of C. Since C is a union of elements of C there is C ′ ∈ C with
e ∈ C ′ ⊆ C. Suppose for a contradiction that C ′ isn’t the whole of C, so that
there is f ∈ C \ C ′. By Lemma 1.3.5 there is some cocircuit D of M with
C ′∩D = {e}. Then we can find D′ ∈ D with e ∈ D′ ⊆ D, and so C ′∩D′ = {e},
giving the desired contradiction. Similarly we obtain that C(M∗) ⊆ D.

The fact that C ⊆ S(M) is immediate from the dual of Lemma 1.2.1 since
C(M∗) ⊆ D, and the proof that D ⊆ S(M∗) is similar.
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1.4 IE-operators and scrawl systems

1.4.1 Spaces

In [72], a space is defined to consist of a set E together with an operator P(E) K−→
P(E) such that K preserves the order ⊆ and satisfies X ⊆ KX for any X ⊆ E.
For example, for any set C of subsets of E the associated closure operator ClC ,
which sends X to the set

X ∪ {x ∈ E|(∃C ∈ C)x ∈ C ⊆ X + x}

gives a space on the set E. If C is the set of circuits or the set of scrawls of a
matroid M , this is just the usual closure operator associated to M , and we shall
also denote this space by ClM in such cases.

If (E,K) is a space, the dual space is given by (E,K∗), where K∗ is the dual
operator to K, sending X to X ∪ {x ∈ E|x 6∈ K(E \ (X + x))}. Thus for sets X
and Y with X∪̇Y ∪̇{x} = E, we have

x ∈ KX ⇐⇒ x 6∈ K∗Y , (†)

and this completely determines K∗ in terms of K. Thus K∗∗ = K. Also, by
(O2), for any matroid M we have ClM∗ = Cl∗M .

1.4.2 Idempotence

For a space (K,E), we say K is idempotent if K2 = K, and exchange if K∗ is
idempotent. If K is both idempotent and exchange, we call it an idempotent-
exchange operator, or an IE-operator on E. Note that if K is an IE-operator
then so is K∗. For any set C of subsets of E and any X ⊆ E and x ∈ E \ X
we have x ∈ Cl∗C(X) if and only if there is no C ∈ C with x ∈ C ⊆ E \ X, so
that Cl∗C(X) = E \⋃{C ∈ C|C ∩X = ∅}. Thus Cl∗C is idempotent since for any
C ∈ C we have C ⊆ E \ X if and only if C ⊆ ⋃{C ′ ∈ C|C ′ ⊆ E \ X}. So for
any set C of subsets of E the space ClC is exchange. Thus for any matroid M
the operator ClM is an IE-operator.

1.4.3 Scrawl systems

A scrawl system on a set E is a collection S of subsets of E satisfying (S1) and
(S2). The dual of a scrawl system S is S⊥. By Lemma 1.1.4, S and S⊥ satisfy
(O2). Thus Cl∗S = ClS⊥ . Thus for any scrawl system S, the operator ClS is an
IE-operator.

Conversely, let K be any IE-operator on E, and let S = {E \K∗Y |Y ⊆ E}.
We shall show that S is a scrawl system with ClS = K. This clarifies how
IE-operators, which were one of the suggested answers to Rado’s question, are
related to the notion of matroid with which we are working. The key extra
property possessed by matroids but not scrawl systems (or IE-operators) is
(SM).
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First we must show that S, as defined above, is closed under taking unions.
So let (Ya|a ∈ A) be a family of subsets of E. We will show that

⋃
a∈AE\K∗Ya =

E \K∗(⋂a∈AK∗Ya). This is equivalent to
⋂
a∈AK

∗Ya = K∗(
⋂
a∈AK

∗Ya), for
which it suffices to show that K∗(

⋂
a∈AK

∗Ya) ⊆ ⋂a∈AK∗Ya. This is true since
for each a ∈ A we have K(

⋂
a∈AK

∗Ya) ⊆ K∗K∗Ya = K∗Ya.
Next, we must show that S satisfies (S2), for which by Lemma 1.1.4 it suffices

to show that S and S⊥ satisfy (O2). First we note that every set of the form
E\KX is in S⊥, since if there were sets X and Y with |(E\K∗Y )∩(E\KX)| =
{x}, we would have x 6∈ KX = KKX but also x 6∈ K∗(E \ KX − x) since
E \ KX − x ⊆ K∗Y , so K∗(E \ KX − x) ⊆ K∗K∗Y = K∗Y . This would
contradict the definition of duality of spaces.

Now suppose E = P ∪̇Q∪̇{e}. If e 6∈ KP then we have E \ KP ∈ S⊥ as
above and e ∈ E \ KP ⊆ Q + e. But if e ∈ KP then E 6∈ K∗Q, so that
E \K∗Q ∈ S and e ∈ E \K∗Q ⊆ P + e. Thus S and S⊥ satisfy (O2). This
completes the proof that S is a scrawl system.

If X ⊆ E and x 6∈ X then we have x ∈ KX if and only if x 6∈ K∗(E \X−x),
which happens if and only if there is some Y with x ∈ E \K∗Y ⊆ X + x, since
for any such Y we have E \X − x ⊆ K∗Y . Thus ClS = K.

1.5 Connectivity

In [26], Bruhn and Wollan developed the basic theory of connectivity in infinite
matroids. In this section we shall summarise some of their results.

1.5.1 The connectivity of partitions and separations

The connectivity of a separation can be defined in multiple equivalent ways:

Lemma 1.5.1. Let M be a matroid with ground set E = X∪̇Y , and let k be a
natural number. Then the following are equivalent:

• There are bases BX of M\Y and B′X of M/Y with B′X ⊆ BX and |BX \
B′X | = k.

• For any bases BX of M\Y and B′X of M/Y with B′X ⊆ BX we have
|BX \B′X | = k.

• There are bases BX of M\Y , BY of M\X and B of M with B ⊆ BX∪BY
and |BX ∪BY \B| = k.

• For any bases BX of M\Y , BY of M\X and B of M with B ⊆ BX ∪BY
we have |BX ∪BY \B| = k.

If there is a k with these properties, then we call it the connectivity κM (X)
of the partition. Otherwise we say that the partition has connectivity ∞. We
call a partition (X,Y ) a k-separation if κM (X) ≤ k − 1 but both X and Y
have at least k elements. We say the matroid M is k-connected if there is no
l-separation with l < k.
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For the next few lemmas we fix a matroid M with ground set E.

Lemma 1.5.2. For any subset X of E, we have κM (X) = κM (E \ X) =
κM∗(X).

Lemma 1.5.3. For any subsets X,X ′ of E, we have κM (X) + κM (X ′) ≥
κM (X ∩X ′) + κM (X ∪X ′).
Lemma 1.5.4. For any chain X of subsets of E such that κM (X) ≤ k for all
X ∈ X , we have κM (

⋃X ) ≤ k.1

Lemma 1.5.5. For any subset X of E and any disjoint subsets P and Q of E
we have κM/P\Q(X \ (P ∪Q)) ≤ κM (X).

1.5.2 2-connectivity and direct sums

We begin by treating the notion of connectivity in slightly more generality than
[26], since we will need this extra generality later.

Let C be a set of subsets of a set E satisfying (C3’) and (O3). We define a
relation ∼C on E by e ∼C f if e = f or there is some C ∈ Cmin with e, f ∈ C.

Lemma 1.5.6. ∼C is an equivalence relation.

Proof. Suppose e ∼C f and f ∼C g. We must show that e ∼C g. If e = f
or f = g then we are done. Otherwise, there are C,C ′ ∈ Cmin with e, f ∈ C
and f, g ∈ C ′. If e ∈ C ′ then we are done. Otherwise, choose Cmin ∈ C with
e ∈ Cmin ⊆ C ∪ C ′ such that Cmin \ C ′ is minimal (this is possible by (O3)).
Since C is minimal nonempty in C, we cannot have Cmin ⊆ C \ C ′ ⊆ C − f ,
and so there is some f ′ ∈ Cmin ∩ C ′. If g ∈ Cmin then we are done. Otherwise
apply (C3’) with respect to C ′, Cmin, g and f ′ to obtain some C ′′ ∈ C with
g ∈ C ′′ ⊆ C ′ ∪ Cmin − f ′. Using (O3) again and Lemma 1.3.1, we may assume
that C ′′ ∈ Cmin. By minimality of C ′, we can’t have C ′′ ⊆ C ′, so C ′′ \ C ′ 6= ∅.
Thus by Lemma 1.3.1 and our choice of Cmin we have C ′′ \C ′ = Cmin \C ′ and
in particular e ∈ C ′′. Thus C ′′ witnesses e ∼C g.

If C and D are as above and also satisfy (O2), then by Lemma 1.3.5 we have
∼C=∼D. The equivalence classes of ∼C are called the connected components
with respect to C.

In particular, if M is a matroid with ground set E then the equivalence
classes with respect to ∼C(M) are called the connected components of M . The
remark in the last paragraph shows that the connected components of M are
the same as those of M∗. We say M is connected if it has at most one connected
component.

Lemma 1.5.7. Let M be a matroid and let B be a base of M . Then the
connected components of the relation RB (see subsection 1.2.2) are the same as
the connected components of M .

1In [26] this is only proved for countable chains, but the same proof works for arbitrary
chains.
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Proof. It is clear that any e and f with eRBf are in the same connected compo-
nent of M . So it remains to show that there cannot be a circuit C of M which
meets two different connected components of RB .

Suppose for a contradiction that there is such a circuit C. Let e ∈ C and let
Y be a connected component of RB which meets C but does not contain e. Let
X = (Y ∩ C) \B. For each x ∈ X we have CBx ⊆ Y and so CBx ∩X + e = {x}.
Applying (C3), we get a circuit C ′ with e ∈ C ′ ⊆ (C ∪ ⋃x∈X Cx) \ X. Thus
C ′ \ C ⊆ Y and C ′ ∩ Y ⊆ B. By (C2), C ′ cannot be a subset of C \ Y , so let
f ∈ C ′ ∩ Y . Then f ∈ B and DB

f ⊆ Y so that DB
f ∩ C ′ = {f}, which is the

desired contradiction.

The remaining results of this subsection are taken from [26].

Lemma 1.5.8. Let X be a subset of E. Then κ(X) = 0 if and only if X is a
union of equivalence classes.

Thus a matroid is connected if and only if it is 2-connected.
Let (Mk|k ∈ K) be a family of matroids, where Mk has ground set Ek. Then

the direct sum
⊕

k∈KMk of this family is the matroid with ground set
⊔
k∈K Ek

and independent sets of the form
⋃
k∈K Ik where each Ik is independent in Mk.

It is not hard to check that the bases have the form
⋃
k∈K Bk where each Bk

is a base in Mk and that the circuits are given by the circuits of the individual
matroids Mk.

Lemma 1.5.9. Any matroid is the direct sum of its restrictions to its connected
components.

1.6 Finitarisation and twinned pairs of matroids

1.6.1 Finitarisation

We say a matroid M is finitary if all of its circuits are finite. The finitarisation
Mfin of a matroid M is the matroid whose circuits are the finite circuits of M .
Thus a matroid is finitary if and only if it is equal to its own finitarisation. The
class of finitary matroids introduced here is the same as that discussed in the
introduction, since a set is independent in Mfin if and only if all of its finite
subsets are independent in M .

A matroid is cofinitary if and only if all of its cocircuits are finite. The
cofinitarisation M cofin of a matroid M is ((M∗)fin)∗. This is the dual operation
to finitarisation.

1.6.2 Twinned pairs of matroids

We say that matroids Mf and Mc are twinned if Mf = Mfin
c and Mc = M cofin

f .
Then we say that N lies between Mf and Mc if all of its circuits are Mc-circuits
and all of its cocircuits are Mf -cocircuits.

Examples of twinned pairs (Mf ,Mc) of matroids abound.
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Proposition 1.6.1. Let M be any finitary matroid. Then ((M cofin)fin)cofin =
M cofin, so that (M cofin)fin and M cofin are twinned.

Proof. No circuit of (M cofin)fin ever meets a cocircuit of M cofin in just one ele-
ment, so every cocircuit D of M cofin is a coscrawl of (M cofin)fin by Lemma 1.2.1.
The cocircuits in the union must all be cocircuits of ((M cofin)fin)cofin since D
is finite. Similarly, every circuit of M is a scrawl of (M cofin)fin, so that no co-
circuit of ((M cofin)fin)cofin ever meets a circuit of M in just one element, and
so every cocircuit b of ((M cofin)fin)cofin is a coscrawl of M cofin by Lemma 1.2.1
applied to M and finiteness of b. Thus ((M cofin)fin)cofin and M cofin have the
same cocircuits.

Similarly, Mfin and (Mfin)cofin are twinned.
This means that if we start with any matroid M and alternately finitarise

and cofinitarise then we will quickly end up going back and forth between two
twinned matroids.

The dual of a twinned pair (Mf ,Mc) is the twinned pair (M∗c ,M
∗
f ).

1.6.3 Basic examples associated to graphs

In the following discussion and in later chapters we shall make free use of stan-
dard graph-theoretic terminology (see, for example, [32]). However, for us a
graph need not be simple, and so may have loops or multiple edges. Thus what
we are calling graphs are called multigraphs in [32].

If G is a graph then Higgs showed [41] that there is a matroid with ground
set E(G) whose circuits are the edge sets of finite cycles or double rays in G
precisely when G includes no subdivision of the Bean graph:

· · · •oo • • •

@@@@@@@

OOOOOOOOOOOOOO

UUUUUUUUUUUUUUUUUUUU

···

• • • • // · · ·

We shall give a simpler proof of this result in Section 3.3.
In such cases, this matroid is called the algebraic cycle matroid of the graph

and is denoted MAC(G). A set I of edges of G is independent in this matroid
if and only if it is a forest in which each component includes at most one ray
(up to extension and truncation). Thus a set B of edges of G is a base if and
only if it is either a spanning tree or a forest in which each component includes
precisely one ray. Finally, a set D of edges of G is a cocircuit if and only if
is a cut which is minimal amongst nonempty cuts of which at least one side is
rayless. Such cuts are called skew. The dual of MAC(G) is called the skew-cut
matroid of G and denoted MSC(G).

Let us consider the result of applying the process described in the last sub-
section to MAC(G). It is clear that the finitarisation of MAC(G) has as its
circuits the edge sets of finite cycles in G. More generally, it is clear that for
any graph G, whether or not G includes a subdivision of the Bean graph, the
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edge sets of finite cycles in G give the circuits of a matroid with ground set E(G).
This matroid is called the finite-cycle matroid of G and denoted MFC(G). The
independent sets are forests, the bases are spanning trees and the cocircits are
bonds of G. The dual of MFC(G) is called the bond matroid of G and denoted
MB(G).

To continue our process we must cofinitarise MFC , that is, we must finitarise
MB(G) and then dualise again. The circuits of the finitarisation of MB(G) are
simply the finite bonds of G, and accordingly this finitarisation is called the
finite-bond matroid of G and denoted MFB(G). The circuits of the dual of
MFB(G) can be described as edge sets of topological circles in a topological
space |G| obtained by adjoining some formal points at infinity, called ends, to
G. If G is locally finite, then the space in question is simply the Freudenthal
compactification of G. This construction is discussed in more detail in [27]. The
matroid constructed here is therefore called the topological-cycle matroid of G,
and denoted MTC(G).

Returning to our alternate finitarisations and cofinitarisations, we will now
consider the finitarisation ofMTC(G). Surprisingly, it is possible thatMTC(G)fin 6=
MFC(G). For example, let H be the graph with just two vertices but with in-
finitely many edges joining those vertices. Clearly H has no finite bonds, so
the set of circuits of MFB(H) is empty. It follows that the circuits of MTC(H)
are precisely the singletons of edges of H. These singletons are therefore also
circuits of MTC(H)fin, even though they are not edge sets of finite cycles in H.

The problem is that it is possible for vertices to become topologically iden-
tified in |G|. More precisely, the vertices x and y are topologically identified in
|G| when there is no finite cut of G with x and y on opposite sides. In such
cases, we say that x and y cannot be finitely separated in G. If any two vertices
can be finitely separated in G then we say G is finitely separable. The graph
obtained from G by identifying any two vertices which cannot be finitely sep-
arated in G is called the finitely separable quotient of G, and denoted Gfs. It
is clear that MFB(Gfs) = MFB(G), so that MTC(Gfs) = MTC(G). Thus the
following lemma is the best we could hope for:

Lemma 1.6.2. MTC(G)fin = MFC(Gfs)

This lemma is equivalent to the statement that if G is finitely separable
then MTC(G)fin = MFC(G), which follows from, for example, [27, Lemma 12],
together with the fact that distinct vertices are not topologically identified if G
is finitely separable.

Continuing further, we now consider the cofinitarisation of MFC(Gfs). This
is MTC(Gfs) = MTC(G), so the sequence has become periodic, as Proposi-
tion 1.6.1 implied that it must.

We have arrived at a large collection of twinned pairs of matroids in this
way: if G is a finitely separable graph, then (MFC(G),MTC(G)) is a twinned
pair of matroids. In [27], it is shown that the duality of infinite finitely separable
planar graphs corresponds to the duality of these twinned pairs. We shall study
such twinned pairs and analyse the matroids lying between them in chapter 4.
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1.7 Truncation and wild matroids

1.7.1 Tame matroids again

Recall that a matroid is tame if any intersection of a circuit with a cocircuit is
finite. Evidently, any finitary matroid is tame, as are all of the examples men-
tioned so far. This, together with the following lemma, demonstrates that the
collection of tame matroids provides an alternative answer to Rado’s question.

Lemma 1.7.1. The class of tame matroids is closed under duality and taking
minors.

Proof. Closure under duality follows from the symmetry of the definition. Clo-
sure under taking minors is immediate from Corollary 1.2.10.

Matroids which are not tame are called wild. A fertile source of wild matroids
is a construction called truncation

1.7.2 Truncation

Definition 1.7.2. Let M be a matroid, in which ∅ isn’t a base. Then the
truncation of M is the matroid M−, on the same groundset whose bases are
those sets which can be obtained by removing a point from a base of M . That
is, B(M−) = {B−e|B ∈ B(M), e ∈ B}. Dually, if M is a matroid whose ground
set E isn’t a base, we define M+ by B(M+) = {B + e|B ∈ B(M), e ∈ E \B}.

Thus (M+)∗ = (M∗)−.
Since M− is obtained from M by making the bases of M into dependent

sets, we may expect that C(M−) = C(M) ∪ B(M): that is, the set of circuits of
M− contains exactly the circuits and the bases of M . This is essentially true,
but there is one complication: an M -circuit might include an M -base, which
would prevent it from being an M−-circuit. Let C be a circuit of M−. If C is
M -independent, it is clear that C must be an M -base. Conversely, any M -base
is a circuit of M−. If C is M -dependent, then since all proper subsets of C are
M−-independent and so M -independent, C must be an M -circuit. Conversely,
an M -circuit not including an M -base is an M−-circuit.

On the other hand, none of the circuits of M is a circuit of M+: for any
circuit C of M , pick any e ∈ C and extend C − e to a base B of M . Then
C ⊆ B + e, so C ∈ I(M+). In fact, a circuit of M+ is a set minimal with
the property that at least two elements must be removed before it becomes M -
independent. To see this note that the independent sets of M+ are those sets
from which an M -independent set can be obtained by removing at most one
element.

Now we are in a position to construct a wild matroid: let M be the algebraic
cycle matroid of the graph in Figure 1.1. Then the dashed edges form a circuit
in M+, and the bold edges form a circuit in (M+)∗ = (M∗)− (they form a base
in M∗ since their complement forms a base in M). The intersection, consisting
of the dotted bold edges, is evidently infinite.
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Figure 1.1: A circuit and a cocircuit with infinite intersection

For the remainder of this section, we will generalize this example to construct
a large class of wild matroids. To do so, we first have a closer look at the circuits
of M+. It is clear that if M is the finite cycle matroid of a graph G, then we get
as circuits of M+ any subgraphs which are subdivisions of those in Figure 1.2.

(a) (b) (c)

Figure 1.2: Shapes of circuits in M+, with M a finite cycle matroid

More generally, we can make precise a sense in which every circuit of M+ is
obtained by sticking together two circuits.

Lemma 1.7.3. Let C be a circuit of M , and I ⊆ E(M) \ C. Then C ∪ I is
M+-independent iff I is M/C-independent.

Proof. If: Extend I to a base B of M/C. Pick any e ∈ C. Then B′ = B∪C− e
is a basis of M and C ∪ I ⊆ B′ + e.

Only if: Pick B a base of M and e ∈ E \B such that C ∪ I ⊆ B ∪ e. Since
C is dependent, we must have e ∈ C, and so I ⊆ B \C. Finally, B \C is a base
of M/C, since B ∩ C = C − e is a base of C.

Lemma 1.7.4. Let C1 be a circuit of M , and C2 a circuit of M/C1. Then
C1 ∪ C2 is a circuit of M+. Every circuit of M+ arises in this way.

Proof. C1 ∪ C2 is M+-dependent by Lemma 1.7.3. Next, we shall show that
any set C1 ∪ C2 − e obtained by removing a single element from C1 ∪ C2 is
M+-independent, and so that C1 ∪C2 is a minimal dependent set (a circuit) in
M+. The case e ∈ C2 is immediate by Lemma 1.7.3. If e ∈ C1, then we pick
any e′ ∈ C2. Now extend C2 − e′ to a base B of M/C1. Then B′ = B ∪ C1 − e
is a base of M and C1 ∪ C2 − e ⊆ B′ + e′.
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Finally, we need to show that any circuit C of M+ arises in this way. C must
be M -dependent, and so we can find a circuit C1 ⊆ C of M . Let C2 = C \ C1:
C2 is a circuit of M/C1 by Lemma 1.7.3.

Corollary 1.7.5. Any union of two distinct circuits of M is dependent in M+.

It follows from Lemma 1.7.4 that the subgraphs of the types illustrated in
Figure 1.2 give all of the circuits of M+ for M a finite cycle matroid. Similarly,
subdivisions of the graphs in Figure 1.2 and Figure 1.3 give circuits in the
algebraic cycle matroid of a graph.

(d) (e)

(g)(f )

(h)

Figure 1.3: Shapes of circuits in M+, with M an algebraic cycle matroid

Now that we have a good understanding of the circuits of matroids con-
structed this way, we can find many matroids M such that M+ is wild.

Theorem 1.7.6. Let M be a matroid such that

1. M contains at least two circuits;

2. M has a base B and a circuit C such that C \B is infinite.

Then M+ is wild.
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Proof. Let C ′ be any circuit other than C. As C ′ is dependent in M/C, there is
an M/C-circuit C ′′ included in C ′. By Lemma 1.7.4, C ∪C ′′ is an M+-circuit.

Since E\B is an M∗-base, it is a circuit of (M∗)− = (M+)∗. Now (C∪C ′′)∩
(E\B) includes C \B and so it is infinite.
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Chapter 2

Uniform matroids and
equicardinality of bases

Recall from the introduction that if n is a natural number and E is a set then
the uniform matroid Un,E has as its bases all subsets of E of size n.

The following is a natural infinitary generalization of uniformity.

Definition 2.0.7. Let B be the set of bases of a matroid M on a set E. Then
M is uniform if the following strengthening of (B2) holds:

(U) Whenever B ∈ B, x ∈ B, and y ∈ E \B, then (B \ {x}) ∪ {y} ∈ B.

Clearly, a matroid on a set E is uniform iff its set B of bases is closed under
the equivalence relation ∼ where for A,B ⊆ E we let A ∼ B iff A\B and B \A
are both finite and of the same size.

Under some set-theoretic assumptions we will construct self-dual, uniform
matroids that are neither finitary nor cofinitary. The Continuum Hypothesis
(CH) already implies the existence of a self-dual, uniform matroid on a countably
infinite set.

A fundamental fact about finite matroids is that all bases of a given matroid
are the same size. Higgs showed in [42] that this is still true for infinite matroids
if we assume the Generalized Continuum Hypothesis. Using a fragment of Mar-
tin’s Axiom together with the negation of CH we obtain a self-dual, uniform
matroid on an uncountable set that has two bases of different size. This shows
that Higgs’ result cannot be proved without any additional assumption beyond
the usual axioms of set theory, ZFC.

We also answer a question from [43] and show that the statement “all bases
of a fixed matroid have the same size” does not imply GCH. Finally, we show
that the existence of a self-dual, uniform matroid on a countably infinite set
implies the existence of a set of reals without the Baire property. By a result of
Shelah [61], the existence of a set of reals without the Baire property cannot be
proved in ZF alone, i.e., without the Axiom of Choice.

This chapter is closely based on a joint paper with Stefan Geschke [22].
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2.1 Martin’s Axiom

We introduce the fragment of Martin’s Axiom that we will use in the con-
struction of self-dual, uniform matroids. The set-theoretic background and in
particular the proof of the consistency of full Martin’s Axiom with ¬CH can be
found in either [44] or [48].

Let (P,≤) be a partial order. For p, q ∈ P we say that p extends q if p ≤ q.
F ⊆ P is a filter if any two elements of F have a common extension in F and
for all p ∈ F and q ∈ P with p ≤ q, q ∈ F . A set D ⊆ P is dense in P if every
p ∈ P has an extension in D. A filter F ⊆ P is generic for a family D of dense
subsets of P if F has a nonempty intersection with every D ∈ D.

Given a partial order P, MA(P) is the statement that for every family D of
size < 2ℵ0 of dense subsets of P there is a D-generic filter F ⊆ P. For every
partial order P and every countable family D of dense subsets of P there is a
D-generic filter F ⊆ P. This is the Rasiowa-Sikorski Theorem. Hence for every
partial order P, MA(P) follows from the Continuum Hypothesis (CH, 2ℵ0 = ℵ1).

We will be interested in partial orders of the following form:
For a cardinal κ let Fn(κ, 2) denote the set

{p : there is a finite set A ⊆ κ such that p : A→ {0, 1}}

ordered by reverse inclusion. For all infinite cardinals κ and λ with κ ≤ λ,
MA(Fn(κ, 2)) follows from MA(Fn(λ, 2)). The statement MA(Fn(ℵ0, 2)) is usu-
ally denoted by MA(countable). Martin’s Axiom is the statement that MA(P)
holds for all partial orders P that satisfy the so called countable chain condition
(c.c.c.). For all infinite cardinals κ, Fn(κ, 2) satisfies the c.c.c.

Gödel showed that if the usual system of axioms for set theory, ZFC, is con-
sistent, then so is ZFC together with CH. Of course, we have no reason to doubt
the consistency of ZFC and, following usual practice, assume it throughout the
whole article. Solovay and Tennenbaum constructed a model of ZFC that sat-
isfies both MA and 2ℵ0 = ℵ2. Also, it is known that MA implies 2ℵ0 = 2ℵ1 . It
follows that the statement

MA(Fn(ℵ1, 2)) ∧ 2ℵ1 = 2ℵ0 = ℵ2

is consistent with ZFC.

2.2 The construction

Fix an infinite set E. Since we want to construct a self-dual matroid, we want
to talk about subsets of E and their complements at the same time. In other
words, we consider partitions of E into two classes A0 and A1. The following
lemma isolates the combinatorial effect of MA(Fn(κ, 2)) that we will use in our
construction of a uniform matroid.

Lemma 2.2.1. Let κ be an infinite cardinal < 2ℵ0 and let S ⊆ P(κ) be a family
of infinite sets such that |S| < 2ℵ0 . Then MA(Fn(κ, 2)) implies that there is a
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partition {A0, A1} of κ such that for all S ∈ S the sets S ∩ A0 and S ∩ A1 are
infinite.

Proof. For all infinite sets S ⊆ κ, all finite sets F ⊆ κ, and all i ∈ {0, 1} let

Di
F (S) = {p ∈ Fn(κ, 1) : ∃m ∈ S \ F (p(m) = i)}.

It is easily checked that the sets Di
F (S) are dense subsets of Fn(κ).

We may assume that κ ∈ S. Let

D = {D0
F (S) : S ∈ S ∧ F ∈ [κ]<ℵ0} ∪ {D1

F (S) : S ∈ S ∧ F ∈ [κ]ℵ0}.

Since κ < 2ℵ0 , |[κ]<ℵ0 | < 2ℵ0 . Hence, by MA(Fn(κ, 2)) there is a D-generic
filter G ⊆ Fn(κ, 2). Let x =

⋃
G. Since G is a filter, x is a function. For

i ∈ {0, 1} let A = x−1(i). By the choice of G and D, A0 and A1 have an infinite
intersection with all S ∈ S.

We call two partitions {A0, A1} and {B0, B1} of E independent if the sets
Ai ∩ Bj , i, j ∈ {0, 1}, are all nonempty. We define the equivalence relation ∼
on partitions of E into two classes in the natural way:

{A0, A1} ∼ {B0, B1} iff for some i ∈ {0, 1}, A0 ∼ Bi.

Note that two partitions P and P ′ with P ∼ P ′ are independent unless they
are equal.

Lemma 2.2.2. Suppose 2|E| = 2ℵ0 . Then MA(Fn(|E|, 2)) implies that there is
a set P of partitions of E into two infinite classes with the following properties:

1. P is closed under the equivalence relation ∼.

2. The elements of P are pairwise independent.

3. Whenever I0, I1 ⊆ E are disjoint with E \ (I0 ∪ I1) infinite, then there is
a partition {B0, B1} ∈ P such that one of the following holds:

(i) B0 ⊆ I0

(ii) I0 ⊆ B0 and I1 ⊆ B1.

(iii) B1 ⊆ I1

Proof. Let ((I0
α, I

1
α))α<2ℵ0 be an enumeration of all pairs (I0, I1) of subsets of

E with I0 ∩ I1 = ∅ and E \ (I0 ∪ I1) infinite. We recursively choose partitions
Pα = {B0

α, B
1
α}, α < 2ℵ0 , of E into infinite sets.

Suppose that for some α < 2ℵ0 for all β < α, Pβ has been chosen. Let Pα
denote the closure of the family {Pβ : β < α} under ∼ and let

Bα = {B ⊆ E : ∃P ∈ Pα(B ∈ P )}.

We distinguish two cases:
Case 1. There is a partition {B0, B1} ∈ Pα such that one of the following
holds:
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(i) B0 ⊆ I0
α

(ii) I0
α ⊆ B0 and I1

α ⊆ B1.

(iii) B1 ⊆ I1
α

In this case let

S = {Bi : i ∈ {0, 1} ∧ {B0, B1} ∈ Pα} ∪ {E}.

By Lemma 2.2.1, there is a partition {B0
α, B

1
α} of E such that for all S ∈ S

the sets S ∩ B0
α and S ∩ B1

α are infinite. Since S is nonempty, B0
α and B1

α are
both infinite. By the choice of S, {B0

α, B
1
α} is independent of every partition

{B0, B1} ∈ Pα.
Case 2. There is no partition {B0, B1} ∈ Pα as in Case 1.

We construct a partition Bα = {B0
α, B

1
α} of E such that I0

α ⊆ B0
α, I1

α ⊆ B1
α,

and Bα is independent of all B ∈ Pα.
Let {A0, A1} be a partition of E such that I0

α ⊆ A0 and I1
α ⊆ A1 and let

{B0, B1} ∈ Bα. If for some i, j ∈ {0, 1}, Bi intersects Ijα, then Bi ∩ Aj 6= ∅.
It follows that for {B0

α, B
1
α} to be independent of all P ∈ Pα, we have to make

sure that for all i ∈ {0, 1} and all B ∈ Bα, if B ∩ Iiα = ∅, then B ∩Biα 6= ∅.
Claim 2.2.3. Suppose for some i ∈ {0, 1}, B ∈ Bα is disjoint from Iiα. Then
B \ I1−i

α is infinite.

For the proof of the claim assume that B \ I1−i
α is finite. If |I1−i

α \ B| is
finite, then, since E \ (I0

α ∪ I1
α) is infinite, there is B′ ∼ B such that I1−i

α ⊆ B′

and B′ ∩ Iiα = ∅. Since Bα is closed under ∼, B ∈ Bα. Now the partition
{B′, E \B′} ∈ Pα contradicts the fact that we are in Case 2.

It follows that |I1−i
α \ B| is infinite. Hence there is B′ ∼ B such that B′ ⊆

I1−i
α . As before, B′ ∈ Bα. Again the partition {B′, E \B′} contradicts the fact

that we are in Case 2. This finishes the proof of the claim.
Let

S = {B \ I1−i
α : B ∈ Bα ∧ i ∈ {0, 1} ∧B ∩ Iiα = ∅}.

Then by the claim, all elements of S are infinite subsets of E \ (I0
α ∪ I1

α). Also,
|S| < 2ℵ0 .

By Lemma 2.2.1, there is a partition {A0, A1} of E \ (I0
α ∪ I1

α) such that A0

and A1 have an infinite intersection with all elements of S. For i ∈ {0, 1} let
Biα = Iiα ∪Ai. By the previous discussion and by the choice of S, the partition
{B0

α, B
1
α} of E is independent of all the partitions in Pα.

This finishes the recursive construction of the partitions {B0
α, B

1
α}. Observe

that since the Pα are closed under ∼ and {B0
α, B

1
α} is independent of all par-

titions in Pα, also every partition {B0, B1} ∼ {B0
α, B

1
α} is independent of all

partitions in Pα. It follows that with our choice of {B0
α, B

1
α}, Pα+1 consists of

pairwise independent partitions if Pα does.
Finally let P =

⋃
α<2ℵ0 Pα. It is clear that P is closed under ∼. By the

previous discussion, the elements of P are pairwise independent. If I0, I1 ⊆ E
are disjoint and such that E \ (I0 ∪ I1) is infinite, then there is α < 2ℵ0 such
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that I0 = I0
α and I1 = I1

α. If we were in Case 1 in step α of the construction,
then there was a partition {B0, B1} ∈ Pα witnessing (3) for I0

α and I1
α. If we

were in Case 2, then {B0
α, B

1
α} witnesses (3) for I0

α and I1
α. It follows that P

satisfies the conditions (1)–(3).

Lemma 2.2.4. If P is a set of partitions of E into two infinite classes such
that (1)–(3) of Lemma 2.2.2 are satisfied, then B = {B ⊆ E : {B,E \B} ∈ P}
is the set of bases of a uniform, self-dual matroid on E that is not finitary.

Proof. By (3), there is a Partition P ∈ P. It follows that B is nonempty. Since
P is closed under ∼, B is closed under ∼. This shows that B satisfies (U) and
hence (B2). We show that B satisfies (BM).

Let I,X ⊆ E be such that I ⊆ X. If X\I is finite, then {B∩X : B ∈ B∧I ⊆
B} is finite and therefore has a maximal element. If X \ I is infinite, then let
I0 = I and I1 = E\X. By (3) there is a partition {B0, B1} ∈ P such that one of
(i)–(iii) holds. If B0 ⊆ I0, then {B∩X : B ∈ B∧I ⊆ B} = {∅} has the maximal
element ∅. If B1 ⊆ I1, then X ⊆ B0 and hence {B ∩ X : B ∈ B ∧ I ⊆ B}
has the maximal element X. Now assume that I0 ⊆ B0 and I1 ⊆ B1. In this
case I ⊆ B0 ⊆ X. Since the partitions in P are pairwise independent there
is no B ∈ B such that B0 ( B. It follows that B0 is a maximal element of
{B ∩X : B ∈ B ∧ I ⊆ B}.

This this finishes the proof that B is the set of bases of a uniform matroid.
Since B is closed under complementation, this matroid is self-dual. Now let
B ∈ B. Then B is infinite and has an infinite complement. For x ∈ E \ B
the set B + x is dependent. However, since B is closed under ∼, removing any
element of B+x yields an element of B. It follows that no finite subset of B+x
is dependent. Hence B is the set of bases of a matroid that is not finitary.

Theorem 2.2.5. a) CH implies the existence of a uniform, self-dual matroid
on a countable set that is not finitary.

b) The existence of a uniform, self-dual matroid on a countable set that is
not finitary is consistent with an arbitrarily large value of 2ℵ0 .

c) It is consistent that there is a uniform, self-dual matroid on an uncount-
able set that has one basis of size ℵ0 and another basis of size ℵ1.

Proof. By Lemma 2.2.2 together with Lemma 2.2.4, MA(countable) implies
the existence of a uniform, self-dual matroid on a countable set that is neither
finitary nor cofinitary. But MA(countable) follows from CH. This shows a).
Also, MA(countable) is consistent with arbitrarily large values of 2ℵ0 . This
implies b).

For c) let E be a set of size ℵ1. We modify the construction in Lemma 2.2.2
a little bit. We may assume that the enumeration ((I0

α, I
1
α))α<2ℵ0 is chosen so

that (I0
0 , I

1
0 ) = (∅, ∅). Now choose a partition of E into a countably infinite

set B0
0 and a set B1

0 of size ℵ1. We continue the construction as in the proof
of Lemma 2.2.2 and obtain a set P of partitions of E into two infinite classes
satisfying (1)–(3). Now the set B = {B ⊆ E : ∃P ∈ P(B ∈ P)} is the set
of bases of a uniform, self-dual matroid on E and one basis, B0

0 , is countable,
while another basis, B1

0 , is of size ℵ1.
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In [42], Higgs showed that the Generalized Continuum Hypothesis (GCH)
implies that any two bases of a matroid have the same size. Together with
Theorem 2.2.5 we get the following corollary:

Corollary 2.2.6. Whether or not any two bases of a matroid have the same
size cannot be decided in ZFC alone.

2.3 Two questions of Higgs

We continue our discussion of Higgs’ result about the equicardinality of bases
under GCH. Higgs actually proved the following stronger statement:

Theorem 2.3.1 ([42]). Assume GCH. Let E be a set and B ⊆ P(E) be a family
of sets such that

(i) no one member of B is properly contained in another, and

(ii) if B1, B2 ∈ B and I,X ⊆ E are such that I ⊆ X, I ⊆ B1, and B2 ⊆ X,
then there is B ∈ B such that I ⊆ B ⊆ X.

Then the members of B all have the same cardinality.

It is easily checked that matroids satisfy (i) and (ii). Hence the equicardi-
nality of bases of matroids under GCH follows from Theorem 2.3.1. Higgs asked
whether the conclusion of Theorem 2.3.1 implies GCH.

The proof of Theorem 2.3.1 in [42] uses two different consequences of GCH:

1. The continuum function κ 7→ 2κ is 1-1 on infinite cardinals.

2. For every infinite cardinal κ, the partial order (P(κ),⊆) has a chain of
size 2κ.

Theorem 2.3.2. If ZFC is consistent then so is ZFC together with the state-
ments (1) and (2) above and the negation of CH.

Proof. We use Easton forcing (see [44, Theorem 15.18]) over a model of GCH
to obtain a model of ZFC in which for each n ∈ N, 2ℵn = ℵn+2. This can be
done by a forcing of size 2ℵω = ℵ+

ω . This forcing does not change the size of 2κ

for any κ ≥ ℵω. It follows that the continuum function is 1-1 in the resulting
model.

We now work inside this forcing extension. Baumgartner and Mitchell in-
dependently showed that P(κ) contains a chain of length 2κ iff there is a linear
order of size 2κ that has a dense subset of size κ [9, Theorem 2.1]. From [9,
Theorem 3.5] together with [9, Theorem 2.2] it follows that if 2ℵn = ℵn+2 for
all n ∈ N, then for all n ∈ ω there is a linear order of size 2ℵn with a dense
subset of size ℵn. In our model GCH holds from ℵω on. Moreover, ℵω is the
least cardinal µ such that ℵω < 2ℵω . Now [9, Corollary 2.4] shows that for all
κ ≥ ℵω there is a linear order of size 2κ and density κ. It follows that for all
infinite κ, P(κ) contains a chain of length 2κ.
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Corollary 2.3.3. If ZFC is consistent, then the conclusion of Theorem 2.3.1
does not imply GCH.

In [42], Higgs also asked whether every nonempty family B ⊆ P(E) that
satisfies (i) and (ii) in Theorem 2.3.1 is the set of bases of a matroid on E. We
show that this is not the case in general, but it is true if E is finite.

Theorem 2.3.4. a) There is a nonempty family B of subsets of a countably
infinite set E satisfying (i) and (ii) in Theorem 2.3.1 such that B is not the set
of bases of a matroid.

b) If E is finite and B ⊆ P(E) is nonempty and satisfies (i) and (ii) in
Theorem 2.3.1, then B is the set of bases of a matroid on E.

Proof. a) Let E be a countably infinite set. Let A ⊆ E be an infinite, co-infinite
set and let B be the ∼-class of A. Then B is not the set of bases of a matroid.

Namely, let I = ∅ and let X ⊆ E be such that both X ∩ B and B \ X
are infinite. Then for all B′ ∈ B, (B′ \ B) ∩ X is finite and for all finite sets
F ⊆ X \ B there is B′ ∈ B with B′ ∩ X = (X ∩ B) ∪ F . In particular, the
set {X ∩ B′ : B′ ∈ B} does not have a maximal element and hence B does not
satisfy (BM).

On the other hand, B satisfies (i) and (ii) in Theorem 2.3.1. This can be
seen as follows:

Let I ⊆ X ⊆ E be such that for some B1, B2 ∈ B we have I ⊆ B1 and
B2 ⊆ X. Since B1 ∼ B2, the sets B1 \ B2 and B2 \ B1 are finite and of the
same size. We have B1 \X ⊆ B1 \ B2 and B2 \ B1 ⊆ X \ I. Let C = B1 \X
and let D ⊆ B2 \ B1 be a set of size |B1 \X|. Now let B = (B1 \ C) ∪D. We
have B ∼ B1 and therefore B ∈ B. Also, I ⊆ B ⊆ X.

b) We have to show that B satisfies (B2). Let B1, B2 ∈ B and suppose
x ∈ B1\B2. We first show that there is a set Y ⊆ B2\B1 such that (B1\{x})∪Y .
Let I = B1 \ {x} and X = I ∪ B2. By our assumptions on B there is B ∈ B
such that I ⊆ B ⊆ X. Let Y = B \B1. Now B = (B1 \ {x}) ∪ Y and Y ⊆ B2.

We show that Y is a singleton. Since no two elements of B are properly
contained in another, Y is nonempty. Let y ∈ Y . By the same argument as
before, there is a set X ⊆ B1\B such that (B\{y})∪X ∈ B. Since B1\B = {x},
we must have X = {x}. Now B \ {y} ∪ {x} and B1 = B \ Y ∪ {x} are both
in B. Since no two elements of B are properly contained in another, Y = {y}.
This finishes the proof of the theorem.

2.4 The complexity of self-dual uniform matroids

In this section we work in ZF. The background in descriptive set theory used in
this section can be found in either [44] or [46].

Flutters were introduced and studied by Delhommé, Mathias, and Morillon
[51]. They can be constructed in ZFC, but their existence does not follow from
ZF alone. We consider a notion that is formally slightly weaker than that of a
2-flutter.
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Definition 2.4.1. A (∼, 2)-flutter is a set A ⊆ P(N) that is closed under ∼
and has the property that for each A ⊆ N, exactly one of the sets A and N \A
is a member of A.

We translate the notion of a (∼, 2)-flutter into a more topological setting.
Instead of P(N) we consider the Cantor space C = {0, 1}N. C Each set A ∈ P(N)
corresponds to its characteristic function in C. The relation ∼ translates to an
equivalence relation on C, also denoted by ∼, where for all x, y ∈ C we have
x ∼ y iff the sets {n ∈ N : x(n) 6= y(n) ∧ x(n) = 0} and {n ∈ N : x(n) 6=
y(n) ∧ x(n) = 1} are finite and of the same size.

We also consider the equivalence relation Comp on C that identifies every
function x ∈ C with the function x : N → {0, 1};n 7→ 1− x(n). In this setting,
a (∼, 2)-flutter is a subset of C that intersects each Comp-class in exactly one
element and is closed under ∼.

Definition 2.4.2. Recall that the topology on C is generated by the sets

[s] = {x ∈ C : s ⊆ x},

where s : S → {0, 1} for some finite set S ⊆ N. This topology is compatible
with a complete metric.

If X is any complete metric space, A subset N of X is nowhere dense if its
closure has empty interior. A subset of M of X is meager if it is a countable
union of nowhere dense sets. Finally, a subset A of X has the Baire property if
there is an open set O ⊆ X such that the symmetric difference A4O is meager.

The Baire category theorem implies that no nonempty open subset of C is
meager. In particular, no nonempty open subset of C is the union of two meager
sets. In other words, if O ⊆ C is open and nonempty and A0, A1 ⊆ O are
comeager in O, i.e., have a meager complement relative to O, then A0 ∩A1 6= ∅.
Also, the family of sets with the Baire property is closed under complementation.

Theorem 2.4.3. A (∼, 2)-flutter on the Cantor space C does not have the Baire
property.

Proof. Let X ⊆ C be a (∼, 2)-flutter and suppose that X has the Baire property.
Now C \X is a (∼, 2)-flutter as well and has the Baire property. At most one
of X and C \X is meager. Hence we may assume that X is not meager.

Since X has the Baire property, there is an open set O ⊆ C such that X4O
is meager. Since X is not meager, O is nonempty. Hence there is a finite set
S ⊆ N and a function s : S → {0, 1} such that [s] ⊆ O.

Choose an extension t of s to some finite subset T of N such that t−1(0) and
t−1(1) have the same size. Let n be the minimal element of N \ dom(t). Let
t0 = t∪{(n, 0)} and t1 = t∪{(n, 1)}. For each x ∈ [t0] let h(x) ∈ [t1] be defined
by letting h(x) � dom(t) = x � t and h(x) � (N \ dom(t)) = x � (N \ dom(t)).
The map h : [t0]→ [t1] is a homeomorphism. Since the set [t0]∩X is comeager
in [t0], h[[t0] ∩X] is comeager in [t1]. Also, [t1] ∩X is comeager in [t1]. Hence
there is x ∈ [t0] ∩ X such that h(x) ∈ X. Since t−1(0) and t−1(1) are of the
same size, h(x) ∼ x.
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SinceX is closed under∼, x ∈ X. HenceX contains both x and x. Therefore
X is not a (∼, 2)-flutter, a contradiction.

We will show that every uniform, self-dual matroid on a countable set gives
rise to a (∼, 2)-flutter. First we observe the following:

Lemma 2.4.4. LetM be a uniform matroid on a set E. Then every dependent
subset of E contains a basis.

Proof. Let X ⊆ E be dependent and let B be the set of bases of M. By (BM),
the family {X ∩ B : B ∈ B} has a maximal element A. If X = A, then X is
independent, contradicting our assumption on X. Hence X 6= A. Let B ∈ B be
such that A = B ∩X.

We have to show that B ⊆ X. Suppose not. Then there are x ∈ B \X and
y ∈ X \B. By (U), (B \{x})∪{y} ∈ B. But now B∩X ( ((B \{x})∪{y})∩X,
contradicting the fact that A = B ∩X is maximal in {X ∩B : B ∈ B}.

This shows that X contains a basis and finishes the proof of the lemma.

Theorem 2.4.5. If there is a uniform, self-dual matroid on a countable set,
then there is a (∼, 2)-flutter.

Proof. Let M be a uniform, self-dual matroid on E = N ∪ {∞}. Let

A = {A ⊆ N : A contains a basis of M}.

Since the set of bases of M is closed under ∼, so is A.
Now let {A0, A1} be a partition of N. If A0 is dependent, then there is a

basis B ⊆ A0. Now E \ B is a basis as well. Hence there is no basis contained
in A1 as A1 is a proper subset of E \B.

If A0 is independent, then there is a basis B with A0 ⊆ B. Now E \ B is a
basis. If A0 = B, then A1 is properly contained in the basis E \B and thus A1

does not contain a basis. If A0 6= B, then E \B is a proper subset of A1 ∪{∞}.
There is B′ ∼ E \B such that ∞ 6∈ B′ and B′ ⊆ A1 ∪ {∞}. Now B′ is a basis
that is contained in A1.

It follows that exactly one of A0 and A1 contains a basis. Hence A is a
(∼, 2)-flutter.

Corollary 2.4.6. The existence of a uniform, self-dual matroid on a countable
set is not provable in ZF+DC.

Proof. If there is a uniform, self-dual matroid on a countable set then there is
a subset of C that does not have the Baire property. However, in [61] Shelah
proved that if ZF is consistent, then there is a model of ZF+DC where every
subset of C has the Baire property. In this model there is no uniform, self-dual
matroid on a countable set.

A subset A of a Hausdorff space X is analytic if it is the continuous image of
a Borel subset of a complete metric space. Analytic subsets of complete metric
spaces have the Baire property. For any countably infinite set E we can identify
P(E) with C and then we know when a set A ⊆ P(E) is analytic.
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Corollary 2.4.7. The set of bases of a uniform, self-dual matroid on a count-
ably infinite set E is not analytic.

Proof. Let B be the set of bases of a uniform, self-dual matroid on E. As in
Theorem 2.4.5 we can assume E = N ∪ {∞}. In the proof of Theorem 2.4.5 we
defined

A = {A ⊆ N : ∃B ∈ B(B ⊆ A)}.
Now assume that B is analytic in P(E). Then the set

{(A,B) : A ⊆ N ∧B ∈ B ∧B ⊆ A}

is an analytic subset of P(N)×P(E). The setA is the projection of this set to the
first coordinate and hence analytic. But by Theorem 2.4.5 and Theorem 2.4.3,
A does not have the Baire property and hence is not analytic, a contradiction.
It follows that B is not analytic.
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Chapter 3

Representability

The question addressed by this chapter is that of how to extend the notion
of representability over a field from finitary to non-finitary matroids. Recall
from the introduction that if we have a (possibly infinite) family of vectors in
a vector space over some field k, we get a finitary matroid structure on that
family whose independent sets are given by the linearly independent subsets of
the family. Matroids arising in this way are called finitary representable matroids
over k.

Although many interesting finite matroids (eg. all graphic matroids) are
representable, many interesting examples of infinite matroids cannot be of this
type, because they are not finitary. Another problem is that in restricting
attention to finitary matroids we would once more lose the power of duality: if
a finite matroid is representable over the field k then so is its dual, but the dual
of an infinite matroid representable over k need not be finitary. So there is a
question here akin to Rado’s question:

Question 3.0.8. Is there a good theory of infinite matroids representable over
k with duality?

Bruhn and Diestel explored one approach to this question in [27]. They tried
extending the notion of linear combinations to allow for infinite combinations
in certain constrained circumstances.

The construction relies on taking the vector space to be of the form kA for
some set A. We allow linear combinations of infinitely many vectors. However,
we require these linear combinations to be well defined pointwise. This means
that for each a ∈ A there are only finitely many nonzero coefficients at vectors
with nonzero component at a. Further details are given in Section 3.1. Sadly,
it turns out that there are examples of systems of independent sets definable
in this way which are not matroids. Accordingly, we refer to such systems in
general as thin sums systems, and only call them thin sums matroids if they
really are matroids. Thin sums matroids need not be finitary.

Because thin sums systems are often not matroids, Bruhn and Diestel focused
on a class of thin sums systems which they were able to show are matroids [27],
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namely those generated from families of vectors in which for each a ∈ A there
are only finitely many vectors in the family whose component at a is nonzero.
Such families are called thin. We give a characterisation of the matroids arising
in this way.

Theorem 3.0.9. A matroid arises as a thin sums matroid over a thin family
for the field k if and only if its dual is finitary and representable over k.

This theorem can also be seen as characterising which matroids can arise as
duals of representable matroids.

It follows that the union of the class of finitary representable matroids with
the class of thin sums matroids over thin families is closed under duality and
under taking minors. However, since many of the motivating examples are not
finitary and do not have finitary duals, this union is not as comprehensive as
one might hope. Allowing all thin sums systems is too broad, though, as the
class of thin sums matroids over Q is not closed under duality (this is shown in
Section 3.5).

In this chapter, we show that Question 3.0.8 can be resolved by restricting
to the class of tame thin sums matroids. In contrast to the bad behaviour of
thin sums matroids in general, we establish the following foundational result:

Theorem 3.0.10. The class of tame thin sums matroids over any given field
is closed under duality and under taking minors.

We prove this result by establishing a simple, self-dual characterisation of
the class of tame thin sums matroids.

We are also able to show that tame thin sums matroids have close links to
another approach to the construction of infinite representable matroids: ma-
troids with coefficients, introduced by Dress [37]. Dress worked with a notion
of representability with respect to more general objects, called fuzzy rings. The
advantage of this approach is that representability over a certain minimal fuzzy
ring Ko is just like no representability restrictions at all, and so the theory of
infinite matroids with coefficients in Ko just gives a theory of infinite matroids.
However, this theory is difficult to work with due to its wealth of necessary
technical detail. These technical problems surface, for example, in the fact that
contraction and deletion for matroids with coefficients have only been shown to
commute in constrained circumstances.

Another feature of this approach is that duality is built into it: every matroid
with coefficients over a field k has a dual matroid with coefficients over the
same field k. For finite matroids, as one might expect, the duality of matroids
with coefficients coincides with the duality of the underlying matroids. But for
infinite matroids this is no longer true, as we shall show in Section 3.6. This
phenomenon may be seen as a reflection of the greater generality of matroids
with coefficients. Tameness is also built in to matroids with coefficients: indeed,
every tame matroid gives rise to a matroid with coefficients over Ko. We are able
to show that every tame thin sums matroid induces a matroid with coefficients
over the same field which has the additional property that the duality with
coefficients corresponds to the duality as a matroid.
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Any finite graphic matroid is representable over every field. The situation for
infinite graphs is a little more complex, in that there is more than one natural
way to build a matroid from an infinite graph. We show that all six types of
matroid associated to a graph which were introduced in subsection 1.6.3 are
thin sums matroids over any field.

As a result of these considerations, we consider that the class of tame thin
sums matroids over k gives a good answer to Question 3.0.8, and we shall take
this to be our class of representable matroids over k.

Many results about representability for finite matroids continue to hold for
this class. For example, a classical theorem of Tutte [66] states that a finite
matroid is binary (that is, representable over F2) if and only if it does not have
U2,4 as a minor. In the same spirit, a key aim of finite matroid theory has
been to determine such ‘forbidden minor’ characterisations for the classes of
matroids representable over other finite fields. For example Bixby and Seymour
[11, 60] characterized the finite ternary matroids (those representable over F3) by
forbidden minors, and more recently there is a forbidden minors characterisation
for the finite matroids representable over F4, due to Geelen, Gerards and Kapoor
[38]. This remains an open problem for all other finite fields.

Minor closed classes of infinite matroids may have infinite ‘minimal’ forbid-
den minors. For example the class of finitary matroids has the infinite circuit
U∗1,N as a forbidden minor. Similarly, the class of tame thin sums matroids over
R has U2,P(R) as a forbidden minor. However we shall show that the class of
matroids representable over a fixed finite field has only finite minimal forbidden
minors.

Theorem 3.0.11. Let M be a tame matroid and k be a finite field. Then M
is a representable over k if and only if all of its finite minors are.

Theorem 3.0.11 implies that each of the excluded minor characterisations for
finite representable matroids mentioned in the first paragraph extends to tame
matroids. Thus, for example, a tame matroid is a thin sums matroid over F2 if
and only if it has no U2,4 minor. Any future excluded minor characterisations
for finite matroids representable over a fixed finite field will also immediately
extend to tame matroids by this theorem.

As for finite matroids , we obtain nine equivalent simple characterizations of
binary matroids (those representable over F2). We show that a tame matroid
is regular (that is, representable over every field) if and only if all its finite
minors are, and that regularity is equivalent to signability for tame matroids
(see [70] or [56] for a definition). We also introduce an extension of the notion
of uniqueness of representations for finite matroids to the infinite setting, and
prove that tame thin sums matroids over F3 have unique representations in this
sense. A consequence of this is that the finite, algebraic and topological cycle
matroids of a given graph each have a unique signing. We illustrate how these
signings encode some of the structure of the graph. Finally, we show that the
characterisations of representability over various sets of finite fields in terms
of representability over partial fields extend in a uniform way to infinite tame
matroids.
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This chapter is closely based on joint papers with Hadi Afzali [12] and Jo-
hannes Carmesin [13, 16].

3.1 Thin sums systems

We always use k to denote an arbitrary field. The capital letter V always stands
for a vector space over k. For any set A, we write kA to denote the set of all
functions from A to k. For any function E

c−→ k the support supp(c) of c is the

set of all elements e ∈ E such that c(e) 6= 0. A linear dependence of E
φ−→ V is

a map E
c−→ k of finite support such that∑

e∈E
c(e)φ(e) = 0 .

For a subset E′ of E, we say such a c is a linear dependence of E′ if it is
zero outside E′. Recall that representability is traditionally defined for finitary
matroids as follows.

Definition 3.1.1. Let V be a vector space. Then for any function E
φ−→ V we

get a finitary matroid M(φ) on the ground set E, where we take a subset E′

of E to be independent if there is no nonzero linear dependence of E′. Such a
finitary matroid is called representable.

Note that this is essentially the same as taking a family of vectors as the
ground set and saying that a subfamily of this family is independent if it is
linearly independent.

In [27], there is an extension of these ideas to a slightly different context.

Suppose now that we have a function E
f−→ kA. A thin dependence of f is a map

E
d−→ k, not necessarily of finite support, but such that for each a ∈ A,∑

e∈E
d(e)f(e)(a) = 0

(here, as in the rest of this chapter, we take this statement as including the
claim that the sum is well-defined, i.e. that only finitely many summands are
nonzero). This is subtly different from the concept of a linear dependence (in
kA considered as a vector space over k), since it is possible that the sum above
might be well defined for each particular a in A, but the sum∑

e∈E
d(e)f(e)

might still not be well defined. To put it another way, there might be infinitely
many e ∈ E such that there is some a ∈ A with d(e)f(e)(a) 6= 0, even if there
are only finitely many such e for each particular a ∈ A. We may also say d is a
thin dependence of a subset E′ of E if it is zero outside of E′.
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The word thin above originated in the notion of a thin family - this is an
f as above such that sums of the type given above are always defined; that is,
for each a in A, there are only finitely many e ∈ E so that f(e)(a) 6= 0. Notice

that, for any E
f−→ kA, and any thin dependence c of f , the restriction of f to

the support of c is thin.
Now we may define thin sums systems.

Definition 3.1.2. Consider a family E
f−→ kA of functions and declare a subset

of E as independent if there is no nonzero thin dependence of that subset. Let
Mts(f) be the set system with ground set E and the set of all independent sets
given in this way. We call Mts(f) the thin sums system corresponding to f .
Whenever Mts(f) is a matroid it is called a thin sums matroid.

Since a set is dependent in a representable finitary matroid or thin sums
system if and only if it has a nonzero linear or thin dependence, we normally
talk about such dependences instead of dependent sets.

Not every thin sums system is a matroid1 but it is known that if f is thin
then Mts(f) always is a matroid. The existing proof for this is technical and
we shall not review it here. However, this fact will follow from the results in
Section 3.2. Next we explore the connection between representable and thin
sums matroids.

Proposition 3.1.3. For any thin sums matroid Mts(f), the finitarisation of
Mts(f) is a representable finitary matroid.

Proof. For any family E
f−→ kA of functions, a thin dependence of f with finite

support is also a linear dependence of f as a family of vectors, and conversely
any linear dependence of f as a family of vectors is a thin dependence of f .

Now let’s try to answer to the question: Which matroids arising from graphs
are representable or thin sums matroids? It is easy to see that any algebraic
cycle matroid is a thin sums matroid (in fact, this was one motivation for the
definition of thin sums matroids). Recall that for any graph G which does not
contain a subdivision of the Bean graph, the edge sets of cycles and double rays
of G give the circuits of a matroid. Even if G does contain a subdivision of the
Bean graph we shall still denote this system of sets by MAC(G), and call it the
algebraic cycle system of G.

Proposition 3.1.4. For any graph G the algebraic cycle system of G is a thin
sums system over every field.

Proof. First we give an arbitrary orientation to every edge of G, making G a

digraph. For any edge e of G define a function V (G)
f(e)−−→ k where for any

v ∈ V (G) f(e)(v) is 1 if e originates from v, −1 if it terminates in v, and 0 if e
and v are not incident. We show that D is dependent in MAC(G) if and only
if it is dependent in Mts(f). If D is dependent in MA(G), then it contains a

1See Section 3.3 for a couple of examples.
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cycle or a double ray. Let D′ ⊆ D be the edge set of this cycle or double ray.
Give a direction to D′. For any edge e ∈ D, define c(e) to be 1 if e is an edge of
D′ and they have the same directions, −1 if e is in D′ and they have different
directions, and 0 if e 6∈ D′. Now clearly we have

∑
e∈D′ c(e)f(e)(v) = 0 for any

vertex v of G, so c is a thin dependence of D. Conversely if D is dependent in
Mts(f), then whenever a vertex v is an end of an edge in D, it has to be the end
of at least two edges in D. Now it is not difficult to see that D has to contain
a cycle or a double ray.

An almost identical argument shows that MFC(G) is representable over ev-
ery field. This is also true of MFB(G):

Proposition 3.1.5. For any graph G, the matroid MFB(G) is representable
over every field k.

Proof. We start by giving fixed directions to every edge, cycle and finite bond.
Let O be the set of all cycles of G and for any edge e ∈ E(G) define a function

O
φ(e)−−−→ k such that for any o ∈ O, φ(e)(o) is 1 if e ∈ o and they have the same

directions, −1 if e ∈ o and they have different directions, and 0 if e isn’t an edge
of o. This defines a map E(G)

φ−→ kO. We will show M(φ) = MFB(G).
We need to show that D ⊆ E(G) is dependent in MFB(G) if and only if

it is dependent in M(φ). If D is dependent in MFB(G) then it contains a
finite bond D′. For any edge e ∈ D′ define c(e) to be 1 if D′ and e have the
same directions, and −1 if they have different directions, and 0 if e 6∈ D′. Now
consider a fixed cycle o which meets D′. Clearly D′ has two sides and this cycle
has to traverse D′ from the first side to the second side as many times as it
traverses D′ from the second side to the first. As a result, for any o ∈ O we
have

∑
e∈E c(e)φ(e)(o) = 0 and so c is a linear dependence of D.

Conversely, suppose that D is dependent in M(φ), and let D′ be the support
of any thin dependence of D. Whenever the edge set of a cycle meets D′, they
have to meet in at least two edges, which means D′ (and so also D) meets
every spanning tree. Thus D includes a bond and so it is a dependent set in
MFB(G).

In the above proof, we could exchange the role of finite bonds and arbitrary
bonds to show that MB(G) is a thin sums matroid over any field. We could
also exchange the role of finite cycles and arbitrary bonds, and finite bonds and
finite cycles, to get another proof of the fact that MFC(G) is representable.

In the next section, we shall prove that duals of representable finitary ma-
troids are alway thin sums matroids, which in particular implies that MTC(G)
is a thin sums matroid.

3.2 Representable finitary matroids and thin sums

In this section we elucidate the connections between representable finitary ma-
troids and thin sums matroids. First we show that any representable finitary
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matroid is a thin sums matroid, so thin sums matroids are a generalisation of
representable finitary matroids. After that we will characterise the dual of an
arbitrary representable finitary matroid and show that not only is every repre-
sentable finitary matroid a thin sums matroid but every matroid whose dual is
representable and finitary is also a thin sums matroid. In fact, our last result
is even stronger; we show that the duals of representable finitary matroids are
precisely the thin sums matroids for thin families. Since the finite bond matroid
of any graph is both representable and finitary, this implies in particular that
its dual, the topological cycle matroid, is a thin sums matroid.

As usual, let V ∗ be the dual of the vector space V (that is, the vector space
consisting of all linear maps from V to k).

Theorem 3.2.1. Consider a map E
φ−→ V and the representable finitary matroid

M(φ). For any e ∈ E and α ∈ V ∗ define E
f−→ kV

∗
by f(e)(α) := α(φ(e)).

Then,
M(φ) = Mts(f).

In particular, M(φ) is a thin sums matroid.

Proof. We show that I is independent in Mts(f) if and only if I is independent
in M(φ). Suppose that I is independent in Mts(f). Suppose that E c−→ k is any
linear dependence of φ that is 0 outside I. For any α ∈ V ∗ we have,

∑
e∈E

c(e)f(e)(α) =
∑
e∈E

c(e)α(φ(e)) = α

(∑
e∈E

c(e)φ(e)

)
= 0.

Thus c is a thin dependence of f , and since I is independent in Mts(f) we get
that c must be the 0 map. So I is also independent in M(φ).

Conversely, suppose that I is independent in M(φ). Suppose E c−→ k is any
thin dependence of f that is 0 outside I. Let I ′ = supp(c). Since I ′ ⊆ I,
I ′ is also independent in M(φ), so (by extending the image of I ′ by φ to a
basis of V ) we can define a linear map V

αI′−−→ k such that for any i ∈ I ′,
αI′(φ(i)) = 1. As the restriction of f to I ′ = supp(c) is thin and for any i ∈ I ′
f(i)(αI′) = αI′(φ(i)) = 1, I ′ has to be finite. So for every α ∈ V ∗,

α

(∑
e∈E

c(e)φ(e)

)
=
∑
e∈E

c(e)α(φ(e)) =
∑
e∈E

c(e)f(e)(α) = 0.

Since this is true for every α ∈ V ∗, we get that
∑
e∈I′ c(e)φ(e) = 0 which means

c must be a linear dependence and so must be 0. Therefore I is also independent
in Mts(f).

Now let’s see how we can move from a representable finitary matroid to
its dual. Let’s start with a family E

φ−→ V . Let Cφ be the set of all linear

dependences of φ. We now define a map E
bφ−→ kCφ by setting φ̂(e)(c) := c(e)
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for any e ∈ E and c ∈ Cφ. Clearly φ̂ is a thin family of functions. On the other

hand, if we let Df be the set of thin dependences of a thin family E
f−→ kA, we

get a map E
f−→ kDf by setting f(e)(d) := d(e) for e ∈ E and d ∈ Df . These

processes are, in a sense, inverse to each other.

Lemma 3.2.2. For any thin family E
f−→ kA, a map E d−→ k is a thin dependence

of f if and only if it is a thin dependence of f̂ .

Proof. First, suppose that d is a thin dependence of f . Then for any c ∈ Cf we
have ∑

e∈E
d(e)f̂(e)(c) =

∑
e∈E

d(e)c(e) =
∑
e∈E

c(e)f(e)(d) = 0,

so d is also a thin dependence of f̂ .
Now suppose that d is a thin dependence of f̂ . For any a ∈ A, let E ca−→ k

be defined by the equation ca(e) := f(e)(a). Since f is thin, ca(e) is nonzero for
only finitely many values of e. Now for any thin dependence d′ of f we have∑

e∈E
ca(e)f(e)(d′) =

∑
e∈E

ca(e)d′(e) =
∑
e∈E

d′(e)f(e)(a) = 0,

and so ca ∈ Cf . Now, since d is a thin dependence of f̂ , we have∑
e∈E

d(e)f(e)(a) =
∑
e∈E

d(e)ca(e) =
∑
e∈E

d(e)f̂(e)(ca) = 0.

Since a was arbitrary, this says exactly that d is a thin dependence of f .

An analogous argument shows that for any map E
φ−→ V , the linear depen-

dences of φ̂ are exactly those of φ. We can also show that these inverse processes
correspond to duality of matroids.

Theorem 3.2.3. For any map E
φ−→ V we have,

M∗(φ) = Mts(φ̂).

Proof. Suppose we have a set E1 which is dependent in the dual of M(φ): that
is, it meets every base of M(φ). Let E2 = E \ E1, so E2 doesn’t include any
base of E - that is, E2 doesn’t span this matroid. Thus we can pick e1 ∈ E1

such that φ(e1) isn’t in the linear span of the family (φ(e)|e ∈ E2). Consider
a basis B2 for this linear span, and extend B2 + φ(e1) to a basis B for V, and
define a map B h0−→ k such that h0(φ(e1)) := 1, and otherwise 0. Finally, extend
h0 to a linear map V

h−→ k. Now, for any linear dependence c of φ we have

∑
e∈E

(h · φ)(e)φ̂(e)(c) = h

(∑
e∈E

c(e)φ(e)

)
= 0
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So h · φ is a thin dependence of φ̂, and since it is 0 outside E1, E1 is dependent
with respect to φ̂.

Conversely, suppose that E1 is dependent in Mts(φ̂), so that there is a
nonzero thin dependence d of φ̂ which is 0 outside E1. We want to show that
E1 meets every base of M(φ), so suppose for a contradiction that there is such
a base B which it doesn’t meet. Pick e1 ∈ E1 so that d is nonzero at e1. We can
express φ(e1) as a linear combination of vectors from the family (φ(e)|e ∈ B) -
that is, there is a linear dependence c of φ which is nonzero only on B and at
e1, with c(e1) = 1. But then

d(e1) =
∑
e∈E

d(e)c(e) =
∑
e∈E

d(e)φ̂(e)(c) = 0,

which is the desired contradiction. Thus E1 does meet every basis of M(φ), so
it is dependent in the dual of M(φ).

Corollary 3.2.4. For any thin family E
f−→ kA we have,

Mts(f) = M∗(f).

In particular Mts(f) is a cofinitary matroid.

Proof. This is immediate from Theorem 3.2.3, since by Lemma 3.2.2 we have
Mts(f) = Mts(f̂).

3.3 A sufficient condition for Mts to be a matroid

Throughout this section, f will denote a map E
f−→ kA for some sets A and E

and field k. Since so many examples of matroids are of the form Mts(f) for some
such f , it would be good to be able to characterise when the set system Mts(f)
is a matroid. Although this set system clearly satisfies the axioms (I1) and (I2),
it need not satisfy either (I3) or (IM). As we shall soon see, the algebraic cycle
system of the Bean graph satisfies (IM) but not (I3).

On the other hand, we can also define a thin sums system which fails to
satisfy (IM). Let E = N×{0, 1}, and define a function E

f−→ QN by f((n, 0))(i) =
in and f((n, 1))(i) = −1 if n = i and 0 otherwise. Thus for any thin dependence
c of f , there can only be finitely many n ∈ N with c((n, 0)) nonzero, and the
remaining values of c are determined by the polynomial expression

c((i, 1)) =
∑
n∈N

c((n, 0))in . (3.1)

In particular, if c is 0 outside of N × {0}, then this polynomial has infinitely
many roots. Hence it must be the 0 polynomial and so c must be the 0 function.
This shows that N×{0} is thinly independent in Mts(f). To show that Mts(f)
doesn’t satisfy (IM), we shall show that there is no maximal thinly independent

48



superset of N×{0}. More precisely, we shall show that, for a subset X of N, the
set N× {0} ∪X × {1} is thinly independent if and only if N \X is infinite. In
fact, the same argument as that above shows that this set is thinly independent
whenever N \X is infinite, since the only polynomial which is zero in infinitely
many places is the zero polynomial. Conversely, if N \ X is finite, then pick
some nonzero polynomial

∑N
n=0 anx

n with roots at all elements of N \X, and
define c((n, 0)) to be an for n ≤ N and 0 otherwise. Define c((i, 1)) by the
polynomial formula (3.1). Then c is a nontrivial thin dependence which is 0
outside N× {0} ∪X × {1}, so that set is thinly dependent.

We shall argue in the next section that some condition like (IM) is unavoid-
able, but we can at least get rid of the condition (I3). We do this by defining for
each f a different set system M cofin

ts (f), which satisfies (I3) in addition to (I1)
and (I2), and such that if it satisfies (IM) then Mts(f) is a matroid (in fact, in
such cases M cofin

ts (f) = M∗ts(f)).
We will make use of a compactness lemma, corresponding to the compactness

of a topological space which (so far as we know) has not been introduced in the
literature. We therefore introduce it here.

Definition 3.3.1. An affine equation over a set I with coefficients in k consists
of a family (λi ∈ k|i ∈ I) such that only finitely many of the λi are nonzero and
an element κ of k.

A family x = (xi|i ∈ I) is a solution of the equation (λ, κ) if
∑
i∈I λixi = κ.

Accordingly, we shall use the expression p
∑
i∈I λixi = κq to denote the equation

(λ, κ). x is a solution of a set Q of equations if it is a solution of every equation
in Q.

The following lemma is based on ideas of Bruhn and Georgakopoulos [24],
though the proof we give is a little simpler.

Lemma 3.3.2. If every finite subset of a set Q of affine equations over I with
coefficients in k has a solution then so does Q.

Proof. The set V of affine equations over I can be given the structure of a
vector space over k, with µ((λi|i ∈ I), κ) = ((µλi|i ∈ I), µκ) and ((λi|i ∈
I), κ) + ((λ′i|i ∈ I), κ′) = ((λi + λ′i|i ∈ I), κ + κ′). Let W be the subspace
generated by the equations in Q, and let q0 be the affine equation 0 = 1 (that
is, ((0|i ∈ I), 1)), which has no solutions. It is clear that if (ai|i ∈ I) is a
solution of all the equations in some finite set Q′ then it is also a solution of
everything in their linear span in V . So q0 can’t be in W . By choosing a basis
of W and extending it to a basis of V that contains q0, we can construct a
linear map V

α−→ k which is 0 on W but with α(q0) = 1. For each i ∈ I let
ai = −α(pxi = 0q). Then for each equation q ∈ Q, given as p

∑
i∈I λixi = κq,

we have
∑
i∈I λiai = α(κq0 − q) = κ, so a is a solution of every equation in Q.

This lemma is all we will really need. However, it looks like it ought to
correspond to some sort of compactness, and indeed it does.
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Definition 3.3.3. For any affine equation q over I with coefficients in k, let
Cq be the set of solutions of q. For any finite set Q of affine equations, let
CQ =

⋃
q∈Q Cq. The affine Zariski topology on kI is that with the CQ as its

basic closed sets.

The reason for this name is the analogy between this definition and the
Zariski topology on k[X] for a finite set X.

Theorem 3.3.4. The affine Zariski topology is compact.

Proof. Let Q be a set of finite sets of affine equations, such that for any finite
subset K of Q the set

⋂
Q∈K CQ is nonempty. What we need to show is that⋂

Q∈Q CQ is also nonempty. Let X be
∏
Q∈QQ, with the product topology. For

each finite K ⊆ Q, let XK be the subset of X consisting of all (qQ|Q ∈ Q) such
that {qQ|Q ∈ K} has a solution. XK is closed and nonempty since K is finite.
For any finite family (Kj |j ∈ J) of such K we have that

⋂
j∈J XKj ⊇ XS

j∈J Kj
,

so it is nonempty. Since X is compact, the intersection of all the XK is also
nonempty, so we can pick an element q. Then we know that every finite subset of
{qQ|Q ∈ Q} has a solution, so by Lemma 3.3.2 there is a solution x of the whole
set of equations. But then x lies in

⋂
Q∈Q CQ, which is therefore nonempty.

Lemma 3.3.5. Let d be a thin dependence of f . Then supp(d) is a union of
minimal dependent sets of Mts(f).

Proof. Let I = supp(d). It suffices to show that for any e0 ∈ I there is a minimal
dependent set which contains e0 and is a subset of I. We begin by fixing such
an e0.

For any a ∈ A there are only finitely many e ∈ I with f(e)(a) 6= 0, so for any
a ∈ A we get an affine equation p

∑
e∈I f(e)(a)xe = 0q over I. LetQ be the set of

all affine equations arising in this way. Let E be the set of all subsets I ′ of I such
that every finite subset of Q ∪ {pxe = 0q|e ∈ I ′} ∪ {pxe0 = 1q} has a solution.
Since d�I is a solution of all equations in Q, (d�I)/d(e0) is a solution of all
equations in Q∪{pxe0 = 1q}, so ∅ ∈ Q. E is also closed under unions of chains,
so by Zorn’s lemma it has a maximal element Em. Now by Lemma 3.3.2 there
is some solution d′ of all the equations in Q∪{pxe = 0q|e ∈ Em}∪{pxe0 = 1q}.
Since d′ solves all the equations in Q, its extension to E taking the value 0
outside I is a thin dependence of f .

We shall show that D := supp(d′) = E\Em is the desired minimal dependent
set. If it were not, there would have to be a nonzero thin dependence d′′ with
supp(d′′) ⊆ supp(d′) − e0. But then for any e1 ∈ supp(d′′), we have that
d′ − d′(e1)

d′′(e1)d
′′�I is a solution of pxe1 = 0q in addition to the equations solved by

d′, which contradicts the maximality of Em.

Corollary 3.3.6. If Mts(f) is a matroid, and E′ ⊆ E, then e 6∈ E′ is in the
closure of E′ if and only if there is a thin dependence d with supp(d) ⊆ E′∪{e}
and d(e) = 1.
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Proof. If there is such a d, by Lemma 3.3.5 we can find a minimal dependent
set D with e ∈ D ⊆ supp(d). As D − e ⊆ E′ is independent, e ∈ Cl(E′). If
e ∈ Cl(E′) then there is a circuit D with e ∈ D ⊆ E′ ∪ {e}. Let d be a thin
dependence with supp(d) = D. Then d(e) 6= 0 since D − e0 is independent:
scaling if necessary, we can take d(e) = 1.

Corollary 3.3.7. Let Mts(f) be a matroid. Then a subset I is independent in
M∗ts(f) if and only if for every i ∈ I there is a thin dependence di of f such that
di(i) = 1 and di is 0 on the rest of I.

Proof. We recall that I is independent in M∗ts(f) if and only if Cl(Ic) = E. Now
apply Corollary 3.3.6.

This motivates the definition we promised at the start of this section, of the
set system M cofin

ts .

Definition 3.3.8. A subset I of E is coindependent if for every i ∈ I there is a
thin dependence di of f such that di(i) = 1 and di is 0 on the rest of I. The set
system M cofin

ts (f) has ground set E and consists of the coindependent subsets
of E.

Thus by Corollary 3.3.7, when Mts(f) is a matroid, M cofin
ts (f) = M∗ts(f).

Lemma 3.3.9. Let I be coindependent and i0 6∈ I. If there is a thin dependence
d which is nonzero at i0 and 0 on I, then I + i0 is coindependent.

Proof. Suppose that (di|i ∈ I) witnesses the coindependence of I. Let d′i0 =
d/d(i0), and for i ∈ I let d′i = di − di(i0)d′i0 . Then (d′i|i ∈ I + i0) witnesses the
coindependence of I + i0.

We can now show that M co
ts (f) is always dual, in a sense, to Mts(f).

Lemma 3.3.10. Let I ⊆ E. I is a maximal independent set with respect to f
if and only if E \ I is a maximal coindependent set with respect to f .

Proof. Suppose first of all that I is a maximal independent set, and let i ∈ E \I.
Let di witnesses the dependence of I ∪ {i}. We must have di(i) 6= 0, so without
loss of generality di(i) = 1. But then the di witness the coindependence of E \I.
We can’t have (E \ I) + i coindependent for any i ∈ I, since the corresponding
di would witness dependence of I.

So suppose instead for a contradiction that E\I is a maximal coindependent
set but I is dependent, as witnessed by some thin dependence d of I. There
must be i0 ∈ I with d(i0) 6= 0 so, by Lemma 3.3.9, (E \ I)+ i0 is coindependent,
contradicting the maximality of E\I. Thus I is independent. For each i ∈ E\I,
I ∪ {i} is dependent, as witnessed by di, and so I is also maximal.

M cofin
ts (f) evidently satisfies (I1) and (I2).

Lemma 3.3.11. M cofin
ts (f) satisfies (I3).
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Proof. Suppose we have a maximal coindependent set J , and a nonmaximal
coindependent set I. We have to show that we may extend I with a point from
J . Since I is nonmaximal, we can choose i0 6∈ I with I + i0 still coindependent.
Since by Lemma 3.3.10 E \ J is independent, there is i1 ∈ J with di0(i1) 6= 0.
Then by Lemma 3.3.9 I + i1 is coindependent.

We can now give our slightly simplified criterion for when a thin sums system
is a matroid.

Theorem 3.3.12. If M cofin
ts (f) satisfies (IM), then

(M co
ts (f))∗ = Mts(f).

In particular, Mts(f) is a matroid.

Proof. M co
ts (f) evidently satisfies (I1) and (I2), and satisfies (I3) by Lemma

3.3.11, so it is a matroid. It is clear from Lemma 3.3.10, that every independent
set of (M co

ts (f))∗ is also independent in Mts(f). Conversely, let I be an inde-
pendent set of Mts(f). Then let J be a maximal independent set of M cofin

ts (f)
not meeting I. It suffices to show that J is a base of M cofin

ts (f). Suppose not,
for a contradiction: then there is some i ∈ I with J + i coindependent. But
then since I is independent, the corresponding di is nonzero at some j 6∈ I,
and by Lemma 3.3.9 we deduce that J + j is coindependent, contradicting the
maximality of J .

We now return to the question of when the algebraic cycle system MA(G)
of a graph G is a matroid. It evidently satisfies (I1) and (I2). A little trickery
shows that MA(G) has a maximal independent set B. First, we pick a maximal
collection A of disjoint rays in G, then we can take B to be any maximal set of
edges including all the rays in A but not including any cycle and not connecting
any 2 of the rays in A (both these steps are possible by Zorn’s Lemma). B can’t
include a double ray, by maximality of A. A slight refinement of this argument
shows that MA(G) always satisfies (IM). So we just need to determine whether
MA(G) satisfies (I3).

In fact, as we mentioned in Section 3.1, it was shown by Higgs in [41] that
MA(G) is a matroid if and only if G doesn’t contain any subdivision of the Bean
graph:

· · · •oo_ _ _ ___ • ___ v′ v

�
�
�

>>>>>>>>

OOOOOOOOOOOOOO

TTTTTTTTTTTTTTTTTTTT

···

• ___ • ___ • ___ • //___ · · ·

The algebraic cycle system of this graph doesn’t satisfy (I3) - the dashed edges
above form a maximal independent set, but there is no way to extend the
nonmaximal independent set consisting of the edges meeting v (except vv′) and
those to the left of v′ by an edge from this set. It is, however, not at all easy
to see that if G doesn’t contain a subdivision of the Bean graph then MA(G)
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satisfies (I3). In fact, Higgs didn’t follow this route - the interested reader
can check that his claim (3) (which is the combinatorial heart of the paper) is
exactly the criterion obtained from Theorem 3.3.12 in this case. We are now in
a position to give a more direct argument.

Theorem 3.3.13 (Higgs). Suppose that G includes no subdivision of the Bean
graph. Then MA(G) is a matroid.

Proof. We say a cut b of G is a nibble if one side (called the small side: the
other side is the large side) of b is connected and includes no rays. Suppose,
for a contradiction, that there are a nibble b and an algebraic cycle a meeting
b infinitely often. Then a must be a double ray. Let T be a spanning tree of
the small side of b. We can pick any vertex v0 in this tree to serve as its root,
and consider the subtree T ′ consisting of the paths from v0 to a in T . Since
T ′ is rayless and has infinitely many leaves there must (by König’s Lemma)
be a vertex v in this tree of infinite degree. Then there is an infinite set P of
paths from v to a in T ′ meeting only at v, so a has some subray r containing
infinitely many of the endpoints of the paths in P. Now a together with the
paths in P from v to r will give a subdivision of the Bean graph, contrary to
our supposition. So we can conclude that a nibble and an algebraic cycle can
only meet finitely often.

In fact we can say more, using the ideas of Section 3.1. Pick directions for
every edge, algebraic cycle and nibble of G. Let A be the set of all algebraic

cycles of G, and for any edge e ∈ E(G) define a function A
f(e)−−→ k such that for

any a ∈ A, f(e)(a) is 1 if e ∈ a and they have the same directions, −1 if e ∈ a
and they have different directions, and 0 if e isn’t an edge of a. This gives a
map E(G)

f−→ kA. We shall show that M cofin
ts (f) = MA(G).

First, we show that any coindependent set I for f is MA(G)-independent.
Suppose for a contradiction that I includes an algebraic cycle a, and pick any i ∈
a. Then

∑
e∈E di(e)f(e)(a) = f(i)(a) 6= 0, which is the desired contradiction.

For any nibble b of G, define the map E(G) db−→ k such that db(e) is 1 if
e ∈ b and they have the same directions, −1 if e ∈ b and they have different
directions, and 0 if e isn’t an edge of b. For any algebraic cycle a, a must
traverse b the same number of times in each direction (if it is a double ray, the
rays in both directions must eventually end up in the large side of b). Traversals
one way contribute a +1 term to

∑
e∈E db(e)f(e)(a), and traversals the other

way contribute a −1 term, so this sum is always 0. That is, each db is a thin
dependence of f .

Now if a set I isn’t coindependent then there is some i ∈ I such that no thin
dependence is nonzero at i and 0 on the rest of I. In particular, considering
the thin dependences db above, there is no nibble b with b ∩ I = {i}. Thus if
the connected components of I − i containing the endpoints of i are distinct
then each contains a ray, so I contains a double ray. Otherwise, both ends of i
are in the same component, so I contains a cycle. In either case, I contains an
algebraic cycle.
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We have shown that the MA(G)-independent sets are exactly the coindepen-
dent sets, so they satisfy (I3) by Lemma 3.3.11. We have already checked the
remaining axioms.

Remark 3.3.14. This argument also shows a little more - namely that the dual
of MA(G) is the thin sums matroid Mts(f). We have shown that every nibble is
thinly dependent. On the other hand, if a set I contains no nibble, so that every
connected component of the complement of I contains a ray, then for each i in I
there is an algebraic cycle meeting I only in i, so I is thinly independent. Thus
the cycles of the dual of MA(G) are exactly the minimal nonempty nibbles, as
mentioned in subsection 1.6.3.

3.4 Galois Connections

In this section, we will present a new perspective on the definition of thin sums
set systems, which we believe shows that it is unlikely that any criterion much
simpler than (IM) will allow us to distinguish which such systems are matroids.
To do this, we shall show that thin sums systems are determined by closed classes
for a particular Galois connection. We shall note that each IE-operator gives a
closed class for a very similar Galois connection. Since in that case (IM) seems
to be necessary to pick out the class of matroids, we think something similar will
be needed for thin sums systems also. We will also show that Dress’s matroids
with coefficients [37] can be naturally related to the framework developed here.

Since Galois connections are not widely known, we shall review here the
small portion of the theory that we shall require.

Definition 3.4.1. Let A be a set, and R a symmetric relation on A. The Galois
connection induced by R is the function (PA p−→ PA) given by

p(A′) = {a ∈ A|(∀a′ ∈ A′)aRa′} .

For the remainder of this section we shall always take A, R and p to refer in
this way to the constituents of a general Galois connection.

Example 3.4.2. Let V be a vector space with an inner product 〈−,−〉. We
say 2 vectors v and w are orthogonal if 〈v, w〉 = 0. This gives a relation from V
to itself, and so induces a Galois connection as above. p is given by the function
PV → PV that sends a subset of V to its orthogonal complement, which is
always a subspace of V .

Lemma 3.4.3.

• For A′ ⊆ A′′ ⊆ A, p(A′′) ⊆ p(A′)
• For A′ ⊆ A, A′ ⊆ p2(A′)

Proof. To prove the first property, note that for any a ∈ p(A′′), for any a′ ∈
A′ ⊆ A′′ we have aRa′, so that a ∈ p(A′). To prove the second property, note
that for any a′ ∈ A′, for any a ∈ p(A′) we have a′Ra, so that a′ ∈ p2(A′).
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Lemma 3.4.4. For A′ ⊆ A, the following are equivalent:

• A′ = p2(A′).

• A′ is in the image of p.

Proof. The first statement clearly implies the second. Suppose the second is
true, and let A′ = p(A′′). Then we have A′′ ⊆ p2(A′′), so p(A′′) ⊇ p3(A′′),
that is A′ ⊇ p2(A′). Since we also know A′ ⊆ p2(A′), we have A′ = p2(A′) as
required.

In such cases, we say A′ is a closed subset of A (with respect to this Galois
connection). It is immediate from Lemma 3.4.4 that p restricts to an order
reversing involutory automorphism of the poset of closed subsets of A. For any
closed set A′, p(A′) is called the dual closed set to A′.

Example 3.4.5. If, in Example 3.4.2, V is finite dimensional, then the closed
sets for this Galois connection are precisely the subspaces of V .

Example 3.4.6. Let G be a finite graph, and let V be the free vector space FE2
over F2 on the set E of edges of G. We can identify subsets of E with vectors
in V : each subset gets identified with its characteristic function. There is a
standard inner product on this space, with 〈v, w〉 =

∑
e∈E v(e)w(e). Then the

cuts of G generate a subspace of V , which is the orthogonal complement of the
subspace of V generated by the cycles of G. Thus the cycles and the bonds of
G generate dual closed classes in the associated Galois connection.

Let E be any set, and define a relation R1 from PE to itself by letting XR1Y
when |X ∩ Y | 6= 1. This slightly odd relation is motivated by the fact that it
holds between any circuit and any cocircuit in a matroid. We shall show that
each matroid with ground set E induces a closed subset of PE in the associated
Galois connection, and that the dual matroid induces the dual closed subset. In
fact, we can go further and get such a result for idempotent-exchange operators
(see Section 3.1 for a definition of this concept).

Definition 3.4.7. Let S be an IE-operator on a set S. A set X ⊆ E is S-
closed if SX = X. A subset X is an S-scrawl if for each x ∈ X it is true that
x ∈ S(X − x). The set of S-scrawls is denoted S(S).

Thus if M is a matroid then a set is ClM -closed if and only if it is M -closed
and is a ClM -scrawl if and only if it is a union of M -circuits.

Lemma 3.4.8. Let S be an IE-operator on E, and let X ⊆ E. Then X is
S-closed if and only if E \X is an S∗-scrawl.

Proof. Note that by (†) of Section 3.1 for any x ∈ E \X we have x 6∈ SX if and
only if x ∈ S∗((E \X)− x).

Corollary 3.4.9. Let M be a matroid with ground set E, and let s ⊆ E be a
set which never meets an M -cocircuit in just one point. Then s is a union of
M -circuits. �
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Theorem 3.4.10. Let S be an IE-operator on a set E, and let p = p1 be given
as above by the Galois connection associated to R1. Then S(S) = p(S(S∗)).

Proof. We must show that a subset X of E is in S(S) if and only if it is in
p(S(S∗)).

First of all, suppose that X ∈ S(S), and pick any X ′ ∈ S(S∗). Suppose for a
contradiction that |X ∩X ′| = 1, and call the unique element of this set x. Then
x ∈ S(X − x) and so x ∈ S(E \X ′), which contradicts the fact that by Lemma
3.4.8, E \X ′ is S-closed. Since X ′ was arbitrary we get that X ∈ p(S(S∗)).

Now suppose instead that X ∈ p(S(S∗)). For any x ∈ X, S(X − x) is S-
closed, since S is idempotent, so E \ S(X − x) ∈ S(S∗) by Lemma 3.4.8. So
X ∩ (E \ S(X − x)), which is a subset of {x}, can’t have just one element. So
x 6∈ E \ S(X − x) and so x ∈ S(X − x). Since x was arbitrary, X ∈ S(S).

Thus although every matroid corresponds to a closed class for such a Galois
connection, not every such closed class corresponds to a matroid: the far more
general collection of IE-operators gives rise to many such closed classes which
don’t come from matroids. Thus, in order to determine which closed classes for
these Galois connections correspond to matroids, some condition akin to (IM)
is essential.

However, there is a similar Galois connection whose closed classes capture
the information behind thin sums systems. Let E be a set, and k a field. We
have a relation R2 from kE to itself with cR2d when∑

e∈E
c(e)d(e) = 0 .

Here, as usual, we take this to include the statement that the sum is well defined,
i.e. that only finitely many of the summands are nonzero.

Just as in Example 3.4.2, any closed set is necessarily a subspace of the
vector space kE . The link between this relation and the relation R1 defined
above is that, since no sum evaluating to zero can have precisely one nonzero
term, if cR2d then there can’t be just one e ∈ E at which both are nonzero.
Explicitly, cR2d⇒ supp(c)R1 supp(d).

From any closed class, we can define a corresponding set system.

Definition 3.4.11. For any closed set C with respect to R2, we say a subset I
of E is C-independent if the only c ∈ C which is zero outside I is the 0 function.
Otherwise, I is C-dependent. The thin sums system MC corresponding to C is
the system of C-independent subsets of the ground set E.

We shall now show that this notion corresponds to the usual notion of a thin
sums system. Let p2 be given as above by the Galois connection associated to
R2.

Proposition 3.4.12. Suppose we have a function E
f−→ kA. Let D be the set

of functions da : e 7→ f(e)(a) with a ∈ A. Then Mts(f) = Mp2(D).
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Proof. It is enough to show that the elements of p2(D) are exactly the thin
dependences for f . But using the substitution given above, the condition that
c ∈ p2(D), namely that for each a ∈ A∑

e∈E
c(e)da(e) = 0 ,

becomes the condition that for each a ∈ A∑
e∈E

c(e)f(e)(a) = 0

which is the condition for c to be a thin dependence for f .

Because thin sums systems correspond in this way to closed classes for the
Galois connection correponding to R2, and a condition like (IM) seems necessary
to pick out the matroids amongst the closed classes for R1, it is likely that some
condition akin to (IM) will also be needed to distinguish which thin sums systems
are matroids. On the other hand, the evident similarity of this connection to the
sort employed in example 3.4.6 provides another indication of why the various
types of cycle and bond matroids corresponding to a graph are all thin sums
systems.

3.4.1 Dress’s matroids with coefficients

We are now almost ready to explain the links between the notion of thin sums
matroids explored by this chapter and the notion of matroids with coefficients
introduced by Dress [37]. Before doing this, we just need to introduce a couple
more Galois connections, very similar to those introduced above. First of all, for
any set E, we get a relation R3 from P(E) to itself by letting XR3Y whenever
X ∩ Y is finite. Let p3 be given by the Galois connection associated to R3.

Secondly, for any set E, and any field k let PkE be the set of pairs (X, c)
with X ⊆ E and c ∈ kE taking the value 0 outside X. We get a relation
R4 from PkE to itself by letting (X, c)R4(Y, d) whenever X ∩ Y is finite and∑
e∈X∩Y c(e)d(e) = 0. Equivalently, (X, c)R4(Y, d) whenever XR3Y and cR2d.

Let p4 be given by the Galois connection associated to R4.
Note that for any closed class M of p4 the set

X (M) = {X|(∃c ∈ kE)(X, c) ∈M} = {X|(X, 0) ∈M}

is a closed class of p3. Also, M may be recovered from X (M) together with

R(M) = {c|(∃X ∈ PE)(X, c) ∈M}

as M = (X (M)×R(M)) ∩ PkE.
Now we can explain how Dress’s matroids with coefficients fit into this frame-

work. Sadly, it will be necessary to ignore many of the more interesting features
of Dress’s account. For example, in this chapter we always work over a field k,
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whereas Dress works over more fragile objects which he calls fuzzy rings. Every
field induces a fuzzy ring, and we shall only deal with matroids with coefficients
over fuzzy rings induced in this way from fields. Dress does not give a direct
definition of a matroid with coefficients over a field, preferring to work with
presentations. First, in [37, §2], he introduces closed classes for p3, which he
calls matroid support systems. Then in [37, 3.5], he says that, if X is a matroid
support system and R ⊆ kE with the support of every element of R in X , then
R presents a matroid relative to X if and only if it satisfies a certain techni-
cal condition which he calls (M). He then defines an equivalence relation ∼M ,
saying that R and R′ present the same matroid if and only if R ∼M R′.

The details of (M) and ∼M need not concern us, since it follows from [37,
Theorem 5.4] that if R presents a matroid relative to X then there is a closed
class M of p4 such that X (M) = X and R(M) ∼M R: the construction is
M = p4(p4((X × R) ∩ PkE)). Furthermore, it is not hard to check that there
do not exist two distinct closed classes M and M′ with X (M) = X (M′) and
R(M) ∼M R(M′). Thus, since we are not concerned in this chapter with issues
of how matroids with coefficients may be presented, we shall take a matroid
with coefficients in a field k to be simply a closed class of p4. The dual M∗ of
a matroid with coefficients is defined to be p4(M). For any thin sums system
there is a corresponding matroid with coefficients.

Lemma 3.4.13. For any closed class C of p2 there is a matroid with coefficients
M such that C = R(M) and p2(C) = R(M∗).

Proof. We may take M = (X × C) ∩ PkE, where X is given by the expression
p3(p3({supp(c)|c ∈ C})).

Dress goes on in §4 to define for each matroid with coefficients M a closure
operator, which he denotes 〈−〉M. Modulo the rearrangements of his definition
given above, this is as follows.

Definition 3.4.14. For any F ⊆ E we set

〈F 〉M = F ∪ {e ∈ E|(∀Y ∈ X (M∗))(∃c ∈ R(M))e ∈ supp(c) ∩ Y ⊆ F ∪ {e}}.

For a matroid with coefficients M, let C(M) = {supp(c)|c ∈ R(M)}.

Lemma 3.4.15. For any matroid with coefficientsM on E and any set F ⊆ E
we have 〈F 〉M = Cl∗C(M∗)(F ) (see Section 2 for the definition of ClC).

Proof. For e ∈ 〈F 〉M \ F there cannot be any d ∈ R(M∗) with e ∈ supp(d) ⊆
E\F because if there were we would have supp(d) ∈ X (M∗) so that there would
be c ∈ R(M) with e ∈ supp(c)∩supp(d) ⊆ F∪{e}, meaning supp(c)∩supp(d) =
{e} and so

∑
f∈E c(f)d(f) = c(e)d(e) 6= 0, which is impossible. Thus for any

such e we have e 6∈ ClC(M∗)((E \ F ) − e), so e ∈ Cl∗C(M∗)(F ). This shows that
〈F 〉M ⊆ Cl∗C(M∗)(F ).

For the reverse implication, suppose that e ∈ Cl∗C(M∗)(F )\F . We must show
that e ∈ 〈F 〉M. So let Y ∈ X (M∗). Without loss of generality, Y ∩ F = ∅. For

58



each f ∈ Y , let Y
δf−→ k be the function sending f to 1 and everything else to 0.

Since M is closed in p4, the set {c�Y |c ∈ R(M)} gives a linear subspace V of
kY . Suppose for a contradiction that this subspace does not contain δe. Then
there is a linear map : kY α−→ k which is 0 on V but with α(δe) = 1. Define
d : E → k by d(f) = α(δf ) for f ∈ Y and 0 otherwise. Then for any (X, c) ∈M
we have that X ∩ Y is finite (since Y ∈ X (M∗)) and

∑
f∈X∩Y

c(f)d(f) =
∑

f∈X∩Y
c(f)α(δf ) = α

 ∑
f∈X∩Y

c(f)δf

 = α(c�Y ) = 0 ,

so that (Y, d) ∈ M∗. But then d witnesses that e ∈ ClC(M∗)(E \ F − e) since
d(e) = α(δe) = 1, which is the desired contradiction. Thus there is some
c ∈ R(M) with c�Y = δe, which implies that supp(c) ∩ Y = {e}. The required
condition, that e ∈ supp(c) ∩ Y ⊆ F ∪ {e}, then follows.

Thus 〈−〉M is an idempotent space. However, it is not always the closure
operator of a matroid, as we will see in the next section. For a matroid with
coefficients M derived from a closed class C for p2 as in Lemma 3.4.13, the
above Lemma shows that 〈−〉M is the closure operator of a matroid if and only
if the thin sums system Mp2(C) is a matroid.

3.5 A thin sums matroid over Q whose dual is
not a thin sums matroid

Our counterexample will be built from the algebraic cycle matroid for the graph
G in Figure 3.1, in which we have assigned directions to all the edges and labelled
them for future reference. We will refer to this matroid as M for the rest of this
section.

We showed in Section 1.7 that M+ is wild.

l r0

p0

q0

p1 p2 p3

r1 r2 r3

q1 q2 q3

∗

Figure 3.1: The graph G

As usual, we denote the vertex set of G by V and the edge set by E. We
call the unique vertex lying on the loop at the left ∗.
Theorem 3.5.1. M+ is a thin sums matroid over the field Q.
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Proof. We begin by specifying the family (f(e)|e ∈ E) of functions from V to
Q for which M+ = Mf . We take f(e) as in Proposition 3.1.3 if e is one of the
pi or qi, to be χ∗ if e = l, and to be f(e) + i · χ∗ if e = ri.

First, we have to show that every circuit of M+ is dependent in Mf . There
are a variety of possible circuit types: in fact, types (b), (c), (e) and (f) from
Figures 1.2 and 1.3 can arise. We shall only consider type (f): the proofs for
the other types are very similar. Figure 3.2 shows the two ways a circuit of type
(f) can arise.

l m n

n

Figure 3.2: The two ways of obtaining a circuit of type (f)

The first includes the edge l, together with rn for some n and all those pi
and qi with i ≥ n. We seek a thin dependence λ such that λ is nonzero on
precisely these edges.

We shall take λrn = 1. We can satisfy the equations
∑
e∈E λef(e)(v) with

v 6= ∗ by taking λpi = λqi = 1 for all i ≥ n. The equation
∑
e∈E λef(e)(∗) = 0

reduces to λ∗ + nλrn = 0, which we can satisfy by taking λ∗ = −n. It is
immediate that this gives a thin dependence of f .

The second way a circuit of type (f) can arise includes the edges rl, rm and
rn, together with those pi and qi with either l ≤ i < m or n ≤ i. We seek a thin
dependence λ such that λ is nonzero on precisely these edges.

The equations
∑
e∈E λef(e)(v) with v 6= ∗ may be satisfied by taking λpi =

λqi = λrl = −λrm for l ≤ i ≤ m and λpi = λqi = λrn for i ≥ n. The equation∑
e∈E λef(e)(∗) = 0 reduces to lλrl +mλrm +nλrn = 0, which since λrm = −λrl

reduces further to (m − l)λrm = nλrn . We can satisfy this equation by taking
λrm = n and λrn = m − l. Taking the remaining λe to be given as above then
gives a thin dependence of f . Note that λ 6= 0 since m 6= l and thus λrn 6= 0.

Next, we need to show that every dependent set of Mf is also dependent in
M+, completing the proof. Let D be such a dependent set, as witnessed by a
nonzero thin dependence λ of f which is 0 outside D. Let D′ = {e|λe 6= 0}, the
support of D. Using the equations

∑
e∈E λef(e)(v) with v 6= ∗, we may deduce

that the degree of D′ at each vertex (except possibly ∗) is either 0 or at least
2. Therefore any edge (except possibly l) contained in D′ is contained in some
circuit of M included in D′. Since {l} is already a circuit of M , we can even
drop the qualification ‘except possibly l’.

Since D′ is nonempty, it must include some circuit O of M . Suppose first
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of all for a contradiction that D′ = O. The intersection of D′ with the set
{l} ∪ {ri|i ∈ N0} is nonempty, so by the equation

∑
e∈E λef(e)(∗) = 0 this

intersection must have at least 2 elements. The only way this can happen with
D′ a circuit is if there arem < n such thatD′ consists of rm, rn, and the pi and qi
with m ≤ i < n. We now deduce, since λ is a thin dependence, that λpi = λqi =
λrm = −λrn for m ≤ i ≤ n. In particular, the equation

∑
e∈E λef(e)(∗) = 0

reduces to (m−n)λrm = 0, which is the desired contradiction as by assumption
λrm 6= 0 and m < n. Thus D′ 6= O, and we can pick some e ∈ D \O. As above,
D′ includes some M -circuit O′ containing e. Then the union O ∪ O′ ⊆ D is
M+-dependent by Corollary 1.7.5.

Theorem 3.5.2. (M+)∗ is not a thin sums matroid over any field.

Proof. Suppose for a contradiction that it is a thin sums matroid Mf , with
f : E → kA. For each circuit O of (M+)∗, we can find a nonzero thin dependence
λ of f which is nonzero only on O - it must be nonzero on the whole of O by
minimality of O.

The circuits of (M+)∗ = (M∗)− are precisely the circuits and the bases of
M∗, the dual of the algebraic cycle matroid of G, since no circuit in M∗ includes
a base. This dual M∗, called the skew cuts matroid of G, is known to have as
its circuits those cuts of G which are minimal subject to the condition that one
side contains no rays.

Thus since {r0, p0} is a skew cut, we can find a thin dependence λ0 which
is nonzero precisely at r0 and q0. Similarly, for each i > 0 we can find a thin
dependence λi which is nonzero precisely at qi−1, ri and qi. Since the set of
bold edges in Figure 1.1 is also a circuit of (M+)∗, there is a thin dependence
λ which is nonzero on precisely those edges.

To obtain a contradiction, we will show that {ri|i ∈ N} is dependent in Mf .
The idea behind the following calculations is to consider {ri|i ∈ N} as the limit
of the Mf -circuits {ri|0 ≤ i ≤ n} ∪ {pn} and then to use the properties of thin
sum representations to show that the “limit” {ri|i ∈ N} inherits the dependence.

Now define the sequences (µi|i ∈ N) and (νi|i ∈ N) inductively by ν0 = 1,
νi = −(λipi/λ

i
pi−1

)νi−1 for i > 0 and µi = −(λiri/λ
i
pi)νi. Pick any a ∈ A. Then

we have 0 =
∑
e∈E λ

0
ef(e)(a) = λ0

r0f(r0)(a)+λ0
p0f(p0)(a), and rearranging gives

ν0f(p0)(a) = µ0f(r0)(a) .

Similarly, 0 =
∑
e∈E λ

i
ef(e)(a) = λipi−1

f(pi−1)(a)+λirif(ri)(a)+λipif(pi)(a),
and rearranging gives

νif(pi)(a) = νi−1f(pi−1)(a) + µif(ri)(a) .

So by induction on i we get the formula

νif(pi)(a) =
i∑

j=0

µjf(rj)(a) .

61



The formula
∑
e∈E λef(e)(a) = 0 implicitly includes the statement that

the sum is well defined, so only finitely many summands can be nonzero. In
particular, there can only be finitely many i for which f(pi)(a) 6= 0. It then
follows by the formula above that there are only finitely many i such that
f(ri)(a) is nonzero, since if f(ri) 6= 0, then as µi 6= 0 we have νif(pi)(a) 6=
νi−1f(pi−1)(a). So as νi 6= 0 and νi−1 6= 0, one of f(pi)(a) or f(pi−1)(a) is
not equal to zero. Therefore all but finitely many f(ri)(a) are zero since all
but finitely many f(pi)(a) are zero. So the following sum is well defined and
evaluates to zero.

∞∑
i=0

µif(ri)(a) = 0 .

Therefore, if we define a family (λ′e|e ∈ E) by λ′ri = µi and λ′e = 0 for other
values of e, then we have ∑

e∈E
λ′ef(e)(a) = 0 .

Since a ∈ A was arbitrary, this implies that λ′ is a thin dependence of f .
Note that λ′ 6= 0 since λ′r0 6= 0. Thus the set {ri|i ∈ N} is dependent in
Mf = (M∗)−. But it is also an (M∗)−basis, since adding l gives a basis of M∗.
This is the desired contradiction.

3.6 Tameness and duality

The problem with the matroid in the last section was that it was wild: the main
result of this section will be that the class of tame thin sums matroids is closed
under duality. It will then quickly follow that it is also closed under taking
minors.

The class of tame thin sums matroids includes all the interesting examples
arising from graphs: any finitary or cofinitary matroid must be tame, and this
includes the finite and topological cycle matroids as well as the bond and finite
bond matroids of a given graph. We showed in the proof of Theorem 3.3.13 that
the algebraic cycle and skew cuts matroids are also tame.

A natural strategy for showing that the dual of a thin sums matroid is again
a thin sums matroid is suggested by the results of Section 3.2. These results

suggest that in attempting to construct the representation E
f−→ kA of M∗ts(f)

we should take A to be the set of all thin dependencies of f , and define f(e)(c)
to be c(e). Under the correspondence given in Proposition 3.4.12, this would
correspond to the hope that the dual of MC would be Mp2(C). However, this
natural attack fails to work, even if Mts(f) is tame, as our next example shows.
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Example 3.6.1. Let G be the graph
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We may represent the algebraic cycle matroid of G as Mts(f) as in the proof

of Proposition 3.1.4. Recall that for any edge e of G the function V (G)
f(e)−−→ k

is given by taking f(e)(v) to be 1 if e originates from v, −1 if it terminates in
v, and 0 if e and v are not incident. Thus the function which takes the value 1
on the dotted edges and 0 elsewhere is a thin dependence of f . So no function
with support given by the skew cut consisting of the vertical dotted edges can
be a thin dependence of f as given above. That is, for this matroid and this
definition of f , we have M∗ 6= Mts(f).

This example also allows us to answer a couple of open problems of Dress [37,
4.4, (i-ii)]. First we must translate into the language of matroids with coeffi-
cients, as in Section 3.4. We know from Proposition 3.4.12 and Lemma 3.4.13
that there is a matroid with coefficients M with R(M) the set of thin depen-
dences of f andR(M∗) the set of thin dependences of f . Using the constructions
given there, we get that X (M) is the set of subsets of E = E(G) that contain
only finitely many non-dotted edges, and X (M∗) is the set of subsets of E that
contain only finitely many dotted edges.

Dress asked the following:

(i) For X,F subsets of the ground set E of a matroid with coefficientsM and
e ∈ 〈X∪F 〉M, is there always a minimal subset X ′ of X with e ∈ 〈X ′∪F 〉?

(ii) For X,Y, F subsets of the ground set E of a matroid with coefficients M
and such that for any K ⊆ X we have K = X ∩ 〈K ∪ F 〉M if and only
if K = X ∩ 〈K ∪ F ∪ Y 〉M, does it follow that for any L ⊆ Y we have
L = Y ∩ 〈L ∪ F 〉M if and only if L = Y ∩ 〈L ∪ F ∪X〉M?

If we takeM as above, let F be the set of all edges adjacent with the top vertex
of the graph together with {f}, X be the set of remaining non-dotted edges, e
be as marked in the picture and Y = {e} it is not hard to check using Definition
3.4.14 that we get a negative answer to both questions. The fact that we get a
negative answer to (i) also implies that 〈−〉M is not the closure operator of a
matroid, so that Mf is not a matroid either by Lemma 3.4.15.

Our approach will be a little different in character, although our results will
imply that the restriction of the f defined above to the set of thin dependences

63



whose supports are circuits does give a representation of the dual of Mts(f).
We shall proceed by giving a self-dual characterisation of the class of tame thin
sums matroids.

Theorem 3.6.2. Let M be a tame matroid with ground set E. Then M is a
thin sums matroid over the field k if and only if there is for each circuit o of M
a function o

co−→ k∗ (here k∗ is the set of nonzero elements of k) and for each
cocircuit b of M a function b

db−→ k∗ such that for any circuit o and cocircuit b
we have ∑

e∈o∩b
co(e)db(e) = 0 . (3.2)

Definition 3.6.3. Such a family of functions is called a k-painting of the ma-
troid M , and the property of having a k-painting is called k-paintability. So the
theorem shows that a tame matroid is a thin sums matroid over k if and only
if it is k-paintable.

Proof. Suppose first of all that we have such co and db. Let A be the set of
cocircuits of M , and let E

f−→ kA be defined by f(e)(b) = db(e) if e ∈ b and
0 otherwise. We shall show that M = Mts(f), by showing that a set I ⊆ E
is M -dependent if and only if it is Mts(f)-dependent. If I is M -dependent, it
includes some circuit o, and then the function extending co to E and taking
the value 0 everywhere outside o is a nontrivial thin dependence of f which is 0
outside of I. If I is Mts(f)-dependent, then let c be a nontrivial thin dependence
of f which is 0 outside of I, and let s = supp(c). Then for any M -cocircuit b
we have ∑

e∈E
c(e)db(e) = 0 .

The collection of those e such that c(e)db(e) 6= 0 is s ∩ b, which therefore can’t
have just one element. So by Corollary 3.4.9 s is a union of M -circuits. Since s
is nonempty, it is therefore M -dependent, and therefore so is I.

Conversely, let M be given as Mts(f) for some E
f−→ kA. For each circuit

o of M , pick some thin dependence ĉo of f with support o, and let co = ĉo�o.
Now let b be any cocircuit of M , and fix some eb ∈ b. By Lemma 1.3.5, we can
find for each e ∈ b− eb some circuit o(e) of M such that o(e) ∩ b = {eb, e}. We
define the map b db−→ k∗ to be 1 at eb and − co(e)(eb)co(e)(e)

for e ∈ b− eb (note that this
choice ensures that (3.4) holds for b and each o(e)).

Let o be any circuit of E. It remains to show that
∑
e∈o∩b co(e)db(e) = 0.

Plugging in the values for db(e), this means that we need to show

ĉo(eb)−
∑

e∈o∩(b−eb)

co(e)co(e)(eb)
co(e)(e)

= 0 .

That is, we need c(eb) = 0, where

c = ĉo −
∑

e∈o∩(b−eb)

co(e)
co(e)(e)

ĉo(e) .
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As c is a finite linear combination of thin dependences, it is again a thin
dependence. But for any e ∈ b− eb, we have c(e) = ĉo(e)− ĉo(e)

co(e)(e)
co(e)(e) = 0.

If c(eb) 6= 0, then by Lemma 3.3.5, there is a circuit o such that eb ∈ o ⊆ supp(c),
which gives o ∩ b = {eb}, a contradiction. Thus c(eb) = 0, as desired.

Theorem 3.6.4. The class of tame thin sums matroids is closed under duality
and under taking minors.

Proof. The closure under duality follows from the fact that the characterisation
given in Theorem 3.6.2 is self-dual. For the closure under taking minors, let M
be a tame thin sums matroid with functions co, db given as in Theorem 3.6.2,
and let N = M/C\D be a minor of M . For each circuit o of N , let ô be a
circuit of M with o ⊆ ô ⊆ o ∪ C (such a circuit exists by Lemma 1.2.7), and
take co to be cô�o. Similarly, for each cocircuit b of N let b̂ be a cocircuit of M
with b ⊆ b̂ ⊆ b ∪D and let db = db̂�b. These co and db satisfy the conditions of
Theorem 3.6.2, so that N is also a thin sums matroid over k.

Because this notion is so well behaved, we call a tame matroid representable
over k if and only if it has a thin sums representation over k. In the suc-
ceeding chapters, we will explore some basic properties and generalisations of
representability.

3.7 Binary matroids

Theorem 3.7.1. Let M be a tame matroid. Then the following are equivalent:

1. M is binary.

2. For any circuit o and cocircuit b of M , |o ∩ b| is even.

3. For any circuit o and cocircuit b of M , |o ∩ b| 6= 3

4. M has no minor isomorphic to U2,4.

5. If o1, o2 are circuits then o14o2 is empty or includes a circuit.

6. If o1, o2 are circuits then o14o2 is a disjoint union of circuits.

7. If (oi|i ∈ I) is a finite family of circuits then 4i∈Ioi is empty or includes
a circuit.

8. If (oi|i ∈ I) is a finite family of circuits then 4i∈Ioi is a disjoint union of
circuits.

9. For any base s of M , and any circuit o of M , o = 4e∈o\soe, where oe is
the fundamental circuit of e with respect to s.

Proof. We shall prove the following implications:
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(1)

(2) (3) (4)(5)

(6)

(7)

(8)

(9)

Those implications indicated by dotted arrows are clear. We shall prove the
remaining implications.

(2) implies (1): We need to find a suitable thin sums system. Let A be the

set of cocircuits of M , and let E
f−→ FA2 be the map sending e to the function

which sends b ∈ A to 1 if e ∈ b and 0 otherwise.
We are to show that the thin sums matroid Mts defined by f is M . Since the

characteristic function of any M -circuit is a thin dependence for f with support
equal to that circuit by (2), any M -dependent set is also Mts(f)-dependent.

It remains to show that the support of every non-zero thin dependence is
M -dependent. By the dual of Lemma 1.2.1 the support of every non-zero thin
dependence is a nonempty scrawl and so includes a circuit, as desired.

(2) implies (8): Let (oi|i ∈ I) be a finite family of circuits. By Zorn’s
Lemma, we can choose a maximal family (oj |j ∈ J) of disjoint circuits such
that

⋃
j∈J oj ⊆ 4i∈Ioi, and let w = 4i∈Ioi \

⋃
j∈J oj . Let b be any cocircuit of

M , so that |b ∩ oi| is even for each i ∈ I. Then |b ∩ 4i∈Ioi| is also even, and
in particular finite. Since the oj are disjoint, there can only be finitely many
of them that meet b ∩ 4i∈Ioi, and since for each such j we have that |b ∩ oj |
is even, it follows that |b ∩ w| is even. In particular, b ∩ w doesn’t have just
one element. Since b was arbitrary, by the dual of Lemma 1.2.1 w is a scrawl
of M and so if it is nonempty it includes a circuit. But in that case, we could
add that circuit to the family (oj |j ∈ J), contradicting the maximality of that
family. Thus w is empty, and 4i∈Ioi =

⋃
j∈J oj is a disjoint union of circuits.

(5) implies (3): Suppose, for a contradiction, that (5) holds but (3) fails, and
choose a circuit o and a cocircuit b with o ∩ b = {x, y, z} of size 3. Pick a base
s of (E \ b) + x including o − y − z, which exists by (IM). As b is a cocircuit,
b− x avoids some M -base, thus (E \ b) + x is spanning and thus s is spanning,
as well. Let oy and oz be the fundamental circuits of y and z with respect to s.

It suffices to show that oy4oz ⊆ o − x. Indeed, since y, z ∈ oy4oz, (5)
then yields a circuit properly included in o, which is impossible. We can’t have
oy ∩ b = {y} so we must have x ∈ oy. Similarly, x ∈ oz, and so x /∈ oy4oz. So it
is sufficient to show that oy and oz agree outside o, in other words: oy ⊆ oz ∪ o
and oz ⊆ oy ∪ o.

To see this, first note that by uniqueness of the fundamental circuit of y it
suffices to show that y is spanned by (oz − z) ∪ (o − y − z). As z is spanned
by (oz − z), o − y is spanned by (oz − z) ∪ (o − y − z). Since o is a circuit, y
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is also spanned by (oz − z) ∪ (o− y − z), as desired. A similar argument yields
oz ⊆ oy ∪ o, completing the proof.

(3) implies (4): Since any subset of the ground set of U2,4 of size 3 is both
a circuit and a cocircuit, it is easy to find a circuit and cocircuit in U2,4 whose
intersection has size 3. So we simply apply Corollary 1.2.10.

(4) implies (2): Suppose for a contradiction that (4) holds but (2) does not.
Then let o be a circuit and b a cocircuit such that |o ∩ b| = k is odd. By
contracting o \ b and deleting b \ o, we obtain a minor M ′ of M in which o∩ b is
both a circuit and a cocircuit. Let s be a minimal spanning set containing o∩ b,
which exists by (IM∗). Then in the minor M ′′ of M ′ obtained by contracting
s \ (o ∩ b), (o ∩ b) is spanning, and is still both a circuit and a cocircuit. By a
similar removal, we can find a minor M ′′′ of M ′′ in which o∩ b is a circuit and a
cocircuit and is both spanning and cospanning. Let x ∈ o∩ b. Then o∩ b− x is
both a base and a cobase of M ′′′, and it is finite (it has size k− 1). As o∩ b− x
is a base and a cobase, the complement of o∩ b− x is also a base and a cobase.
Thus the ground set of M ′′′ is also finite (it has size 2k−2). Applying the finite
version of the theorem, then, M ′′′ contains a U2,4 minor, which is also a minor
of M , giving the desired contradiction.

(9) implies (2): first we will show that the following implies (2):

For any base s of M , any circuit o meets every fundamental
cocircuit of s in an even number of edges. (�)

To see that (�) implies (2), it suffices to show that every cocircuit b is funda-
mental cocircuit of some base s. Let e ∈ b. Then as b is a cocircuit, E \ (b− e)
is spanning. Thus by (IM) there is a base s of E \ (b− e), which clearly has b
as fundamental cocircuit.

So it remains to see that (9) implies (�). By (9), o = 4e∈o\soe. Let bf
be some fundamental cocircuit of s for some f ∈ s. Thus oe ∩ bf is empty or
oe ∩ bf = {e, f}. So it suffices to show that every f is in only finitely many
oe, which follows from the fact that o = 4e∈o\soe is well defined at f . This
completes the proof.

(2) implies (9): we have to show for every edge f that it is contained in only
finitely many oe and that f ∈ o ⇐⇒ f ∈ 4e∈o\soe(f). If f /∈ s, this is easy,
so let f ∈ s. Now f ∈ oe iff e ∈ bf . As M is tame |o ∩ bf | is finite, so there are
only finitely many such e. By (2), |o ∩ bf | is even. If f /∈ o, all such e are not
contained in s, so f /∈ 4e∈o\soe. If f ∈ o, all such e but f are not contained in
s, so f ∈ 4e∈o\soe. This completes the proof.

We remark that we might also put the duals of the statements in the list onto
the list. It might be worth noting that (7) becomes false if we also allow I to be
infinite. To see this, consider the finite cycle matroid of the graph obtained from
a ray by adding a vertex that is adjacent to every vertex on the ray. Indeed,
the symmetric difference of all 3-cycles is a ray starting at this new vertex. This
set is not empty, and nor does it include a circuit, so the infinite version of (7)
fails.
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However, the following can be shown with the same method used to prove
(7) from (2):

Lemma 3.7.2. Let M be a binary matroid and X ⊆ E(M) with the property
that it meets every cocircuit finitely and evenly. Then X is a disjoint union of
circuits.

We offer the following related open questions. Let (10) be the statement like
(9) but for only one base of M . For finite matroids, (10) is equivalent to (9). Is
the same true for tame matroids?

The following simple question also remains open:
In Theorem 3.7.1, we assumed that M is tame. Without this assumption,

the theorem is no longer true. For example, in [21] there is an example of a wild
matroid satisfying (2-6) and (10), but not (1) or (7-9). However, this matroid
is not a binary thin sums matroid. In fact, we still do not know the answer to
the following:

Open question 3.7.3. Is every binary thin sums matroid tame?

In a binary tame matroid, it is easy to see that any set meeting every cocircuit
not in an odd number of edges is a disjoint union of circuits provided that the set
is either countable or does not meet any cocircuit infinitely. A well-known result
of Nash-Williams says that the above is also true if the matroid is the finite cycle
matroid of some graph. Does this extend to all binary tame matroids?

Open question 3.7.4. Let M be a binary tame matroid and let X be a set
that meets no cocircuit in an odd number of edges. Must X be a disjoint union
of circuits?

3.8 Representable matroids

The aim of this section is to provide an excluded-minors characterisation of thin
sums matroids in the class of tame matroids. The following definition will be
essential.

Let k be a field and let k∗ denote the set of nonzero elements of k. A k-
painting for the matroid M is a choice of a function co : o→ k∗ for each circuit
o of M and a function db : b → k∗ for each cocircuit b of M such that for any
circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 . (3.3)

A matroid is k-paintable if it has a k-painting. The method we will use is
motivated by Theorem 3.6.2, which may now be reformulated as follows:

Theorem 3.8.1. Let M be a tame matroid. Then M is a thin sums matroid
over the field k iff M is k-paintable.
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Note that the painting of the cocircuits of M is determined (up to scaling)
by that of the circuits and vice versa. This fact also allows us to observe that a
painting of M uniquely induces paintings of all minors of M .

Definition 3.8.2. Let M be a matroid, and let ((co|o ∈ C(M)), (db|b ∈ C(M∗))
be a k-painting of M . Let the ground set E of M be partitioned as X∪̇C∪̇D, and
let M ′ = M/C\D. We say that a painting ((c′o|o ∈ C(M ′)), (d′b|b ∈ C(M ′∗)) of
M ′ is induced by that of M if and only if for each o′ ∈ C(M ′) there is o ∈ C(M)
with o′ ⊆ o ⊆ o′ ∪C and such that c′o′ = co�o′ and for each b′ ∈ C(M ′∗) there is
b ∈ C(M∗) with b′ ⊆ b ⊆ b′ ∪D and such that d′b′ = db�b′ .

It is clear from Lemma 1.2.7 that any painting of M induces at least one
painting of each minor M ′. We can use the fact that the paintings of the circuits
and cocircuits determine each other to show that these induced paintings are
unique up to scalar factors on the c′o and d′b.

Lemma 3.8.3. Let M , M ′ and their paintings be as in Definition 3.8.2. Let o′

be any circuit of M ′ and o any circuit of M with o′ ⊆ o ⊆ o′ ∪ C. Then there
is λ ∈ k∗ with co�o′ = λc′o′ .

Proof. Pick any e ∈ o′, and let λ = co(e)
c′
o′ (e)

. For any other f ∈ o′, by Lemma 1.3.5
there is a cocircuit b′ of M ′ with o′ ∩ b′ = {e, f}. Since the painting of M ′ is
induced from that of M , there is a cocircuit b of M such that db(g) = d′b′(g) for
all g ∈ E(M ′) and b′ ⊆ b ⊆ b′ ∪D, and so o∩ b = {e, f}. Using the identities in
the definition of painting, we deduce that

co(e)db(e) + co(f)db(f) = 0 and c′o′(e)d
′
b′(e) + c′o′(f)d′b′(f) = 0

and so

co(f) = −co(e)db(e)
db(f)

= − (λc′o′(e))d
′
b′(e)

d′b′(f)
= λc′o′(f)

which gives the desired result, since f was arbitrary.

Our main result is the following.

Theorem 3.8.4. Let M be a tame matroid and k be a finite field. Then the
following are equivalent.

1. M is a thin sums matroid over k.

2. M is k-paintable.

3. Every finite minor of M is k-representable.

In Theorem 3.7.1 we already proved this theorem if k = F2. The general
case uses similar ideas but is more complex.
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Proof. To see that (1) implies (3), we use that the class of tame thin sums
matroids is closed under taking minors.

That (2) implies (1) is immediate from Theorem 3.8.1.
Conversely, for any M -circuit o the function from E to k sending e to co(e)

if e ∈ o and to 0 otherwise is a thin dependence for f with support equal to
that circuit, and so any M -dependent set is also Mts(f)-dependent.

It remains to show that (3) implies (2). We will use a compactness argument,
so we begin by defining the topological space we will use. We would like an
element of of this space to correspond to a choice of functions as in Lemma
3.6.2 (though not necessarily satisfying the restrictions of that Lemma), so we
take

H =

 ⋃
o∈C(M)

{o} × o

q
 ⋃
b∈ C(M∗)

{b} × b


and take the underlying set of our space to be X = (k∗)H - the compact topology
on X that we will use is given by the product of H copies of the discrete topology
on k∗.

For each circuit o and cocircuit b of M , the set

Co,b =

{
c ∈ (k∗)H

∣∣∣∣∣ ∑
e∈o∩b

c(o, e)c(b, e) = 0

}

is closed because o ∩ b is finite. We shall now show that any finite intersection
of such sets is nonempty.

Let K ⊆ C(M)× C(M∗) be finite. Let O be the set of circuits appearing as
first components of elements of K, and let B be the set of cocircuits appearing
as second components of elements of K. Let F =

⋃
O ∩⋃B. Note that F is

finite, since M is tame.
Next, we shall construct a finite minor M ′ of M that will help us to prove

that the finite intersection is nonempty.

Lemma 3.8.5. There exists a finite minor M ′ of M such that
for every o ∈ O there is an M ′-circuit o′ ⊆ o such that o′ ∩ F = o ∩ F and
for every b ∈ B there is an M ′-cocircuit b′ ⊆ b such that b′ ∩ F = b ∩ F .

Proof of the lemma. We may assume that for each o ∈ O and b ∈ B the sets
o ∩ F and b ∩ F are nonempty by adding an edge from o or b to F if necessary.
We pick an element eo ∈ o ∩ F for each o ∈ O. Next, for each o ∈ O and
each e ∈ o ∩ F − eo we pick a cocircuit bo,e with o ∩ bo,e = {eo, e} (this is
possible by Lemma 1.3.5). Let B′ be the set of all cocircuits picked in this way
or contained in B. Note that B′ is finite. Similarly, we pick for each b ∈ B an
element eb ∈ F ∩ b and then pick a circuit ob,e with ob,e ∩ b = {eb, e} for each
e ∈ F ∩ b − eb, and we collect all of these, together with all circuits contained
in O, in a finite set O′.

Let F ′ =
⋃
O′ ∩ ⋃B′. Note that F ′ is also finite since M is tame. Let

C =
⋃
O′ \ F ′, and let D = E \ ⋃O′. Thus E = C∪̇F ′∪̇D. Let M ′ be the
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finite minor of M with ground set F ′ that is given by M/C\D. For each o ∈ O,
o \ F ′ ⊆ C and so o ∩ F ′ is a scrawl of M ′ by Lemma 1.2.7. Let o′ be a circuit
of M ′ with eo ∈ o′ ⊆ o∩F ′. Then for each e ∈ o∩F − eo we know that F ′∩ bo,e
is a coscrawl of M ′, again by Lemma 1.2.7, so it can’t meet o′ in just one point.
But eo ∈ o′ ∩ F ′ ∩ bo,e ⊆ {eo, e} so we must have o′ ∩ F ′ ∩ bo,e = {eo, e} and
we conclude that e ∈ o′. Since e was arbitrary, this implies that o ∩ F ⊆ o′.
Moreover, o ∩ F = o′ ∩ F .

Similarly, for each b ∈ B, we find a cocircuit b′ of M ′ such that eb ∈ b′ ⊆
F ′ ∩ b, and it follows by a dual argument that F ∩ b = b′ ∩ F , completing the
proof of the lemma.

Since M ′ is finite, it is representable over k. So we can find functions co and
db giving a k-painting of this matroid. Let c ∈ (k∗)H be chosen so that, for each
o ∈ O and each e ∈ o ∩ F we have c(o, e) = co′(e), and also so that for each
b ∈ B and each e ∈ F ∩ b we have c(b, e) = cb′(e). These choices ensure that
c ∈ ⋂(o,b)∈K Co,b.

Since (k∗)H is compact, and any finite intersection of the Co,b is nonempty,
we have that

⋂
(o,b)∈C(M)×C(M∗) Co,b is nonempty. As any element in the inter-

section is a k-painting, this completes the proof.

We note that this gives a uniform way to extend excluded minor characteri-
sations of representability from finite to infinite matroids. For example, we may
immediately extend the result of [11, 60] as follows:

Corollary 3.8.6. A tame matroid M is a thin sums matroid over GF (3) if and
only if it has no minor isomorphic to U2,5, U3,5, F7 or F ∗7 .

3.9 Other applications of the method

3.9.1 Regular matroids

A key definition to prove Theorem 3.8.4 was that of a k-painting. The corre-
sponding notion for regular matroids is as follows.

A signing for a matroid M is a choice of a function co : o→ {1,−1} for each
circuit o of M and a function db : b → {1,−1} for each cocircuit b of M such
that for any circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 ,

where the sum is evaluated over Z. A matroid is signable if it has a signing.

Lemma 3.9.1. [[56, Proposition 13.4.5],[70]] Let M be a finite matroid. Then
M is regular if and only if M is signable.

Using similar ideas to those in the proof of Theorem 3.8.4, we obtain the
following.
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Theorem 3.9.2. Let M be a tame matroid. Then the following are equivalent.

1. M is a thin sums matroid over every field.

2. M is signable

3. Every finite minor of M is regular.

Proof. (2) implies that M is k-paintable for every field k, and so implies (1).
(1) implies that every finite minor of M is representable over every field, and so
is regular, which gives (3). (3) implies that every finite minor of M is signable,
by Lemma 3.9.1. We may then deduce (2) by a compactness argument like that
in the proof of Theorem 3.8.4.

Motivated by this theorem, we call a tame matroid regular if any of these
equivalent conditions hold.

3.9.2 Partial fields

Theorem 3.9.2 is a special case of a more general result extending characterisa-
tions of simultaneous representations over multiple fields using partial fields to
tame infinite matroids. For some background on partial fields, see [68].

A partial field consists of a pair (R,S), where R is a ring and S is a subgroup
of the group of units of R under multiplication, such that −1 ∈ S. In this
context, an (R,S)-painting for a matroid M is a choice of a function co : o→ S
for each circuit o of M and a function db : b→ S for each cocircuit b of M such
that for any circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 . (3.4)

For example, for any field k a matroid M is k-paintable if and only if it is
(k, k∗)-paintable, and M is signable if and only if it is (Z, {−1, 1})-paintable.
It is clear that the class of (R,S)-paintable matroids is closed under duality
and under taking minors. In particular, any finite minor of an (R,S)-paintable
matroid is (R,S)-paintable. The converse follows from an almost identical com-
pactness argument to that used for Theorem 3.8.4, giving:

Theorem 3.9.3. Let (R,S) be a partial field with S finite. A tame matroid is
(R,S)-paintable if and only if all its finite minors are.

It follows from the results of [68, Section 2.7] that a finite matroid is (R,S)-
paintable if and only if it is (R,S)-representable. For finite matroids it is
known that simultaneous representability over sets of fields corresponds to rep-
resentability over partial fields, and we are now in a position to lift many such
results to all tame matroids. For example, we can lift [71, Theorem 1.2] as
follows:

Corollary 3.9.4. A tame matroid M is a thin sums matroid over both F3 and
F4 if and only if it is (C, {ζi|i ≤ 6})-paintable for ζ a primitive sixth root of
unity.
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3.9.3 Ternary matroids

For finite matroids, a useful property of F3-representable matroids is the unique-
ness of the representations. In this section, we shall prove the corresponding
property for tame ternary matroids.

Let M be a k-paintable matroid for some field k. We say that two k-paintings
((co|o ∈ C(M)), (db|b ∈ C(M∗))) and ((c̃o|o ∈ C(M)), (d̃b|b ∈ C(M∗))) are equiv-
alent if and only if there are constants x(o) for every o ∈ C(M), constants x(b)
for every b ∈ C(M∗), constants x(e) for every edge e and a field automorphism
ϕ such that the following are true:

1. c̃o(e) = ϕ(x(o)x(e)co(e)) for any e ∈ o ∈ C(M).

2. d̃b(e) = ϕ
(
x(b)db(e)
x(e)

)
for any e ∈ b ∈ C(M∗).

Two signings of the same matroid M are equivalent if and only if they induce
equivalent F3-paintings of M .

Via Theorem 3.6.2 for any tame matroid any thin sums representation over
k corresponds to a k-painting. For finite matroids, the notions of equivalence
for representations and paintings coincide: it is straightforward to check that
two representations are equivalent iff the corresponding paintings are. As for
finite matroids, we obtain the following.

Theorem 3.9.5. Any two F3-paintings of the same matroid M are equivalent.

Proof. M , being F3-paintable, must be tame. Without loss of generality we may
also assume that M is connected and has more than one edge. Thus any edges
e and f of M lie on a common circuit2. We nominate a particular edge g1, and
for each other edge g we nominate a circuit o(g) containing both g1 and g. We
also nominate for each circuit o of M an edge e(o) ∈ o and for each cocircuit b
of M an edge e(b) ∈ b.

We denote the two F3-paintings ((co|o ∈ C(M)), (db|b ∈ C(M∗))) and ((c̃o|o ∈
C(M)), (d̃b|b ∈ C(M∗))). We shall construct witnesses to the equivalence as in
the definition above. Since every automorphism of F3 is trivial, we shall take ϕ
to be the identity.

We now set x(g) = c̃o(g)(g)co(g)(g1)

c̃o(g)(g1)co(g)(g)
for each g ∈ E, x(o) = c̃o(e(o))

x(e(o))co(e(o)) for

each circuit o of M and x(b) = x(e(b))d̃b(e(b))
db(e(b))

for each cocircuit b of M .
In order to prove that these values satisfy (1) at a particular circuit o and

g ∈ o, let O = {o, o(g), o(e(o))} and F = {g, g1, e(o)} and use the construction
from the proof of Lemma 3.8.5 to obtain a finite minor M ′ = M/C\D such that
for every o ∈ O there is an M ′-circuit o′ ⊆ o such that o′ ∩ F = o ∩ F and for
every b ∈ B there is an M ′-cocircuit b′ ⊆ b such that b′ ∩ F = b ∩ F .

Let ((c′o|o ∈ C(M ′)), (d′b|b ∈ C(M ′∗)) be the F3-painting of M ′ induced by
((co|o ∈ C(M)), (db|b ∈ C(M∗)), and ((c̃′o|o ∈ C(M ′)), (d̃′b|b ∈ C(M ′∗)) that
induced by ((c̃o|o ∈ C(M)), (d̃b|b ∈ C(M∗))).

2In Section 3 of [26], it is shown that the relation ‘e is in a common circuit with f ’ is indeed
an equivalence relation for infinite matroids.
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By uniqueness of representation for finite matroids, we can find constants
x′(o′) for every o′ ∈ C(M ′), constants x′(b′) for every b′ ∈ C(M ′∗) and constants
x′(g) for every g ∈ X such that

3. c̃′o′(g) = x′(o′)x′(g)c′o′(g) for any g ∈ o′ ∈ C(M ′).

4. d̃′b′(g) = x′(b′)d′
b′ (g)

x′(g) for any g ∈ b′ ∈ C(M ′∗).

Lemma 3.9.6. For each o ∈ O there is λo ∈ k∗ such that

5. co�F = λoc
′
o′�F

Proof. As part of the construction of M ′, we picked a canonical element eo of
o′. Let λ = co(eo)

c′
o′ (eo) . For any other e ∈ o′∩F , there is by construction a cocircuit

bo,e of M with o∩ bo,e = {eo, e}. Then by the dual of Lemma 1.2.7 bo,e ∩E(M ′)
is a coscrawl of M ′, and so there is a cocircuit b′ of M ′ with eo ∈ b′ ⊆ bo,e,
and so eo ∈ o′ ∩ b′ ⊆ {eo, e}. Since o′ and b′ can’t meet in only one element,
e ∈ b′. Since the painting of M ′ is induced from that of M , there is a cocircuit
b of M such that db(e) = d′b′(e) for all e ∈ E(M ′) and b′ ⊆ b ⊆ b′ ∪D, and so
o∩ b = {eo, e}. Using the identities in the definition of painting, we deduce that

co(eo)db(eo) + co(e)db(e) = 0 and c′o′(eo)d
′
b′(eo) + c′o′(e)d

′
b′(e) = 0

and so

co(e) = −co(eo)db(eo)
db(e)

= −λc
′
o′(eo)d

′
b′(eo)

d′b′(e)
= λc′o′(e)

which gives the desired result, since e ∈ o′ ∩ F was arbitrary.

Similarly, we can find constants λ̃o for each o ∈ O such that

6. c̃o�F = λ̃oc̃
′
o′�F

Now we must simply unwind all the algebraic relationships to obtain the
desired result.

x(g) =
c̃o(g)(g)co(g)(g1)
c̃o(g)(g1)co(g)(g)

=
c̃′o(g)′(g)c′o(g)′(g1)

c̃′o(g)′(g1)c′o(g)′(g)
=

x′(o(g)′)x′(g)
x′(o(g)′)x′(g1)

=
x′(g)
x′(g1)

where the first equation follows from the definitions, the second from (5) and
(6) and the third from (3). Similarly, we get:

x(o) =
c̃o(e(o))

x(e(o))co(e(o))
=
λ̃o
λo

c̃′o′(e(o))
x(e(o))c′o′(e(o))

=
λ̃o
λo

x′(o′)x′(e(o))
x(e(o))

And finally:
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x(o)x(g)co(g) =
λ̃o
λo

x′(o′)x′(e(o))x′(g1)
x′(e(o))

x′(g)
x′(g1)

co(g) =
λ̃o
λo
x′(o′)x′(g)co(g)

Now the last term is just c̃o(g) by first applying (5) and then (3). This
completes the proof of the above assignment satisfies (1). The proof that it also
satisfies (2) is similar.

As every tame regular matroid is a thin sums matroid over F3, it also has a
unique representation. In particular the finite cycle matroid, the algebraic cycle
matroid and the topological cycle matroid of a given graph (and their duals)
have a unique signing.

In what follows, we will describe this signing of the finite cycle matroid of
a given graph G — the other cases are similar. First direct the edges of G in
an arbitrary way. To define the functions co, let o be some cycle of G. Pick a
cyclic order of o. For e ∈ o, let co(e) = 1 if e is directed according to the cyclic
order of o and −1 otherwise.

Next, let b be some cocircuit. By minimality of the cocircuit, it is contained
in a single component of G and its removal separates this component into two
components, say C1(b) and C2(b). Note that every edge in b has precisely one
endvertex in each of these components. For e ∈ b, let db(e) = 1 if e points to a
vertex in C1 and −1 otherwise.

It remains to check that
∑
e∈o∩b co(e)db(e) = 0 for all circuits o and cocircuits

b. As every circuit is finite, the above sum is finite. Since the directions we gave
to the edges of G do not influence the values of the products co(e)db(e), we
may assume without loss of generality that in the bond b all edges are directed
from C1(b) to C2(b). So we get a summand of +1 for each edge along which o
traverses b from C1(b) to C2(b) and a summand of −1 for each edge along which
o traverses b from C2(b) to C1(b). Since o must traverse b the same number of
times in each direction, the sum evaluates to 0.

Let us look at how to modify the above construction to make it work for
the algebraic cycle matroid and the topological cycle matroid instead. Finite
circuits in the algebraic cycle matroid may be dealt with as before. To define co
for a double ray o, we pick an orientation of o and let co(e) be 1 if e is directed
in agreement with this orientation and −1 otherwise. The above argument still
applies: using the tameness of the algebraic cycle matroid, we obtain that a
double ray can cross a skew cut only finitely many times, and both tails of the
double ray must lie on the same side (as one side is rayless), so the double ray
must cross the skew cut the same number of times in each direction.

Using the fact that topological circles are homeomorphic to the unit circle,
we get a cyclic order on each circuit of the topological cycle matroid and the
above construction again gives us a signing.
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Chapter 4

Ψ-matroids

We will now discuss a large class of infinite matroids, motivated by recent work
of Diestel and Pott. Before we talk about the class itself, we shall first explain
a little bit about what they were doing.

They looked at the question how one could extend the following theorem to
infinite graphs: Two finite graphs are dual if and only if their cycle matroids are
dual to each other. In the infinite case, the situation is no longer that easy since
there are at least two different cycle matroids associated to an infinite locally
finite graph G: the finite cycle matroid MFC(G), whose circuits are the finite
circuits of G, and the topological cycle matroid MC(G), whose circuits are edge
sets of topological circles in the end-compactification |G| of G [23]. Note that
MFC(G) is finitary and MC(G) is cofinitary. In fact, if G and G∗ are dual in a
suitable sense, then MFC(G) and MC(G∗) are dual to each other.

Motivated by the slight asymmetry of this fact, Diestel and Pott [35] in-
troduced a more general context in which a stronger result is true. Given a
partition of the ends of G into Ψ and Ψ{, a Ψ-circuit is a topological circuit
using only ends from Ψ, and a Ψ-tree is a set of edges maximal with the prop-
erty that it does not include a Ψ-circuit. If Ψ = Ω(G), then the Ψ-circuits and
Ψ-trees are the MC(G)-circuits and MC(G)-bases, whereas if Ψ = ∅, then the
Ψ-circuits and Ψ-trees are the MFC(G)-circuits and MFC(G)-bases.

LetG = (V,E,Ω) andG∗ = (V ∗, E,Ω) be two finitely separable1 2-connected
graphs with the same set of edges E and the same set of ends Ω. Diestel and
Pott showed that if G and G∗ are duals, then for every Ψ the complements of
Ψ-trees in G are precisely the Ψ{-trees in G∗. This means that if the set of
Ψ-trees were the set of bases of some matroid, then the set of Ψ{-trees in G∗

would also be the set of bases of a matroid, namely its dual. This tempted
Diestel and Pott to ask2 the following.

1 A graph is finitely separable if any two vertices can be separated by removing only finitely
many vertices

2personal communication
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Question 4.0.7. Let G be a locally finite graph and Ψ ⊆ Ω(G). Is the set of
Ψ-trees the set of bases of a matroid?

Unfortunately, the answer to this question is no. Indeed, with some effort
the question can be reduced to the question about path-connectedness in certain
connected subspaces of |G| \ Ψ{. Questions of this type have been considered
by Georgakopoulos in [40], and his main counterexample from there also gives a
counterexample here. However, the construction of the set Ψ in this case heavily
relies on the Axiom of Choice (we will return to this point later).

The purpose of this chapter is to show that if the set Ψ is pleasant enough,
in a sense we will now explain, then the set of Ψ-trees is the set of bases of a
matroid.

It will turn out that the way pleasantness is measured has to with Deter-
minacy of Sets (See Section 4.3 for an explanation why this is a good way to
measure pleasantness here). Determinacy of sets is usually defined using games.
Let Ψ ⊆ AN for some set A, then the Ψ-game G(Ψ) is the following game be-
tween two players which has one move for every natural number. In each odd
move the first player chooses an element of A whereas in each even move the
second player chooses such an element. The first player wins if and only if the
sequence they generate between them is in Ψ. The set Ψ is determined if one
player has a winning strategy. The question which sets are determined has been
investigated a lot in set theory [45]: The statement that all subsets Ψ ⊆ AN

with A countable are determined is called the Axiom of Determinacy, and is
sometimes taken as an alternative to the Axiom of Choice. Indeed, if one as-
sumes the Axiom of Determinacy instead of the Axiom of Choice, every set of
real numbers becomes Lebesgue measurable [52]. A deep result in this area says
that if Ψ is Borel (in the product topology), then it is determined [50].

We will want to consider slightly more general games in which the set of
moves available to a player may vary depending on the moves made so far in
the game, and may even sometimes be empty. Any game like this can be coded
up by an equivalent game of the above type, so we will not worry too much
about this issue. A game is determined if at least one of the players has a
winning strategy.

Next we sketch how we transform Question 4.0.7 into an equivalent statement
about determinacy of games. First we build from a given locally finite graph
G what we call a tree of matroids which is a tree T whose ends are the ends
of G, where for each node we store a finite matroid, and for each edge we store
information about how to glue together the matroids for the two incident nodes.
We do this in such a way that if we do all the gluing at once we get back all the
relevant information about G.

Then we introduce the circuit games which are games of the above type in
which each possible play defines a (possibly infinite) path in T starting at a
fixed node of T . If play continues forever, then the path is infinite and the first
player wins if and only if that path belongs to some end in Ψ (for a precise
Definition of the game see Section 4.3 or 4.5). Having done this, we then are
able to reduce Question 4.0.7 to a question about the determinacy of circuit
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games:

Theorem 4.0.8. The set of Ψ-trees is the set of bases of a matroid if and only
if certain circuit games are all determined.

Applying the determinacy of Borel sets mentioned above, we obtain the
following.

Corollary 4.0.9. Let G be a locally finite graph and Ψ ⊆ Ω(G) a Borel set.
Then the set of Ψ-trees is the set of bases of a matroid.

So far we have talked only about locally finite graphs. Our proof in that
case heavily relies on the assumption that the graph is locally finite (Once the
definition of a tree of matroids is made precise, it is clear that this requires the
graph to be locally finite). However, we are able to extend our results to all
countable graphs. The argument takes the whole of Section 4.6 and uses a new
technique; we expect that this technique can also be used in other contexts to
extend results from locally finite to countable graphs.

The new matroids constructed here can be used to find counterexamples to
various conjectures about infinite matroids. We shall illustrate this with three
examples.

A class F of matroids is well-quasi-ordered if for every sequence (Mn|n ∈ N)
with Mn ∈ F there are i < j such that Mi � Mj . Robertson and Seymour
proved [58] that the class of finite graphs is well-quasi-ordered. In 1965, Nash-
Williams [53] proved that infinite trees are well-quasi-ordered. This was ex-
tended by Thomas to the class of graphs of bounded branch width [64]. On the
other hand, he provided a sequence of uncountable graphs showing that the class
of all graphs is not well-quasi-ordered [63]. It is not known if the class of count-
able graphs is well-quasi-ordered. For finite matroids, it is at the moment an
important project to prove that the class of matroids representable over a fixed
finite field is well-quasi-ordered. Geelen, Gerards and Whittle [39] proved that
this is true if the matroids have bounded branch width. For infinite matroids
almost nothing is known. Azzato and Jeffrey [8] made a first step towards prov-
ing that the class of finitary matroids of bounded branch width representable
over a fixed finite field is well-quasi-ordered. In this chapter we consider the
corresponding question for infinite matroids, not just for the finitary ones. The
new matroids we construct can be used to show that the answer to this question
is no, even in a very special case.

Corollary 4.0.10. The countable binary matroids of branch-width at most 2
are not well-quasi-ordered (under the minor relation).

The next conjecture concerns the number of possible non-isomorphic ma-
troids on a countable ground set. Clearly, there cannot be more than 22ℵ0 . We
show that this bound is actually attained.

Corollary 4.0.11. There are 22ℵ0 non-isomorphic tame matroids with no M(K4)-
minor and no U2,4-minor on a countable ground set.
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Figure 4.1: The graph Q

Diestel and Kühn [36] proved that there is a countable planar graph that has
all other countable planar graphs as minors. Such a graph is called a universal
countable planar graph (with respect to the minor relation). In the same spirit,
we call a matroid universal for a class F of matroids (with respect to the minor
relation) if it is in F and it has every member of F as a minor. A matroid is
planar if it is tame and all its finite minors are planar [19]. The result of Diestel
and Kühn does not extend to infinite matroids:

Corollary 4.0.12. There is no universal matroid for the class of countable
planar matroids.

If G is a locally finite graph then the G-matroids are those lying between the
twinned matroids MFC(G) and MTC(G). Thus every Ψ-matroid is a G-matroid,
but the converse does not hold.

Example 4.0.13. Let Q be the graph depicted in Figure 4.1. We say that two
topological circuits of Q are equivalent if their symmetric difference is finite. Let
C be any union of equivalence classes which includes all finite circuits. Then it
can be shown that C is the set of circuits of a Q-matroid [21].

In cases like the above example, we can get a large set of badly behaved3

matroids, each specified by a great deal of information ‘at infinity’. In order to
characterise theG-matroids of a general graphG we would require a specification
of complex information distributed somehow over the ends of G, and this is
currently intractable. However, this extra information is only necessary because
the matroids in question are wild.

Theorem 4.0.14. The tame G-matroids are exactly the Ψ-matroids for G.

However the set Ψ need not be Borel. The question of which sets Ψ of ends
give rise to matroids is tied to subtle set theoretic questions about determinacy
of games.

Restricting our attention to tame matroids also allows us to resolve a problem
due to Aigner-Horev, Diestel and Postle from [6] about the reconstruction of
connected matroids from their 3-connected pieces. Any finite connected matroid
M can be decomposed canonically into a tree of pieces, each of which is 3-
connected, a circuit or a cocircuit [31, 59]. Any two adjacent pieces share only a
single edge, and M can be reconstructed from this tree by taking 2-sums along
all these edges.

3for example, such matroids can be non-binary in the sense that there are 3 circuits whose
symmetric difference does not include a circuit
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Figure 4.2: The tree decomposition of the graph Q

Recall that for any two matroids M1 and M2 that share only one edge, the
2-sum M1⊕2M2 of M1 and M2 is the matroid whose edge set is the symmetric
difference of those of M1 and M2 and whose circuits are of the following 3 types:
circuits of M1 avoiding e, circuits of M2 avoiding e, and symmetric differences of
an M1-circuit containing e with an M2-circuit containing e. This construction
is associative, in the sense that if M1 and M2 meet in only one edge and M2

and M3 meet in only one edge, and M1 has no edge in common with M3, then
(M1⊕2M2)⊕2M3 = M1⊕2 (M2⊕2M3). Because of this associativity, it doesn’t
matter in what order we take the 2-sums at the edges of the tree: we always get
back the original matroid M .

Aigner-Horev, Diestel and Postle partially extended this result to infinite ma-
troids: they were able to show that there is such a canonical tree decomposition
of any connected matroid [6]. It is a little surprising that the structure obtained
is a genuine graph-theoretic tree, rather than one of the more order-theoretic or
topological notions of infinite tree discussed in [54]. However, reconstruction of
the original matroid from this tree is not so straightforward if the tree is infinite.
For example, every Q-matroid decomposes into a ray of pieces, each of which is
isomorphic to M(K4), as in Figure 4.2.

This example shows that the tree decomposition alone does not provide
enough information to reconstruct the matroid: more information is needed. In
[21], we answer the question of which extra information is needed to carry out
this reconstruction. The answer is complicated and beyond the scope of this
thesis. However, if we once more restrict our attention to tame matroids then
there is a much more natural solution. In this chapter, we give a self-contained
account of this more natural solution, for which the necessary arguments are
much simpler than in [21].

The tree alone is still not enough information - the finite and topological cycle
matroids of Q are both tame, and they give rise to the same tree of matroids.
Just as in the graphic case, we may think of the topological cycle matroid as
the matroid we get by allowing the end of the ray to be used by circuits and
the finite cycle matroid as the matroid we get by forbidding circuits to use the
end. This suggests what is in fact the right answer: the extra information we
need is simply the set Ψ of ends of the tree which may be used by circuits.

More precisely, in Section 4.9 we give a construction which can be thought
of as taking infinitely many 2-sums simultaneously. Given a suitable tree T
of matroids and a suitable set Ψ of ends of T , we showed in [14] that this
construction allows us to build a matroid MΨ(T ) by (roughly speaking) sticking
together the matroids along the edges of the tree and only allowing circuits to

80



use the ends in Ψ. We can show that this construction suffices to rebuild any
tame matroid from its canonical decomposition into circuits, cocircuits, and
3-connected pieces, together with information about which ends are used by
circuits:

Theorem 4.0.15. Let N be a tame matroid and let T be the tree of matroids
T arising from the canonical tree decomposition of N .

Then there is some Ψ ⊆ Ω(T ) such that N = MΨ(T ).

The proof that the Ψ-matroids of a locally finite graph really are matroids
also relied on gluing together an infinite tree of finite pieces. In this case, the tree
structure arose from a tree decomposition of the graph. So both of the results
mentioned above say that, for some particular tree structure, if we have any
tame matroid whose circuits and cocircuits all fit, in some sense, with that tree
structure, then this constrains the matroid to be of a very special type, which
we call a Ψ-matroid. We give a general result of this type for trees of matroids in
which any two adjacent matroids share at most one edge. See Theorem 4.10.10.

This chapter is closely based on two joint papers with Johannes Carmesin
[14, 18]

4.1 What are the Ψ-matroids of a graph?

In this section we shall review the definitions of Ψ-circuits and Ψ{-bonds for a
graph G with a specified set Ψ of ends. Much of what we say will be a review of
the early parts of [35], though we shall work in a slightly more general context:
in [35], only finitely separable graphs are considered (a graph is finitely separable
if any two vertices lie on opposite sides of some finite cut). We shall rely on [35]
for the results we need about finitely separable graphs.

We say that two rays in a graph G are equivalent if they cannot be separated
by removing finitely many vertices from G. An end of G is an equivalence class
of rays under this relation, and the set of ends of G is denoted Ω(G).

Let d be the distance function on V (G) t (0, 1) × E(G) considered as the
ground set of the simplicial 1-complex formed from the vertices and edges of G.
We define a topology VTop on the set V (G) t Ω(G) t (0, 1)×E(G) by taking
basic open neighbourhoods as follows:

• For v ∈ V (G), the basic open neighbourhoods of v are the ε-balls Bε(v) =
{x|d(v, x) < ε} for ε ≤ 1.

• For (x, e) ∈ (0, 1) × E we say (x, e) is an interior point of e, and take
the basic open neighbourhoods to be the ε-balls about (x, e) with ε ≤
min(x, 1− x).

• For ω ∈ Ω(G), the basic open neighbourhoods of ω will be parametrised
by the finite subsets S of V (G). Given such a subset, we let C(S, ω) be the
unique component of G − S that contains a ray from ω, and let Ĉ(S, ω)
be the set of all vertices and inner points of edges contained in or incident
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with C(S, ω), and of all ends represented by a ray in C(S, ω). We take the
basic open neighbourhoods of ω to be the sets Ĉ(S, ω).

We call the topological space obtained in this way |G|. We will need a
fundamental lemma about this topology. A comb in G consists of a ray R
together with infinitely many vertex-disjoint finite paths having precisely their
first vertex on R. R is called the spine of the comb, and the final vertices of the
paths are called the teeth of the comb.

Lemma 4.1.1. Let G be a graph. Let X be a set of vertices of G and ω an end
of G. Let Rω be some ray in ω.

Then ω is in the closure of X if and only if there is a comb with spine Rω
all of whose teeth are in X.

Proof. For the ‘if’ direction, let Ĉ(S, ω) be a basic open neighbourhood of ω.
Then only finitely many of the paths in the comb can meet S, so without loss of
generality none of them do. Some tail of R must lie in C(S, ω), so without loss
of generality the whole of R does. Then all teeth of the comb lie in Ĉ(S, ω).

For the ‘only if’ direction, we apply Menger’s Theorem to get either infinitely
many vertex-disjoint Rω-X-paths or a finite vertex set S whose removal sepa-
rates X from Rω. In the first case we are done and in the second we get a
contradiction to the assumption that ω lies in the closure of X.

For any set Ψ of ends of G, we set Ψ{ = Ω(G) \ Ψ and |G|Ψ = |G| \ Ψ{.
This topological space, derived from a graph, seems almost to fit the notion of
graph-like space explored in [19] (and closely related to the earlier work of [65]).
We can make this precise as follows:

Definition 4.1.2. An almost graph-like space G is a topological space (also
denoted G) together with a vertex set V = V (G), an edge set E = E(G) and
for each e ∈ E a continuous map ιe : [0, 1]→ G such that:

• The underlying set of G is V t (0, 1)× E

• For any x ∈ (0, 1) we have ιe(x) = (x, e).

• ιe(0) and ιe(1) are vertices (called the endvertices of e).

• ιe�(0,1) is an open map.

Such an almost graph-like space is a graph-like space if in addition for any
v, v′ ∈ V , there are disjoint open subsets U,U ′ of G partitioning V (G) and with
v ∈ U and v′ ∈ U ′. This ensures that V (G), considered as a subspace of G, is
totally disconnected, and that G is Hausdorff.

Thus we can give |G|Ψ the structure of an almost graph-like space, with edge
set E(G) and vertex set V (G) ∪Ψ.

Let e be an edge in a graph-like space with ιe(0) 6= ιe(1). Then ιe is a
continuous injective map from a compact to a Hausdorff space and so it is a
homeomorphism onto its image. The image is compact and so is closed, and
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so is the closure of (0, 1) × {e} in G. So in this case ιe is determined by the
properties above and the topology of G. The same is true if ιe(0) = ιe(1): in
this case we can lift ιe to a continuous map from S1 = [0, 1]/(0 = 1) to G, and
argue as above that this map is a homeomorphism onto the closure of (0, 1)×{e}
in G.

Definition 4.1.3. We say that two vertices v and v′ of an almost graph-like
space G are equivalent (denoted v ∼ v′) if for any disjoint open subsets U,U ′ of
G partitioning V (G), v and v′ lie on the same side of the partition. The graph-
like quotient G̃ of G is the space obtained from G by identifying equivalent
vertices. G̃ has the structure of a graph-like space with the same edge set as G
and with vertex set V (G)/ ∼.

Lemma 4.1.4. If G is an almost graph-like space, then G̃ is a graph-like space.

Proof. It is clear that G̃ is an almost graph-like space. Let [v]∼ and [v′]∼ be
distinct vertices of G̃. Then v 6∼ v′, and so there are disjoint open sets U and
U ′ in G which partition V (G) and with v ∈ U and v′ ∈ U ′. Then any pair of
equivalent vertices of G are either both in U or both in U ′, so U and U ′ induce
disjoint open subsets U/ ∼ and U ′/ ∼ of G̃ which partition the vertices of G̃
and such that [v]∼ ∈ U/ ∼ and [v′]∼ ∈ U ′/ ∼.

We say that a cut b in a graph G is Ψ-bounded if the closure of b in |G|Ψ
contains no ends. Thus if b is Ψ-bounded and ω is an end in Ψ then any ray to
ω in G lies eventually on one side of b - we then say that ω is on that side of b.

Lemma 4.1.5. Two vertices of |G|Ψ are equivalent if and only if they lie on
the same side of every Ψ-bounded cut.

Proof. For the ‘if’ direction, let v and v′ be inequivalent vertices of |G|Ψ, and
let U and U ′ be disjoint open subsets partitioning V (|G|Ψ) with v ∈ U and
v′ ∈ U ′. Let b be the cut of G consisting of those edges with one endvertex in U
and the other in U ′. We shall show that b is Ψ-bounded. Let ω ∈ Ψ. Without
loss of generality ω ∈ U and so there is some S with Ĉ(S, ω) ⊆ U . Let e ∈ b, so
one endvertex is in U ′. Then since U ′ is open some interior point of e is in U ′,
so that interior point of e isn’t in Ĉ(S, ω), so e doesn’t meet Ĉ(S, ω). Since e
was arbitrary, Ĉ(S, ω) ∩ b = ∅ and so ω isn’t in the closure of b, as required.

For the ‘only if’ direction, let v and v′ be equivalent vertices of |G|Ψ and
let b be a Ψ-bounded cut of G. For each end ω ∈ Ψ there is by the definition
of Ψ-boundedness a basic open set Uω = Ĉ(Sω, ω) that doesn’t meet b. Each
set C(Sω, b) is connected and so lies entirely on one side of b. Letting the sides
of b be X and X ′, we may take U =

⋃
v∈V (G)∩X B 1

2
(v) ∪ ⋃ω∈Ψ∩X Uω and

U ′ =
⋃
v∈V (G)∩X′ B 1

2
(v)∪⋃ω∈Ψ∩X′ Uω. Now since v and v′ are equivalent they

must either be both in U or both in U ′, so they lie on the same side of b. Since
b was arbitrary, we are done.

For a vertex v of G and a ray R of G, we say that v dominates R if there
are infinitely many paths from v to R, vertex-disjoint except at v. We say that
v dominates some end ω if it dominates some ray (or equivalently all rays) in ω.
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Lemma 4.1.6. Let v ∈ V (G) dominate some end ω ∈ Ψ. Then v and ω are
equivalent as vertices of |G|Ψ.

Proof. Let R be a ray in ω and let (Pi|i ∈ N) be a sequence of paths from v to
ω meeting only at v. Suppose for a contradiction that there is a Ψ-bounded cut
with v and ω on opposite sides. Then R must eventually lie on the same side of
b as ω, so without loss of generality it lies entirely on that side. For each Pi, let
vi be the first vertex of Pi on the same side of b as ω. Then R together with the
paths viPi forms a comb, so by Lemma 4.1.1 the end ω is in the closure of the
set of teeth vi, so it is in the closure of b, which is the desired contradiction.

We let ' be the smallest equivalence relation identifying any vertex with
any end that it dominates. If G is finitely separable, then by [[35], Lemma 6],
no two vertices will be equivalent under '. In [35], the topological space G̃Ψ

is defined, for G a finitely separable graph, to be the quotient of |G|Ψ by '.
By the above lemma, ∼ refines ' and so there is a continuous quotient map
fG : G̃Ψ → |̃G|Ψ.

Lemma 4.1.7. If G is finitely separable, then fG is an homeomorphism.

Proof. Since f is a quotient map, it suffices to show that it is injective.
Let v and v′ be vertices of G̃Ψ. By [[35], Lemma 6], there is a finite set F

of edges such that v and v′ lie in disjoint open subsets of G̃Ψ \ (0, 1)× F whose
union is G̃Ψ \ (0, 1)×F . Let C be the connected component of G\F containing
v (or a ray to v if v is an end), and let b ⊆ F be the cut consisting of edges with
one endvertex in C and the other not. Since b is finite, it is a Ψ-bounded cut,
and so v 6∼ v′, as required.

We therefore extend the definition in [35] by taking G̃Ψ for G an arbitrary
graph to be the graph-like quotient of |G|Ψ.

In [19], topological circuits and topological bonds are defined in any graph-
like space. A circuit of G̃Ψ, or just a Ψ-circuit, is an edge set whose G̃Ψ-closure
is homeomorphic to the unit circle. A bond of G̃Ψ, or just a Ψ{-bond -is an edge
set of a minimal nonempty Ψ-bounded cut. In the following sense the Ψ-circuits
and Ψ{-bonds behave like the circuits and cocircuits of some matroid.

Lemma 4.1.8. No Ψ-circuit meets any Ψ{-bond in a single edge.

Proof. Suppose for a contradiction that some Ψ-circuit o meets some Ψ{-bond
b in a single edge f

Then G̃Ψ with all the interior points of edges of b removed has two connected
components, namely the two sides of the bond. This contradicts the fact that
o− f is connected and contains both endvertices of f .

We say that (G,Ψ) induces a matroid M if E(M) = E(G) and the M -
circuits are the Ψ-circuits and the M -cocircuits are the Ψ{-bonds. In this case,
we call M the Ψ-matroid of G. Even if we don’t get a matroid, we call (C,D),
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where C is the set of Ψ-circuits of G and D is the set of Ψ{-bonds of G, the
Ψ-system of G.

A Ψ-tree is an edge set maximal with the property that it includes no Ψ-
circuit. The main results of Diestel and Pott [35] are phrased in terms of Ψ-trees.
These results let them to suspect that the Ψ-trees are the bases of some matroid.
Although we shall mostly work with Ψ-circuits and Ψ{-cocircuits instead, the
fact that our results do confirm this suspicion in many cases follows from the
following lemma.

Lemma 4.1.9. If (G,Ψ) induces a matroid, then the bases of this matroid are
the Ψ-trees.

We say that G and G∗ are plane duals if there is an isomorphism ι from
E(G) to E(G∗) that maps the G-cycles to the G∗-bonds. In [28], it is proved
that ι induces a bijection ιΩ between the ends of G and the ends of G∗. Then
Lemma 4.1.9 yields the following.

Corollary 4.1.10. Let G and G∗ be two finitely separable graphs that are plane
duals, as witnessed by some map ι. If (G,Ψ) induces a matroid, then its dual
is induced by (G∗, ιΩ(Ψ{)).

Let’s look at how tameness, (O1) and (O2) look for C the set of Ψ-circuits
and D the set of Ψ{-bonds for a locally finite graph G and Ψ ⊆ Ω(G). We
abbreviate GΨ = |G| \ (Ω(G) \Ψ).

First, we look at tameness. If a Ψ-circuit o and a Ψ{-bond b meet infinitely,
this gives rise to a minimal cover of o with infinitely many open sets, contra-
dicting the compactness of o. Hence tameness is implied by the fact that every
circuit is compact.

Next, we look at (O1). If we have a Ψ-circuit o, then for every e ∈ o, the
closure of o− e in GΨ is still connected and hence there cannot be a Ψ{-bond b
meeting o only in e. Thus (O1) is implied by the fact that for every Ψ-circuit o
and every e ∈ o, the closure of o− e in GΨ is connected.

Finally, we look at (O2), so we are given a partition E = P ∪̇Q∪̇{e}. Let P̄
be the closure of the edge set P in GΨ. Let us consider the topological space
GΨ ∩ P̄ . Then (O2) says that we either find an arc joining the two endvertices
of e or we find a Ψ{-bond whose induced topological bond separates the two
endvertices. The first is equivalent to the statement that the two endvertices
of e are in the same arc-component since the topological circles in |G|Ψ are
precisely the Ψ-circuits.

The second is equivalent to the statement that the two endvertices of e are
not in the same connected component. Indeed, if there is a such a bond, then
the two endvertices are clearly not in the same connected component. For the
converse, we assume that there is an open partition of |G|Ψ into two sets C1 and
C2 with the two endvertices of e on different sides. Let V1 be the set of those
vertices in C1. Then the set of edges crossing the G-separation (V1, V (G) \ V1)
is a (possibly infinite) cut of G. This cut is a disjoint union of bonds, which are
all Ψ{-bonds. From these, the bond including e is the desired one.
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Hence (O2) is equivalent to the following: The two endvertices of e lie in
the same connected component of GΨ ∩ P̄ if and only if they lie in the same
arc-component of GΨ ∩ P̄ .

The question whether any connected subspace of |G| is path-connected was
solved by Georgakopoulos in [40]. Idneed, he constructed a locally finite graph
G such that |G| has a subset S that is connected but not path-connected. Note
that since |G| is a Hausdorff space, path-connectedness is equivalent to arc-
connectedness. It is straightforward to show that (G,S∩Ω(G)) does not induce
a matroid since it does not satisfy (O2) for P = S ∩ E(G). We note for future
reference that Georgakopoulos’s argument heavily relies on the Axiom of Choice.
We will soon be in a position to examine for which G and Ψ the pair (G,Ψ)
induces a matroid.

4.2 Trees of matroids I

We wish to paste together infinite collections of matroids to obtain interesting
new infinite matroids. Before we can be more explicit about this construction,
we must give a precise account of the configurations of matroids we will seek to
paste together. These will be given by tree-like structures.

Definition 4.2.1. A tree T of matroids consists of a tree T , together with a
function M assigning to each node t of T a matroid M(t) on ground set E(t),
such that for any two nodes t and t′ of T , if E(t) ∩ E(t′) is nonempty then tt′

is an edge of T .
For any edge tt′ of T we set E(tt′) = E(t)∩E(t′). We also define the ground

set of T to be E = E(T ) =
(⋃

t∈V (T )E(t)
)
\
(⋃

tt′∈E(T )E(tt′)
)

.
We shall refer to the edges which appear in some E(t) but not in E as dummy

edges of M(t): thus the set of such dummy edges is
⋃
tt′∈E(T )E(tt′).

The idea is that the dummy edges are to be used only to give information
about how the matroids are to be pasted together, but they will not be present
in the final pasted matroid, which will have ground set E(T ).

Definition 4.2.2. If T is a tree, and tu is a (directed) edge of T , we take Tt→u
to be the connected component of T − t that contains u. If T = (T,M) is a tree
of matroids, we take Tt→u to be the tree of matroids (Tt→u,M�Tt→u).

We shall consider a couple of different sorts of pasting. First, in this section,
we will consider a type of pasting corresponding to 2-sums. Later, in Section 4.4,
we will define a type of pasting along larger separators. In each case, we will
make use of some additional information to control the behaviour at infinity: a
set Ψ of ends of T . The first type of pasting is only possible for a restricted
class of trees of matroids.

Definition 4.2.3. A tree T = (T,M) of matroids is of overlap 1 if, for every
edge tt′ of T , |E(tt′)| = 1. In this case, we denote the unique element of E(tt′)
by e(tt′).
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Given a tree of matroids of overlap 1 as above and a set Ψ of ends of T ,
a Ψ-pre-circuit of T consists of a connected subtree C of T together with a
function o assigning to each vertex t of C a circuit of M(t), such that all ends
of C are in Ψ and for any vertex t of C and any vertex t′ adjacent to t in T ,
e(tt′) ∈ o(t) if and only if t′ ∈ C. The set of Ψ-pre-circuits is denoted C(T ,Ψ).

Any Ψ-pre-circuit (C, o) has an underlying set (C, o) = E ∩ ⋃t∈V (C) o(t).
Nonempty subsets of E arising in this way are called Ψ-circuits of T . The set
of Ψ-circuits of T is denoted C(T ,Ψ).

We shall show in Section 4.3 that C(T ,Ψ) very often gives the set of circuits
of a matroid on ET . To do this, we will make use of the orthogonality axioms,
and so we will also need a specified collection of putative cocircuits. These will
be given by the Ψ{-circuits of a tree of matroids dual to T . Not only is there a
natural notion of duality for trees of matroids, there are also natural notions of
contraction and deletion.

Definition 4.2.4. Let T = (T,M) be a tree of matroids. Then the dual T ∗ of T
is given by (T,M∗), where M∗ is the function sending t to (M(t))∗. For a subset
C of the ground set, the tree of matroids T /C obtained from T by contracting C
is given by (T,M/C), where M/C is the function sending t to M(t)/(C ∩E(t)).
For a subset D of the ground set, the tree of matroids T \D obtained from T
by deleting D is given by (T,M\D), where M\D is the function sending t to
M(t)\(C ∩ E(t)). We say that a tree of matroids T of overlap 1 together with
a set Ψ of its ends induce a matroid M = M(T ,Ψ) if C(M) ⊆ C(T ,Ψ) ⊆ S(M)
and C(M∗) ⊆ C(T ∗,Ψ{) ⊆ S(M∗).

Lemma 4.2.5. For any tree T of matroids, T = T ∗∗. For any disjoint subsets
C and D of the ground set of T we have (T /C)∗ = T ∗\C, (T \D)∗ = T ∗/D and
T /C\D = T \D/C. If T has overlap 1 and (T ,Ψ) induces a matroid M , then
(T /C\D,Ψ) induces the matroid M/C\D and (T ∗,Ψ{) induces the matroid
M∗.

We will sometimes use the expression Ψ{-cocircuits of T for the Ψ{-circuits
of T ∗.

We will examine the question of when (T ,Ψ) induces a matroid using the
orthogonality axioms. The question of whether (O2) holds for these systems
is tricky and will be addressed in Section 4.3. However, we are already in a
position to give simple proofs of (O1), and of tameness if all the M(t) are tame.

Lemma 4.2.6 ((O1) for trees of matroids of overlap 1). Let T = (T,M) be a
tree of matroids, Ψ a set of ends of T , and let (C, o) and (D, b) be respectively
a Ψ-pre-circuit of T and a Ψ{-pre-circuit of T ∗. Then |(C, o) ∩ (D, b)| 6= 1.

Proof. Suppose for a contradiction that |(C, o) ∩ (D, b)| = {e}, with e ∈ t0.
We recursively construct a sequence of nodes tn ∈ C ∩ D forming a ray from
t0. To construct tn, we note that o(tn−1) meets b(tn−1) (in e if n = 1, and in
e(tn−2tn−1) if n > 1), so since they are respectively a circuit and a cocircuit of
M(tn−1) they must meet at least twice. Since they cannot meet in any edge of
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E, they must meet in some edge e(tn−1tn) with tn adjacent to tn−1 in T and
tn 6= tn−2 (for n > 1). It follows that tn ∈ C ∩D. Then the end of this ray is
in Ψ by the definition of (C, o) and is in Ψ{ by the definition of (D, b), which is
the desired contradiction.

Lemma 4.2.7 (Tameness for trees of tame matroids of overlap 1). Let T =
(T,M) be a tree of tame matroids, Ψ a set of ends of T , and let (C, o) and
(D, b) be respectively a Ψ-pre-circuit of T and a Ψ{-pre-circuit of T ∗. Then
(C, o) ∩ (D, b) is finite.

Proof. Otherwise C ∩ D is infinite, and is locally finite since the M(t) are all
tame, and so it has an end ω of T in its closure. Then ω is in Ψ by the definition
of (C, o) and is in Ψ{ by the definition of (D, b), which is a contradiction.

We shall later show that any Ψ-system for a locally finite graph can be
recovered by a more complex version of the construction above from a tree of
finite matroids. We illustrate this by showing that many interesting Ψ-systems
can already be recovered from the construction given above.

Definition 4.2.8. Let G be a graph. A tree structure on G is a tree T whose
nodes form a partition of the vertices of G, such that distinct nodes are adjacent
in T if and only if they contain adjacent vertices of G and the induced subgraph
on each partition class is finite and connected. A tree structure has width 2 if
and only if for any pair of adjacent partition classes in T there are precisely 2
edges of G with one endvertex in each class.

Remark 4.2.9. Any tree structure T on G induces a tree decomposition of G,
in which the parts are the sets E(t, t′) of edges of G with one endvertex in t and
the other in t′, for t and t′ (not necessarily distinct) nodes of T .

Example 4.2.10. The wild cycle graph (so called because it includes a wild
cycle in the sense of [34]), depicted in Figure 4.3, has a tree structure of width
2. The grey blobs represent the nodes of the tree.

Lemma 4.2.11. Let T be a tree structure on a locally finite graph G. Then there
is a canonical homeomorphism from the ends of G to the ends of T , sending an
end ω of G to the unique end in the closure of the set of vertices of T that meet
some ray R to ω.

Remark 4.2.12. We shall use this homeomorphism to identify the ends of T
with those of G.

Proof. First, we show that for any ray R in G there is a unique end ϕ(R) of
T in the closure of the set of vertices of T that meet R. There is certainly at
least one such end, since R is infinite and so must meet infinitely many of the
(finite) partition classes. If there were 2, say ω and ω′, then for any vertex t of
T whose removal separated ω and ω′, R would have to meet t infinitely often,
which would be a contradiction.
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Figure 4.3: A tree structure on the Wild Cycle Graph

A similar argument shows that ϕ(R) only depends on the end of G containing
R: if there were 2 equivalent rays R and R′ in G, with ϕ(R) 6= ϕ(R′), then for
any vertex t of T whose removal separated ϕ(R) from ϕ(R′), R and R′ would
eventually have to lie in the same component of G \ t, and so the components
of T − t meeting R and R′ infinitely often would be the same, which would be
a contradiction.

Thus ϕ induces a map ϕ̃ taking ends of G to ends of T . This map is injective,
because for any distinct ends ω and ω′ of G there is a finite set X of vertices of
G separating ω from ω′ in G: the (finite) set of vertices of T containing elements
of X then separates ϕ̃(ω) from ϕ̃(ω′) in T . It is surjective, because for any ray
R in T there is a ray in G meeting exactly the nodes of T on R (here we use the
fact that each node t of T is connected in G). It is continuous because for any
node t of T the components of G \ t are precisely the unions of the components
of T − t, and it is open by the same fact together with the fact that any finite
set X of vertices of G is a subset of a union of finitely many nodes of T .

Definition 4.2.13. Given a graph G together with a tree structure T on G
and a node t of T , the torso τ(t) of G at a node t is the graph constructed as
follows: the vertices are the elements of t, together with a new dummy vertex
ve for each edge e of G with one endpoint in t and the other not in t. The edges
are of three types: edges of G with both ends in t, an edge vve for each edge
e = vv′ of G with v ∈ t and v′ ∈ t′ with t′ adjacent to t, and an edge joining any
two dummy vertices corresponding to edges of G from vertices in t to vertices
in the same adjacent node t′ of T .

For a graph G with a tree structure T this gives a corresponding tree of finite
matroids T (G,T ) = (T, t 7→M(τ(t))).

Observe that if T has width 2, then T (G,T ) has overlap 1.
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Figure 4.4: A typical torso of the Wild Cycle Graph

Example 4.2.14. Each torso arising from the tree structure in Example 4.2.10
is isomorphic to the graph in Figure 4.4.

We shall see later that this is a particularly simple example of a tree structure
of width 2, but it illustrates that the topological space Ω(G) may still be rich
enough in such cases to support very complicated subsets Ψ. We end this section
by showing that the construction outlined above does capture the Ψ-systems of
graphs in the width 2 case.

Lemma 4.2.15. Let G be a graph, and let T be a tree structure on G of width 2.
Let Ψ be a set of ends of G. Let G′ be the graph obtained from G by subdividing
each edge which has endpoints in different nodes of T .4Then the Ψ-circuits of
G′ are exactly the Ψ-circuits of T (G,T ) and the Ψ{-bonds of G′ are exactly the
Ψ{-cocircuits of T (G,T ).

Proof. First we show that every Ψ{-bond of G′ is a Ψ{-cocircuit of T (G,T ).
Let b be such a Ψ{-bond. Let X be the set of vertices of G′ on one side of
b. Let D be the set of vertices t of T such that τ(t) contains a vertex from X
and a vertex not from X. Since both X and V (G′) \X are connected, D is an
intersection of 2 connected subsets of the tree T , and so is also connected. D
doesn’t include a ray to any end in Ψ, because b is a Ψ{-bond.

For each t ∈ D, let b(t) be the τ(t)-cut of edges of τ(t) with one endpoint in
X and the other not in X. Both sides of b(t) are connected, since both X and
V (G′) \X are, so b(t) is a circuit of (M(τ(t))∗. For any t′ adjacent to t in T ,
let the shared dummy vertices of τ(t) and τ(t′) be ve and vf . If t′ 6∈ D then ve
and vf are on the same side of b, so e(tt′) 6∈ b(t). If t′ ∈ D, then since both X
and V (G′) \ X are connected exactly one of ve or vf is in X, so e(tt′) ∈ b(t).
Thus we obtain that b = (D, b) is a Ψ{-cocircuit of T (G,T ).

Next, we show that every Ψ-circuit of G′ is a Ψ-circuit of T (G,T ). Let o be
such a Ψ-circuit, and let C be the set of vertices t of T such that o meets τ(t).
For any t 6∈ C, there can only be one component of T − t meeting C, since the

4formally, we add a new vertex ve corresponding to each such edge e = vv′, and replace e
in the set of edges by the two new edges vve and v′ve.
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unions of these components are separated by t in G \ t. Thus C is a subtree of
T . Any end in the closure of C is also in the closure of o and so must lie in Ψ.

For any t ∈ C, let o(t) be the union of o ∩ E(τ(t)) with the set of all edges
ee′ of τ(t) where e and e′ are the two edges of G with endpoints in both t and
t′ for some t′ adjacent to t in C. Then every vertex of τ(t) has degree 0 or 2
with respect to o(t): this is immediate for vertices in t, and vertices given by
edges with one endpoint in t and the other in t′ have degree 0 if t′ 6∈ C, 2 if
t′ ∈ C. To show that o(t) is a circuit, it remains to show that it is connected.
Suppose not, for a contradiction. Then there is a cut b of τ(t) not meeting o(t)
but with edges of o(t) on both sides, so there is such a cut that doesn’t contain
any dummy edges. This cut is a finite cut of G not meeting o but with edges of
o on both sides, which is the desired contradiction. Thus each o(t) is a circuit
in M(τ(t)). Thus we obtain that o = (C, o) is a Ψ-circuit of T (G,T ).

To show that every Ψ{-cocircuit (D, b) of T (G,T ) is a Ψ{-bond of G′, we
pick any edge e0 ∈ (D, b) and let X and Y be the sets of vertices in the same
connected components of G′ \ (D, b) as the endvertices x0, y0 of e0. If X = Y

then there is a finite circuit in G′ meeting (D, b) just once, which is impossible
by the argument above and Lemma 4.2.6. Let t0 be the vertex of T with
e0 ∈ τ(t0). We prove by induction on the distance of t from t0 that X ∪ Y
includes all vertices of τ(t) and if t ∈ D then b(t) is the set of edges of τ(t) with
one end in X and the other in Y . This is immediate if t = t0, since b(t0) is
a bond of τ(t0). For any other t′ ∈ V (T ), let t be the neighbour of t′ in the
direction of t0. If t′ ∈ D then also t ∈ D and so of the two dummy vertices
shared by τ(t) and τ(t′) one is in X and the other in Y , giving the result since
b(t′) is a bond of τ(t′). If t′ 6∈ D then the two dummy vertices shared by τ(t)
and τ(t′) are either both in X or both in Y , so either all vertices of τ(t′) are in
X or all of them are in Y . This shows that (D, b) is the bond of G′ consisting
of all edges with one end in X and the other in Y . It is a Ψ{-bond since every
end in its closure is in the closure of D and so is in Ψ{.

Finally, we show that every Ψ-circuit of T (G,T ) is a Ψ-circuit of G′. Con-
sider such a circuit (C, o). By the above argument and Lemma 4.2.6 it never
meets a finite bond of G′ just once and so, by the dual of Lemma 1.2.1 ap-
plied to the topological cycle matroid of G′ it is a union of topological circuits.
To show that it is the edge set of a single topological circle, it is enough by
Lemma 1.3.6 to show that for any e, f ∈ (C, o) there is a finite bond b of G with
b∩(C, o) = {e, f}. Consider the unique finite path t1, ...tn in T with e ∈ E(τ(t1))
and f ∈ E(τ(tn)). Let e0 = e, en = f and for 0 < i < n let ei = e(titi+1). For
each i ≤ n we let bi be any bond of τ(ti) with bi ∩ o(ti) = {ei−1, ei}. With-
out loss of generality we may choose the bi to contain no dummy edges other
than the ei. Then

⋃n
i=1 bi \ E is the desired finite bond of G. Thus (C, o) is a

topological circuit of G. It is a Ψ-circuit since every end in its closure is in the
closure of C and so is in Ψ.
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Figure 4.5: The tree of matroids T game

4.3 Determinacy and (O2) for trees of matroids
of overlap 1

In Section 4.11, we saw that (O2) corresponds, for Ψ-systems, to a principle
implying path-connectedness from connectedness. Here we will show that, for
the systems arising from trees of matroids, (O2) has close links with determinacy
of games. We begin by analysing an illuminating example.

Let T game be the tree of matroids given by (T2,M
game), as follows: T2 is

the infinite rooted binary tree (to fix notation, we take the vertices of T2 to be
the finite sequences from {0, 1}, with s adjacent to each of s0 and s1 for any
such sequence s, and we call the empty sequence ∅). For any node s of T2, we
take the ground set of Mgame(s) to be {ds, ds0, ds1} and we take Mgame(s) to
be uniform, of rank 1 if the length of s is even and of rank 2 if the length of
s is odd. This tree of matroids has overlap 1, with all edges except d∅ being
dummy edges. The ground set Egame of T game is simply {d∅}. The structure
of this tree of matroids is displayed in Figure 4.5.

Although the ground set has only 1 element, so that the sets of Ψ-circuits
of T or T ∗ must be very simple for any Ψ, our analysis of (O2) will still be
complex because of the way in which these sets arise from T . Any instance of
(O2) for trees of matroids is reducible to one on which the ground set has only
one element, since (O2) holds for the partition E = {e}∪̇P ∪̇Q of the ground
set of T if and only if it holds for the partition {e} = {e}∪̇∅∪̇∅ of the ground
set of T /P\Q. However, as this section will illustrate, this reduction does not
diminish the complexity of the problem.

Let’s fix some set Ψ ⊆ {0, 1}N and examine the meaning of (O2) applied
to the Ψ-circuits and Ψ{-cocircuits of T game, with the partition Egame =
{d∅}∪̇∅∪̇∅. If (O2) is true, then one of the following 2 things happens:
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1. There is a Ψ-circuit through d∅.

2. There is a Ψ{-cocircuit through d∅.

Let’s think first of all about (1). This says that we can find a Ψ-precircuit
(C, o) with ∅ ∈ C, d∅ ∈ o(∅). The shape of C is now quite constrained. For any
s ∈ C we have ds ∈ o(s). If s has even length, then o(s) can only be {ds, ds0}
or {ds, ds1}. On the other hand, if s has odd length then o(s) can only be
{ds, ds0, ds1}. Thus C is a set of finite sequences from {0, 1} with the following
properties:

• ∅ ∈ C.

• C is closed under taking initial segments.

• For any s ∈ C of even length, exactly one of s0 and s1 is in C.

• For any s ∈ C of odd length, both of s0 and s1 are in C.

• For any s ∈ {0, 1}N such that all finite initial segments of s are in C,
s ∈ Ψ.

These properties collectively state that C gives a winning strategy for the first
player in the game G(Ψ) from the introduction, with Ψ considered as a subset
of {0, 1}N: the first player should play so as to ensure that the finite sequence
generated so far always remains in s. Conversely, given a set C with these
properties, we can define a function o on C sending s to {ds, ds0} if s has
even length and s0 ∈ C, to {ds, ds1} if s has even length and s1 ∈ C, and to
{ds, ds0, ss1} if s has odd length. Then (C, o) is a Ψ-circuit of T game with (C, o)
witnessing (1).

What this shows is that (1) is equivalent to the statement that the first
player has a winning strategy in the game G(Ψ). A similar argument shows
that (2) is equivalent to the statement that the second player has a winning
strategy in that game. Thus in this case (O2) is equivalent to determinacy of
the game G(Ψ). By introducing some slightly more complex games, we will now
show that for any tree T of matroids of overlap 1 and any set Ψ of ends of T
there is a collection of games such that (T ,Ψ) induces a matroid if and only if
all of the games in that collection are determined.

We temporarily fix such a T and Ψ, together with a partition E = {e}∪̇P ∪̇Q
of the ground set of T . Let t0 be the node of T such that e ∈ E(t0).

Definition 4.3.1. The circuit game G = G(T ,Ψ, P,Q) is played between two
players, called Sarah and Colin5, as follows:

Play alternates between the players, with Sarah making the first move. At
any point in the game there is a current node tc ∈ V (t), and a current edge
ec ∈ E(tc). Initially we set tc = t0 and ec = e to be the node of T with
ec ∈ E(tc). For any n the (2n − 1)st move is made by Sarah: she must play a

5The name ‘Sarah’ has been chosen because it sounds similar to ‘circuit’, and ‘Colin’
because it may be pronounced co-lin, to sound a bit like ‘cocircuit’
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circuit on of M(tc) such that ec ∈ on but on ∩ Q = ∅. Then the 2nth move is
made by Colin: he must play a node tn adjacent to tc and further from t0 than
tc is, such that e(tctn) ∈ on. After he does this, the current node is updated
to tn, and the current edge to e(tn−1tn). If play continues forever, then Sarah
wins if the end ω of T containing (tn|n ∈ N) is in Ψ, and Colin wins if ω ∈ Ψ{.

The cocircuit game G∗ = G∗(T ,Ψ, P,Q) is the game like the dual circuit
game G(T ∗,Ψ{, Q, P ), but with the roles of Sarah and Colin reversed. We
will also use a different notation for the cocircuit game, putting stars on the
notation for the circuit game. Thus for example the current edge is denoted e∗c
and Colin’s nth move is denoted o∗n.

Lemma 4.3.2. Sarah has a winning strategy in G if and only if there is a
Ψ-circuit (C, o) of T with e ∈ (C, o) ⊆ {e}∪̇P .

Proof. Suppose first that there is such a Ψ-circuit (C, o). Then Sarah can win
in G by always choosing o(tc) when it is her turn to play.

Suppose for the converse that Sarah has a winning strategy σ in G. Let C
be the set of nodes t of T such that there is some finite play according to σ
consisting of 2n + 1 moves for some n after which t is the current node. Then
this play is unique, since Sarah’s moves are determined by σ, and Colin’s must
be the sequence of vertices along the finite path in T from t0 to t. We set o(t)
to be the final move on made by Sarah in that play. It is immediate that (C, o)
is a Ψ-pre-circuit of T with the desired properties.

Corollary 4.3.3. Colin has a winning strategy in G∗ if and only if there is a
Ψ{-cocircuit (C, o) of T with e ∈ (C, o) ⊆ {e}∪̇Q.

In order to relate (O2) to determinacy of G, we need to show that G and G∗
are closely related games.

Lemma 4.3.4. Colin has a winning strategy in G if and only if he has one in
G∗.

Proof. For the ‘if’ part, suppose that he has a winning strategy σ∗ in G∗. Then
he can win in G by playing as follows:

He should imagine an auxilliary play in the game G∗, in which he plays
according to σ∗, and for which he should ensure that at any point the current
edge and node agree with those in G. When Sarah makes the move on, he should
pick some edge in on∩o∗n other than en. This edge t can then only be a dummy
edge e(tct) for some t adjacent to tc. He should play t as tn in G and imagine
that Sarah also plays t as t∗n in G∗. If play continues forever, then the end ω
containing (tn|n ∈ N) is in Ψ{ since σ∗ is winning.

For the ‘only if’ part, suppose that he has a winning strategy σ in G. Then
he can win in G∗ by playing as follows:

He should imagine an auxilliary play in the game G, in which he plays ac-
cording to σ, and for which he should ensure that at any point the current edge
and node agree with those in G∗. When he has to make a move o∗n, he should
consider the set R of responses prescribed by σ to legal moves on that Sarah

94



could make in G. Then R ∪ Q meets every circuit o of M(tc) with ec ∈ o.
Thus since (O2) holds for the matroid M(tc) there is some cocircuit o∗n of that
matroid with ec ∈ o∗n ⊆ {ec}∪R∪Q, and Colin should play such a cocircuit. If
Sarah responds by playing t∗n, then we must have t∗n ∈ R and so there is some
legal move on in G to which σ prescribes the response t∗n. Then Colin should
imagine that, in the play of G, Sarah plays on and he responds by playing t∗n
as tn. If play continues forever, then the end ω containing (t∗n|n ∈ N) is in Ψ{

since σ is winning.

Corollary 4.3.5. (O2) holds for the partition E = {e}∪̇P ∪̇Q of the groundset
of T if and only if G(T ,Ψ, P,Q) is determined.

Since any game G(Ψ) with Ψ ⊆ AN and A countable can be coded by such
a game with A = {0, 1}, we also get:

Corollary 4.3.6. The Axiom of Determinacy is equivalent to the statement
that every set Ψ of ends of every tree of finite matroids of overlap 1 induces a
matroid. If the Axiom of Choice holds then there is a tree of finite matroids of
overlap 1 and a set Ψ of ends of that tree that doesn’t induce a matroid.

Corollary 4.3.7. For any tree of countable tame matroids T = (T,M) of
overlap 1 and any Borel set Ψ of ends of T , the pair (T ,Ψ) induces a matroid.

In the Appendix, we prove that the assumptions that T is countable and
tame are not needed.

Proof. This is immediate from Borel determinacy, Corollary 4.3.5 and the fact
that for each partition of the ground set as {e}∪̇P ∪̇Q the projection map from
the set of legal infinite plays in G(T ,Ψ, P,Q) to Ω(T ) sending a play to the end
containing the sequence (tn|n ∈ N) for that play is continuous.

In Section 4.5 we will extend these techniques to trees of finite representable
matroids and so get results applying to all locally finite graphs. However, our
results so far already have implications for graphs with a tree structure of width
2.

Theorem 4.3.8. Let G be a graph with a tree structure T of width 2, and Ψ a
Borel set of ends of G. Then (G,Ψ) induces a matroid.

Proof. Let G′ be obtained from G by subdividing certain edges as in the proof
of Lemma 4.2.15. Then by Corollary 4.3.7, (T (G,T ),Ψ) induces a matroid M ,
which by Lemma 4.2.15 is also induced by (G′,Ψ). Then the matroid obtained
from M by contracting one of each pair of edges subdividing an edge of G is
induced by (G,Ψ).

Assuming the Axiom of Choice holds, we can also give another example of
a graph G and a set of ends Ψ of G such that (G,Ψ) doesn’t induce a matroid.
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Figure 4.6: The binary tree with a particular 3-coloring of its edges.

s = ∅ s of odd length s 6= ∅ of even length

Figure 4.7: The Torsos from Example 4.3.9.

Example 4.3.9. Figure 4.6 illustrates that we may 3-colour the edges of T2 in
such a way that the edges incident with any vertex s are the same colour if s has
even length considered as a finite {0, 1}-sequence, but are all different colours if
s has odd length.

We fix such a 3-colouring given as a function c : E(T2)→ V (K3). Let G be
the graph obtained from T2 ×K3 by removing all edges of the form e× {c(e)}
with e ∈ E(T2). Then G has a tree structure of width 2, in which the vertices
of T are the sets {s} × V (K3) with s a vertex of T2. The shapes of the torsos
for this tree structure are given in Figure 4.7.

Let Ψ be a set of ends of G such that G(Ψ) is not determined. Then the tree
of matroids obtained from T (G,T ) by contracting the bold edges in Figure 4.7
and deleting the dotted edges is isomorphic to T game, and we know (T game,Ψ)
does not induce a matroid. Thus (T (G,T ),Ψ) does not induce a matroid, and so
(G,Ψ) cannot induce a matroid, and so (T2×K3,Ψ) does not induce a matroid.

Now we can explain the sense in which we said that the wild cycle graph
was relatively simple when we discussed it in Section 4.9.

Lemma 4.3.10. For any set Ψ of ends of the wild cycle graph Gwild, the pair
(Gwild,Ψ) induces a matroid.
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Proof. As in the proof of Theorem 4.3.8, it is enough to check that (T (Gwild, T ),Ψ)
induces a matroid, where T is the tree structure from Example 4.2.10. Now we
may note that the torsos for this tree structure, depicted in Figure 4.4, have
the property that no bond contains more than 2 dummy edges. Thus in the
cocircuit games for this tree of matroids, all of Sarah’s moves apart from her
first one are forced. Thus all these games are determined, and we are done by
Lemma 4.3.4 and Corollary 4.3.5.

There are other simple examples of graphs which induce a matroid for any
Ψ:

Lemma 4.3.11. Let T be any locally finite tree, and let Ψ be any set of ends
of T ×K2. Then (T ×K2,Ψ) induces a matroid.

Proof. Once more it is enough to check that (T (T ×K2, T
′),Ψ) induces a ma-

troid, where T ′ is the tree structure whose vertices are the sets {t}× V (K2) for
t ∈ V (T ). The torsos are of the form S × K2, where S is a finite star. They
have the property that no circuit contains more than 2 dummy edges, and so
all the circuit games for this tree of matroids are determined, and we are done
by Corollary 4.3.5.

4.4 Trees of matroids II

To capture graphs which cannot be given a tree structure of width 2, we need
a more general notion of pasting in a tree of matroids, for which we will work
with representable matroids. Strictly speaking, we will be pasting together
represented matroids, since the matroid structure after pasting can depend on
the choices of representation before pasting.

Before returning to trees of matroids, we shall first outline how to paste
together just 2 matroids in this way. We shall take a slightly unusual point of
view on representations: we think of a representation of a finite matroid M over
a field k as given by a subspace U of kE(M) such that the minimal nonempty
supports of elements in U are the M -circuits (there is such a subspace if and
only if M is representable in the usual sense over k). The dual of M is then
represented by the orthogonal complement U⊥ of U .

Now suppose that we have two finite matroids M1 and M2 where Mi has
ground set Ei and is represented over k by a subspace Ui of kEi . Then there are
canonical embeddings of U1, U2 and kE14E2 as subspaces of V = kE1∪E2 . We
let U14U2 be (U1 +U2)∩kE14E2 : the vectors in this space are those v such that
there are v1 ∈ U1 and v2 ∈ U2 with v1�E1∩E2

= −v2�E1∩E2
, v�E1\E2

= v1�E1\E2

and v�E2\E1
= v2�E2\E1

.
This construction is well behaved with respect to duality. The orthogonal

complement of U14U2 in V is (U⊥1 ∩U⊥2 )+
(
kE14E2

)⊥ = (U⊥1 ∩U⊥2 )+kE1∩E2 . So
the orthogonal complement of U14U2 in kE14E2 is the intersection of that space
with kE14E2 , which is the set of those w such there are w1 ∈ U⊥1 and w2 ∈ U⊥2
with w1�E1∩E2

= w2�E1∩E2
, w�E1\E2

= w1�E1\E2
and w�E2\E1

= w2�E2\E1
.
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This isn’t quite the same as U⊥1 4U⊥2 - there is a missing minus sign in one of
the equations - but the supports of the vectors, and so the induced matroids,
are the same. Thus we have (M14M2)∗ = M∗14M∗2 .

This construction also allows us to glue together pairs of tame thin sums
matroids, provided that the overlap of their ground sets is finite. The details
will not be addressed here, but the basic reason is that in proving (O2), which
is potentially the trickiest of the axioms, it is possible by contracting P and
deleting Q to reduce the problem to one on the finite set consisting of e and the
edges in the overlap set.

If we want to use a construction like this to glue together a tree of matroids,
we will need a representation of each of the (finite) matroids.

Definition 4.4.1. Let k be a finite field. A k-representation of a tree (T,M)
of matroids is a function V assigning to each vertex t of T a subspace V (t) of
kE(t) such that M(V (t)) = M(t). The dual V ⊥ of such a k-representation is
the representation of the dual tree of matroids which assigns to each node t of
T the space V (t)⊥. We will only ever consider representations of trees of finite
matroids.

In this context, a Ψ-vector of V consists of a function v assigning to each
vertex t of T a vector v(t) ∈ V (t), in such a way that for any edge tt′ of
T we have v(t)�E(tt′) = v(t′)�E(tt′) and that every end of T in the closure of
{t ∈ V (T )|v(t) 6= 0} is in Ψ. The set of such Ψ-vectors is denoted V(V,Ψ). The
support of a Ψ-vector v is the set v = E ∩⋃t∈T v(t). The set of such supports
is denoted V(V,Ψ).

We say that (V,Ψ) induces a matroid M = M(V ) if C(M) ⊆ V(V,Ψ) ⊆
S(M) and C(M∗) ⊆ V(V ⊥,Ψ{) ⊆ S(M∗).

The question of when (O2) holds for these systems is once more tricky, and
will be addressed in Section 4.5. However, we are already in a position to give
a simple proof of (O1) and of tameness.

Lemma 4.4.2 ((O1) and tameness for representable trees of finite matroids).
Let T = (T,M) be a tree of finite matroids with a k-representation V , let Ψ
be a set of ends of T , and let v and w be respectively a Ψ-vectors of V and a
Ψ{-vector of V ⊥. Then |v ∩ w| is finite but not equal to 1.

Proof. If it were infinite, then there would be an end ω in the closure of v ∩ w
and so in the closure of both {t ∈ V (T )|v(t) 6= 0} and {t ∈ V (T )|w(t) 6= 0}, so
that ω would have to be in both Ψ and Ψ{, a contradiction. So it is finite.

Now fix some node t0 of T and for any node t let d(t) be the distance from
t0 to t in T (thus d(t0) = 0). Let v̂ : E → k be the function sending e ∈ E(t)
to v(t)(e), and ŵ : E → k be the function sending e ∈ E(t) to (−1)d(t)w(t)(e).
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Then we have

∑
e∈E

v̂(t)ŵ(t) =
∑

t∈V (T )

(−1)d(t)

 ∑
e∈E(t)

v(t)(e)w(t)(e)−
∑

tt′∈E(T )

∑
e∈E(tt′)

v(t)(e)w(t)(e)


= −

∑
tt′∈E(T )

(
(−1)d(t) + (−1)d(t′)

) ∑
e∈E(tt′)

v(t)(e)w(t)(e)


= 0

and it follows that |v ∩ w| = |v̂ ∩ ŵ| 6= 1.

Remark 4.4.3. Once we have shown that this system induces a (tame) matroid
M , the proof above will also show that it is a thin sums matroid over k according
to the characterisation given in [12], since we can choose the function cv : v → k
for a circuit v to be given by v̂�v and similarly take dw = ŵ�w.

With this new construction, we can capture the Ψ-system of any graph with
a tree decomposition.

Definition 4.4.4. For a graph G with a tree structure T , let V (G,T ) be the
unique representation of T (G,T ) over F2 (such a representation exists since for
each t ∈ V (t) the matroid M(τ(t)) is graphic and so binary).

Lemma 4.4.5. Let G be a graph, and let T be a tree structure on G. Let Ψ
be a set of ends of G. Let G′ be the graph obtained from G by subdividing each
edge which has endpoints in different nodes of T .6Then every Ψ-circuit of G′ is
the support of a Ψ-vector of V (G,T ) and every Ψ{-bond of G′ is the support of
a Ψ{-vector of (V (G,T ))⊥.

Proof. First we show that every Ψ{-bond of G′ is the support of a vector of
(V (G,T,Ψ))∗. Let b be such a Ψ{-bond. Let X be the set of vertices of G′ on
one side of b. For each t ∈ V (T ), let b(t) be the τ(t)-cut of edges of τ(t) with
one endpoint in X and the other not in X, and let w(t) be the characteristic
function of b(t): thus w is a vector of (V (G,T,Ψ))⊥. Then b = w.

Next, we show that every Ψ-circuit of G′ is the support of a vector of
V (G,T,Ψ). Let o be such a Ψ-circuit, and let O be the circle in G̃Ψ induc-
ing o. Fix some vertex t0 of T such that o meets E(t0). For any other vertex t
of T let T↑t be the set of vertices t′ of t on the other side of t from t0, together
with t itself. Let E↑t be E ∩⋃t′∈T↑tE(t′). For any tt′ ∈ E(T ), with t′ further
from t0 than t, let F (tt′) ⊆ E(tt′) be the set of those edges vevf such that there
is an arc in O from ve to vf using only edges of E↑t′. For any vertex t of T , let
o(t) be the union of o∩E(t) with all of the F (tt′) for t′ adjacent to t in T , and
let v(t) be the characteristic function of o(t). Since o = v, it suffices to prove

6as before, we add a new vertex ve corresponding to each such edge e = vv′, and replace
e in the set of edges by the two new edges vve and v′ve.
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that v is a Ψ-vector. Every end in the closure of {t ∈ V (t)|v(t) 6= 0} is in the
closure of o and so is in Ψ. So we just need to show that for each node t of T
the function v(t) is in the circuit space of τ(t). In fact, we shall show something
stronger: that o(t) is a vertex-disjoint union of circuits of τ(t).

The circle O can be broken into finitely many arcs each of which uses either
only edges in E(t0) or else only edges not in E(t0), with consecutive arcs around
O being of opposite types. For each arc using only edges not in E(t0) there is
some t′ adjacent to t0 such that that arc only uses edges from E↑t′. Replacing
each such arc with the corresponding edge in F (t0t′) gives the set o(t0), which
is therefore a circuit of τ(t0).

For any t 6= t0, let t− be the neighbour of t in the direction of t0, and let
vevf be any edge in F (t−t). Then there is an arc A in O from ve to vf using
only edges of E↑t. A can be broken into finitely many arcs each of which uses
either only edges in E(t) or else only edges not in E(t), with consecutive arcs
along A being of opposite types. For each arc using only edges not in E(t) there
is some t′ adjacent to t such that that arc only uses edges from E↑t′. Replacing
each such arc with the corresponding edge in F (tt′) gives a path P (ef) of τ(t),
which together with vevf itself gives a circuit o(vevf ) of τ(t). Then o(t) is the
union of the vertex-disjoint circuits o(vevf ), completing the proof.

Lemma 4.4.6. In the context of Lemma 4.4.5, for any Ψ-vector v of V (G,T ),
v is a union of Ψ-circuits. For any vector w of (V (G,T,Ψ))⊥, w is a union of
Ψ{-bonds.

Proof. By Lemma 4.4.5 and Lemma 4.4.2, v never meets a finite bond of G′

just once and so, by the dual of Lemma 1.2.1 it is a union of topological circuits
of G′. Each such circuit is a Ψ-circuit since every end in its closure is in the
closure of {t ∈ V (T )|v(t) 6= 0} and so is in Ψ. The proof for w is analogous.

In fact, the results above apply to all locally finite graphs.

Lemma 4.4.7. Any connected locally finite graph G can be given a tree struc-
ture.

Proof. Let U be a normal spanning tree of G, with root node v0. For any down-
closed set X of vertices of G we take δ(X) to be the set of minimal vertices not
in X (here minimality is with respect to the tree order ≤ on U). For any set
X of vertices of G, let X↓ be the down-closure of X in U , and N(X) the set
of vertices adjacent to or in X. We build a sequence of finite subsets Vn of the
vertices of G by setting V0 = ∅ and Vn+1 = N(Vn)↓∪ δ(Vn). For any n and any
vertex v ∈ δ(Vn), we set t(v) = {v′ ∈ Vn+1|v ≤ v′}. Let T be the set of sets t(v)
arising in this way. By construction, T is a partition of the vertices of T into
finite, connected sets. We order the vertices of T by t(v) ≤ t(v′) if and only if
v ≤ v′ in the tree order on N . This gives a tree-order (with root t(v0)) on T ,
making T a tree. It remains to show that distinct vertices of T are adjacent if
and only if they contain adjacent vertices of G.

If t(v) and t(v′) are adjacent in T , with v < v′, then let n be such that
v ∈ δ(Vn). As v < v′, v′ 6∈ Vn ∪ δ(Vn) so v′ 6∈ Vn+1. Let w be minimal such that
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v < w ≤ v′ and w 6∈ Vn+1. Then w ∈ δ(Vn+1) and we have t(v) < t(w) ≤ t(v′)
in T , so w = v′. Thus the predecessor v− of v′ in U is in Vn+1, but it can’t be
in Vn since v′ > v. So v− ∈ t(v) and so there is an edge from t(v) to t(v′).

Now let v 6= v′ be such that there is an edge from t(v) to t(v′) in G. Say the
endpoints of this edge are w ∈ t(v) and w′ ∈ t(w). Since U is normal we have
without loss of generality that w < w′. Let n be such that v ∈ δ(Vn). Then
v ≤ w < w′, so since w′ 6∈ t(v) we have w′ 6∈ Vn+1. Since w ∈ t(v) we have
w ∈ Vn+1 and so w′ ∈ Vn+2, so that v′ ∈ δ(Vn+1). Since both v and v′ lie below
w′, we have v < v′ and so v and v′ are adjacent in T .

4.5 Determinacy and (O2) for representable trees
of matroids

We fix a finite field k. We will rely on the following basic fact:

Fact 4.5.1. Let X be a finite set of vectors in a finite dimensional vector space
V , and let y ∈ V . X⊥ ⊆ {y}⊥ if and only if y is in the span 〈X〉 of X.

We fix a k-representation V of a tree T = (T,M) of finite matroids and a
set Ψ of ends of T , together with a partition E = {e}∪̇P ∪̇Q of the ground set of
T . Let t0 be the node of T such that e ∈ E(t0). For a function f whose domain
is a subset of

⋃
t∈V (T )E(t), we obtain a function f̄ :

⋃
t∈V (T )E(t) → k from f

by assigning to each value in
⋃
t∈V (T )E(t) but not in the domain of f the value

zero.

Definition 4.5.2. The circuit game G = G(V,Ψ, P,Q) is played between two
players, called Sarah and Colin, as follows:

Play alternates between the players, with Sarah making the first move. At
any point in the game there is a current node tc ∈ V (T ), a current challenge
set Sc ⊆ E(tc) and a current challenge function xc : Sc → k. Initially we set
tc = t0, Sc = {e} and xc(e) = 1. For any n the (2n − 1)st move is made by
Sarah: she must play a vector vn ∈ V (tc) such that v̄n�Q = 0 and v̄n 6⊥ x̄c.
Then the 2nth move is made by Colin: he must play a node tn adjacent to tc
and further away from t0 than tc is and a vector xn ∈ kE(tctn) such that v̄n 6⊥ x̄n.
After he does this, the current node is updated to tn, the current challenge set
to Sn = E(tntn−1) and the current challenge function to xn. If play continues
forever, then Sarah wins if the end ω of T containing (tn|n ∈ N) is in Ψ, and
Colin wins if ω ∈ Ψ{.

The cocircuit game G∗ = G∗(V,Ψ, P,Q) is the game like the dual circuit
game G(V ⊥,Ψ{, Q, P ), but with the roles of Sarah and Colin reversed. We will
also use a different notation for the cocircuit game, putting stars on the notation
for the circuit game. Thus for example the current challenge function is denoted
x∗c and Colin’s nth move is denoted v∗n.

Lemma 4.5.3. Sarah has a winning strategy in G if and only if there is a
Ψ-vector v of V such that e ∈ v ⊆ {e}∪̇P .
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Proof. Suppose first that there is such a vector v. Then Sarah can win in G by
always choosing the vector v(tc) when it is her turn to play. Indeed, for any
edge tt′ ∈ E(T ), the vectors v(t) and v(t′) coincide when restricted to E(tt′).
Hence if v̄n 6⊥ x̄n, then also v̄n+1 6⊥ x̄n. So choosing v(tc) is a legal move and
since v is a vector, the nodes tn from any play that is played according to this
strategy will converge to some end in Ψ.

Suppose for the converse that Sarah has a winning strategy σ in G. For each
n, let Rn be the set of sequences (vi|i ≤ n) which can arise as the first n moves
made by Sarah in a game played according to σ.

Sublemma 4.5.4. Let r ∈ Rn and let t(r) be the node of T that is current
when rn is played. Let t′ be a node of T that is adjacent to t(r) and further
away from t0 than t(r). Let Pt′(r) be the set of those v ∈ V (t′) such that the
extension r.v of the sequence r by rn+1 = v is in Rn+1.

Then rn�E(t(r)t′) ∈ 〈v�E(t(r)t′)|v ∈ Pt′(r)〉.
Before proving Sublemma 4.5.4, let us see how to derive Lemma 4.5.3 from

it. By Sublemma 4.5.4, for each r ∈ Rn, t(r), t′ and Pt′(r) as in that Lemma,
we can choose a representation.

rn�E(t(r)t′) =
∑

v∈Pt′ (r)
λr.vv�E(t(r)t′)

Let r�i denote the initial sequence of r of length i. For any t ∈ V (T ) at
distance n− 1 from t0, we set:

v(t) =
∑

r∈Rn: t(r)=t

rn ·
n∏
i=2

λr�i

Since each rn in this expression is in V (t), the vector v(t) is in V (t). And also
e ∈ v ⊆ {e}∪̇P . Next we check t 7→ v(t) is a Ψ-vector of V . For this, we
first check that for any tt′ ∈ E(T ) with t′ further away from t0 than t we have
v(t)�E(tt′) = v(t′)�E(tt′):

v(t)�E(tt′) =
∑

r∈Rn: t(r)=t

rn�E(tt′) ·
n∏
i=2

λr�i

=
∑

r∈Rn: t(r)=t

 ∑
v∈Pt′ (r)

λr.vv�E(tt′)

 · n∏
i=2

λr�i

=
∑

r∈Rn+1: t(r)=t′

rn+1�E(tt′) ·
n+1∏
i=2

λr�i

= v(t′)�E(tt′)

Next, suppose for a contradiction that there is a sequence tn with the support
of v(tn) nonempty such that its limit is not in Ψ. Without loss of generality,

102



we may assume that tn has distance at least n from t0. Hence for each n ∈ N
there is some j ≥ n and some r ∈ Rj such that rj 6= 0 and t(r) = tn. Since
0 ⊥ x for every x, no r�i can be 0 for any i ≤ j since the play would then be
finished after the ith move, which is not true. So without loss of generality, we
may assume that tn has distance precisely n from t0.

Now we apply the Infinity Lemma where we take the Vn from that Lemma
to be the sets {r ∈ Rn|t(r) = tn, rn 6= 0}. And we join r ∈ Rn+1 to r′ ∈ Rn if
and only if r�n = r′. Note that each Vn is finite since k is finite. Hence we find
a sequence of an ∈ Rn such that an+1�n = an. This gives rise to an infinite play
according to σ whose end is not in Ψ, contradicting the fact that σ is a winning
strategy. Thus t 7→ v(t) is a Ψ-vector of V .

Having shown how Lemma 4.5.3 can be deduced from Sublemma 4.5.4, it
remains to prove Sublemma 4.5.4. For this, we fix a particular finite play of
length 2n + 1 according to σ and giving rise to r, and consider the situation
just after this play. For any w ∈ kE(t(r)t′) with w̄ 6⊥ r̄n Sarah has a response
prescribed by σ, that is, there is some v ∈ P = Pt′(r) such that w̄ 6⊥ v̄. In other
words, any w ∈ kE(t(r)t′) that is not orthogonal to xn is also not orthogonal to
some v ∈ P . Put yet another way, any z ∈ kE(t(r)t′) that is orthogonal to every
v ∈ P is orthogonal to xn. By Fact 4.5.1, rn�E(t(r)t′) ∈ 〈v�E(t(r)t′)|v ∈ P 〉. This
completes the proof of Sublemma 4.5.4, and so of Lemma 4.5.3.

Corollary 4.5.5. Colin has a winning strategy in G∗ if and only if there is a
Ψ{-vector v∗ of V ⊥ such that e ∈ v∗ ⊆ {e}∪̇Q.

In order to relate (O2) to determinacy of G, we need to show that G and G∗
are closely related games.

Lemma 4.5.6. Colin has a winning strategy in G if and only if he has one in
G∗.

Proof. For the ‘if’ part, suppose that he has a winning strategy σ∗ in G∗. Then
he can win in G by playing as follows:

He should imagine an auxilliary play in the game G∗, in which he plays
according to σ∗, and for which he should ensure that at any point the current
node and current challenge set agree with those in G, and additionally ensure
that xn = v∗n�Sn and x∗n = vn+1�Sn . We shall assume, without loss of generality,
that v1(e) = 1 (otherwise we can just multiply v1 by some constant to make
this true).

Suppose Sarah makes some move vn. Then x∗c = vn�Sn−1
: if n = 1 then

this is true by our assumption, and otherwise it is true by the condition that
x∗n = vn+1�Sn . Let v∗n be the move in G∗ that is prescribed by σ∗. Then∑
f∈Sn−1

vn(f)v∗n(f) =
∑
f∈Sn−1

x∗c(f)v∗n(f) 6= 0 but vn ⊥ v∗n. Since the
support of the map f 7→ vn(f)v∗n(f) consists of dummy edges only, there is
some tn ∈ V (T ) that is adjacent to tn−1 and has distance n from t0, such
that

∑
f∈E(tn−1tn) vn(f)v∗n(f) 6= 0. Then Colin plays tn, Sn = E(tn−1tn) and

xn = v∗n�Sn . And he plays v∗n in the imagined cocircuit-game, and imagines
that Sarah plays x∗n = vn+1�Sn there. Note that this is a legal move since
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∑
f∈Sn v

∗
n(f)x∗n(f) =

∑
f∈Sn xn(f)vn+1(f) 6= 0. If the play of the circuit game

continues forever, then the end ω containing (tn|n ∈ N) is in Ψ{ since σ∗ is
winning.

For the ‘only if’ part, suppose that he has a winning strategy σ in G. Then
he can win in G∗ by playing as follows:

He should imagine an auxilliary play in the game G, in which he plays ac-
cording to σ, and for which he should ensure that at any point the current node
and current challenge set agree with those in G∗.

When it is his turn to move, either it is his first move, in which case we let
x∗0 be the function with support {e} that sends e to 1 or Sarah has just played
x∗n−1 in G∗. Then he imagines the corresponding game of G where he has just
played xn−1, or else it is his first move, in which case we set x0 = x∗0.

Let O be the set of Sarah’s legal moves in G. For v ∈ O, let t(v) and x(v) be
the node and challenge function prescribed by σ. Let Tn = {t(v)|v ∈ O}. And
for each t ∈ Tn, let P (t) = {x(v)|v ∈ O : t(v) = t}.
Sublemma 4.5.7. There is some v∗ ∈ V (tn−1)⊥ and coefficients λt,x ∈ k and
a vector w ∈ kE(tn−1)∩Q such that

x̄n−1 = v∗ + w +
∑
t∈Tn

∑
x∈P (t)

λt,xx̄.

Before proving Sublemma 4.5.7, let us complete the description of his strat-
egy. In G∗, he plays v∗n = v∗ - by the equation above the support of this vector
cannot meet the set Pco. Let tn and x∗n be the node and challenge set that
Sarah plays in her next move in G∗. Then by the choice of v∗n, the node tn is in
Tn, and x̄∗n 6⊥ v̄∗n. Since v∗n restricted to E(tn−1tn) is equal to

∑
x∈P (tn) λt,xx,

there is some xn ∈ P (tn) with xn 6⊥ x∗n. Then he imagines that she plays some
v ∈ O with x(v) = xn, and that he then plays tn and xn. This completes the
description of his strategy. If play continues forever, then the end ω containing
(t∗n|n ∈ N) is in Ψ{ since σ is winning.

Hence it remains to prove Sublemma 4.5.7. For this, by Fact 4.5.1, it remains
to show that (V ⊥∪kE(tn−1)∩Q∪⋃t∈Tn ⋃x∈P (t) x̄)⊥ ⊆ {̄xn−1}⊥. In other words,
any y that is not orthogonal to xn−1 is not orthogonal to some v∗ ∈ V ⊥ or to
some x̄ or has support meeting Q. This follows from the fact that for every v ∈ V
with v 6⊥ xn−1 and v ∩Q = ∅, there is some x such that v 6⊥ x̄. This completes
the proof of Sublemma 4.5.7, and so also the proof of Lemma 4.5.6.

Corollary 4.5.8. (O2) holds for the partition E = {e}∪̇P ∪̇Q of the groundset
of T if and only if G(V,Ψ, P,Q) is determined.

Corollary 4.5.9. The Axiom of Determinacy is equivalent to the statment that
every tree of finite matroids representable over a finite field induces a matroid.

Corollary 4.5.10. For any tree of finite matroids T = (T,M) represented over
a finite field and any Borel set Ψ of ends of T , (T ,Ψ) induces a matroid.

104



Proof. Just like the proof of Corollary 4.3.7.

Theorem 4.5.11. Let G be a locally finite graph, and Ψ a Borel set of ends of
G. Then (G,Ψ) induces a matroid.

Proof. Just like the proof of Theorem 4.3.8.

4.6 From the locally finite case to the countable
case

4.6.1 From the locally finite case to the case that the
graph has a locally finite normal spanning tree

For any graphs G and H, we will use G × H to denote the graph with vertex
set V (G)× V (H) and with edge set

{e× {v}|e ∈ E(G), v ∈ V (H)} ∪ {{v} × e|v ∈ V (G), e ∈ E(H)}.

The edges in {e × {v}|e ∈ E(G), v ∈ V (H)} are called G-edges, and those in
{{v} × e|v ∈ V (G), e ∈ E(H)} are called H-edges.

Let G be a graph having a normal spanning tree T . Then the Undomination-
graph U = U(G,T ) of G is the following. Its vertex set is V (U) = V (G)×V (T ).
The pair (v, t)(v′, t′) is an edge if and only if either v = v′ and t and t′ are
adjacent in T or v and v′ are adjacent in G and v = t′ and v′ = t. We call the
edges of the first type T -edges and the ones of the second type G-edges. We will
sometimes implicitly identify the G-edge (v, v′)(v′, v) with the corresponding
edge vv′ of G.

The following properties of U are immediate. Any vertex of U is incident
with at most one G-edge. U has G as a minor, where the branching set of the
vertex v has the form {v} × V (T ). In other words, we obtain G as a minor of
U by contracting all T -edges.

Definition 4.6.1. Let PG = p1(p1, p2)p2 . . . (pn−1, pn)pn be a walk in G. Let
t, t′ ∈ V (T ). Then ut,t′(PG) denotes the following walk in U .

ut,t′(PG) = [{p1} × (tTp2)] ◦ [(p1, p2)(p2, p1)] ◦ [{p2} × (p1Tp3)]◦

[(p2, p3)(p3, p2)] ◦ [{p3} × (p2Tp4)] ◦ . . . ◦ [{pn} × (pn−1Tt
′)]

Definition 4.6.2. Let PU be a walk in U from (p1, t) to (pn, t′). Then the set
of its G-edges forms a walk in G from p1 to pn. We denote this walk by g(PU ).

Lemma 4.6.3. The operations u and g are inverse to each other for walks that
traverse no edge more than once.

Proof. It is immediate from the definitions that g(ut,t′(P )) = P .
For the other direction, let P be a walk in U from (p1, t) to (pn, t′). We are

to show that ut,t′(g(P )) = P . This follows from the fact the branching set of
every v ∈ V (G) is a tree.
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Note that if P is a path in G, then ut,t′(P ) is a path whereas if P is a path
in U , the walk g(P ) need not be a path.

Corollary 4.6.4. Let RG = p1(p1, p2)p2 . . . be a ray in G. Then for any t ∈ T ,
there is a unique ray ut(RG) starting at (p1, t) in U included in the T -edges
together with {(p1, p2)(p2, p1), . . .}.

More precisely:

ut(RG) = [{p1} × (tTp2)] ◦ [(p1, p2)(p2, p1)] ◦ [{p2} × (p1Tp3)] ◦ . . .

Remark 4.6.5. A result similar to Corollary 4.6.4 also holds for combs since
we have it for paths and rays. A little bit of care is needed when choosing the
starting points t of the paths ut,t′(P ) to ensure that these paths only meet the
spine of the comb in their initial vertices.

The following lemma allows us to turn finite separators in G into finite
separators in U .

Lemma 4.6.6. Let X be a finite set of vertices of G, and let w = (v, t) and
w′ = (v′, t′) be vertices of U such that v and v′ are in different components of
G \X.

Then X ×X separates w from w′ in U .

Proof. Let PU be some w-w′-path in U . Let g(PU ) = p1(p1, p2)p2 . . . (pn−1, pn)pn
with p1 = v and pn = v′.

Let C1 be the component of G \ X containing p1. Let i ∈ {1, . . . , n} be
maximal such that pi ∈ C1. Such an i exists as p1 ∈ C1. Note that pi 6= pn.
Then pi+1 is in X.

Since pi+1 6= pn, p1, the path PU has {pi+1}× (piTpi+2) as a subpath. Since
pi ∈ C1 but pi+2 /∈ C1, the path piTpi+2 has to meet X in some point x. Then
PU meets X ×X in (pi+1, x), completing the proof.

The following lemma is the reason why we call U the Undomination-graph
of G.

Proposition 4.6.7. In U(G,T ), no vertex dominates a ray.

Proof. Suppose for a contradiction that U has a vertex (v, t) dominating a ray
R. Then there is an infinite collection (Pn|n ∈ N) of (v, t)-R-paths in U that
meet only in (v, t). Since all edges except for at most one edge incident with
(v, t) are T -edges, we may assume that the second vertex on each Pn has the
form (vn, t) where vn is an neighbour of v in T . Since v has at most one lower
neighbour in T , we may even assume that all the vn are upper neighbours of v
in T .

Let dve be the set of those vertices that are less than or equal to v in the tree
order of T . As T is normal, all the vn are in different components of G \ dve.
By Lemma 4.6.6, all the (vn, t) are in different components of U \ (dve × dve).

Since dve × dve is finite, we can find a tail R′ of R that avoids dve × dve.
Then for any two paths Pi and Pj that avoid dve × dve and meet R′, the set
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R′ ∪Pi ∪Pj is connected in U \ (dve× dve). Hence the vertices (vi, t) and (vj , t)
are in the same connected component of U \ (dve × dve).

Since R \R′ and dve × dve are both finite, there exist such paths Pi and Pj ,
which yields the desired contradiction.

Next we shall investigate how the ends of U relate to the ends of G.

Lemma 4.6.8. Let R1 and R2 be rays of G. Then R1 and R2 belong to the
same end of G if and only if ut(R1) and ut′(R2) belong to same end of U for
any t, t′ ∈ V (T ).

Proof. First suppose that ut(R1) and ut′(R2) belong to different ends of U .
Then there is a finite set S = (v1, t1), . . . , (vn, tn) separating them. Without
loss of generality we may assume that ut(R1) and ut′(R2) do not meet S. Let
P be some R1-R2-path, which goes from (w, s) to (w′, s′). Then us,s′(P ) meets
S in some point, say (vi, ti). Hence {v1, . . . , vn} separates R1 from R2, yielding
the first implication.

The other implication is an immediate consequence of Lemma 4.6.6.

By Lemma 4.6.8, the map u induces an inclusion ũ from the ends of G into
the ends of U . Let C be the set of T -edges. The purpose of this subsection is
to prove the following.

Theorem 4.6.9. Assume that (U, ũ(Ψ)) induces a matroid M . Then (G,Ψ)
induces the matroid M/C.

The Undomination-graph U(G,T ) is locally finite whenever T is locally fi-
nite. Thus Theorem 4.6.9, reduces the case where G has a locally finite normal
spanning tree to the locally finite one, which is the aim of this subsection.

The proof of Theorem 4.6.9 takes the rest of this subsection.

Lemma 4.6.10. Assume that (U, ũ(Ψ)) induces a matroid M . Then the edge
set b is an M/C-cocircuit b if and only if it is a Ψ{-bond of G.

Proof. First suppose that b is an M/C-cocircuit. The cocircuit b is a ũ(Ψ){-
bond of U that does not meet C. Since the graphs U/C and G are equal, it
remains to show that b considered as an edge set of G does not have any end of
Ψ in its closure.

Suppose for a contradiction that there is such an end ω ∈ Ψ that is in the
closure of b. Let Rω be some ray in ω.

By Lemma 4.1.1, there is a comb K with spine Rω all of whose teeth are
endvertices of b. Then in U , the set K ∪ C contains a comb all of whose teeth
are in endvertices of b with spine ut(Rω) for some t by Remark 4.6.5. Hence
ũ(ω) is in the closure of b, a contradiction.

Next suppose that b is a Ψ{-bond of G. As above, it is clear that b considered
as an edge set of U is a bond.

Now suppose for a contradiction that there is some end ω ∈ ũ(Ψ) in the
closure of b. We pick a ray Rω ∈ ũ−1(ω). By Lemma 4.1.1 there is a comb in U
with spine u(Rω) all of whose teeth are endvertices of b. Then this comb defines
a comb in G with comb Rω, which is impossible. This completes the proof.

107



Next we prove Lemma 4.6.10 for circuits, which is a little more complicated.
We define the map p : |U |ũ(Ψ) → |G|Ψ as follows. A vertex (v, t) maps to v, a

G-edge (v, t)(t, v) maps to the edge vt, all interior points of a T -edge (v, t)(v, t′)
map to v, and an end ω ∈ ũ(Ψ) maps to ũ−1(ω).

Lemma 4.6.11. p is continuous.

Proof. Let O be some open set in |G|Ψ. Let x ∈ p−1(O). If x is an interior
point of a G-edge, then p−1(O) clearly includes a neighbourhood around x. If
x is an interior point of a T -edge, then p−1(O) included the whole interior of
that edge.

If x is a vertex, then there is some ε with Bε(p(x)) ⊆ O: then Bε(x) ⊆
p−1(O).

If x is an end, then some basic open set Ĉ(S, p(x)) is included in O. Let
D = D(S × S, x) be the unique component of U \ S × S having x in its closure.
We show that D̂(S × S, x) is a subset of p−1(O). Clearly all edges and vertices
of D̂(S × S, x) are in p−1(O). So let ω ∈ D̂(S × S, x) be an end.

Let (v, t) ∈ D. Let R be a ray in G that is in ũ−1(ω). Then (for any t)
ut(R) is eventually in D as ut(R) ∈ ω. By Lemma 4.6.6, R is then eventually
in the same component as v. So it is in C(S, p(x)). Hence ω ∈ Ĉ(S, p(x)). This
completes the proof of the continuity of p.

Since G̃Ψ has the quotient topology, the quotient map πG : |G|Ψ → G̃Ψ is
continuous. Similarly, the quotient map πU : |U |ũ(Ψ) → Ũũ(Ψ) is continuous.
All the maps occurring here are shown in Figure 4.8.

Lemma 4.6.12. For any two x, y ∈ Ũũ(Ψ) with πG(p(x)) 6= πG(p(y)), we have
πU (x) 6= πU (y).

In particular, there is a unique map p̃ : Ũũ(Ψ) → G̃Ψ satisfying p̃(πU (x)) =
πG(p(x)). Moreover, p̃ is continuous.

It might be worth noting that since U is locally finite, the map πU is the
identity, which makes the Lemma rather trivial. However we will not use this
in the proof as we rely on this Lemma later on in a slightly different context
where πU is not the identity.

Proof. Since πG(p(x)) 6= πG(p(y)), there is some Ψ-bounded cut of G with p(x)
and p(y) on different sides by Lemma 4.1.5. Then there is also a Ψ{-bond b of
G with p(x) and p(y) on different sides. By Lemma 4.6.10, the bond b is also
a ũ(Ψ){-bond in U . And this bond witnesses that πU (x) 6= πU (y) by the other
implication of Lemma 4.1.5. This proves the first part of the Lemma.

It remains to show that p̃ is continuous. This follows from the universal
property of the quotient map πU since the concatenation of πG and p is contin-
uous.

Corollary 4.6.13. Assume that (U, ũ(Ψ)) induces a matroid M . Then for
any M/C-circuit o and any edge e ∈ o, the circuit o includes a Ψ-circuit of G
containing e.
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Figure 4.8: The construction of the map o′′.

Proof. Let o be some M/C-circuit. Then there is some M -circuit o ⊆ o′ ⊆ o∪C
by Lemma 1.2.7. Let o′′ = p̃ ◦ o′ as in Figure 4.8.

Let e be some edge in o. Then e considered as an edge of U is mapped under
p̃ to the edge e considered as an edge of G, which is then in the image of o′′.

Then the restriction of o′′ to those points that do not map to interior points
of e is a path between the two endvertices of e, that is a continuous function from
[0, 1] to G̃Ψ mapping 0 and 1 to the endvertices of e. By a well-known Lemma
of basic topology[7], there is an arc (injective path) between the two endvertices
of e whose image is included in the image of that path. The concatenation
of this arc with some continuous function from [0, 1] to e defines the desired
Ψ-circuit.

By Corollary 4.6.13, Lemma 4.6.10 and Lemma 4.1.8, we can apply Lemma 1.3.7
and deduce Theorem 4.6.9.

4.6.2 From the case that the graph has a locally finite
normal spanning tree to the countable case

The aim of this subsection is to prove the following.

Proposition 4.6.14. For every countable graph G together with ΨG ⊆ Ω(G)
there is a graph H having a locally finite normal spanning tree together with
ΨH ⊆ Ω(H) and C ⊆ E(H) such that if (H,ΨH) induces a matroid M , then
(G,ΨG) induces M/C.

First we need the following lemma.

Lemma 4.6.15. Let G be a countable graph together with a normal spanning
tree TG. Then there is a countable graph H together with a locally finite normal
spanning tree TH and C ⊆ E(TH) such that G = H/C and TG = TH/C.

Proof of Lemma 4.6.15. First we construct TH . Let X be the set of those ver-
tices of TG that have infinitely many upper neighbours. We obtain the tree T ′

from TG by adding a ray Rx starting at x for every x ∈ X.
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We obtain TH from T ′ by replacing each edge of the type vx where v is an
upper neighbour in T ′ of x by the edge vx′ for some x′ ∈ Rx − x in such a way
that for all x ∈ X all vertices in Rx − x get degree 3. This is possible by the
choice of X. Note that any x ∈ X has degree at most 2 in TH , and hence TH is
locally finite. Let C be the set of all those edges contained in some Rx. Then
C ⊆ E(TH) and TG = TH/C.

Note that V (G) ⊆ V (TH). We obtain H from TH by adding all edges
e ∈ E(G) \ E(TG). It is straightforward to check that G = H/C and TH is
normal in H. This completes the proof.

Proof of Proposition 4.6.14. First note that every countable graph has a normal
spanning tree [34]. Hence we may pick a normal spanning tree TG of G.

By Lemma 4.6.15, there is a countable graph H together with a locally finite
normal spanning tree TH and C ⊆ E(TH) such that G = H/C and TG = TH/C.

Every normal ray R of G starting at some vertex v ∈ V (G) extends to a
unique normal ray h(R) starting at the same vertex v and that is included in
R ∪ C.

It is straightforward to check that R and R′ belong to the same end of G
if and only if h(R) and h(R′) belong to the same end of H. This defines an
inclusion h̃ from the ends of G into the ends of H. We let ΨH = h̃(ΨG).

We define the map p : |H|ΨH → |G|ΨG to be h̃−1 on the ends, map Rx to
x for every x ∈ X, and to be the identity everywhere else. As in the proof of
Theorem 4.6.9, we show the following.

Lemma 4.6.16. p is continuous.

Proof. Let O be some open set in |G|ΨG . Let y ∈ p−1(O). If y is a vertex or an
interior point of an edge, then p−1(O) includes an open neighbourhood around
y as in the proof of Lemma 4.6.11.

If y is an end in ΨH , thenO includes a basic open set of the form Ĉ(S, h̃−1(y)).
We pick v ∈ V (G) such that in TG it separates S from h̃−1(y). Note that this
is possible since S is finite.

Then Ĉ(Sv, y) ⊆ p−1(O) where Sv is the down-closure of v in TH . This
completes the proof of the continuity of p.

Now assume that (H,ΨH) induces a matroid M . The proofs of Lemmata
4.6.10, 4.6.12 and 4.6.13 extend immediately to our setting. Hence we can
apply the proof of Theorem 4.6.9 from the last section to conclude that (G,ΨG)
induces M/C.

4.7 Applications

We are now in a position to begin applying our main results, to answer some of
the basic questions about matroids discussed in the introduction. We begin by
showing that there are as many countable tame matroids as there could possibly
be: we prove that there are 22ℵ0 non-isomorphic countable tame matroids with
no M(K4)-minor and no U2,4-minor (Corollary 4.0.11 from the Introduction).
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Proof. First we outline the construction of the 22ℵ0 non-isomorphic matroids.
Let T be a tree with precisely one vertex of each finite degree ≥ 2. We will
use the graph G = T ×K2: that is, G is built from two disjoint copies of T by
adding an edge between each vertex and its clone. We call the two copies of the
vertex of degree n vn and v′n. So for any Ψ ⊆ Ω(G) the pair (G,Ψ) induces a
matroid M(Ψ) by Lemma 4.3.11.

It suffices to show for any isomorphism f : M(Ψ)→M(Ψ′) that Ψ = Ψ′.
The edge vnv′n is in precisely n circuits of length 4. Since all edges not of

the type vnv′n are in precisely one circuit of length 4, the map f maps vnv′n to
itself.

Let e be some edge not of the type vnv′n. Then it is contained in a unique
circuit of length 4 which contains its clone and two other edges, say viv

′
i and

vjv
′
j . The edge e cannot be distinguished from its clone and f may map it to

itself or to its clone but it cannot map it to some other edge because f(e) must
lie in a common 4-circuit with viv

′
i and vjv

′
j .

For every end ω of G, ω ∈ Ψ if and only if the unique double ray D containing
v2v
′
2 and with both ends in ω is a circuit of M(Ψ). But by the above argument,

each such D is fixed by f . Hence Ψ = Ψ′.
Having shown that there are 22ℵ0 non-isomorphic tame matroids, it remains

to show that none of them has M(K4) or U2,4 as a minor. Combining the
fact that in these matroids every circuit-cocircuit intersection is even by Re-
mark 4.4.3 with a result of [13], yields that they do not have a U2,4-minor.

If M(Ψ) had an M(K4)-minor, we would be able to find a 2-separation of
G with at least two of the six edges of that minor on each side. But this would
induce a 2-separation of M(Ψ), which in turn would induce a separation of
M(K4) with at least 2 edges on each side. Since there is no such 2-separation,
there can be no M(K4) minor.

A direct consequence of Corollary 4.0.11 is that there is no universal matroid
for the class of countable planar matroids (Corollary 4.0.12 from the Introduc-
tion) since every countable matroid has at most 2ω many non-isomorphic minors
but the class of countable planar matroids has 22ℵ0 many non-isomorphic mem-
bers.

Finally, we prove that the countable binary matroids of branch-width at
most 2 are not well-quasi-ordered (Corollary 4.0.10 from the Introduction).

Throughout the rest of this section 2N is endowed with the product topology.
The next Lemma finds complicated subsets of 2N.

Lemma 4.7.1. There is a sequence of subsets Ψn ⊆ 2N with the following
properties.

1. Each Ψn has cardinality 2ℵ0 .

2. There do no not exist i < j ∈ N and an injective continuous map f : 2N →
2N such that f(Ψi) ⊆ Ψj.

Before proving this lemma, let us see how we can deduce Corollary 4.0.10
from it.
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Proof that Lemma 4.7.1 implies Corollary 4.0.10. As in Lemma 4.3.11, we con-
sider the graph G = T2 ×K2. Note that Ω(G) and 2N are homeomorphic. Let
Mn be the Ψ-matroid M(Gn,Ψn) with Gn = G, which is a matroid as shown
in that Lemma. It is easy to check that G has branch-width 2, so Mn has
branch-width 2 as well.

Suppose for a contradiction that there are i < j such that Mi
∼= Mj/C\D.

By Lemma 4.7.1, it remains to find an injective continuous map f : Ω(Gi) →
Ω(Gj) such that f(Ψi) ⊆ Ψj .

For ω ∈ Ω(Gi), we pick a double ray D(ω) having only ω in its closure. Then
the edge set of D(ω) considered as an edge set of Gj has only a single end in its
closure. Indeed, if there were two ends in its closure, then there is a 2-separation
of Mj having infinitely many edges from D(ω) on both sides. This then would
give rise to a 2-separation of Mi with infinitely many edges from D(ω) on both
sides, which is impossible.

This motivates the following definition: we define f(ω) to be the unique end
of Gj in the closure of D(ω). Note that this does not depend on the choice of
D(ω) since any two such choices differ by finitely many edges only.

To see that f(Ψi) ⊆ Ψj , note that for every ω ∈ Ψi the set D(ω) extends
to a circuit of Mj using additionally only edges from C. This circuit has only
ends from Ψj in the closure. Hence the unique end in the closure of D(ω) must
be in Ψj .

To see that f is continuous, let ω ∈ Ω(Gi) and let Ĉε(S, f(ω)) be a basic open
neighbourhood of f(ω). Then S defines a separation of Mj of finite order with
the edges of C(S, ω) on one side. Then the set F of all these edges without C∪D
forms the side of a separation of finite order in Mi, which gives rise to a vertex
separator S′ in Gi (Formally, S′ consists of those vertices that are incident with
one edge in F and one outside). Then Ĉε(S′, ω) ⊆ f−1(Ĉε(S, f(ω))). Hence f
is continuous.

It remains to show that f is injective. So suppose for a contradiction that
there are ω1 6= ω2 in Ω(Gi) that are mapped to the same end τ in Ω(Gj). We
may assume that we picked D(ω1) and D(ω2) such that they are vertex-disjoint.

We shall construct a 2-separation (A,B) of Mj such that A and B both
include an edge from each of D(ω1) or D(ω2). For this, we pick some e1 ∈ D(ω1)
and some e2 ∈ D(ω2). Then in Gj , there are two vertices v and w such that the
components of G− v−w containing e1 or e2 do not have τ in their closure. Let
B consist of those edges of G that are only incident with v, w or vertices of the
component G/{v, w} that has τ in its closure. Let A = E(Mj) \B.

Since A \ (C ∪D) and B \ (C ∪D) both have at least 2 elements, (A \ (C ∪
D), B \ (C ∪D)) is a 2-separation of Mj/C\D. Since Mi

∼= Mj/C\D, this gives
rise to a 2-separation of Mi having on each side at least one edge from each of
D(ω1) and D(ω2).

This gives rise to a 2-separation (A′, B′) in Gi, and it induces a separation
on the closure of D(ω1) in Mi. Since this closure is 2-connected, this separation
has order 2 and thus D(ω1) includes the separator of (A′, B′). Similarly, D(ω2)
includes this separator, contradicting the fact that D(ω1) and D(ω2) are vertex-
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disjoint. This completes the proof.

Proof of Lemma 4.7.1. We build the sets Ψn recursively. So let us suppose that
Ψ1, . . . ,Ψn are already constructed such that they satisfy (1) and (2) for all
j ≤ n.

Let K be the set of pairs (i, f) where i ≤ n and f : 2N → 2N is a continuous
injective function.

Since 2N has a countable basis as a topological space, the set K has size 2ℵ0 .
Let κ be the least ordinal of size 2ℵ0 . We can well-order K as ((iα, fα)|α < κ).

For every α < κ we pick two elements sα, tα ∈ 2N such that all the sα and
tα are distinct and tα ∈ fα(Ψiα). This is possible as |2N| = 2ℵ0 .

We let Ψn+1 = {sα|α < κ}. Then |Ψn+1| = 2ℵ0 since all the sα are disjoint.
Let f be some continuous function f : 2N → 2N and i < n+1. Then there is some
α < κ such that fα = f and iα = i. We ensured at step α that tα ∈ fα(Ψiα)
and hence f(Ψi) 6⊆ Ψn+1, yielding (2) for all j ≤ n + 1. This completes the
proof.

4.8 Trees of matroids of overlap 1 revisited

The purpose of this section is to show the following

Theorem 4.8.1. If T = (T,M) is a tree of matroids of overlap 1 and Ψ is a
Borel set of ends of T then there is a matroid MΨ(T ) whose circuits are the
Ψ-circuits.

We will prove this by showing that S satisfies the scrawl axioms, where S
is the set of unions of underlying sets of Ψ-precircuits. Then S satisfies (S1) by
definition. If we let D be the set of underlying sets of Ψ{-precocircuits then S
and D satisfy (O1) by Lemma 4.2.6 and satisfy (O2) by Corollary 4.3.5, so S
satisfies (S2) by Lemma 1.1.4. In order to show (SM), we will need a preliminary
lemma.

Definition 4.8.2. Let B ⊆ E(T ). We say B is Ψ-spanning if for any x ∈
E(T ) \B there is a Ψ-precircuit (So, ô) with x ∈ (So, ô) ⊆ B + x.

Lemma 4.8.3. Let T = (T,M) be a tree of matroids of overlap 1, and Ψ a
Borel set of ends of T . Then there is a partition of E(T ) into a Ψ-spanning set
B and a Ψ{-cospanning set B∗.

Proof. Pick a root t0 of T . For any edge tu of T directed away from t0, and any
subset K of E(T ), we say that e(tu) is loopy if there is a Ψ-precircuit of Tt→u
with underlying set {e(tu)}. And it is coloopy if it is loopy for T ∗.

For every non-coloopy dummy edge e(tu), we may by (O2) applied in Tt→u
pick a Ψ-precircuit (S(t → u), ôt→u). We choose these precircuits recursively,
choosing them for edges closer to t0 earlier, in such a way that if t′u′ is an edge
of S(t → u) then S(t′ → u′) = S(t → u)t′→u′ and ôt′→u′ = ôt→u�S(t′→u′).
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Dually, for every nonloopy dummy edge e(tu), we may pick a Ψ-precocircuit
(R(t → u), b̂t→u), in such a way that if t′u′ is an edge of R(t → u) then
R(t′ → u′) = R(t→ u)t′→u′ and b̂t′→u′ = b̂t→u�R(t′→u′).

Building the partition: For any vertex t of T , let I(t) consist of the loopy
dummy edges e(tu) of M(t) with tu directed away from t0. Similarly, let I∗(t)
consist of the coloopy dummy edges e(tu) of M(t) with tu directed away from
t0. Note that I(t) and I∗(t) are disjoint since no edge can be both loopy and
coloopy by Lemma 4.2.6.

For each node t of T , we shall construct a partition of E(t) into B(t) and
B∗(t) such that I(t) ⊆ B(t) and each x ∈ B∗(t) \ I∗(t) is spanned by B(t), and
dually I∗(t) ⊆ B∗(t) and each x ∈ B(t) \ I(t) is cospanned by B∗(t). We shall
construct the partitions recursively, where at step n, we construct the partitions
for all nodes tn that have distance n from the root node t0.

Now suppose that all partitions for t with distance less than n from the root
t0 are already defined. Let tn be at distance n from the root. If n = 0, it is
clear that there is a partition E(t0) = B(t0)∪̇B∗(t0) such that I(t0) ⊆ B(t0)
and each x ∈ B∗(t0) \ I∗(t0) is spanned by B(t0), and dually I∗(t0) ⊆ B∗(t0)
and each x ∈ B(t0) \ I(t0) is cospanned by B∗(t0). If n > 0, let tn−1 be the
neighbour of tn with distance n− 1 from the root.

Now we distinguish 2 cases. If e(tn−1tn) is in B(tn−1), then in particular
e(tn−1tn) is not coloopy at the node tn−1. Thus we may pick a circuit omin(tn)
of M(tn) with e(tn−1tn) ∈ omin(tn) ⊆ I(tn)∪ ôtn−1→tn(tn), in such a way as to
minimise omin(tn)\I(tn) (this is possible by (O3) applied to M(tn)). Now we let
B(tn) be a minimal spanning set of E(tn)\ I∗(tn) including [I(tn) ∪ omin(tn)]−
e(tn−1tn).

In the dual case where e(tn−1tn) is not in B(tn−1), so it is in B∗(tn−1),
we do the dual thing: We pick a cocircuit bmin(tn) of M(tn) with e(tn−1tn) ∈
bmin(tn) ⊆ I∗(tn)∪ b̂tn−1→tn(tn), in such a way as to minimise bmin(tn)\I∗(tn).
Now we let B∗(tn) be a minimal cospanning set of E(tn) \ I(tn) including
[I∗(tn) ∪ bmin(tn)]− e(tn−1tn).

Having defined the partitions for each node, we take B to be the union of
all sets B(t) intersected with the set E(T ) of real edges, and B∗ = E(T ) \B.

Proof that the partition is suitable: By duality, it remains to show that
every x ∈ B∗ is Ψ-spanned by B. For every edge tu directed away from t0, the
dummy edge e(tu) is in B(t) if and only if it is not in B(u). If e(tu) is in B(t),
we will think of this edge as being ‘spanned from above’. We make this more
formal by showing the first of two auxilliary facts: that for any edge tu of T
directed away from the root t0, if e(tu) ∈ B(t) then e(tu) is Ψ-spanned in Tt→u
by B ∩ E(Tt→u).

So suppose we have such an edge e(tu) ∈ B(t). We first define a subtree of
S(t → u). We say an edge vw, directed away from u, of S(t → u) is helpful
if in the construction we defined a circuit omin(v) and e(vw) ∈ ômin(v). Let
S be the subtree of S(t → u) on those vertices v such that all edges of the
path from u to v are helpful. For each edge vw of Tt→u directed away from u
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and with v but not w a vertex of S and e(vw) ∈ omin(v) ∩ I(v), we choose a
Ψ-precircuit (Sw, ôw) of Tv→w with underlying set {e(vw)}. Now we obtain the
desired Ψ-precircuit (So, ô) by sticking all of these precircuits together: that is,
we let So be the union of S and all the Sw, and we take ô(x) to be omin(x) if
x ∈ S and ôw(x) if x ∈ Sw.

Having shown this first auxiliary fact, we next show a second auxiliary fact,
telling us when dummy edges are ‘spanned from below’: more precisely, we
show that for any edge tntn+1 of T with distance n from t0 and directed away
from the root t0, if e(tntn+1) ∈ B∗(tn) \ I∗(tn), then e(tntn+1) is Ψ-spanned in
Ttn+1→tn by B ∩ E(Ttn+1→tn).

We prove this by induction on n. Let ô(tn) be a fundamental circuit of
e(tntn+1) into B(tn). If n > 0, we take tn−1 to be the unique neighbour of tn
such that tn−1tn is directed away from t0. Note that if e(tn−1tn) ∈ I∗(tn−1)
then there is an M(tn)-cocircuit b with e(tn−1tn) ∈ b ⊆ I∗(tn) + e(tn−1tn), so
by (O1) applied in M(tn) we cannot have e(tn−1tn) ∈ ô(tn). For each dummy
edge tnu with u 6= tn+1 and e(tnu) ∈ ô(tn) there is a Ψ-precircuit (Su, ôu) of
Ttn→u all of whose real edges are in B: this is by the induction hypothesis if
u = tn−1 and by the first auxiliary fact otherwise. Sticking these precircuits
(Su, ôu) onto ô(tn) gives the desired precircuit.

Now suppose that we have some x ∈ E(T ) \B. Let t be the node of T with
x ∈ E(t). Let ô(t) be a fundamental circuit of x into B(t). If t has a neighbour
u with tu directed towards t0 and e(tu) ∈ ô(t) then as in the last paragraph we
see that e(tu) 6∈ I∗(u). So for each neighbour u of t with e(tu) ∈ ô(t) we get,
by one of the auxilliary facts, a Ψ-precircuit (Su, ôu) of Ttn→u all of whose real
edges are in B. Sticking these precircuits (Su, ôu) onto ô(t) gives the desired
Ψ-precircuit. This completes the proof.

To deduce (SM), let I be the set of subsets of E(T ) not including a nonempty
element of S. Suppose we have I ⊆ X ⊆ E(T ) with I ∈ I. Let Y = E(T ) \X.
We apply Lemma 4.8.3 to T /I\Y to obtain a partition of E(T ) \ I \ Y into
a Ψ-spanning set B and a Ψ{-cospanning set B∗. We will show that I ∪ B is
maximal amongst the subsets of X that are in I.

First, we show that every proper superset of I ∪B is not in I. Suppose not
for a contradiction, so there is some e ∈ X \ (I ∪B) such that (I ∪B) + e ∈ I.
Since B is Ψ-spanning in T /I\Y , there is a Ψ-precircuit (So, ô) for T /I\Y whose
underlying set contains e and is included in B + e. For each t ∈ So, there is an
M(t)-circuit ô1(t) with ô(t) ⊆ ô1(t) ⊆ ô(t) ∪ I by Lemma 1.2.7. Then (So, ô1)
is a Ψ-precircuit with nonempty underlying set that is included in (I ∪B) + e,
which is a contradiction.

It remains to show that I ∪B ∈ I. Suppose not, for a contradiction, and let
(So, ô) be a Ψ-circuit whose underlying set is nonempty and included in I ∪B.
The underlying set must meet B in some edge e, since I ∈ I. Let (Sb, b̂) be a
precocircuit witnessing that e is Ψ{-cospanned by B∗. As above, we may find a
precocircuit (Sb, b̂1) of T with b̂(t) ⊆ b̂1(t) ⊆ b̂(t) ∪ I for each t ∈ Sb. Then the
underlying sets of (So, ô) and (Sb, b̂1) have only the edge e in their intersection.
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This contradicts Lemma 4.2.6. Hence I ∪ B ∈ I. This completes the proof of
(SM) and so also that of Theorem 4.8.1.

4.9 Tree decompositions of matroids

In [6], the following notion of a decomposition of a matroid into a tree of such
smaller parts was introduced.

Definition 4.9.1. A tree decomposition of adhesion 2 of a matroid N consists
of a tree T and a partition R = (Rv)v∈V (T ) of the ground set E of N such
that for any edge tt′ of T the partition (

⋃
v∈V (Tt→t′ )

Rv,
⋃
v∈V (Tt′→t)

Rv) is a
2-separation of N .

Given such a tree decomposition, and a vertex v of T , we define a matroid
M(v), called the torso of T at v, as follows: the ground set of M(v) consists
of Rv together with a new edge e(vv′) for each edge vv′ of T incident with v.
For any circuit o of N not included in any set

⋃
t∈V (Tv→v′ )

Rv, we have a circuit
ô(v) of M(v) given by (o∩Rv)∪{e(vv′) ∈ E(v)|o∩⋃t∈V (Tv→v′ )

Rv 6= ∅}. These
are all the circuits of M(v).

In this way we get a tree of matroids T (N,T,R) = (T, v 7→M(v)) of overlap
1 from any tree decomposition of adhesion 2. For any circuit o of N we get a
corresponding precircuit (So, ô), where So is just the subtree of T consisting of
those vertices v for which ô(v) is defined.

Note that (So, ô) = o. Each M(v) really is a matroid [6, §4, §8], isomorphic
to a minor of N [21], and that T (N∗, T,R) = (T (N,T,R))∗. [6] also contains
the following theorem.

Theorem 4.9.2 (Aigner-Horev, Diestel, Postle). For any matroid N there is
a tree decomposition D(N) of adhesion 2 of N such that all torsos have size at
least 3 and are either circuits, cocircuits or 3-connected, and in which no two
circuits and no two cocircuits are adjacent in the tree. This decomposition is
unique in the sense that any other tree decomposition with these properties must
be isomorphic to it.

The above theorem is a generalisation to infinite matroids of a standard
result about finite matroids [31, 59]. If N is a finite matroid, it is possible
to reconstruct N from the decomposition D(N). However, as noted in the
introduction, it is not in general possible to reconstruct N from D(N) if N is
infinite. Our aim in the next section will be to show that if N is tame, then
not much extra information is needed to recover N . All we need is the set Ψ
consisting of those ends of T that appear in the closure of some circuit of N .

4.10 Reconstruction

Let N be a tame matroid and let (T,R) be a tree decomposition of N of adhesion
2. We begin by considering the case that T is a ray t1, t2, . . .. In this case, we
can show that the tree T (N,T,R) is well behaved.
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Definition 4.10.1. A precircuit (S, o) for a tree T = (T,M) of matroids of
overlap 1 is called a phantom precircuit if there is an edge tt′ of S such that
o(v) ∩ E(T ) = ∅ for v ∈ V (St→t′).
T = (T,M) is nice if neither T nor T ∗ has any phantom precircuits.

Note that T = (T,M) is nice iff there is not tt′ ∈ E(T ) such that in Tt→t′ =
(Tt→t′ ,M�V (Tt→t′ )

) the edge e(tt′) is either a loop inMΩ(Tt→t′ )(Tt→t′) or a coloop
M∅(Tt→t′).

Lemma 4.10.2. Let N be a matroid with a tree decomposition (T,R) of adhe-
sion 2.

1. For every N -circuit o its corresponding precircuit (So, ô) is not phantom.

2. If T is a ray, and there is a circuit o and a cocircuit b of N that both have
edges in infinitely many of the Rv, then T (N,T,R) is nice.

Proof. (1) follows from the definition of So.
For (2), let T = t1, t2, . . . be a ray. Now suppose for a contradiction that there

is a phantom precircuit (Sc, c). Then for all sufficiently large n, the circuit c(tn)
consists of e(tn−1tn) and e(tntn+1). In other words, e(tn−1tn) and e(tntn+1) are
in parallel.

So c(tn) ⊆ ô(tn), hence c(tn) = ô(tn). This contradicts (1). The case that
there is a phantom precocircuit (Sc, c) is similar. Hence T (N,T,R) is nice.

Lemma 4.10.3. Let T = (T,M) be a nice tree of matroids, then every ∅-circuit
is an Ω(T )-circuit.

By duality, an analogue of Lemma 4.10.3 is also true for cocircuits.

Lemma 4.10.4. Let T = (T,M) be a nice tree of matroids, and N be a matroid
such that C(N) ⊆ C(MΩ(T )(T )) and C(N∗) ⊆ C(M∗∅ (T )).

Then C(M∅(T )) ⊆ C(N) and C(M∗Ω(T )(T )) ⊆ C(N∗).

Proof. By duality, it suffices to prove only that C(M∅(T )) ⊆ C(N). So let
o ∈ C(M∅(T )). Since o never meets an element of C(M∗∅ (T )) just once, it never
meets an element of C(N∗) just once. Hence o includes an N -circuit o′ by the
dual of Lemma 1.2.1. Thus o′ ∈ C(MΩ(T )(T )). By Lemma 4.10.3, we must have
o′ = o. So o ∈ C(N), as desired.

Lemma 4.10.5. Let N be a tame matroid with a tree decomposition (T,R) of
adhesion 2. Assume that T = t1t2 . . . is a ray.

Then there are not a circuit o and a cocircuit b of N that both converge to
the end ω of T .

Indeed, either N = M∅(T (N,T,R)) or N = M{ω}(T (N,T,R))

Proof. Suppose for a contradiction that there are such o and b. Then there are
l < m < n and el, em, en ∈ E(N) such that el ∈ b ∩ E(tl), and em ∈ o ∩ E(tm),
and en ∈ b ∩ E(tn). Using the tameness of N , we make these choices in such a
way that for any i ≥ m, the intersection of o ∩ b with E(ti) is empty. We may
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also assume that o has an edge in some E(tk) with k < m, so that both dummy
edges of E(tm) are in ô(tm).

Now b is a cocircuit of M(T (N,T,R), ∅) since (Sb, b̂) is a precocircuit, and
there cannot be a precocircuit whose cocircuit at any node t is a subset of b̂(t).
By the dual of Lemma 1.3.5 there is some M∅(T )-circuit ob meeting b only in
el and en. Note that ob is also a circuit of N by Lemma 4.10.4 since T (N,T,R)
is nice by Lemma 4.10.2.

Now we build an ∅-precircuit (SC , Ĉ) as follows. First we set SC = (Sob \
{t1 . . . tm}) ∪ (So ∩ {t1 . . . tm}). We take Ĉ(tj) = ôb(tj) for j > m, and Ĉ(tj) =
ô(tj) for j ≤ m. Let C be the underlying circuit of (SC , Ĉ). Note that C is a
circuit of M∅(T ) and so also a circuit of N by Lemma 4.10.4 and Lemma 4.10.2
as before.

We now apply circuit elimination in N to the circuits o and C, eliminating
the edge em and keeping the edge en. Call the resulting circuit C ′.

If tm ∈ SC′ , then Ĉ ′(tm) ⊆ ô(tm)−em (since both dummy edges of E(tm) are
in ô(tm)), which is impossible. So SC′ ⊆ {tm+1, tm+2, . . .}. Hence C ′∩b = {en},
which is also impossible.

We have now established that there cannot be a circuit o and a cocircuit b
of N such that ω is in the closure of both o and b.

If ω is in the closure of some N -circuit, then every N -circuit is a {ω}-circuit,
and every N -cocircuit is an ∅-cocircuit. Since by Lemma 4.2.6 no Ψ-circuit
ever meets a Ψ{-cocircuit just once, we may apply Lemma 1.3.7 to deduce that
N = M{ω}(T ). In the case that ω is not in the closure of any N -circuit a similar
argument yields that N = M∅(T ). This completes the proof.

Having considered the case that the tree T is a ray, we now reduce the
general case to this special case. Let N be a matroid with a tree decomposition
(T,R) of adhesion 2. Let Q = q1, q2, . . . be a ray in T . We define RQ to be the
following coarsening of R. We define RQqi to be the union of all the Rv such that
in T the vertices v and qi can be joined by a path that does not contain any
other qj .

Then (Q,RQ) is a tree decomposition of N of adhesion 2. An N -circuit o
has the end ω of Q in its closure with respect to (T,R) if and only if o has ω in
its closure with respect to (Q,RQ). So by Lemma 4.10.5, we deduce that there
cannot be a circuit and a cocircuit of N that have a common end in both of
their closures (with respect to (T,R)).

Let Ψ be the set of ends of T that appear in the closure of some circuit of
N . Thus every N -circuit is a Ψ-circuit and every N -cocircuit is a Ψ{-cocircuit.
Since by Lemma 4.2.6 no Ψ-circuit ever meets a Ψ{-cocircuit just once, we may
apply Lemma 1.3.7 to deduce that N = MΨ(T ). Hence we get the following
theorem.

Theorem 4.10.6. Let N be a tame matroid with a tree decomposition (T,R)
of adhesion 2.

Then there is some Ψ ⊆ Ω(T ) such that N = M(T (N,T,R),Ψ).

Combining this theorem with Theorem 4.9.2 yields:
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Figure 4.9: A non-nice tree of matroids

Theorem 4.10.7. Let N be a connected tame matroid. Then N = MΨ(T )
where each M(t) is either a circuit, a cocircuit or else is 3-connected.

Remark 4.10.8. In the proof of this theorem, it might look as if we would have
some freedom in choosing the set Ψ, namely that we could take Ψ to be any set
containing all the ends to which some circuit converges and avoiding all ends to
which some cocircuit converges. However, it can be shown that for every end in
Ψ, there is a Ψ-circuit having this end in the closure.

The arguments above make use of the fact that the matroid N is severly con-
strained by the restriction that each of its circuits comes from some precircuit
of the tree, and each of its cocircuits comes from some precocircuit. In investi-
gating how restrictive constraints of this form might be in general, we are led
to the following question. Suppose that we have a tree T = (T,M) of matroids.
We say a matroid N is a T -matroid if every circuit of N is an Ω(T )-circuit and
every cocircuit of N is an ∅-cocircuit. How constrained is N? If T is not nice,
then N can be quite unconstrained.

Example 4.10.9. Here the tree T is a ray and each M(t) = M(C4), arranged
as in Figure 4.9. Then M∅(T ) is the free matroid but MΩ(T )(T ) consists of a
single infinite circuit. So any pair of edges forms an MΩ(T )(T )-cocircuit which
is not an M∅(T )-cocircuit.

However, if T is nice and N is tame then N has to be of the form MΨ(T ):

Theorem 4.10.10. Let T = (T,M) be a nice tree of matroids of overlap 1,
and let N be a tame T -matroid. Then there is some Ψ ⊆ Ω(T ) such that
N = MΨ(T ).

Proof. We begin by showing that there cannot be a circuit o and a cocircuit b of
N such that there is some end ω of T in the closure of both o and b. So suppose
for a contradiction that there are such o, b, and ω. We fix some notation, as
illustrated in Figure 4.10. Pick a ray R = v1, v2, . . . in T to ω. By taking a
suitable tail of R if necessary, we may assume that there is some edge f of b in
E(T ) \ E(Tv1→v2), some edge g of o in E(Tv1→v2) \ E(Tv2→v3) and some edge
h of b in E(Tv2→v3) (here we use that T is nice). Since o ∩ b is finite, we may
even assume that no edge of o ∩ b lies in E(Tv1→v2).
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Figure 4.10: Objects appearing in the proof of Theorem 4.10.10

We may also assume that o has an edge in E(Tv2→v1), so that both dummy
edges of E(v2) are in ô(v2).

By Lemma 1.3.5 there is some M∅(T )-circuit ob meeting b only in f and h.
Let (S, ô) be an Ω(T )-precircuit representing o, and (Sb, ôb) be an ∅-precircuit
representing ob. Let vg be the node of T with g ∈ E(v). Let P be the path
joining v2 to vg in T . Let ∂ be the set of edges tt′ of T with t in V (P ) but t′ not
in either V (P ) or V (Tv2→v3). For each edge tt′ ∈ ∂ there is by niceness of T
some M∅(Tt→t′)-circuit ot→t′ through e(tt′). Let (St→t′ , ôt→t′) be an M∅(Tt→t′)-
precircuit representing ot→t′ .

Now we build a ∅-precircuit (SC , Ĉ) from all this data as follows. First we
set

SC = (Sb ∩ Tv2→v3) ∪ P ∪
⋃
tt′∈∂

St→t′ .

Then we take Ĉ(u) to be ôb(u) for u ∈ (Sb∩Tv2→v3), ô(u) for u ∈ P and ôt→t′(u)
for u ∈ St→t′ . Let C be the underlying circuit of (SC , Ĉ). By Lemma 4.10.4, C
is an N -circuit.

We now apply circuit elimination in N to the circuits o and C, eliminating
the edge g and keeping the edge h. Call the resulting circuit C ′, and let (SC′ , Ĉ ′)
be an Ω(T )-precircuit representing C ′. Let the vertices of P be, in order, vg =
p1, p2, . . . pk = v2. We shall show by induction on i that pi 6∈ SC′ . For the base
case, we note that if vg were in SC′ we would have to have Ĉ ′(vg) ⊆ ô(vg) \ {g},
which is impossible. For the induction step, we similarly note that if pi+1 were
in SC′ we would have to have Ĉ ′(pi+1) ⊆ ô(pi+1)\{e(pipi+1)}, by the induction
hypothesis, which is impossible. In particular, we deduce that v2 6∈ SC′ . On the
other hand, we know that h ∈ C ′ so that SC′ ⊆ Tv2→v3 , so that C ′ ∩ b = {h}, a
contradiction.

We have now established that there cannot be a circuit o and a cocircuit b
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Figure 4.11: The situation of Lemma 4.11.2.

of N such that there is some end ω of T in the closure of both o and b. Let Ψ
be the set of ends of T that appear in the closure of some circuit of N . Thus
every N -circuit is a Ψ-circuit and every N -cocircuit is a Ψ{-cocircuit. Since by
Lemma 4.2.6 no Ψ-circuit ever meets a Ψ{-cocircuit just once, we may apply
Lemma 1.3.7 to deduce that N = MΨ(T ) as required.

4.11 Tame G-matroids are Ψ-matroids

Let G be a locally finite graph. Recall that a matroid N on the ground set
E(G) is a G-matroid if C(N) ⊆ C(MC(G)) and C(N∗) ⊆ C(MFC(G)∗). Since
C(MFC(G)) ⊆ C(MC(G)) and C(M∗C(G)) ⊆ C(M∗FC(G)) both MFC(G) and
MC(G) are G-matroids, and an argument like that for Lemma 4.10.4 shows that
for any G-matroid N we have C(MFC(G)) ⊆ C(N) and C(M∗C(G)) ⊆ C(N∗).
The aim of this section is to prove the following.

Theorem 4.11.1. Let G be a locally finite graph, and let N be a tame G-
matroid. There there is some Ψ ⊆ Ω(G) such that N = MΨ(G).

For the rest of this section we fix some locally finite graph G and some tame
G-matroid N .

In this section, we will have to use two different notions of path. Finite paths
in graphs will simply be called paths, whereas paths in the topological sense,
namely continuous images of the closed unit interval, will be called topological
paths.

For a pair of points on a topological circle, there are two arcs joining them
through the circle. To allow us to distinguish them, we shall make use of ori-
entations of circles and topological paths. For distinct points x and y on an
oriented circle ~o we use x~oy to denote the (oriented) topological path from x
to y through o whose orientation agrees with that of ~o. We denote the other
topological path by x ~oy. If x = y, we do not take the trivial topological path
but the topological path that goes all the way around the circle.

Lemma 4.11.2. Let o be a topological circle in G. Let v, w ∈ V (o) and let S
be a finite set of vertices avoiding V (o). Then for any orientation ~o of o, there
is a finite v-w-path Pv,w not meeting v~ow in interior points and avoiding S.

Moreover if v~ow has at least two edges, then there is a bond b′ of G that has
Pv,w ∪ v ~ow on one side and all interior vertices of v~ow on the other side.
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Figure 4.12: The situation of Lemma 4.11.3.

Figure 4.11 gives an overview of the terminology used in this lemma.

Proof. The proof is trivial if v = w. Thus we may assume that v 6= w. Let ev
be the first edge on v~ow and ew be the last edge on v~ow. Note that ev and ew
exist since v and w are vertices. If ev = ew, we pick Pv,w = ev. So we may
assume that ev 6= ew.

Let G′ = G \ S. Since o is a topological circle in |G′|, there is a finite bond
b of G′ meeting o in precisely ev and ew.

All edges and vertices of v~ow − ev − ew − v − w are on the same side of b.
Let C be the other side. Note that v and w are in C. Now let Pv,w be some
path in C joining v and w.

The bond b extends to a finite bond b′ of G by adding finitely many deleted
edges. The bond b′ has the desired property.

Lemma 4.11.3. Let o be a circuit of the G-matroid N , and ~o be some ori-
entation of o. Further, let x, y ∈ V (o) and let ~P be an x-y-path meeting o in
precisely x and y.

Then x~oy ~Px ∈ C(N).

Proof. The proof is trivial if x = y. Thus we may assume that x 6= y. Let ex be
the first edge on x ~oy and ey be the last edge on x ~oy. Let x′ be the endvertex
of ex that is not x, and y′ be the endvertex of ey that is not y, as depicted in
Figure 4.12.

Applying Lemma 4.11.2 to ~o with S = V (P ) − x − y, yields an x′-y′-
path Px′,y′ , and a bond b′ as in that lemma. By assumption the finite circuit
x~Pyeyy

′ ~Px′,y′x
′exx is an N -circuit. See Figure 4.12 to get an overview of all

the definitions.
Now we apply circuit elimination in N to this new circuit and o eliminating

ex and keeping some z ∈ E(P ). Note that z exists since x 6= y. We obtain an
N -circuit o′ ⊆ (o− ex) ∪ P ∪ Px′,y′ including z.

It remains to show that o′ = x~oy ∪ P . Since each vertex of G is incident
with 0 or 2 edges of o′, we conclude that each edge adjacent to z on P is in o′.
In fact an inductive argument yields that P ⊆ o′.

If x ~oy consists of a singe edge xy, then by the same argument xy also cannot
be in o′. Thus o′ ⊆ x~oy ~Px. Since the latter is a topological cycle, we must have
equality, hence x~oy ~Px ∈ C(N). Thus we may assume that x ~oy includes at least
two edges.
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We know that o′ is the union of P and some topological arc A from x to y.
The edge set of this arc is included in L := (o− ex)∪Px′,y′ . The set L meets b′

precisely in ey. Let K be the side of b′ not containing x and y. Suppose for a
contradiction that L includes an edge ek from K. Then there are two disjoint
arcs Lx and Ly from ek to x and from ek to y. By the Jumping-Arc Lemma [34,
Lemma 8.5.3], both of these have to meet b′, contradicting the fact that L meets
b′ just in ey.

This means that L ⊆ x~oy. Since x~oy is an x-y-arc, we actually get L = x~oy.
Thus we have shown that o′ = x~oy ∪ P , which completes the proof.

Corollary 4.11.4. Let o ∈ C(N), and ~o be some orientation of o. Further, let
x, y ∈ V (o) and let ~P be an x-y-path meeting x~oy not in interior points.

Then x~oy ~Px ∈ C(N).

Remark 4.11.5. The only difference between Lemma 4.11.3 and Corollary 4.11.4
is that in the second the path P may meet o in some of the interior points.

Proof. We prove this by strong induction on |P ∩ o|. Let z be the second point
in the order of P in P ∩o (the first such point is x). Now we apply Lemma 4.11.3
to o and xPz and obtain a new circuit oz := x~oz ~Px and a new path Pz := zPy.
Since |oz ∩ Pz| < |o ∩ P |, we may apply the induction hypothesis.

Lemma 4.11.6. Let o ∈ C(N) and let ω be an end of o. Then there is o′ ∈ C(N)
that has only the end ω in its closure.

Proof. First we pick an orientation ~o of o. Then we pick a Z-indexed family of
distinct edges ei such that their ordering on ω~oω is the same as the ordering of
their indices and (ei|i > 0) and (ei|i < 0) both converge to ω.

Let si and ti be the endvertices of ei such that si < ti on ω~oω. We repeatedly
apply Corollary 4.11.4 to get a Z-indexed family of vertex-disjoint ti-si+1-paths
Pi with Pi disjoint from ti+1~osi.

Let D be the double ray obtained from sticking the Pi and the ei together,
formally:

. . . t−1P−1s0e0t0P0s1e1t1P1 . . .

By construction, both tails of D belong to ω. So D is a topological cycle.
It remains to show that D ∈ C(N). Suppose not, for a contradiction: Then
D ∈ I(N), so there is a N -bond b with b ∩D = {e0}.

Since N is tame, o ∩ b is finite, so there are only finitely many i ∈ Z such
that b meets ti~osi+1. Let K be the set of such i.

By applying Corollary 4.11.4 finitely often, we get a circuit o′′ that meets b
precisely in e0. Formally,

o′′ = o \
(⋃
i∈K

(ti~osi+1)

)
∪
(⋃
i∈K

Pi

)
So there are a circuit and a cocircuit of N which meet just once, which is the
desired contradiction.
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Piti si

Ro

C1 C2

Figure 4.13: The o-R-paths Pi.

Lemma 4.11.7. Let b ∈ C(N∗) and ω be an end in the closure of b. Assume
there is a double ray o ∈ C(N) both of whose tails converge to ω.

Then there is such an o that does not meet b.

Proof. We prove this by induction on |o∩b|; the base case |o∩b| = 0 is clear. The
case |o∩ b| = 1 is impossible. So suppose for the induction step that |o∩ b| ≥ 2.
Thus we may pick e, f ∈ o ∩ b. Since b ∈ C(MFC(G)), there is a finite circuit o′

meeting b in precisely e and f . Note that o′ is an N -circuit. Now pick z in the
infinite component of o \ o′ containing ω.

Applying circuit elimination to o and o′ eliminating e and keeping z yields
an N -circuit o′′ ⊆ o ∪ o′ − e through z. By the choice of z, the subgraph with
edge set o ∪ o′ − e − z has two components one of which is a ray R from one
endvertex of z converging to ω. Since each vertex is incident with 0 or 2 edges
of o′′ and z ∈ o′′, the ray R must be included in o′′. Hence o′′ must be infinite,
it also has only the end ω in its closure since o′′ ⊆ o ∪ o′ − e has no other end
in its closure. Now o′′ ∩ b ⊆ (o ∩ b)− e. This completes the induction step.

Lemma 4.11.8. Let b ∈ C(N∗) and ω be an end in the closure of b.
Then there is no double ray o ∈ C(N) both of whose tails converge to ω with

o ∩ b = ∅.
Proof. Suppose for a contradiction that there is such an N -circuit o. Let C1

and C2 be the two sides of b. Since o ∩ b = ∅ and since the double ray o is
connected as a subgraph, it lies entirely on one side, say C1. Since G is locally
finite, C2 includes a ray R converging to ω.

Now we construct o-R-paths Pi as in Figure 4.13. Since o and R both have ω
in their closure, there are infinitely many vertex disjoint R-o-paths (Pi|i ∈ N).
We enumerate the Pi such that in the linear order on R, the starting vertex
of Pi is less than the starting vertex of Pj if and only if i > j. By Ramsey’s
theorem there is a tail Ro of o and N ⊆ N such that all Pi with i ∈ N have their
endvertex on Ro, and in the linear order on Ro, the endvertex of Pi is less than

124



the endvertex of Pj if and only if i > j. By relabeling the indices of the Pi if
necessary, we may assume that N = N. Let si be the starting vertex of Pi, and
ti be its endvertex.

Now we prepare to apply the infinite circuit elimination axiom. We pick
some edge xi between t2i−1 and t2i on Ro, and pick some z ∈ o \ Ro. Then
Cxi = t2i−1Rot2iP2isiRs2i−1P2i−1t2i−1 is a finite circuit. So Cxi is an N -circuit.
We apply circuit elimination to o and the Cxi eliminating the xi and keeping z.
Thus there is an N -circuit o′ through z that is included in:(

o ∪
(⋃
i∈N

t2iP2isiRs2i−1P2i−1t2i−1

))
\ {xi|i ∈ N}

Since each vertex has degree 0 or 2 on o′, no edge from any of the finite
paths Xi := t2i−1Rot2i is in o′. Hence o′ is included in:

D := (o \Ro) ∪
(⋃
i∈N

Cxi \Xi

)
But D is a double ray. So D = o′ and is an N -circuit. But D ∩ b is infinite.

This contradicts the tameness of N .

Proof of Theorem 4.11.1. First we show that there cannot be an N -circuit o,
and an N -cocircuit b that have a common end in their closure. Suppose for a
contradiction there are such o and b. By Lemma 4.11.6, we get that there is
such an o with only the end ω in its closure. By Lemma 4.11.7, we get there
is such an o that additionally does not meet b. By Lemma 4.11.8, we then get
the desired contradiction. So no end ω is ever in the closure of both a N -circuit
and a N -cocircuit.

This motivates the following definition. Let Ψ be the set of ends that are
in the closure of some N -circuit. Then every N -circuit is a Ψ-circuit and every
N -cocircuit is a Ψ{-cocircuit. Since N is a matroid, and the intersection of any
Ψ-circuit with any Ψ{-cocircuit is never of size 1 by Lemma 4.1.8, we are in a
position to apply Lemma 1.3.7. Hence N = M(G,Ψ).
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Chapter 5

Graphic matroids

There is a rich theory describing and employing the relationship between finite
graphic matroids and finite graphs. In this chapter, we will show how the
foundations of this theory can be extended to infinite matroids [23]. A central
result in the finite context is Tutte’s characterisation by finitely many excluded
minors of the class of matroids which can be represented by graphs [67].

Existing work with infinite graphic matroids has focused on a few possible
constructions of matroids, such as the finite-cycle, algebraic-cycle or topological-
cycle matroids. Various ad-hoc extensions of these notions suggest themselves.
For example, we could allow identification of ends with vertices in the definition
of the topological cycle matroid [33].

Certain results about finite graphic matroids have been proved for these
classes of infinite graphic matroids [25], [27], [28], [33], [62], and could also be
proved about the ad-hoc extensions without too much trouble. But since all
these notions fall far short of the natural boundary, namely the class of infinite
matroids satisfying Tutte’s excluded minor characterisation, in this chapter we
instead take the approach of isolating a notion of representation for which the
representable matroids are precisely those satisfying Tutte’s condition. Such
matroids, and their representations, provide a natural context for the extension
of results from finite to infinite graphic matroids.

That the existing approaches fall far short of providing representations of all
graphic matroids is shown by examples like those depicted in Figure 5.1. Here
the circuits of the matroids in question are again given by the (edge sets of)
homeomorphic copies of the unit circle in the subspaces of the plane given in
the pictures.

What these examples show is that infinite graphic matroids should, in gen-
eral, be taken to be represented not by graphs but rather by graph-like topolog-
ical spaces, in a sense akin to that of Thomassen and Vella [65]. This includes
the existing approaches: the finite cycle matroid of a graph would be repre-
sented by its geometric realisation, the algebraic cycle matroid by a 1-point
compactification and the topological cycle matroid by the end compactification.

We restrict our attention to tame matroids because as we have seen this
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(a) (b)

Figure 5.1: Subspaces of the plane inducing matroids

restriction is both natural and necessary in related representability problems.
We shall introduce a notion of representability of matroids over graph-like spaces
for which we can prove the following:

Theorem 5.0.9. A tame matroid satisfies Tutte’s excluded minor characteri-
sation if and only if it is representable over a graph-like space.

We call matroids satisfying either of these equivalent conditions graphic.
At least for 3-connected matroids, the notion of representability is what you

would hope: the circuits are given just as usual by homeomorphic copies of the
unit circle. That this hope can be fulfilled is a little strange. After all, any circuit
given in this way must be countable, and there is nothing in Tutte’s excluded
minor characterisation which appears to restrict the cardinality of circuits. We
are saved by the following miraculous fact:

Theorem 5.0.10. In any 3-connected tame matroid satisfying Tutte’s excluded
minor characterisation, all circuits are countable.

In fact, in order to prove this we first introduce a notion of representability
which doesn’t entail any cardinality restrictions, then play the topological struc-
ture of the representing graph-like space off against the matroidal structure.

This chapter is closely based on a joint paper with Carmesin and Christian
[20].

5.1 Graph-like spaces

The key notion of this section is the following, which we briefly saw in the last
chapter and which is based on a definition from [65]:

Definition 5.1.1. A graph-like space G is a topological space (also denoted
G) together with a vertex set V = V (G), an edge set E = E(G) and for each
e ∈ E a continuous map ιGe : [0, 1]→ G (the superscript may be omitted if G is
clear from the context) such that:

• The underlying set of G is V t [(0, 1)× E]
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• For any x ∈ (0, 1) and e ∈ E we have ιe(x) = (x, e).

• ιe(0) and ιe(1) are vertices (called the endvertices of e).

• ιe�(0,1) is an open map.

• For any two distinct v, v′ ∈ V , there are disjoint open subsets U,U ′ of G
partitioning V (G) and with v ∈ U and v′ ∈ U ′.

The inner points of the edge e are the elements of (0, 1)× {e}.
Note that V (G), considered as a subspace of G, is totally disconnected, and

that G is Hausdorff.
Let e be an edge in a graph-like space with ιe(0) 6= ιe(1). Then ιe is a

continuous injective map from a compact to a Hausdorff space and so it is a
homeomorphism onto its image. The image is compact and so is closed, and
therefore is the closure of (0, 1)× {e} in G. So in this case ιe is determined by
the topology of G. The same is true if ιe(0) = ιe(1): in this case we can lift ιe
to a continuous map from S1 = [0, 1]/(0 = 1) to G, and argue as above that
this map is a homeomorphism onto the closure of (0, 1)×{e} in G. In this case,
we say that e is a loop of G.

Next we shall define maps of graph-like spaces. Let G and G′ be graph-like
spaces. Two maps ϕV : V (G) → V (G′) and ϕE : E(G) → (E(G′) × {+,−}) t
V (G) induce a function ϕ sending points of G to points of G′ as follows: a vertex
v of G is mapped to ϕV (v). Let e be an edge, and (r, e) one of its interior points.
If ϕE(e) is a vertex, then (r, e) is mapped to ϕE(e). If ϕE(e) = (f,+) for some
f ∈ E(G′), then (r, e) is mapped to (r, f). Similarly, if ϕE(e) = (f,−) for some
f ∈ E(G′), then (r, e) is mapped to (1−r, f). If a function arising in this way is
continuous we call it a map of graph-like spaces. From this definition, it follows
that if v is an endvertex of e, then ϕ(v) is either an endvertex of or equal to the
image of e.

Let us consider some examples of graph-like spaces. We shall write [0, 1] for
the unique graph-like space without loops having precisely one edge and two
vertices. There are exactly seven maps of graph-like spaces from [0, 1] to two
copies of [0, 1] glued together at a vertex: four of these have one of the copies
of [0, 1] as their image and the other three map the whole interval to a vertex.
However, none of these maps is bijective nor has an inverse, even though the
underlying topological spaces are homeomorphic.

Figures 5.1a and 5.1b from the introduction define graph-like spaces with
vertices and edges as in the figures. In each case the topology is that induced
by the embedding in the plane suggested by the figures. For a locally finite
graph G = (V,E), the topological space |G| is a graph-like space with vertex
set V ∪ Ω(G) and edge set E (see [34] for the definition of |G|). Note that if G
is finite, then |G| is homeomorphic to the geometric realisation of G considered
as a simplicial complex.

Lemma 5.1.2. Let G be a graph-like space with only finitely many edges and
finitely many vertices. Then G is homeomorphic to |H| for some finite graph
H.
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Proof. G is compact, since it is a union of finitely many compact subspaces.
Let H be the graph with edge set E(G) and vertex set V (G), and in which
v is an endpoint of e if and only if this is true in G. We now construct a
map ϕ : G → |H| as follows: taking ϕV to be the identity and ϕE to be the
function sending each edge e to (e,+), we build ϕ as in the definition of a map
of graph-like spaces.

It remains to show that the function ϕ is continuous: since it is a bijection
from a compact to a Hausdorff space, it will then be a homeomorphism. We
begin by noting that for any e ∈ E(G), the restriction of ϕ to the image of ιGe
is a homeomorphism, by the remarks following Definition 5.1.1. Now we need
to show for any x ∈ |H| that the inverse image of any open neighbourhood
U of ϕ(x) includes an open neighbourhood of x. If x is an interior point of
an edge, this is clear. Otherwise, x is a vertex of |H|. Then there is an open
neighbourhood U ′ ⊆ U of x which only meets edges incident with x. For each
such edge e, since the restriction of ϕ to the image of ιGe is a homeomorphism,
there is an open set Ve of G with Ve ∩ Im(ιGe ) = ϕ−1(U ′) ∩ Im(ιGe ). Letting V
be the intersection of the Ve, we obtain that V is an open neighbourhood of x
included in ϕ−1(U), completing the proof that ϕ is continuous.

All the above examples of graph-like spaces will turn out to induce matroids.
Before we can make this more explicit, we must first introduce the notions of
topological circuits and bonds in a graph-like space. The discussion of topo-
logical circuits will be delayed until the next section, but we will introduce
topological bonds now.

Definition 5.1.3. Given a pair of disjoint open subsets of a graph-like space G
partitioning the vertices, we call the set of those edges having an endvertex in
both sets a topological cut of G. A topological bond of G is a minimal nonempty
topological cut of G.

Given a graph-like space G and a set of edges R ⊆ E(G), we define the
graph-like space G�R, the restriction of G to R, to have the same vertex set as
G and edge set R. Then the ground set of G�R is a subset of that of G, and we
give it the subspace topology. Evidently, for any topological cut b of G, b ∩ R
is a topological cut of G�R. The deletion of D from G, denoted by G\D, is
G�(E\D). We abbreviate G\{e} by G− e. The inclusion map gD from G\D to
G is a map of graph-like spaces.

Note that G�R has the same vertex set as G, even though only the vertices in
the closure of (0, 1)×R play an important role in the new space. By analogy to
the notation of [34], we also introduce a notation for the graph-like space whose
edges are those in R but whose vertices are those in the closure of (0, 1) × R.
We will call this subspace the standard subspace with edge set R, and denote it
R.

Given a graph-like space G and C ⊆ E(G), we define the contraction G/C
of G onto C as follows:

Let ≡C be the relation on the vertices of G defined by u ≡C v if every
topological cut with u and v in different parts meets C. It is easy to check that
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≡C is an equivalence relation. The vertex set ofG/C is the set of≡C-equivalence
classes, and the edge set is E(G) \ C.

It remains to define the topology ofG/C. We shall obtain this as the quotient
topology derived from a function fC : G→ G/C, to be defined next.

The function fC sends each vertex to its ≡C-equivalence class and is bijective
on the interior points of edges of E \ C. The two endpoints of an edge in C
are in the same equivalence class, and we send all of its interior points to that
equivalence class.

Taking this quotient topology ensures that G/C is a graph-like space, and
makes fC a map of graph-like spaces. In G/C, the endpoints of an edge are the
equivalence classes of its endpoints in G. For any topological cut b of G with
b ∩C = ∅, the two sides of b are closed under ≡C by definition, and so b is also
a topological cut in G/C.

We define G.X := G/(E \ X) and G/e := G/{e}. It is straightforward to
check for disjoint sets C and D that (G\D)/C and (G/C)\D are equal and the
following diagram commutes.

G\D
fC

��

gD // G

fC

��
G/C\D

gD
// G/C

Contraction behaves especially well when applied to one side of a topological
cut [20].

5.2 Pseudoarcs and Pseudocircles

When investigating a topological space, it is common to consider arcs in that
space, that is, continuous injections from the unit interval to that space. We
must consider maps from a slightly more general kind of domain. These do-
mains, which we will call pseudo-lines, will be graph-like spaces built from total
orders in the following way:

Definition 5.2.1. Let P be a totally ordered set. To construct the pseudo-line
L(P ), we take as our vertex set V the set of initial segments of P , and as our
edge set P itself. Next, we take a subbasis of the topology to consist of the sets
of the type S(p, r)+ or S(p, r)− defined below.

For every p ∈ P and r ∈ (0, 1), let S(p, r)− contain precisely those vertices
which do not contain p. Furthermore, let S(p, r)− contain all interior points of
edges x with x < p together with (0, r)× {p}.

Similarly, let S(p, r)+ contain precisely those vertices which contain p. Fur-
thermore, let S(p, r)+ contain all interior points of edges x with x > p together
with (r, 1)× {p}.
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A pseudo-path from v to w in a graph-like space G is a map ϕ of graph-like
spaces from a pseudo-line L(P ) to G with ϕ(∅) = v and ϕ(P ) = w. The vertex
v is called the start-vertex of the pseudo-path, and w is called the end-vertex.

A pseudo-arc is an injective pseudo-path. Any pseudo-arc is a homeomor-
phism onto its image since the domain is (as we shall soon show) compact, and
the codomain is Hausdorff. Thus we will also refer to the images of pseudo-arcs
as pseudo-arcs. In particular, a pseudo-arc in a graph-like space G is the image
of such a map (in other words, it is a subspace of G which is also a pseudo-line).

Lemma 5.2.2. The spaces L(P ) defined above are connected and compact.

Proof. For the connectedness, let U be an open and closed set containing the
start-vertex ∅. Since for any edge e the subspace topology of ιe([0, 1]) is that of
[0, 1], which is connected, the set ιe([0, 1]) is either completely included in U or
disjoint from U . Let v = {p ∈ P |S(p, 1/2)− ⊆ U}. Then the vertex v is in U
since any neighbourhood of it meets U (even if v = ∅). So since U is open, it
includes an open neighbourhood O of v. Since by our earlier remarks U includes
all edges p ∈ v and so also all vertices w ⊆ v, we may assume without loss of
generality that either v = P or else O has the form S(p, r)− for some p 6∈ v.
In the second case we conclude that p ∈ v, which is impossible. Hence v = P .
Since the closure of

⋃
p∈P ιp((0, 1)) is the whole of L(P ), the closed set U is the

whole of L(P ). Hence L(P ) is connected, as desired.
It remains to show that L(P ) is compact. By Alexander’s theorem, it suffices

to check that any open cover by subbasic open elements has a finite subcover.
Let L(P ) =

⋃
i∈I+ S(pi, ri)+ ∪ ⋃i∈I− S(pi, ri)− be an open cover by subbasic

open sets. Let v = {p ∈ P |∃i ∈ I− : p < pi}.
First we consider the case where there is some i ∈ I+ with v ∈ S(pi, ri)+.

Then pi ∈ v, so there is some j ∈ I− such that pi < pj . This means that
S(pi, ri)+ and S(pj , rj)− cover L(P ).

Otherwise there is some i ∈ I− with v ∈ S(pi, ri)−. Then pi /∈ v and so
pi is maximal amongst the pj with j ∈ I−. Thus v + pi is contained in some
S(pk, rk)+ with k ∈ I+. Then S(pi, ri)− and S(pk, rk)+, together with some
finite collection of sets from our cover covering the compact subspace ιpi([0, 1]),
form a finite subcover, completing the proof.

Example 5.2.3. If P = ω1, then L(P ) is the long line, which is not homeo-
morphic to [0, 1].

Remark 5.2.4. Any nontrivial pseudo-line is the closure of the set of inte-
rior points of its edges. Any nontrivial pseudo-arc in a graph-like space is the
standard subspace corresponding to its set of edges.

Remark 5.2.5. Contracting a set of edges of a pseudo-line L(P ) corresponds
to removing that set of edges from the associated poset P .

Corollary 5.2.6. Any contraction of a pseudo-line is a pseudo-line.

Lemma 5.2.7. Any nontrivial pseudo-line L(P ) with only countably many
edges is homeomorphic to the unit interval.
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Proof. Let Q̄ = Q ∩ (0, 1). Consider the lexicographic linear order on P × Q̄.
This is dense, countable and has neither a largest nor a smallest element. Since
the theory of such linear orders is countably categorical, this order is isomorphic
to the order of Q̄. Pick an isomorphism φ from P × Q̄ to Q̄.

For any x ∈ [0, 1] such that there are p ∈ P and q, r ∈ Q̄ with φ(p, q) <
x < φ(p, r) we set f(x) = (p, sup{q ∈ Q̄|φ(p, q) < x}) (in such cases, p is clearly
uniquely determined). Otherwise we set f(x) = {p ∈ P |(∀q ∈ Q̄)φ(p, q) < x}.
This gives an injection f from [0, 1] to L(P ). It is continuous by the definition
of the topology on L(P ), and so is a homeomorphism since [0, 1] is compact and
L(P ) is Hausdorff.

Lemma 5.2.8. Let s1 <L . . . <L sn be finitely many edges of a pseudo-line L.
Let S =

⋃n
i=1 ιsi((0, 1)). Then L \ S has n + 1 components each of which is a

pseudo-line. These are S(s1, 1/2)− \S, and S(si+1, 1/2)− ∩S(si, 1/2)+) \S for
1 ≤ i ≤ n− 1 and S(sn, 1/2)+ \ S.

Proof. The assertion follows by induction from the following. Let e ∈ L. Then
L − e has two components that are both pseudo-arcs. These are S(e, 1/2)− \
((0, 1)× {e}) and S(e, 1/2)+ \ ((0, 1)× {e}).

We get a total order 5 on the set of points of the space L(P ) as follows:
if v and w are vertices, we set v 5 w when v ⊆ w. If v is a vertex and (p, q)
an interior point of an edge, we set v 5 (p, q) when p 6∈ v and (p, q) 5 v when
p ∈ v. Finally, we order the interior points of edges by the lexicographic order
on P × (0, 1).

Lemma 5.2.9. Let X be a nonempty closed subset of a pseudo-line L(P ). Then
X contains a 5-smallest and a 5-biggest element.

Proof. First we show that X contains a 5-biggest element.
Let v = {p ∈ P |(∃x ∈ X)(∃r ∈ (0, 1))(p, r) 5 x}. If v ∈ X then it is

evidently the 5-biggest element of X. Otherwise, since X is closed, there must
be some basic open set containing v but avoiding X. Without loss of generality
this set is of the form S(e, r)+. Then e ∈ v, and so there must be some r′ ∈ (0, 1)
with (e, r′) ∈ X. Since X is closed there is a maximal such r′. Then (e, r′) is
the maximal element of X.

The proof that X contains a 5L-smallest element is analogous.

The concatenation of two pseudo-lines L and M is obtained from the disjoint
union of L and M by identifying the end-vertex of L with the start-vertex of
M .

Remark 5.2.10. The concatenation of two pseudo-lines is a pseudo-line.

Remark 5.2.11. Taking the concatenation of 2 pseudo-lines corresponds to
taking the disjoint union of the two corresponding posets, where in the new
ordering we take all elements of the second poset to be greater than all elements
of the first.
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Let P : L→ G and Q : M → G be two pseudo-arcs such that the end-vertex
tP of P is the start-vertex sQ of Q. Then their concatenation is the function
f : (L t M)/(tP = sQ) → G which restricted to L is just P and restricted
to M is just Q. For a pseudo-arc Q : M → G and vertices x and y in the
image of Q, we write xQy for the restriction of Q to those points of M that
are both 5L-bigger than Q−1(x) and 5L-smaller than Q−1(y). Note that xQy
is a pseudo-arc from x to y. If Q is a pseudo-arc from v to w and x and y are
vertices in the image of Q, we abbreviate xQw by xQ and vQy by Qy.

Lemma 5.2.12. Let P : L → G be a pseudo-arc from x to y and Q : M → G
be a pseudo-arc from y to z. Then the concatenation of P and Q includes a
pseudo-arc from x to z

The corresponding Lemma about arcs needs the requirement that x 6= z.
However, we avoid this requirement because there is a pseudo-line whose start-
and end-vertex are equal, namely the trivial pseudo-line.

Proof. Let I be the intersection of the image of P with the image of Q, which
is closed, being the intersection of two closed sets. Then P−1(I) is closed as P
is continuous, and contains a 5L-minimal element w by Lemma 5.2.9.

If w is not a vertex, then P (w) is not a vertex and thus is contained in
ιe((0, 1)) for some edge e. Since P and Q both contain the whole of ιe([0, 1])
if they contain some point from ιe((0, 1)), the same is true for I. But then
ιe([0, 1]) ⊆ I, which contradicts the choice of w. Hence w is a vertex. Let
w′ = P (w)

Thus w′Q is a pseudo-arc. By Remark 5.2.10, the concatenation of Pw′ and
w′Q is the desired pseudo-arc since their images meet precisely in w′.

A pseudo-circle is a graph-like space obtained by identifying the end-vertices
of a nontrivial pseudo line.

We have the following relation between pseudo-lines and pseudo-circles. Ev-
ery pseudo-circle C with one edge removed is a pseudo-line with endvertices the
endvertices of the removed edge.

Conversely, let P and Q be pseudo-lines where P has endvertices sP and
tP and Q has endvertices sQ and tQ. Then the graph-like space obtained from
the disjoint union of P and Q by identifying sP with tQ and tP with sQ is a
pseudo-circle or else is the trivial graph-like space.

So from Corollary 5.2.6 we obtain the following:

Corollary 5.2.13. Any contraction of a pseudo-circle in which not all edges
are contracted is a pseudo-circle.

Using Lemma 5.2.7 we get:

Corollary 5.2.14. Any countable pseudo-circle is homeomorphic to S1.

Definition 5.2.15. A cyclic order on a set X is a relation R ⊆ X3, written
[a, b, c]R, that satisfies the following axioms:
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1. Cyclicity: If [a, b, c]R then [b, c, a]R.

2. Asymmetry: If [a, b, c]R then not [c, b, a]R.

3. Transitivity: If [a, b, c]R and [a, c, d]R then [a, b, d]R.

4. Totality: If a, b, and c are distinct, then either [a, b, c]R or [c, b, a]R.

Remark 5.2.16. The edge set of a pseudo-circle C has a canonical cyclic order
RC (up to choosing an orientation). Conversely, for any nonempty cyclic order
there exists a pseudo-circle (unique up to isomorphism) such that its edge set
has the same cyclic order.

We also get a cyclic order R′C on the set of all points of a pseudo-circle C,
corresponding to the order 5 on the set of points of a pseudo-line. Once more
there are two canonical choices of cyclic order on C, one for each orientation of
C; in fact, we shall take this as our definition of an orientation of C. For us,
an orientation of a pseudo-circle C is a choice of one of the two canonical cyclic
orders of the points of C.

Let s ⊆ o and let R ⊆ o3 be a cyclic order. The cyclic order of s inherited
from R is R restricted to s3. We say that e, g are clockwise adjacent in the
cyclic order R if [e, g, f ]R for any other f in o. In a finite cyclic order, for each
e there is a unique g clockwise adjacent to e, which we denote by n(e).

From Lemma 5.2.8 we obtain the following.

Corollary 5.2.17. Let s be a finite nonempty set of edges of a pseudo-circle
C. Let S =

⋃
e∈s ιe((0, 1)). Then L \ S has |s| components each of which is a

pseudo-line.
For each such component there is a unique e ∈ s such that the component

contains precisely those edges f with [e, f, n(e)]RC , where n(e) is taken with
respect to the induced cyclic order on s.

For a graph-like space G, we also use the term pseudo-circle to describe an
injective map of graph-like spaces from a pseudo-circle to G, as well as the image
of such a map. In particular, a pseudo-circle in G is the image of such a map
(or, in other words, it is a subspace of G which is also a pseudo-circle). If G is a
graph-like space and C is a pseudo-circle in G, the set of edges of C is called a
topological circuit of G. Thus the pseudo-circles in G are precisely the standard
subspaces of G corresponding to the topological circuits.

Lemma 5.2.18. The intersection of a topological circuit with a topological cut
is never only one edge.

Proof. Suppose for a contradiction that there are a topological circuit o and a
topological cut b that intersect in only one edge f . In the graph-like space o,
the set b ∩ o is a topological cut consisting of a single edge f . This contradicts
the fact that removing any edge does not disconnect the pseudo-circle o, which
completes the proof.
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We can also show that the intersection of topological circuits with topological
cuts is finite. In fact, we can prove something a little more general.

Lemma 5.2.19. Let o be a set of edges in a graph-like space G such that o is
compact. The the intersection of o with any topological cut b is finite.

Proof. Let b be induced by the open sets U and U ′. The sets U ∩ o and U ′ ∩ o,
together with all the sets (0, 1) × {e} with e ∈ o, comprise an open cover of
o. So there is a finite subcover, which can only contain (0, 1) × {e} for finitely
many edges e. For any other edge f of o we must have (0, 1) × {f} ⊆ U ∪ U ′,
and it must be a subset either of U or of V since it is connected: in particular,
no such f can be in b.

5.3 Graph-like spaces inducing matroids

In this section we will explain what it means for a graph-like space to induce
a matroid and prove some fundamental facts about graph-like spaces inducing
matroids which we will need in Section 5.4 and Section 5.6.

If for a graph-like space G there is a matroid M on E(G) whose circuits
are precisely the topological circuits of G and whose cocircuits are precisely the
topological bonds of G, then we say that G induces M , and we may denote
M by M(G). Note that there can only be one such matroid since a matroid is
uniquely defined by its set of circuits.

Example 5.3.1. For any finitely separable graph G the space |G| induces the
topological cycle matroid MC(G). The one-point compactification of a locally
finite graph G induces the algebraic cycle matroid MA(G); if G is not locally fi-
nite and does not include a subdivision of the Bean graph, a similar construction
can be used to construct a noncompact graph-like space that induces MA(G).
Finally, the geometric realisation of G induces the finite cycle matroid MFC(G).

Lemma 5.3.2. Let G be a graph-like space, and suppose G induces a matroid
M . Then for any C,D ⊆ E(M), the graph-like space G/C\D induces M/C\D.

Proof. Let C and C∗ be respectively the collection of topological circuits and
the collection of topological cuts of G/C\D. We will show that every circuit of
M/C\D is in C, and that every cocircuit of M/C\D is in C∗. Lemma 5.2.18
states that for every o ∈ C, b ∈ C∗, |o ∩ b| 6= 1, so it will follow by Lemma
1.3.7 that the topological circuits of G/C\D are the circuits of M/C\D and
that the minimal topological cuts (i.e. the topological bonds) of G/C\D are
the cocircuits of M/C\D, completing the proof.

Let o be a circuit of M/C\D. By Lemma 1.2.7 there is a circuit o′ of M
such that o ⊆ o′ ⊆ o∪C. Since o′ is a circuit of M , there is a pseudo-circle O in
G with edge-set o′. Let fC : G→ G/C be as in the definition of the contraction
G/C. Then fC�O is a map of graph-like spaces from O to a subspace of G/C\D
that has edge-set o. If it describes a contraction of O ∩ C, then Lemma 5.2.13
implies that o is a circuit of G/C\D as required. Otherwise, some vertex of
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G/C\D must contain two vertices p and q of O such that their deletion from
the pseudo-circle O leaves two elements e and f of o in different components
of O − p − q. Then by Lemma 1.3.5 there is a cocircuit b of M/C\D with
o∩ b = {e, f}. Using the dual of Lemma 1.2.7, there is a cocircuit b′ of M with
b ⊆ b′ ⊆ b∪D, so that o′∩ b′ = {e, f}. b′ is a topological bond of G not meeting
C and with p and q on opposite sides, contradicting the assumption that they
are identified when we contract C.

Let b be a cocircuit of M/C\D. It follows by the dual of Lemma 1.2.7
that there is a cocircuit b′ of M (hence also a topological cut of G) such that
b ⊆ b′ ⊆ b ∪D. Let U, V be the disjoint open sets in G that partition V (G) so
that the set of edges with an end in each of U and V is b′. Let fC : G 7→ G/C
be the map of graph-like spaces describing the contraction of C from G. Since
b′ is disjoint from C, fC does not identify any element of U with any element of
V . Thus fC(U), fC(V ) are open sets in G/C\D, and b is the set of edges with
an end in each, showing that b is a topological cut of G/C\D, as required.

Definition 5.3.3. A switching sequence for a base s in a matroid with ground
set E is a finite sequence (ei|1 ≤ i ≤ n) whose terms are alternately in s and not
in s and where for i < n if ei ∈ s then ei+1 ∈ bei and if ei 6∈ s then ei+1 ∈ oei .

Lemma 5.3.4. Let M be a connected matroid with a base s, and e and f be
edges of M . Then there is a switching sequence with first term e and last term
f .

Proof. This is immediate from Lemma 1.5.7

Proposition 5.3.5. Let G be a graph-like space inducing a connected matroid
M with a base s. Then for any edges e and f of M , and any endvertices v of e
and w of f , there is a unique pseudo-arc from v to w that uses only edges in s.

Proof. By Lemma 5.3.4, we can find a switching sequence (ei|1 ≤ i ≤ n) for s
with first term e and last term f . Pick a sequence (vi|1 ≤ i ≤ n), with first
term v and last term w, where for each i the vertex vi is an endvertex of ei.
Then for any i < n we can find a pseudo-arc from vi to vi+1 using only edges
of s: if ei ∈ s then we take an interval of the pseudo-arc oei+1 \ ei+1, and if
ei 6∈ s then we take an interval of the pseudo-arc oei \ ei. Repeatedly applying
Lemma 5.2.12 we find the desired pseudo-arc from v to w.

To show uniqueness, we suppose for a contradiction that there are 2 distinct
such pseudo-arcs R1 and R2. Then without loss of generality there is an edge
e0 in R1 \R2.

Let a ∈ R1 ∩ R2 be the 5R1-smallest point that is still 5R1-bigger than
any point on e0; such a point exists as the intersection of the two pseudo-
arcs is closed. Similarly, let b ∈ R1 ∩ R2 be the 5R1 -biggest point that is
still 5R1-smaller than any point on e0. Then aR1b and bR2a are internally
disjoint. Therefore aR1bR2a is a pseudo-circle all of whose edges are in s, a
contradiction.
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Remark 5.3.6. The proof of uniqueness above does not make use of the as-
sumption that v and w are endvertices of edges.

Let us call the pseudo-arc whose uniqueness is noted above vsw by analogy
to the special case where s is a pseudo-arc. Next, we give a precise description
of vsw.

Proposition 5.3.7. The pseudo-arc vsw contains precisely those edges of s
whose fundamental cocircuit with respect to s separates v from w. Its linear
order is given by e ≤ f if and only if e lies on the same side as v of the
fundamental cocircuit bf of f .

Proof. Let R be the pseudo-arc from v to w using edges in s only. Since R is
connected, it must contain all edges whose fundamental cocircuit with respect
to s separates v from w.

On the other hand let e be an edge on R. Let z1 and z2 be the endvertices of
e, with z1 5R z2. Then by the above we can join v to z1 by the pseudo-arc vRz1

and w to z2 by the pseudo-arc wRz2. In G with the fundamental cocircuit of e
removed, z1 and z2 lie on different sides, which we will call A1 and A2. Since
vRz1 ⊆ A1 and wRz2 ⊆ A2, the fundamental cocircuit of e separates v from w,
which completes the proof of the first part.

The second part is immediate from the definitions.

5.4 Existence

Let G be a graph-like space inducing a matroid M . Then every finite minor
of M is induced by a finite minor of G (finite in the sense that it only has
finitely many edges) by Lemma 5.3.2. But this finite minor must consist simply
of a graph, together with a (possibly infinite) collection of spurious vertices, by
Lemma 5.1.2 applied to the closure of the set of edges. In particular, every finite
minor of M is graphic. We also know that M has to be tame, by Lemma 5.2.19.
The aim of this section is to prove that these conditions are also sufficient to
show that M is induced by some graph-like space. More precisely, we wish to
show:

Theorem 5.4.1. Let M be a matroid. The following are equivalent.

1. There is a graph-like space G inducing M .

2. M is tame and every finite minor of M is the cycle matroid of some graph.

The forward implication was proved above. The rest of this section will
be devoted to proving the reverse implication. The strategy is as follows: we
consider an extra structure that can be placed on certain matroids, with the
following properties:

• There is such a structure on any matroid induced by a graph-like space
(in particular, there is such a structure on any finite graphic matroid).

137



• Given such a structure on a matroid M , we can obtain a graph-like space
inducing M .

• The structure is finitary.

Then we proceed as follows: given a tame matroid all of whose finite minors
are graphic, we obtain a graph framework on each finite minor. Then the
finitariness of the structure, together with the tameness of the matroid, allows
us to show by a compactness argument that there is a graph framework on the
whole matroid. From this graph framework, we build the graph-like space we
need.

5.4.1 Graph frameworks

A signing for a tame matroid M is a choice of functions co : o → {−1, 1} for
each circuit o of M and db : b→ {−1, 1} for each cocircuit b of M such that for
any circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 ,

where the sums are evaluated over Z. The sums are all finite since M is tame.
A tame matroid is signable if it has a signing.

Signings for finite matroids were introduced in [70], where it was shown that
a finite matroid is signable if and only if it is regular, i.e. representable over any
field. This result was extended to tame infinite matroids, for a suitable infinitary
notion of representability, in [13]. In [12] it is shown that the standard matroids
associated to graphs are all signable. The construction for a graph G is as
follows: we begin by choosing some orientation for each edge of G (equivalently,
we choose some digraph whose underlying graph is G). We also choose a cyclic
orientation of each circuit of the matroid and an orientation of each bond used
as a cocircuit of the matroid. Then co(e) is 1 if the orientation of e agrees with
the orientation of o and −1 otherwise. Similarly, db(e) is 1 if the orientation
of e agrees with that of b and −1 otherwise. Then the terms co(e)db(e) are
independent of the orientation of e: such a term is 1 if o traverses b at e in a
forward direction, and −1 if o traverses b at e in the reverse direction. Since o
must traverse b the same number of times in each direction, all the sums in the
definition evaluate to 0.

We therefore think of a signing, in a graphic context, as providing informa-
tion about the cyclic orderings of the circuits and about the direction in which
each edge in a given bond points relative to that bond. In order to reach the
notion of a graph framework, we need to modify the notion of a signing in two
ways. Firstly, we need to add some extra information specifying on which side
of a bond b each edge not in b lies. Secondly, we need to add some conditions
saying that these data induce well-behaved cyclic orderings on the circuits.

Recall that if s has a cyclic order R, then we say that p, q ∈ s are clockwise
adjacent in R if [p, q, g]R is in the cyclic order for all g ∈ s− p− q.
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Definition 5.4.2. A graph framework on a matroid M consists of a signing
of M and a map σb : E \ b → {−1, 1} for every cocircuit b, which we think
of as telling us which side of the bond b each edge lies on, satisfying certain
conditions. First, we require that these data induce a cyclic order Ro for each
circuit o of M : For distinct elements e, f and g of M , we take [e, f, g]Ro if and
only if both e, f, g ∈ o and there exists a cocircuit b of M such that b ∩ o =
{e, f} and σb(g) = co(f)db(f). That is, we require that each such relation Ro
satisfies the axioms for a cyclic order given in Definition 5.2.15. In particular,
by asymmetry and totality, we require that this condition is independent from
the choice of b: if o is a circuit with distinct elements e, f and g, and b and b′

are cocircuits such that o ∩ b = o ∩ b′ = {e, f}, then σb(g) = co(f)db(f) if and
only if σb′(g) = co(f)db′(f). Let o be a circuit, b be a cocircuit and s be a finite
set with b ∩ o ⊆ s ⊆ o. Then s ⊆ o inherits a cyclic order Ro�sfrom o. Our
final conditions are as follows: for any two p, q ∈ s clockwise adjacent in Ro�s
we require:

1. If p, q ∈ b, then co(p)db(p) = −co(q)db(q).

2. If p, q /∈ b, then σb(p) = σb(q).

3. If p ∈ b and q /∈ b, then co(p)db(p) = σb(q).

4. If p /∈ b and q ∈ b, then co(q)db(q) = −σb(p).

Graph frameworks behave well with respect to the taking of minors. Let M
be a matroid with a graph framework, and let N = M/C\D be a minor of M .
For any circuit o of N we may choose by Lemma 1.2.7 a circuit o′ of M with
o ⊆ o′ ⊆ o ∪ C. This induces a function co′�o : o → {−1, 1}. Similarly for any
cocircuit b of N we may choose a cocircuit b′ of N with b ⊆ b′ ⊆ b ∪ D, and
this induces functions db′�b : b → {−1, 1} and σb′�E(N)\b : E(N) \ b → {−1, 1}.
Then these choices comprise a graph framework on N , with Ro given by the
restriction of Ro′ to o.

Next we show that every matroid induced by a graph-like space has a graph
framework. Let M be a matroid induced by a graph-like space G. Fix for each
topological bond of G a pair (Ub, Vb) of disjoint open sets in G inducing b, and
fix an orientation R′o of the pseudo-circle o inducing each topological circle o
(recall from Section 5.2 that an orientation of a pseudo-circle is a choice of one of
the two canonical cyclic orders of the set of points). For each topological circuit
o, let the function co : o→ {−1, 1} send e to 1 if [ιe(0), ιe(0.5), ιe(1)]R′o , and to
−1 otherwise. For each topological bond db, let the function db : b → {−1, 1}
send e to 1 if ιe(0) ∈ Ue and to −1 if ιe(0) ∈ Ve. Finally, for each topological
bond db, let the function σb : E \ b → {−1, 1} send e to −1 if the end-vertices
of e are both in Ub and to 1 if they are both in Vb.

Lemma 5.4.3. The co, db and σb defined above give a graph framework on M .

Proof. The key point will be that the cyclic orderingRo we obtain on each circuit
o will be that induced by the chosen orientation R′o. So let o be a topological
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circuit of G. First we show that for any distinct edges e, f and g in o and any
topological bond b with o∩ b = {e, f} we have σb(g) = co(f)db(f) if and only if
[ιe(0.5), ιf (0.5), ιg(0.5)]Ro . For any edge e ∈ b we define ιbe : [0, 1]→ G to be like
ιe but with the orientation changed to match b. That is, we set ιbe(r) = ιe(r) if
ιe(0) ∈ Ub and ιbe(r) = ιe(1− r) if ιe(0) ∈ Vb.

Since the pseudo-circle o with edge set o is compact, there can only be finitely
many edges in o with both endpoints in Ub but some interior point not in Ub, so
by adding the interiors of those edges to Ub if necessary we may assume without
loss of generality that there are no such edges, and similarly we may assume
that if an edge of o has both endpoints in Vb then all its interior points are also
in Vb. Thus the two pseudo-arcs obtained by removing the interior points of e
and f from o are both entirely contained in Ub ∪ Vb. Since each of these two
pseudo-arcs is connected and precisely one endvertex of e is in Ub, we must have
that one of these pseudo-arcs, which we will call RU is included in Ub. And the
other, which we will call RV , is included in Vb. The end-vertices of RU must be
ιbe(0) and ιbf (0), and those of RV must be ιbe(1) and ιbf (1).

Suppose first of all that σb(g) = 1. LetR be the pseudo-arc ιbf (0)fιbf (1)RV ιbe(1).
Then co(f)db(f) = 1 if and only if the ordering along R agrees with the ori-
entation of o, which happens if and only if [ιf (0.5), ιg(0.5), ιe(0.5)]R′o , which is
equivalent to [ιe(0.5), ιf (0.5), ιg(0.5)]R′o . The case that σb(g) = −1 is similar.
This completes the proof that for any distinct edges e, f and g in o and any
topological bond b with o∩ b = {e, f} we have σb(g) = co(f)db(f) if and only if
[ιe(0.5), ιf (0.5), ιg(0.5)]R′o .

In particular, the construction of Definition 5.4.2 really does induce cyclic
orders on all the circuits. We now show that these cyclic orders satisfy (1)-(4).
Let o, b, s, p and q be as in Definition 5.4.2. Without loss of generality o is
the whole of G. We may also assume without loss of generality that all edges
e are oriented so that co(e) = 1. Since o is compact we may as before assume
that all interior points of edges not in s are in either Ub or Vb. Thus each of
the pseudo-arcs obtained by removing the interior points of the edges in s, as
in Corollary 5.2.17, is entirely included in Ub or Vb. Since they both lie on one
of these pseudo-arcs, ιp(1) and ιq(0) are either both in Ub or both in Vb. We
shall deal with the case that both are in Vb: the other is similar. In case (1),
we get db(p) = 1 and db(q) = −1. In case (2), we get σb(p) = σb(q) = 1. In
case (3), we get db(p) = 1 and σb(q) = 1. Finally in case (4) we get σb(p) = 1
and db(q) = −1. Since we are assuming that co(p) = co(q) = 1, in each case the
desired equation is satisfied. This completes the proof.

Since a graph framework is a finitary structure, we can lift it from finite
minors to the whole matroid.

Lemma 5.4.4. Let M be a tame matroid such that every finite minor is a cycle
matroid of a finite graph. Then M has a graph framework.

Proof. By Lemma 5.4.3 we get a graph framework on each finite minor of M .
We will construct a graph framework for M from these graph frameworks by a
compactness argument. Let C and C∗ be the sets of circuits and of cocircuits of

140



M . Let H =
⋃
o∈C o× {o} t

⋃
b∈C∗ b× {b} t

⋃
b̃∈C∗(E \ b̃)× {b̃} t

⋃
o∈C o× o3.

Endow X = {−1, 1}H with the product topology. Any element in X encodes a
choice of functions co : e 7→ x(o, e) for every circuit o, functions db : e 7→ x(b, e)
and σb : e 7→ x(b̃, e) for every cocircuit b̃, and ternary relations Ro = {(e, f, g) ∈
o3|x(e, f, g) = 1} for each circuit o.

To comprise a graph framework, these function have to satisfy several prop-
erties. These will be encoded by the following six types of closed sets.

For any circuit o and cocircuit b, let Co,b = {x ∈ X|∑e∈o∩b x(o, e)x(b, e) =
0}. Note that the functions co and db corresponding to any x in the intersection
of all these closed sets will form a signing.

Secondly, for every circuit o, distinct edges e, f, g ∈ o and cocircuit b such
that o∩b = {e, f}, let Co,b,g = {x ∈ X|x(o, e, f, g) = x(b̃, g)x(o, f)x(b, f)}. So x
is in the intersection of these closed sets if and only if the cyclic orders encoded
by x are given as in Definition 5.4.2.

Thirdly any circuit o and distinct elements e, f , g of o we set Co,e,f,g,Cyc =
{x ∈ X|x(o, e, f, g) = x(o, f, g, e)}. Note that for any x and o in the intersection
of all these closed sets the relation Ro derived from x will satisfy the Cyclicity
axiom. Similarly we get sets Co,e,f,g,AT encoding the Asymmetry and Totality
axioms and Co,e,f,g,h,Trn encoding the Transitivity axiom.

Finally, for every circuit o, cocircuit b, finite set s with o∩b ⊆ s, and p, q ∈ s
distinct, let Cb,o,s,p,q denote the set of those x such that, if p and q are clockwise
adjacent with respect to Ro�s, then the appropriate condition of (1)-(4) from
Definition 5.4.2 is satisfied.

By construction, any x in the intersection of all those closed sets gives rise
to a graph framework. As X has the finite intersection property, it remains to
show that any finite intersection of those closed sets is nonempty. Given a finite
family of those closed sets, let B and O be the set of all those cocircuits and
circuits, respectively, that appear in the index of these sets. Let F be the set of
those edges that either appear in the index of one of those sets or are contained
in some set s or appear as the intersection of a circuit in O and a cocircuit in
B. As the family is finite and M is tame, the sets B,O and F are finite.

By Lemma 4.6 from [13] we find a finite minor M ′ of M satisfying the
following.

For every M -circuit o ∈ O and every M -cocircuit b ∈ B, there
are M ′-circuits o′ and M ′-cocircuits b′ with o′ ∩ F = o ∩ F and
b′ ∩ F = b ∩ F and o′ ∩ b′ = o ∩ b.

By Lemma 5.4.3M ′ has a graph framework ((c′o|o ∈ C(M ′)), (d′b|b ∈ C∗(M ′)), (σ′b|b ∈
C∗(M ′))), giving cyclic orders R′o′ on the circuits o′. Now by definition any x
with co�F = c′o�F and db�F = d′b�F and σb�F = σ′b�F and Ro�o′ = Ro′ for o ∈ O
and b ∈ B will lie in the intersection of all the closed sets in the finite family, as
required. This completes the proof.
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5.4.2 From graph frameworks to graph-like spaces

In this subsection, we prove the following lemma, which, together with Lemma 5.4.4,
gives the reverse implication of Theorem 5.4.1.

Lemma 5.4.5. Let M be a tame matroid with a graph framework F . Then
there exists a graph-like space G = G(M,F) inducing M .

We take our notation for the graph framework as in Definition 5.4.2.
We begin by defining G. The vertex set will be V = {−1, 1}C∗(M), and of

course the edge set will be E(M). As in Definition 5.1.1, the underlying set of
the topological space G will be V t ((0, 1)× E).

Next we give a subbasis for the topology ofG. First of all, for any open subset
U of (0, 1) and any edge e ∈ E(M) we take the set U × {e} to be open. The
other sets in the subbasis will be denoted U ib(εb) where i ∈ {−1, 1}, b ∈ C∗(M)
and εb : b → (0, 1). Roughly, U1

b (εb) should contain everything that is above
b and U−1

b (εb) should contain everything that is below b, so that removing the
edges of b from G disconnects G. In other words, G \ (

⋃
e∈b(0, 1)× {e}) should

be disconnected because the open sets U1
b (εb) and U−1

b (εb) should partition it
(for every εb). Formally, we define U ib(εb) as follows.

U ib(εb) = {v ∈ V |v(b) = i} ∪
⋃

e∈E\b,σb(e)=i
(0, 1)× {e}

∪
⋃

e∈b,db(e)=i
(1− εb(e), 1)× {e} ∪

⋃
e∈b,db(e)=−i

(0, εb(e))× {e}

To complete the definition of G, it remains to define the maps ιe for every
e ∈ E(M). For each r ∈ (0, 1), we must set ιe(r) = (r, e). For r ∈ {0, 1}, we let:

ιe(0)(b) =

{
σb(e) if e /∈ b
−db(e) if e ∈ b ; ιe(1)(b) =

{
σb(e) if e /∈ b
db(e) if e ∈ b ;

Note that ιe is continuous and ιe�(0,1) is open. This completes the definition
of G. Next, we check the following.

Lemma 5.4.6. G is a graph-like space.

Proof. The only nontrivial thing to check is that for any distinct v, v′ ∈ V ,
there are disjoint open subsets U,U ′ of G partitioning V (G) and with v ∈ U
and v′ ∈ U ′. Indeed, if v 6= v′, there is some b ∈ C∗ such that v(b) 6= v′(b),
and then for any εb with εb(e) ≤ 1/2 for each e ∈ E(M), the sets U1

b (εb) and
U−1
b (εb) have all the necessary properties.

Having proved that G is a graph-like space, it remains to show that G induces
M . This will be shown in the next few lemmas.

Lemma 5.4.7. Any circuit o of M is a topological circuit of G.
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The proof, though long, is simply a matter of unwinding the above defini-
tions, and may be skipped.

Proof. By the symmetry of the construction of G, we may assume without loss
of generality that co(e) = 1 for all e ∈ o. The graph framework of M induces
a cyclic order Ro on o. From this cyclic order we get a corresponding pseudo-
circle C with edge set o by Remark 5.2.16. We begin by defining a map f of
graph-like spaces from C to G as follows. First we define f(v) for a vertex v by
specifying f(v)(b) for each cocircuit b of M .

If b ∩ o = ∅, then (f(v))(b) = σb(e) for some e ∈ o. This is independent
of the choice of e by condition (2) in the definition of graph frameworks. This
ensures that f−1(U ib(εb)) = C if i = σb(e), and f−1(U ib(εb)) = ∅ if i = −σb(e).

If b ∩ o =: s is nonempty, then s is finite as M is tame. The cyclic order of
o induces a cyclic order on s ∪ {v}: choose pv,b so that pv,b and v are clockwise
adjacent in this cyclic order. We take (f(v))(b) = db(pv,b).

Finally, we define the action of f on interior points of edges by f(ιCe (r)) =
ιGe (r) for r ∈ (0, 1). We may check from the definitions above that this formula
also holds at r = 0 and r = 1. First we deal with the case that r = 0.
We check the formula pointwise at each cocircuit b of M . In the case that
b ∩ o = ∅, we have f(ιCe (0))(b) = σb(e) = ιGe (0)(b). Next we consider those
b with e ∈ b. Let s = o ∩ b, so that pιCe (0),b and e are clockwise adjacent in
s. Thus f(ιCe (0))(b) = db(pιCe (0),b) = −db(e) = ιGe (0)(b) by condition (1) in
the definition of graph frameworks and our assumption that co(f) = 1 for any
f ∈ o. The other possibility is that b ∩ o is nonempty but e 6∈ b. In this
case, let s = b ∩ o + e, so that pιCe (0),b and e are clockwise adjacent in s. Thus
f(ιCe (0))(b) = db(pιCe (0)) = σb(e) = ιGe (0) by condition (3) in the definition of
graph frameworks and our assumption on co. The equality f(ιCe (1)) = ιGe (1)
may also be checked pointwise. The cases with e 6∈ b are dealt with as before,
but the case e ∈ b needs a slightly different treatment: we note that in this case
pιCe (1),b = e, so that f(ιCe (1))(b) = db(e) = ιGe (1).

It is clear by definition that f is injective on interior points of edges. To see
that f is injective on vertices, let v and w be vertices of C such that f(v) = f(w)
and suppose for a contradiction that v 6= w. Since C is a pseudo-circle, there
are two edges e and f in C such that v and w lie in different components of
C\{e, f}. By Lemma 1.3.5, there is a cocircuit b of M with o ∩ b = {e, f}.
Without loss of generality we have e = pv,b. It follows that f = pw,b. Since
e and f are clockwise adjacent in the induced cyclic order on {e, f}, we have
f(v)(b) = db(e) = −db(f) = −f(w)(b) by condition (1) in the definition of
graph frameworks and our assumption that co(f) = 1 for any f ∈ o. This is the
desired contradiction. So f is injective.

To see that f is continuous, we consider the inverse images of subbasic open
sets of G. It is clear that for any edge e and any open subset U of (0, 1),
f−1({e} × U) = {e} × U is open in C, so it remains to check that each set of
the form f−1(U ib(εb)) is open in C. If b ∩ o = ∅ then this set is either empty or
the whole of C. So suppose that b ∩ o 6= ∅, and let x ∈ f−1(U ib(εb)). If x is an
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interior point of an edge e then it is clear that some open neighborhood of x of
the form {e} × U is included in f−1(U ib(εb)).

We are left with the case that x is a vertex and s = b ∩ o 6= ∅. By Corol-
lary 5.2.17, the component of C\s containing x is the pseudo-arc A consisting
of all points y on C with [a, y, b]RC , together with a and b, for some vertices
a = ιCp (1) and b = ιCq (0), where for any vertex v of A we have pv,b = p and where
p and q are clockwise adjacent in the restriction of Ro to s. Since f(x) ∈ U ib(εb),
we have i = f(x)(b) = db(p) and so for any other vertex v of A we also have
f(v)(b) = db(p) = i, so that f(v) ∈ U ib(εb). For any edge e of A, applying
condition (3) in the definition of graph frameworks to p and e in the set s + e
gives σb(e) = db(p) = i, so that f ′′(0, 1)× e = (0, 1)× e ⊆ U ib(εb). By definition,
we have (1− εb(p), 1)×{p} ⊆ U ib(εb), and using condition (1) in the definition of
graph frameworks we get db(q) = −db(p) = −i, so that (0, εb(q))×{q} ⊆ U ib(εb).
We have now shown that every point y of C with [ιCp (1− εb(p)), y, ιCq (εb(q))]RC
is in f−1(U ib(εb)). But the set of such points is open in C, which completes the
proof of the continuity of f .

We have shown that the map f is a map of graph-like spaces from the pseudo-
circle C to G and that the edges in its image are exactly those in o, so that o is
a topological circuit of G as required.

It is clear that any cocircuit of M is a topological cut of G, as witnessed
by the sets U−1

b ( 1
2 ) and U1

b ( 1
2 ). Combining this with Lemmas 5.4.7 and 5.2.18,

we are in a position to apply Lemma 1.3.7 with C the set of topological circuits
and D the set of topological cuts in G. The conclusion is Lemma 5.4.5, which
together with Lemma 5.4.4 gives us Theorem 5.4.1.

5.5 A forbidden substructure

The next lemma gives a useful forbidden substructure for graph-like spaces
inducing matroids.

Lemma 5.5.1. Let G be a graph-like space, and let v be a vertex in it. Let
{Qn|n ∈ N} be a set of pseudo-arcs starting at v, and vertex-disjoint apart from
that. Suppose also that the union of the edge sets of the Qn is independent. Let
y be a point in the closure of the set of their endvertices. Assume there is a
nontrivial v-y-pseudo-arc P that is vertex-disjoint from all the Qn − v.

Then G does not induce a matroid.

Proof. First, we shall show that
(⋃

n∈N Qn
)
∪P does not include a pseudo-circle.

Suppose for a contradiction that it includes a pseudo-circle K. Then K must
include some edge e from P and some edge f from Qm for some m ∈ N. Going
along K starting from f until we first hit the closed set P , we get two disjoint
pseudo-arcs L1 and L2, one for each cyclic order of K. Formally, we consider
the pseudo-arc K − f endowed with the linear order 5K−f . Let s be its start
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vertex and t be its endvertex. Let l1 be the first point of K − f in P , and let l2
be the last point of K − f in P . Then L1 = s(K − f)l1 and L2 = l2(K − f)t.

We shall show that each of these pseudo-arcs contains v. Since f and P − v
are in different components of (P ∪Qm)− v, each Li contains either v or some
edge f ′ in some Ql with l ∈ N −m. Note that fLif ′ is included in

⋃
n∈N Qn

and is an f -f ′-pseudo-arc. By the independence of
⋃
n∈N Qn and Remark 5.3.6,

it must be that fLif ′ = fQmvQlf
′. In particular, v ∈ Li, as desired. This

contradicts that L1 and L2 are disjoint. Thus
(⋃

n∈N Qn
)
∪ P does not include

a pseudo-circle.
Now suppose for a contradiction that G induces a matroid M . We pick

e ∈ P arbitrarily. Since
(⋃

n∈N Qn
)
∪ P is M -independent as shown above,

there must be a cocircuit meeting
(⋃

n∈N Qn
)
∪ P precisely in e (for example,

the fundamental cocircuit with respect to any base extending this set).
This cocircuit defines a topological cut of G with the two endvertices of e

on different sides. This contradicts that
(⋃

n∈N Qn
)
∪ (P − e) is connected.

Figure 5.2:

r1

r2

S

Figure 5.2: The situation of Lemma 5.5.2.

Lemma 5.5.2. Let G be a graph-like space in which there is a pseudo-circle C
with a vertex v of C that is indicent with two edges r1 and r2 of C. Let S be
the pseudo-arc with edge set E(C)− r1 − r2. Assume there are infinitely many
pseudo-arcs Qn starting at v to points in S that are vertex-disjoint aside from
v.

If
⋃
n∈N Qn does not include a pseudo-circle, then G does not induce a ma-

troid.

Proof. Without loss of generality, we may assume that the pseudo-arcs Qn only
meet S in their end-vertices. By Ramsey’s theorem there is an infinite subset
N of N such that the endpoints in S of the Qn for n ∈ N form a sequence
that is either increasing or decreasing with respect to the linear order 5S of the
pseudo-arc S. Let y be their limit point. Let P be the v-y-pseudo-arc included
in C that avoids all the endpoints of those Qn with n ∈ N . Note that P is
nontrivial since it has to include either r1 or r2. Applying Lemma 5.5.1 now
gives the desired result.
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Corollary 5.5.3. Let G be a graph-like space, C a pseudo-circle of G, and r1

and r2 distinct edges of C. Let S1 and S2 be the two components of C \{r1, r2}.
If there is an infinite set W of edges of G each with one end-vertex in S1 and
the other in S2 and with all of their end-vertices in S2 distinct, then G does not
induce a matroid.

Proof. Let G′ be the graph-like space obtained from G by contracting all edges
of S1. Then in G′, there is a vertex v that is endvertex of all edges in W . On the
other hand, the other endvertices are distinct for any two edges in W . Indeed,
let b be the cocircuit meeting C in precisely r1 and r2. Then W ⊆ b and no two
endvertices in S2 are identified.

The set W cannot include a pseudo-circle with at least 3 edges since then
v would be an endvertex of at least 3 edges of that pseudo-circle, which is
impossible. So by Lemma 5.5.2 with each of the Qn given by a single edge of
W , we obtain that G′ does not induce a matroid. By Lemma 5.3.2, nor does
G.

5.6 Countability of circuits in the 3-connected
case

Our aim in this section is to prove the following:

Theorem 5.6.1. Any topological circuit in a graph-like space inducing a 3-
connected matroid is countable.

For the remainder of the section we fix such a graph-like space G, inducing
a 3-connected matroid M , and we also fix a pseudo-circle C of G, whose edge
set gives a circuit o of M .

We begin by taking a base s of M/o, and letting G′ = G/s. Thus by
Lemma 5.3.2 G′ induces the matroid M ′ = M/s in which o is a spanning
circuit. For any e ∈ o, o − e is a base of o and so s ∪ o − e is a base of M ,
which we shall denote se. We shall call the edges of E(M ′) \ o which are not
loops bridges. We denote the set of bridges by Br. The endpoints of each bridge
lie on the pseudo-circle C ′ corresponding to o in G′. The edges of C ′ are the
same as those of C, but the vertices are different: recall that the vertices of the
contraction G′ = G/s were defined to be equivalence classes of vertices of G.
Each of these can contain at most one vertex of C, since o is a circuit of M ′.
Thus each vertex of C ′ contains a unique vertex of C.

Lemma 5.6.2. Let g ∈ o and let f be a bridge with endpoints v′ and w′ in G′.
Let v be the vertex of C contained in v′, and w the vertex of C contained in
w′. Let x be the endvertex of f in G contained in v′, and y the endvertex of f
in G in contained in w′. Then the fundamental circuit of of f with respect to
the base sg of M is given by concatenating 4 pseudo-arcs: the first, from x to
y, consists of only f . The second, from y to w, contains only edges of s. The
third, from w to v contains only edges of o - it is the interval of C − g from w
to v. The fourth, from v to x, contains only edges of s.
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Proof. of ∩ o must consist of the fundamental circuit of f with respect to the
base o− g of M ′ - that is, of the interval of C ′− g from w′ to v′. So the pseudo-
arc v(C − g)w, which is the closure of this set of edges, lies on the pseudo-circle
ōf . So (ōf −f)\v(C−g)w consists of two pseudo-arcs joining v and w to x and
y. These two pseudo-arcs use edges from s only. Since v and y lie in different
connected components of G�s, we must have that the first goes from v to x, and
the second goes from w to y. This completes the proof.

Lemma 5.6.3. For any distinct edges e and f of C, there is a bridge whose
endvertices separate e from f in C.

Proof. Since M is 3-connected, {e, f} is not a bond of M , so we can pick some
g 6∈ {e, f} in the fundamental bond of f with respect to the base se. Then f
lies in the fundamental circuit og of g, which is therefore not a subset of s+ g.
Thus g is a bridge, and since the fundamental circuit of g with respect to the
base o− e of M ′ contains f but not e the endpoints of g separate e from f .

Given that we are aiming to prove Theorem 5.6.1, we may as well assume
that o has at least 2 elements, and by Lemma 5.6.3 we obtain that there is
at least one bridge. We now fix a particular bridge e0, and make use of the
3-connectedness of M to build a tree structure capturing the way the endpoints
of the bridges divide up C ′. We will call this tree the partition tree, and define
it in terms of certain auxiliary sequences (In ⊆ Br), (Jn ⊆ V (C ′)) and (Kn)
indexed by natural numbers, given recursively as follows:

We always construct Jn from In as the set of endvertices of elements of In,
and Kn as the set of components of C ′ \ Jn. We take I0 to be {e0}, and In+1

to be the set of bridges that have endvertices in different elements of Kn or at
least one endvertex in Jn.

Then the nodes of the tree at depth n will be the elements of Kn, with p a
child of q if and only if it is a subset of q.

Lemma 5.6.4. Every bridge is in some In.

Proof. Suppose not, for a contradiction, and let e be any bridge which is in no
In. In particular, the endpoints of e both lie in the same component of C − J0,
so there is a pseudo-arc joining them in C that meets neither endvertex of e0.
Let f be any edge of this pseudo-arc. Let v′0 be any endvertex of e0, and let v0

be the unique vertex of C contained in v′0.
For each n, let Bn be the element of Kn of which f is an edge, and let

B =
⋂
n∈N Bn and A = C \ B. Note that any 2 vertices in B are joined by

a unique pseudo-arc in B, and that A has the same property. Since the two
endvertices of e0 (in G′) avoid B1, they are both in A. Since e is in no In, its
two endvertices lie in B.

Let AV be the set of endvertices v of edges of G such that the first point
of vsfv0 on C is contained in a vertex in A. Let AE be the set of edges of G
that have both endvertices in AV , and let BE = E(M) \AE . Note that for any
vertex v ∈ AV , all edges of the unique v-C-path included in sf lie in AE . And
for any v 6∈ AV , all edges of the unique v-C-path included in sf lie in BE .
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We shall show that (AE , BE) is a 2-separation of M , which will give the
desired contradiction since we are assuming that M is 3-connected.

First, we show that sf ∩ AE is a base of AE . It is clearly independent. Let
g be any edge in AE \ sf . Suppose first of all that g is a bridge. We decompose
the fundamental circuit of g as in Lemma 5.6.2, taking the notation from that
lemma. Then since each of the endpoints x and y of g is in AV , every edge of
this fundamental circuit is in AE , as required.

So suppose instead that g isn’t a bridge, that is, g is a loop in M ′. Let R1

and R2 be the pseudo-arcs from the endpoints x and y of g to v0 which use only
edges from sf . Let z be the first point of R1 to lie on R2. Then zR1v0 and
zR2v0 must be identical, as both are pseudo-arcs from z to v0 using only edges
of sf . Let k be the first point on this pseudo-arc that is in C. By assumption,
k ∈ A. Also, xR1zR2y is a pseudo-arc from x to y using only edges from sf , so
must form (with g) the fundamental circuit of g with respect to sf , so can meet
C at most in a single vertex ( since g is a loop in M ′). Thus all edges in this
fundamental circuit lie on either xR1k or yR2k, and so are in AE , as required.

Next, we show that (sf ∩BE) + f is a base of BE . It is independent since A
includes some edge as e0 is a bridge. Let g be any edge in BE \ sf − f . If g isn’t
a bridge we can proceed as before, so we suppose it is a bridge. We decompose
the fundamental circuit of g as in Lemma 5.6.2, taking the notation from that
Lemma. At least one of v′ and w′ lies in B: without loss of generality it is v′.
Suppose for a contradiction that w′ is in A. Then either w′ is in some Jn or
it is an element of some Kn not containing f . In either case, g ∈ In+1 and so
v′ ∈ Jn+1, giving the desired contradiction since we are assuming v′ ∈ B. Thus
w′ is also in B. Let R be the pseudo-arc from v to w in B. Then g is spanned
by the pseudo-arc xsfvRwsfy, which uses only edges of sf ∩BE+f . To see this
we apply Lemma 5.6.2 with some edge not in B1 in place of f of that lemma.

Since each of AE and BE has at least 2 elements, and the union of the bases
for them given above only contains one more element than the base sf of M ,
this gives a 2-separation of M , completing the proof.

Lemma 5.6.5. Every node of the Partition-tree has at most countably many
children.

Proof. Let x ∈ Kn be a node of the Partition-tree. Then the closure x̄ of the
set of interior points of edges of x is a pseudo-arc. Let x̂ be the set obtained
from this pseudo-arc by removing its end-vertices. An x-bridge is a bridge with
one endvertex in x̂ and one in its complement. Thus every element of Jn+1 ∩ x
must be an endvertex of an x-bridge or of x̄.

Let v1 and v2 be vertices of x̂ with v1 5x̄ v2. Suppose for a contradiction
that there are infinitely many elements of Jn+1 between v1 and v2. Pick a cor-
responding set W of infinitely many x-bridges with different attachment points
between v1 and v2. Since neither of v1 and v2 is an endpoint of x̄, there are edges
e1 and e2 in x such that all points of e1 are 5x̄-smaller than v1, and similarly all
points of e2 are 5x̄-bigger than v2. Then by Corollary 5.5.3 with r1 = e1 and
r2 = e2, G′ does not induce a matroid, which gives the desired contradiction.
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We have established that between any two elements of Jn+1 ∩ x̂ there are
only finitely many others. Hence Jn+1 ∩ x̂ is finite or has the order type of N,
−N or Z. In all these cases there are only countably many children of x, since
these children are the connected components of x \ (Jn+1 ∩ x).

We now consider rays in the partition tree: a ray consists of a sequence
(kn ∈ Kn|n ∈ N) such that for each n the node kn+1 is a child of kn. Given
such a ray, we call the set

⋂
n∈N kn its partition class.

Lemma 5.6.6. The partition class of any ray includes at most one edge.

Proof. Suppose for a contradiction that there is some ray (kn) whose partition
class includes 2 different edges e and f . Then by Lemma 5.6.3 there is a bridge
g whose endvertices separate e from f in C. By Lemma 5.6.4, g lies in some In.
But then e and f lie in different elements of Kn, so can’t both lie in kn, which
is the desired contradiction.

For any element k of Kn with n ≥ 1, the parent p(k) is the unique element
of Kn−1 including k.

An element k of Kn with n ≥ 2 is good if no bridge in In has endvertices
in two different components of p(p(k)) \ k. Note that p(p(k)) \ k has at most
two components. Note that if k is not good, there have to be two vertices in
different components of not only p(p(k)) \ k but also p(p(k)) \ k.

Lemma 5.6.7. Every node of the Partition-tree has at most one good child.

Proof. Suppose for a contradiction that some x ∈ Kn with n ≥ 1 has two
good children y1 and y2. Since they are different, there is an element i of Jn+1

separating them, and a bridge e in In+1 of which i is an endvertex. Since i 6∈ Jn,
e 6∈ In and so the other endvertex j of e must lie in p(x) = p(p(y1)) = p(p(y2)).
Now the two endvertices of e have to be in different components of p(p(y1)) \ y1

or p(p(y2)) \ y2. Hence y1 and y2 cannot both be good at the same time, a
contradiction.

Lemma 5.6.8. Let (kn) be a ray whose partition class includes an edge. Then
all but finitely many nodes on it are good.

Proof. Let e be the edge in the partition class of this ray. Let f be any edge of
C \ k0.

Suppose for a contradiction that there is an infinite set N of natural numbers
such that kn is not good for any n ∈ N . Let N ′ be an infinite subset of N
that does not contain 0, 1 or any pair of consecutive natural numbers. For
each n ∈ N ′, pick a bridge en in In with endvertices in both components of
p(p(kn)) \ kn, which is possible since kn is not good. The endvertices of en
are in Jn but not Jn−2 and so we cannot find m 6= n ∈ N ′ such that em and
en share an endvertex. Applying Corollary 5.5.3 with r1 = e, r2 = f and
W = {en|n ∈ N} yields that G′ does not induce a matroid, a contradiction.
This completes the proof.
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Proof of Theorem 5.6.1. For each edge of C there is a unique ray whose partition
class contains that edge. By Lemma 5.6.8, we can find a first node on that ray
such that it and all successive nodes are good. This gives a map from the edges
of C to the nodes of the partition tree. By Lemma 5.6.7 and Lemma 5.6.6, this
map is injective. By Lemma 5.6.5 the partition tree has only countably many
nodes.

5.7 Planar graph-like spaces

A nice consequence of Theorem 5.6.1 is the following.

Corollary 5.7.1. Let M be a tame 3-connected matroid such that all finite
minors are planar. Then E(M) is at most countable.

Proof. Let e be some edge. By Lemma 5.3.4, there is a switching sequence from
e to any other edge. Hence it suffices to show that there are only countably
many different switching sequences starting at e. We show by induction that
there are only countably many switching sequences of length n for each n. The
case n = 1 is obvious. The first n − 1 elements of a switching sequence of
length n form a switching sequence of length n − 1. On the other hand, there
are only countably many ways to extend a given switching sequence of length
n− 1 to one of length n since all circuits and cocircuits of M are countable by
Theorem 5.6.1. Hence there are only countably many switching sequences of
length n. This completes the proof.

This raises the question how to embed the graph-like space constructed from
a tame matroid all of whose finite minors are planar in the plane. However, we
shall construct such a matroid that does not seem to be embeddable in this sense
the plane. Let N be the matroid whose circuits are the edge sets of topological
circles in the topological space depicted in Figure 5.3. We omit the proof that
this gives a matroid - it can be found in [29]. However, much of the complication
of this matroid was introduced to make it 3-connected, and if we do not require
3-connectedness then it is easy to construct other simpler examples sharing the
essential property of this matroid: it is tame and all finite minors are planar,
but the topology of the graph-like space it induces has no countable basis of
neighbourhoods for the vertex at the apex, so it cannot be embedded into the
plane.
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Figure 5.3: The matroid N .
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Chapter 6

The Packing/Covering
Conjecture

The well-known finite matroid intersection theorem of Edmonds states that for
any two finite matroids M and N the size of a biggest common independent
set is equal to the minimum of the rank sum rM (EM ) + rN (EN ), where the
minimum is taken over all partitions E = EM ∪̇EN . The same statement for
infinite matroids is true, but for a silly reason [30], which suggests that more
care is needed in extending this statement to the infinite case.

Nash-Williams [3] proposed the following for finitary matroids.

Conjecture 6.0.2 (The Matroid Intersection Conjecture). Any two matroids
M and N on a common ground set E have a common independent set I admit-
ting a partition I = JM ∪ JN such that ClM (JM ) ∪ ClN (JN ) = E.

For finite matroids this is easily seen to be equivalent to the intersection
theorem, which is why we refer to Conjecture 6.0.2 as the Matroid Intersection
Conjecture. If for a pair of matroids M and N on a common ground set there
are sets I, JM and JN as in Conjecture 6.0.2, we say that M and N have the
Intersection property, and that I, JM and JN witness this.

In [5], it was shown that this conjecture implies the celebrated Aharoni-
Berger-Theorem [1], also known as the Erdős-Menger-Conjecture. The conjec-
ture is true in the cases where M is finitary and N is co-finitary [5].1 Aharoni
and Ziv [3] proved the conjecture for one matroid finitary and the other a count-
able direct sum of finite rank matroids.

In this chapter we will demonstrate that the Matroid Intersection Conjecture
is a natural formulation by showing that it is equivalent to several other new
conjectures in unexpectedly different parts of infinite matroid theory.

Suppose we have a family of matroids (Mk|k ∈ K) on the same ground set
E. A packing for this family consists of a spanning set Sk for each Mk such that
the Sk are all disjoint. Note that not all families of matroids have a packing.

1In fact in [5] the conjecture was proved for a slightly larger class.
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More precisely, the well-known finite base packing theorem states that if E is
finite then the family has a packing if and only if for every subset Y ⊆ E the
following holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

The Aharoni-Thomassen graphs [2, 34] show that this theorem does not extend
verbatim to finitary matroids. However, the base packing theorem extends to fi-
nite families of co-finitary matroids [4]. This implies the topological tree packing
theorems of Diestel and Tutte. Independently from our main result, we close the
gap in between by showing that the base packing theorem extends to arbitrary
families of co-finitary matroids (for example, topological cycle matroids).

Similar to packings are coverings: a covering for the family (Mk|k ∈ K)
consists of an independent set Ik for each Mk such that the Ik cover E. And
analogously to the base packing theorem, there is a base covering theorem char-
acterising the finite families of finite matroids admitting a covering.

We are now in a position to state our main conjecture, which we will show
is equivalent to the intersection conjecture. Roughly, the finite base packing
theorem says that a family has a packing if it is very dense. Similarly, the finite
base covering theorem says roughly that a family has a covering if it is very
sparse. Although not every family of matroids has a packing and not every
family has a covering, we could ask if it is always possible to divide the ground
set into a “dense” part, which has a packing, and a “sparse” part, which has a
covering?

Definition 6.0.3. We say that a family of matroids (Mk|k ∈ K) on a common
ground set E, has the Packing/Covering property if E admits a partition E =
P ∪̇C such that (Mk�P |k ∈ K) has a packing and (Mk.C|k ∈ K) has a covering.

Conjecture 6.0.4. Any family of matroids on a common ground set has the
Packing/Covering property.

Here Mk�P is the restriction of Mk to P and Mk.C is the contraction of Mk

onto C. Note that if (Mk�P |k ∈ K) has a packing, then (Mk.P |k ∈ K) has a
packing, so we get a stronger statement by taking the restriction here. Similarly,
we get a stronger statement by contracting to get the family which should have
a covering than we would get by restricting.

For finite matroids, we show that this new conjecture is true and implies
the base packing and base covering theorems. So the finite version of Con-
jecture 6.0.4 unifies the base packing and the base covering theorem into one
theorem.

For infinite matroids, we show that Conjecture 6.0.4 and the intersection
conjecture are equivalent, and that both are equivalent to Conjecture 6.0.4 for
pairs of matroids. In fact, for pairs of matroids, we show that (M,N) has
the Packing/Covering property if and only if M and N∗ have the Intersection
property. As the Packing/Covering property is preserved under duality for pairs
of matroids, this shows the less obvious fact that the Intersection property is
also preserved under duality:
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Corollary 6.0.5. If M and N are matroids on the same ground set then M
and N have the intersection property if and only if M∗ and N∗ do.

Conjecture 6.0.4 also suggests a base packing conjecture and a base covering
conjecture which we show are equivalent to the intersection conjecture but not
to the above mentioned rank formula formulation of base packing for infinite
matroids.

The various results about when intersection is true transfer via these equiva-
lences to give results showing that these new conjectures also hold in the corre-
sponding special cases. For example, while the rank-formulation of the covering
theorem is not true for all families of co-finitary matroids, the new covering con-
jecture is true in that case. This yields a base covering theorem for the algebraic
cycle matroid of any locally finite graph and the topological cycle matroid of
any graph. Similarly, we immediately obtain in this way that the new packing
and covering conjectures are true for finite families of finitary matroids. Thus
we get packing and covering theorems for the finite cycle matroid of any graph.

For finite matroids, the proofs of the equivalences of these conjectures sim-
plify the proofs of the corresponding finite theorems.

We show that Conjecture 6.0.4 might be seen as the infinite analogue of the
rank formula of the matroid union theorem. It should be noted that there are
two matroids whose union is not a matroid [4], so there is no infinite analogue
of the finite matroid union theorem as a whole.

This new point of view also allows us to give a simplified account of the
special cases of the intersection conjecture and even to extend the results a
little bit. Our result includes the following:

Theorem 6.0.6. Any family of matroids (Mk|k ∈ K) on the same ground set
E for which there are only countably many sets appearing as circuits of matroids
in the family has the Packing/Covering property.

We also prove the following special case:

Theorem 6.0.7. Let (T,N) and (T,N ′) be trees of matroids of overlap 1 such
that N(t) and N ′(t) have the same ground set for any node t of T . Then for any
Borel sets Ψ and Ψ′ of ends of T the two matroids MΨ(T,N) and MΨ′(T,N ′)
have the Packing/Covering property

Corollary 6.0.8. Let G be a locally finite graph with a tree-decomposition into
finite parts of adhesion at most 2, and let Ψ1 and Ψ2 be Borel sets of ends of G.
Then the pair (MΨ1(G),MΨ2(G)) satisfies the Packing/Covering Conjecture.

Combining this with the basic structural theory of tame matroids developed
above, according to which any matroid has a canonical decomposition over its
2-separations into such a tree structure, we have the first beginnings of a struc-
tural attack on the Packing/Covering conjecture. First, assuming the axiom
of determinacy, we can show that if M is a connected matroid all of whose 3-
connected minors are finite then (M,M) satisfies Packing/Covering. Without
the axiom of determinacy we do not have this result in general, but we still have
it for well-enough behaved matroids.

154



This chapter is closely based on two joint papers with Johannes Carmesin
[15, 17]

6.1 Exchange chains

Below, we will need a modification of the concept of exchange chains introduced
in [4]. The only modification is that we need not only exchange chains for
families with two members but more generally exchange chains for arbitrary
families, which we define as follows: Let (Mk|k ∈ K) be a family of matroids
and let Bk ∈ I(Mk). A (Bk|k ∈ K)-exchange chain (from y0 to yn) is a tuple
(y0, k0; y1, k1; . . . ; yn) where Bkl + yl includes an Mkl -circuit containing yl and
yl+1. A (Bk|k ∈ K)-exchange chain from y0 to yn is called shortest if there is
no (Bk|k ∈ K)-exchange chain (y′0, k

′
0; y′1, k

′
1; . . . ; y′m) with y′0 = y0, y′m = yn

and m < n. A typical exchange chain is shown in Figure 6.1.

C1

C2

C3

C4

y0

y1

y2

y3

y4

I2 ∈ I(M2)

I1 ∈ I(M1)

(a) Before the exchange

C1

C2

C3

C4

y0

y1

y2

y3

y4

I1 + y0 − y1 + y2 − y3

I2 + y1 − y2 + y3 − y4

(b) After the exchange

Figure 6.1: An (I1, I2)-exchange chain of length 4.

Lemma 6.1.1. Let (Mk|k ∈ K) be a family of matroids and let Bk ∈ I(Mk).
If (y0, k0; y1, k1; . . . ; yn) is a shortest (Bk|k ∈ K)-exchange chain from y0 to yn,
then B′k ∈ I(Mk) for every k, where

B′k := Bk ∪ {yl|kl = k} \ {yl+1|kl = k}
Moreover, ClMk

Bk = ClMk
B′k.

Proof (Sketch). The proof that the B′k are independent is done by induction on
n and is that of Lemma 4.2 in [4]. To see the second assertion, first note that
{yl|kl = k} ⊆ ClMk

Bk and thus B′k ⊆ ClMk
Bk. Thus it suffices to show that

Bk ⊆ ClMk
B′k. For this, note that the reverse tuple (yn, kn−1; yn−1, kn−2; . . . ; y0)

is a B′k-exchange chain giving back the original Bk, so we can apply the preced-
ing argument again.

Lemma 6.1.2. Let M be a matroid and I,B ∈ I(M) with B maximal and B\I
finite. Then |I \B| ≤ |B \ I|.
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Lemma 6.1.3. Let (Mk|k ∈ K) be a family of matroids, let Bk ∈ I(Mk) and
let C be a circuit for some Mk0 such that C \ Bk0 only contains one element,
e. If there is a (Bk|k ∈ K)-exchange chain from x0 to e, then for every c ∈ C,
there is a (Bk|k ∈ K)-exchange chain from x0 to c.

Proof. Let (y0 = x0, k0; y1, k1; . . . ; yn = e) be an exchange chain from x0 to e.
Then (y0 = x0, k0; y1, k1; . . . ; yn = e, k0; c) is the desired exchange chain.

6.2 The Packing/Covering conjecture

The matroid union theorem is a basic result in the theory of finite matroids.
It gives a way to produce a new matroid M =

∨
k∈KMk from a finite family

(Mk|k ∈ K) of finite matroids on the same ground set E. We take a subset I of
E to be M -independent iff it is a union

⋃
k∈K Ik with each Ik independent in

the corresponding matroid Mk. The fact that this gives a matroid is interesting,
but a great deal of the power of the theorem comes from the fact that it gives
an explicit formula for the ranks of sets in this matroid:

rM (X) = min
X=P ∪̇C

∑
k∈K

rMk
(P ) + |C| (6.1)

Here the minimisation is over those pairs (P,C) of subsets of X which partition
X.

For infinite matroids, or infinite families of matroids, this theorem is no
longer true [4], in that M is no longer a matroid. However, it turns out, as we
shall now show, that we may conjecture a natural extension of the rank formula
to infinite families of infinite matroids.

First, we state the formula in a way which does not rely on the assumption
that M is a matroid:

max
Ik∈I(Mk)

∣∣∣∣∣ ⋃
k∈K

Ik

∣∣∣∣∣ = min
E=P ∪̇C

∑
k∈K

rMk
(P ) + |C| (6.2)

Note that this is really only the special case of (6.1) with X = E. However,
it is easy to deduce the more general version by applying (6.2) to the family
(Mk�X |k ∈ K).

Note also that no value |⋃k∈K Ik| appearing on the left is bigger than
any value

∑
k∈K rMk

(P ) + |C| appearing on the right. To see this, note that
|⋃k∈K(Ik ∩ P )| ≤ ∑k∈K rMk

(P ) and
⋃
k∈K(Ik ∩ C) ⊆ C. So the formula is

equivalent to the statement that we can find (Ik|k ∈ K) and P and C with
P ∪̇C = E so that ∣∣∣∣∣ ⋃

k∈K
Ik

∣∣∣∣∣ =
∑
k∈K

rMk
(P ) + |C| . (6.3)

For this, what we need is to have equality in the two inequalities above, so we
get ∣∣∣∣∣ ⋃

k∈K
(Ik ∩ P )

∣∣∣∣∣ =
∑
k∈K

rMk
(P ) and

⋃
k∈K

(Ik ∩ C) = C . (6.4)
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The equation on the left can be broken down a bit further: it states that each
Ik ∩ P is spanning (and so a base) in the appropriate matroid Mk�P , and that
all these sets are disjoint. This is the familiar notion of a packing:

Definition 6.2.1. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. A packing for this family consists of a spanning set Sk for each Mk such
that the Sk are all disjoint.

So the Ik ∩ P form a packing for the family (Mk�P |k ∈ K). In fact, in this
case, each Ik ∩ P is a base in the corresponding matroid. In Definition 6.2.1,
we do not require the Sk to be bases, but of course if we have a packing we can
take a base for each Sk and so obtain a packing employing only bases.

Dually, the right hand equation in (6.4) corresponds to the presence of a
covering of C:

Definition 6.2.2. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. A covering for this family consists of an independent set Ik for each Mk

such that the Ik cover E.

It is immediate that the sets Ik∩C form a covering for the family (Mk�C |k ∈
K). In fact we get the stronger statement that they form a covering for the
family (Mk.C|k ∈ K) where we contract instead of restricting, since for each k
we have that Ik ∩P is an Mk-base for P , and we also have that Ik, which is the
union of Ik ∩ C with Ik ∩ P , is Mk-independent.

Putting all of this together, we get the following self-dual notion:

Definition 6.2.3. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. We say this family has the Packing/Covering property iff there is a
partition of E into two parts P (called the packing side) and C (called the
covering side) such that (Mk�P |k ∈ K) has a packing, and (Mk.C|k ∈ K) has
a covering.

We have established above that this property follows from the rank for-
mula for union, but the argument can easily be reversed to show that in fact
Packing/Covering is equivalent to the rank formula, where that formula makes
sense. However, Packing/Covering also makes sense for infinite matroids, where
the rank formula is no longer useful. We are therefore led to the following
conjecture:

Conjecture 6.0.4. Every family of matroids on the same ground set has the
Packing/Covering property.

Because of this link to the rank formula, we immediately get a special case
of this conjecture:

Theorem 6.2.4. Every finite family of finite matroids on the same ground set
has the Packing/Covering property.

Packing/Covering for pairs of matroids is closely related to another property
which is conjectured to hold for all pairs of matroids.
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Definition 6.2.5. A pair (M,N) of matroids on the same ground set E has the
Intersection property iff there is a subset J of E, independent in both matroids,
and a partition of J into two parts JM and JN such that

ClM (JM ) ∪ ClN (JN ) = E .

Conjecture 6.0.2. Every pair of matroids on the same ground set has the
Intersection property.

We begin by demonstrating a link between Packing/Covering for pairs of
matroids and Intersection.

Proposition 6.2.6. Let M and N be matroids on the same ground set E. Then
M and N have the Intersection property iff (M,N∗) has the Packing/Covering
property.

Proof. Suppose first of all that (M,N∗) has the Packing/Covering property,
with packing side P decomposed as SM ∪̇SN∗ and covering side C decomposed
as IM ∪̇IN∗ . Let JM be an M -base of SM , and JN an N -base of C \ IN∗ .
J = JM ∪ JN is independent in M since JN ⊆ IM is independent in M.C and
JM is independent in M�P . Similarly J is independent in N since JM ⊆ P \SN∗
is independent in N.P and JN is independent in N�C . But also

ClM (JM ) ∪ ClN (JN ) = ClM (SM ) ∪ ClN (C \ IN∗) ⊇ P ∪ C = E .

Now suppose instead that M and N have the Intersection property, as wit-
nessed by J = JM ∪̇JN . Let JM ⊆ P ⊆ ClM (JM ) and JN ⊆ C ⊆ ClN (JN ) be
a partition of E (this is possible since ClM (JM )∪ClN (JN ) = E). We shall show
first of all that M�P and N∗�P have a packing, with the spanning sets given by
SM = JM and SN

∗
= P \ JM . JM is spanning in M�P since P ⊆ ClM (JM ),

so it is enough to check that P \ JM is spanning in N∗�P , or equivalently that
JM is independent in N.P . But this is true since JN is an N -base of C and
JM ∪ JN is N -independent.

Similarly, JN is independent inM.C, and since C ⊆ ClN (JN ) JN is spanning
in N�C and so C \ JN is independent in N∗.C. Thus the sets IM = JN and
IN
∗

= C \ JN form a covering for (M.C,N∗.C).

Corollary 6.2.7. If M and N are matroids on the same ground set then (M,N)
has the Packing/Covering property iff (M∗, N∗) does. �

This corollary is not too hard to see directly. However, the following similar
corollary is less trivial.

Corollary 6.0.5. If M and N are matroids on the same ground set then M
and N have the Intersection property iff M∗ and N∗ do. �

Proposition 6.2.6 shows that Conjecture 6.0.2 follows from Conjecture 6.0.4,
but so far we would only be able to use it to deduce that any pair of matroids
has the Packing/Covering property from Conjecture 6.0.2. However, this turns
out to be enough to give the whole of Conjecture 6.0.4.
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Proposition 6.2.8. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E, and let M =

⊕
k∈KMk, on the ground set E ×K. Let N be the

matroid on the same ground set given by
⊕

e∈E U
∗
1,K . Then the Mk have the

Packing/Covering property iff M and N do.

Proof. First of all, suppose that the Mk have the Packing/Covering property
and let P , C, Sk and Ik be as in Definition 6.2.3. We can partition E ×K into
P ′ = P ×K and C ′ = C×K. Let SM =

⋃
k∈K Sk×{k}, and let SN = P ′ \SM .

SM is spanning in M�P ′ by definition, and since the sets Sk are disjoint, there
is for each e ∈ P at most one k ∈ K with (e, k) 6∈ SN . Thus SN is spanning
in N�P ′ . Similarly, let IM =

⋃
k∈K Ik × {k} and let IN = C ′ \ IM . IM is

independent in M.C ′ by definition, and since the sets Ik cover C there is for
each e ∈ E at least one k ∈ K with (e, k) 6∈ IN . Thus IN is independent in
N.C ′.

Now suppose instead that M and N have the Packing/Covering property,
with packing side P decomposed as SM ∪̇SN and covering side C decomposed
as IM ∪̇IN . First we modify these sets a little so that the packing and covering
sides are given by P × K and C × K for some sets P and C. To this end,
we let P = {e ∈ E|(∀k ∈ K)(e, k) ∈ P}, and C = {e ∈ E|(∃k ∈ K)(e, k) ∈
C}, so that P and C form a partition of E. Let S

N
= SN ∩ (P × K) and

I
N

= IN ∪ ((C × K) \ C). We shall show that (SM , S
N

) is a packing for
(M�P×K , N�P×K) and (IM , I

N
) is a covering for (M.(C ×K), N.(C ×K)).

For any e ∈ C, the restriction of the corresponding copy of U∗1,K to P ∩
({e} ×K) is free, and so since the intersection of SN with this set is spanning
there, it must contain the whole of P ∩ ({e} ×K). So since SM ⊆ P is disjoint
from SN , it can’t contain any (e, k) with e ∈ C. That is, SM ⊆ P × K. It
also spans P × K in M , since it spans the larger set P . For each e ∈ P ,
S
N ∩ ({e}×K) = SN ∩ ({e}×K) N -spans {e}×K. Thus S

N
N -spans P ×K,

so (SM , S
N

) is a packing for (M�P×K , N�P×K).

To show that (IM , I
N

) is a covering for (M.(C ×K), N.(C ×K)), it suffices
to show that I

N
is N.(C×K)-independent. For each e ∈ C, the set C∩({e}×K)

is nonempty, so the contraction of the corresponding copy of U∗1,K to this set
consists of a single circuit, so there is some point in this set but not in IN . Then
that same point is also not in I

N
, and so I

N ∩ ({e} ×K) is independent in the
corresponding copy of U∗1,K , so I

N
is indeed N.(C × P )-independent.

Now that we have shown that P ×K, C ×K, (SM , S
N

) and (IM , I
N

) also
witness that M and N have the Packing/Covering property, we show how we
can construct a packing and a covering for (Mk�P |k ∈ K) and (Mk.C|k ∈ K)
respectively.

For each k ∈ K let Ik = {e ∈ E|(e, k) ∈ IM}. Since, as we saw above, IM

meets each of the sets {e} × K with e ∈ C, the union of the Ik is C. Since
also each Ik is independent in Mk.C, they form a covering for (Mk.C|k ∈ K).
Similarly, let Sk = {e ∈ E|(e, k) ∈ SM}. Since the intersection of S

N
with
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{e} ×K is spanning in the corresponding copy of U∗1,k for any e ∈ P , it follows
that for such e it misses at most one point of this set, so that there can be at
most one point in SM ∩ ({e} × K), so the Sk are disjoint. Thus they form a
packing of (Mk�P |k ∈ K).

Corollary 6.2.9. The following are equivalent:

(a) Any two matroids have the Intersection property (Conjecture 6.0.2).

(b) Any two matroids in which the second is a direct sum of copies of U1,2 have
the Intersection property.

(c) Any pair of matroids has the Packing/Covering property.

(d) Any pair of matroids in which the second is a direct sum of copies of U1,2

has the Packing/Covering property.

(e) Any family of matroids has the Packing/Covering property (Conjecture 6.0.4).

Proof. We shall prove the following equivalences.

(b) oo // (d)
OO

��
(a) oo // (c) oo // (e)

The equivalences of (a) with (c) and (b) with (d) both follow from Proposi-
tion 6.2.6. (c) evidently implies (d), but we can also get (c) from (d) by applying
Proposition 6.2.8. Similarly, (e) evidently implies (c) and we can get (e) from
(c) by applying Proposition 6.2.8.

6.3 A special case of the Packing/Covering con-
jecture

In [3], Aharoni and Ziv prove a special case of the intersection conjecture. Here
we employ a simplified form of their argument to prove a special case of the
Packing/Covering conjecture. Our simplification also yields a slight strength-
ening of their theorem.

Key to the argument is the notion of a wave.

Definition 6.3.1. Let (Mk|k ∈ K) be a family of matroids all on the ground set
E. A wave for this family is a subset P of E together with a packing (Sk|k ∈ K)
of (Mk�P |k ∈ K). In a slight abuse of notation, we shall sometimes refer to the
wave just as P or say that elements of P are in the wave. A wave is a hindrance
if the Sk don’t completely cover P . The family is unhindered if there is no
hindrance, and loose if the only wave is the empty wave.
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Remark 6.3.2. Those familiar with Aharoni and Ziv’s notion of wave should
observe that if (P, (S1, S2)) is a wave as above and we let F be an M2-base
of S2 then F is not only M2-independent but also M∗1 .P -independent, since
S1 ⊆ P \ F is M1�P -spanning. Now since P ⊆ ClM2(F ), we get that F is also
M∗1 .ClM2(F )-independent. Thus F is a wave in the sense of Aharoni and Ziv
for the matroids M∗1 and M2. There is a similar correspondence of the other
notions defined above.

Similarly, they say that the pair (M1,M2) is matchable iff there is a set which
is M1-spanning and M2-independent. Those interested in translating between
the two contexts should note that there is a covering for (M1,M2) iff (M∗1 ,M2)
is matchable.

We define a partial order on waves by (P, (Sk|k ∈ K)) ≤ (P ′, (S′k|k ∈ K))
iff P ⊆ P ′ and for each k ∈ K we have Sk ⊆ S′k. We say a wave is maximal iff
it is maximal with respect to this partial order.

Lemma 6.3.3. Let (Mk|k ∈ K) be a family of matroids on the same ground set
E, and let ((P β , (Sβk |k ∈ K))|β < α) a family of waves indexed by some ordinal
α. Then there is a wave (P, (Sk, |k ∈ K)) with P =

⋃
β<α P

β and P ≥ P0.

Proof. For each β < α, let Y β = P β\⋃γ<β P γ . For k ∈ K, let Sk =
⋃
β<α(Y β∩

Sβk ). These are clearly disjoint subsets of P : we aim to show that they form
a packing. We shall show by induction on β < α that for each k ∈ K we
have P β ⊆ ClMk

(Sk). By the induction hypothesis, we have that Sβk \ Y β ⊆⋃
γ<β P

γ ⊆ ClMk
(Sk), so P β ⊆ ClMk

(Sβk ) ⊆ ClMk
(ClMk

(Sk)) = ClMk
(Sk).

It follows that P ⊆ ClMk
(Sk), so the Sk form a packing for (Mk�P ) as

desired.

Corollary 6.3.4. For any wave P there is a maximal wave Pmax ≥ P .

Proof. We apply Lemma 6.3.3 to a family of waves with P as the first element
and which includes all waves to obtain a new wave P ′ ≥ P such that any
element of any wave is an element of P ′. We can extend P to a maximal wave
by assigning the elements of P ′ \⋃k∈K S′k in any way to the sets S′k.

Corollary 6.3.5. If Pmax is a maximal wave then anything in any wave P is
in Pmax.

Proof. We apply Lemma 6.3.3 to the pair (Pmax, P ).

Lemma 6.3.6. For any e ∈ E and k ∈ K, any maximal wave P satisfies
e ∈ ClMk

P whenever there is any wave P ′ with e ∈ ClMk
P ′.

In particular, if e is not contained in any wave, there are at least two k such
that, for every wave P ′, e /∈ ClMk

P ′.

Proof. Let (P, (Sk|k ∈ K)) be a maximal wave. By Corollary 6.3.5 for any wave
(P ′, (S′k|k ∈ K)) we have S′k ⊆ ClMk

Sk. Thus e ∈ ClMk
P ′ = ClMk

S′k implies
e ∈ ClMk

P , as desired.
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For the second assertion, assume toward contradiction that there is at most
one k0 such that, for every wave P ′, e /∈ ClMk0

P ′. Then e ∈ ClMk
P for all

k 6= k0. But then the following is a wave and contains e:
X := (P + e, (Sk|k ∈ K)) where Sk0 = Sk0 + e and Sk = Sk for other values of
k. This is a contradiction.

Lemma 6.3.7. Let (P, (Sk|k ∈ K)) be a wave for a family (Mk|k ∈ K) of
matroids. Let (P ′, (S′k|k ∈ K)) be a wave for the family (Mk/P |k ∈ K). Then
(P ∪ P ′, (Sk ∪ S′k|k ∈ K)) is a wave for the family (Mk|k ∈ K). If either P or
P ′ is a hindrance then so is P ∪ P ′.

Remark 6.3.8. In fact, though we will not need this, a similar statement can
be shown for an ordinal indexed family of waves P β, with P β a wave for the
family (Mk/

⋃
γ<β P

γ |k ∈ K).

Proof. For each k, the set S′k is spanning in Mk�P∪P ′/P and Sk is spanning in
Mk�P∪P ′�P , so each set Sk ∪ S′k spans P ∪ P ′, and they are clearly disjoint. If
the Sk don’t cover some point of P then the Sk ∪S′k also don’t cover that point,
and the argument in the case where P ′ is a hindrance is similar.

Corollary 6.3.9. For any maximal wave Pmax, the family (Mk/Pmax|k ∈ K)
is loose.

We are now in a position to present another Conjecture equivalent to the
Packing/Covering Conjecture. It is for this new form that we shall present our
partial proof.

Conjecture 6.3.10. Any unhindered family of matroids has a covering.

Proposition 6.3.11. Conjecture 6.3.10 and Conjecture 6.0.4 are equivalent.

Proof. First of all, suppose that Conjecture 6.0.4 holds, and that we have an
unhindered family (Mk|k ∈ K) of matroids. Using Conjecture 6.0.4, we get P ,
C, Sk and Ik as in Definition 6.2.3. Then (P, (Sk|k ∈ K)) is a wave, and since
it can’t be a hindrance the sets Sk cover P . They must also all be independent,
since otherwise we could remove a point from one of them to obtain a hindrance.
So the sets Sk ∪ Ik give a covering for (Mk|k ∈ K).

Now suppose instead that Conjecture 6.3.10 holds, and let (Mk|k ∈ K) be
any family of matroids on the ground set E. Then let (P, (Sk|k ∈ K)) be a
maximal wave. By Corollary 6.3.9, (Mk/P |k ∈ K) is loose, and so in particular
this family is unhindered. So it has a covering (Ik|k ∈ K). Taking covering side
C = E \ P , this means that the Mk have the Packing/Covering property.

Lemma 6.3.12. Suppose that we have an unhindered family (Mk|k ∈ K) of
matroids on a ground set E. Let e ∈ E and k0 ∈ K such that for every wave P
we have e /∈ ClMk0

P . Then the family (M ′k|k ∈ K) on the ground set E − e is
also unhindered, where M ′k0 = Mk0/e but M ′k = Mk\e for other values of k.
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Proof. Suppose not, for a contradiction, and let (P, (Sk|k ∈ K)) be a hindrance
for (M ′k|k ∈ K). Without loss of generality, we assume that the Sk are bases
of P . Let Sk be given by Sk0 = Sk0 + e and Sk = Sk for other values of k.
Note that Sk0 is independent because otherwise, by the Mk0/e-independence
of Sk0 , we must have e ∈ ClMk0

(Sk0) (in fact, {e} must be an Mk0-circuit),
so that P ⊆ ClMk0

(Sk0), and thus (P, (Sk|k ∈ K)) is a wave for the Mk with
e ∈ ClMk0

P . Let P ′ be the set of x ∈ P such that there is no (Sk|k ∈ K)-
exchange chain from x to e.

Let x0 ∈ P \
⋃
k∈K Sk. If x0 ∈ P ′, then we will show that (P ′, (P ′ ∩ Sk|k ∈

K)) is a wave containing x0. This contradicts the assumption that (Mk|k ∈ K)
is unhindered. We must show for every k that every x ∈ P ′ \ P ′ ∩ Sk is Mk-
spanned by P ′ ∩ Sk. Since e 6∈ P ′ we cannot have x = e. Let C be the unique
circuit contained in x + Sk. If x ∈ P ′, then C ⊆ P ′ by Lemma 6.1.3, so
x ∈ ClMk

(P ′ ∩ Sk), as desired.
If x0 /∈ P ′, there is a shortest (Sk|k ∈ K)-exchange chain

(y0 = x0, k0; y1, k1; . . . ; yn = e)

from x0 to e. Let S
′
k := Sk ∪ {yl|kl = k} \ {yl+1|kl = k}. By Lemma 6.1.1, S

′
k

is Mk-independent and ClMk
Sk = ClMk

Sk
′

for all k ∈ K. Thus each S
′
k Mk-

spans P but avoids e, in other words: (P, (S
′
k|k ∈ K)) is an (Mk|k ∈ K)-wave.

But also e ∈ ClMk0
P since e ∈ Sk0 , a contradiction.

We will now discuss those partial versions of Conjecture 6.3.10 which we can
prove. We would like to produce a covering of the ground set by independent sets
- and that means that we don’t want any of the sets in the covering to include
any circuits for the corresponding matroid. First of all, we show that we can at
least avoid some circuits. In fact, we’ll prove a slightly stronger theorem here,
showing that we can specify a countable family of sets, which are to be avoided
whenever they are dependent. In all our applications, the dependent sets we
care about will be circuits.

Theorem 6.3.13. Let (Mk|k ∈ K) be an unhindered family of matroids on the
same ground set E. Suppose that we have a sequence of subsets on of E. Then
there is a family (Ik|k ∈ K) whose union is E and such that for no k ∈ K and
n ∈ N do we have both on ⊆ Ik and on dependent in Mk.

Proof. If some wave includes the whole ground set, then as the family is un-
hindered, this wave would yield the desired covering. Unfortunately, we may
not assume this. Instead, we recursively build a family (Jk|k ∈ K) of dis-
joint sets such that some wave (P, (Sk|k ∈ K)) for the Mk/Jk\

⋃
l 6=k Jl includes

enough of E \ ⋃k Jk that any family (Ik|k ∈ K) whose union is E and with
Ik ∩ (P ∪⋃k∈K Jk) = Sk ∪ Jk will work.

We construct Jk as the nested union of some (Jnk |n ∈ N ∪ {0}) with the
following properties. Abbreviate Mn

k := Mk/J
n
k \
⋃
l 6=k J

n
l .

(a) Jnk is independent in Mk.
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(b) For different k, the sets Jnk are disjoint.

(c) (Mn
k |k ∈ K) is unhindered.

(d) Either the set on \
⋃
k∈K J

n
k is included in some (Mn

k |k ∈ K)-wave or there
are distinct l, l′ such that there is some e ∈ on ∩ Jnl and some e′ ∈ on ∩ Jnl′ .

Put J0
k := ∅ for all k. These satisfy (a)-(c), and (d) is vacuous since there

is no term o0 (we are following the convention that 0 is not a natural number).
Assume that we have already constructed Jnk satisfying (a)-(d).

If (d) with on+1 in place of on is already satisfied by the (Jnk |k ∈ K) we can
simply take Jn+1

k := Jnk for all k.
Otherwise, if we let Pmax be a maximal wave, there is some e ∈ on+1 \⋃

k∈K J
n
k not in Pmax and so not in any (Mn

k |k ∈ K)-wave. By Lemma 6.3.6,
there are at least two k ∈ K such that e /∈ ClMk

P ′ for every wave P ′. In
particular, e is not a loop ({e} is independent) in Mk for those two k. Let l be
one of these two values of k. Now let Jn+1

l := Jnl + e and Jn+1
k := Jnk for k 6= l.

Then the Jn+1
k satisfy (a) and (b). By Lemma 6.3.12 and the choice of e, we

also have (c).
If the Jn+1

k already satisfy (d), then we are done. Else, to obtain (d), repeat
the induction step so far and find e′ ∈ on+1\

⋃
k∈K J

n+1
k not in any (Mn

k |k ∈ K)-
wave. Here Mn

k is Mn
k /e if k = l and Mn

k \e otherwise. Further we find, l′ 6= l
such that {e′} is independent in Mn

l′ and e′ /∈ ClMl
P ′ for every wave P ′. Now

let Jn+1
l′ := Jn+1

l′ + e′ and Jn+1
k := Jn+1

k for k 6= l′. Then the Jn+1
k satisfy (a)

and (b) and now also (d). By Lemma 6.3.12 and the choice of e′, we also have
(c).

We now define a new family of matroids by M ′k := Mk/Jk\
⋃
l 6=k Jl, and we

construct an (M ′k|k ∈ K)-wave (P, (Sk|k ∈ K)). We once more do this by taking
the union of a recursively constructed nested family. Explicitly, we take Sk =⋃
n∈N S

n
k and P =

⋃
n∈N P

n, where for each n the wave Wn = (Pn, (Snk |k ∈ K))
is a maximal wave for (Mn

k |k ∈ K) and the Snk are nested. We can find such
waves using Corollary 6.3.4: for each n we have that Wn is also a wave for
(Mn+1

k |k ∈ K) since in our construction we never contract or delete anything
which is in a wave.

Now let (Ik|k ∈ K) be chosen so that
⋃
Ik = E and for each k0 ∈ K we have

Ik0 ∩ (P ∪⋃k∈K Jk) = Sk0 ∪Jk0 . Suppose for a contradiction that for some pair
(k0, n) we have on ⊆ Ik0 and on is dependent in Mk0 . Then by (d), either the
set on \

⋃
k∈K J

n
k is included in some (Mn

k |k ∈ K)-wave or there are distinct l, l′

such that there is some e ∈ on ∩ Jnl and some e′ ∈ on ∩ Jnl′ . In the second case,
clearly on * Ik0 .

In the first case, we will find a hindrance for (Mn
k |k ∈ K), which contradicts

(c). It suffices to show that Snk0 is dependent in Mn
k0

, since then we can obtain a
hindrance by removing a point from Snk0 in Wn. Let o = on\

⋃
k∈K J

n
k = on\Jnk0 .

Note that o is dependent in Mn
k0

, since on is dependent in Mn
k0

but Jnk0 is not
by (a). By assumption, o ⊆ Pn, and so since also o ⊆ on ⊆ Ik0 we have
o ⊆ Ik0 ∩ Pn = Snk0 , so that Snk0 is Mn

k0
-dependent as required.
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Note that, in particular, if we have a countable family of matroids each with
only countably many circuits then Theorem 6.3.13 applies in order to prove
Conjecture 6.0.4 in that special case. Requiring only countably many circuits
might seem quite restrictive, but there are many cases where it holds:

Proposition 6.3.14. A matroid of any of the following types on a countable
ground set has only countably many circuits:

(a) A finitary matroid.

(b) A matroid whose dual has finite rank.

(c) A direct sum of matroids each with only countably many circuits.

Proof. (a) follows from the fact that the countable ground set has only countably
many finite subsets. For (b), since every base B has finite complement, there
are only countably many bases. As every circuit is a fundamental circuit for
some base, there can only be countably many circuits, as desired. For (c), there
can only be countably many nontrivial summands in the direct sum since the
ground set is countable, and the result follows.

In particular, Theorem 6.3.13 applies to any countable family of matroids
each of which is a direct sum of matroids that are finitary or whose duals have
finite rank. This includes the main result of Aharoni and Ziv in [3], if the ground
set E is countable, by Proposition 6.2.6.

If we have a family of sets (Ik|k ∈ K) which does not form a covering, because
some elements aren’t independent, how might we tweak it to make them more
independent? Suppose that the reason why Ik is dependent is that it contains
a circuit o of Mk, but that o also includes a cocircuit for another matroid Mk′

from our family. Then we could move some point from Ik into Ik′ to remove
this dependence without making Ik′ any more dependent.2 We are therefore
not so worried about circuits including cocircuits in this way as we are about
other sorts of circuits. Therefore we now consider cases where most circuits do
include such cocircuits:

Definition 6.3.15. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E. For each k ∈ K we let Wk be the set of all Mk-circuits that
do not contain an Mk′ -cocircuit with k′ 6= k. Call the family (Mk|k ∈ K) of
matroids at most countably weird if

⋃
Wk is at most countable.

Note that if E is countable then (Mk|k ∈ K) is at most countably weird if
and only if

⋃
W∞k is countable where W∞k is the subset of Wk consisting only

of the infinite circuits in Wk.

Theorem 6.3.16. Any unhindered and at most countably weird family (Mk|k ∈
K) of matroids has a covering.

2We may assume that the Ik are disjoint. Then any new circuits in Ik′ would have to meet
the cocircuit in just one point, which is impossible.
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Proof. Apply Theorem 6.3.13 to (Mk|k ∈ K) where the on enumerate
⋃
Wk

where the Wk are defined as in Definition 6.3.15.
So far (Ik|k ∈ K) is not necessarily a covering since each Ik might still contain

circuits. But by the choice of the family of circuits each circuit contained in Ik
contains an Mk′ -cocircuit with k′ 6= k.

In the following, we tweak (Ik|k ∈ K) to obtain a covering (Lk|k ∈ K).
First extend Ik into a minimal Mk-spanning set Bk by (IM)∗. We obtain Lk
from Bk by removing all elements in Ik ∩

⋃
l 6=k Bl. We can suppose without loss

of generality (Ik|k ∈ K) was a partition of E, and so the family (Lk|k ∈ K)
covers E. It remains to show that Lk is independent. For this, assume for
a contradiction that Lk contains an Mk-circuit C. By the choice of Bk, the
circuit C is contained in Ik. In particular, C contains an Ml-cocircuit X for
some l 6= k. By construction Bl meets X and thus C. As C ⊆ Ik, the circuit C is
not contained in Lk, a contradiction. So (Lk|k ∈ K) is the desired covering.

Since by Lemma 1.2.7 for any set P the family (Mk/P |k ∈ K) is at most
countably weird if (Mk|k ∈ K) is, we can now apply the argument of Proposi-
tion 6.3.11 to obtain the following:

Corollary 6.3.17. Any at most countably weird family (Mk|k ∈ K) of matroids
has the Packing/Covering property. �

However, there are still some important open questions here.

Definition 6.3.18 ([5]). The finitarisation of a matroid M is the matroid
Mfin whose circuits are precisely the finite circuits of M .3 A matroid is called
nearly finitary if every base misses at most finitely elements of some base of the
finitarization.

From Proposition 6.2.6 and the corresponding case of Matroid Intersection
[5] we obtain the following:

Corollary 6.3.19. Any pair of nearly finitary matroids has the Packing/Covering
property.

By Proposition 6.2.8 Corollary 6.3.19 implies the that any finite family of
nearly finitary matroids has the Packing/Covering property. We do not know
the answer to the following question.

Open question 6.3.20. Must every (countably) infinite family of nearly fini-
tary matroids have the Packing/Covering property?

In a similar way, we have the following question.

Open question 6.3.21. Must every family of finitary matroids have the Pack-
ing/Covering property?

3It is easy to check that Mfin is indeed a matroid [5].
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6.4 Base covering

The well-known base covering theorem reads as follows.

Theorem 6.4.1. Any family of finite matroids (Mk|k ∈ K) on a finite common
ground set E has a covering if and only if for every finite set X ⊆ E the following
holds. ∑

k∈K
rMk

(X) ≥ |X|

Taking the family to contain only one matroid, consisting of one infinite
circuit, we see that this theorem does not extend verbatim to infinite matroids.
However, Theorem 6.4.1 extends verbatim to finite families of finitary matroids
by compactness [4].4 The requirement that the family is finite is necessary as
(Uk = U1,R|k ∈ N) satisfies the rank formula but does not have a covering.

In the following, we conjecture an extension of the finite base covering theo-
rem to arbitrary infinite matroids. Our approach is to replace the rank formula
by a condition that for finite sets X is implied by the rank formula but is still
meaningful for infinite sets. A first attempt might be the following:

Any packing for the family (Mk�X |k ∈ K) is already a covering. (6.5)

Indeed, for finite X, if (Mk�X |k ∈ K) has a packing and there is an element
of X not covered by the spanning sets of this packing, then this violates the
rank formula. However, there are infinite matroids that violate (6.5) and still
have a covering, see Figure 6.2.

We propose to use instead the following weakening of (6.5).

If (Mk�X |k ∈ K) has a packing, then it also has a covering. (6.6)

To see that (6.6) does not imply the rank formula for some finite X, consider
the family (M,M), where M is the finite cycle matroid of the graph

• • •

This graph has an edge not contained in any cycle (so that (M,M) does not
have a packing) but enough parallel edges to make the rank formula false.

Using (6.6), we obtain the following:

Conjecture 6.4.2 (Covering Conjecture). A family of matroids (Mk|k ∈ K)
on the same ground set E has a covering if and only if (6.6) is true for every
X ⊆ E.

Proposition 6.4.3. Conjecture 6.0.4 and Conjecture 6.4.2 are equivalent.
4The argument in [4] is only made in the case where all Mk are the same but it easily

extends to finite families of arbitrary finitary matroids.
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B2 B1

B′
2 B′

1

Figure 6.2: Above is a base packing which isn’t a base covering. Below that is
a base covering for the same matroids, namely the finite cycle matroid for the
graph, taken twice.

Proof. For the “only if” direction, note that Conjecture 6.4.2 implies Conjec-
ture 6.3.10, which by Proposition 6.3.11 implies Conjecture 6.0.4.

For the “if” direction, note that by assumption we have a partition E = P ∪̇C
such that there exist disjoint Mk�P -spanning sets Sk and Mk.C-independent
sets Ik whose union is C. By (6.6), (Mk�P |k ∈ K) has a covering with sets Bk,
where Bk ∈ I(Mk�P ). As Ik ∪ Bk ∈ I(Mk), the sets Ik ∪ Bk form the desired
covering.

As Packing/Covering is true for finite matroids, Proposition 6.4.3 implies
the non-trivial direction of Theorem 6.4.1. By Corollary 6.3.17 we obtain the
following applications.

Corollary 6.4.4. Any at most countably weird family of matroids (Mk|k ∈ K)
has a covering if and only if (6.6) is true for every X ⊆ E.

Let us now specialise to graphs. In [27], many new matroids associated to
infinite graphs are introduced, each with its own notion of tree. This develop-
ment is so recent that the obvious questions about tree packing and covering
for these notions have not yet been addressed. However, the theory developed
here allows us to give some basic results. We rely on the fact that the algebraic
cycle matroid of any locally finite graph and the topological cycle matroid of
any graph are co-finitary.

Definition 6.4.5. The bases of the topological cycle matroid are called topolog-
ical trees and the bases of the algebraic cycle matroid are called algebraic trees.
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Using this we define topological tree-packing, topological tree-covering, algebraic
tree-packing, algebraic tree-covering.

Corollary 6.4.6 (Base covering for the topological cycle matroids). A family of
countable graphs (Gk|k ∈ K) together with an identification of each set E(Gk)
with some common ground set E has a topological tree-covering if and only if
the following is true for every X ⊆ E.

If (Gk[X]|k ∈ K) has a topological tree-packing, then it also has
a topological tree-covering.

(6.7)

Corollary 6.4.7 (Base covering for the algebraic cycle matroids of locally finite
graphs). A family of locally finite countable graphs (Gk|k ∈ K) together with
an identification of each set E(Gk) with some common ground set E has an
algebraic tree-covering if and only if the following is true for every X ⊆ E.

If (Gk[X]|k ∈ K) has an algebraic tree-packing, then it also has
an algebraic tree-covering.

(6.8)

6.5 Base packing

The well-known base packing theorem reads as follows.

Theorem 6.5.1. Any family of finite matroids (Mk|k ∈ K) on a finite common
ground set E has a packing if and only if for every finite set Y ⊆ E the following
holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

Aigner-Horey, Carmesin and Fröhlich [4] extended this theorem to families
consisting of finitely many copies of the same co-finitary matroid. We extend
this to arbitrary co-finitary families.

Theorem 6.5.2. Any family of co-finitary matroids (Mk|k ∈ K) on a common
ground set E has a packing if and only if for every finite set Y ⊆ E the following
holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

Proof by a compactness argument. We will think of partitions of the ground set
E as functions from E to K - such a function f corresponds to a partition
(Sfk |k ∈ K), given by Sfk = {e ∈ E|f(e) = k}. Endow K with the co-finite
topology where a set is closed iff it is finite or the whole of K. Then endow
KE with the product topology, which is compact since the topology on K is
compact.

A set S is spanning for a matroid M if and only if its complement includes
no cocircuit, that is, if and only if it meets every cocircuit. So we would like
a function f contained in each of the sets Ck,B = {f |Sfk ∩ B 6= ∅}, where B is
a cocircuit for the matroid Mk. We will prove the existence of such a function

169



by a compactness argument: we need to show that each Ck,B is closed in the
topology given above and that any finite intersection of them is nonempty.

To show that Ck,B is closed, we rewrite it as
⋃
e∈B{f |f(e) = k}. Each of

the sets {f |f(e) = k} is closed since their complements are basic open sets, and
the union is finite since Mk is co-finitary.

Now let (ki|1 ≤ i ≤ n) and (Bi|1 ≤ i ≤ n) be finite families with each Bi a
cocircuit in Mki . We need to show that

⋂
1≤i≤n Cki,Bi is nonempty. Let X =⋃

1≤i≤nBi. Since the rank formula holds for each subset of X, we have by the
finite version of the base packing Theorem a packing (Sk|k ∈ K) of (Mk.X|k ∈
K). Now any f such that f(e) = k for e ∈ Sk will be in

⋂
1≤i≤n Cki,Bi , since

each Bi is an Mki .X-cocircuit. This completes the proof.

Theorem 6.5.1 does not extend verbatim to arbitrary infinite matroids. In-
deed, for every integer k there exists a finitary matroid M on a ground set
E with no three disjoint bases yet satisfying |Y | ≥ krM.Y (Y ) for every finite
Y ⊆ E [2, 34].

In the following we conjecture an extension of the finite base packing theorem
to arbitrary infinite matroids. This extension uses the following condition, which
for finite sets Y is implied by the rank formula of the base packing theorem but
is still meaningful for infinite sets:

If (Mk.Y |k ∈ K) has a covering, then it also has a packing. (6.9)

Indeed, if (Mk.Y |k ∈ K) has a covering and there is an element of Y con-
tained in several of the corresponding independent sets, then this violates the
rank formula.

Using our new condition, we obtain the following:

Conjecture 6.5.3 (Packing Conjecture). A family of matroids (Mk|k ∈ K)
on the same ground set E has a packing if and only if (6.9) is true for every
Y ⊆ E.

Proposition 6.5.4. Conjecture 6.0.4 and Conjecture 6.5.3 are equivalent.

Proof. Since condition (6.9) for a pair of matroids is equivalent to (6.6) for the
duals of those matroids and a pair of matroids have a packing if and only if
their duals have a covering, Conjecture 6.5.3 implies that any pair of matroids
satisfying (6.6) has a covering, and in particular that any unhindered pair of
matroids has a covering. As in the proof of (6.3.11), this implies that any pair
of matroids has the Packing/Covering property, which implies Conjecture 6.0.4
by Corollary 6.2.9.

The converse is proved as in the proof of Proposition 6.4.3.

As Packing/Covering is true for finite matroids, Proposition 6.5.4 implies
the non-trivial direction of Theorem 6.5.1. By Corollary 6.3.17 we obtain the
following applications.
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Corollary 6.5.5. Any at most countably weird family of matroids on ground
set E has a packing if and only if (6.9) is true for every Y ⊆ E.

In particular, we obtain the following:

Corollary 6.5.6 (Base packing theorem for the finite cycle matroid). Any
family of countable graphs (Gk|k ∈ K) with a common edge set E has a tree-
packing if and only if (6.10) is true for every Y ⊆ E.

If (Mk.Y |k ∈ K) has a tree-covering, then it also has a tree-
packing.

(6.10)

By Corollary 6.3.19, we also obtain the following.

Corollary 6.5.7 (Base packing theorem for the finite cycle matroid). Any finite
family of graphs (Gk|k ∈ K) with edge set E has a tree-packing if and only if
(6.10) is true for every Y ⊆ E.

A similar result was obtained by Aharoni and Ziv [3]. However, their argu-
ment is different and they have the additional assumption that the ground set
is countable.

Note that the covering conjecture for arbitrary finitary families is still open
and equivalent to Open Question 6.3.21.

6.6 Taking stock

We have shown that a great many natural conjectures are equivalent, which we
will review in this section. We are indebted to a reviewer for pointing out the
importance of the fact that many of the equivalence we have proved specialise to
smaller classes than the class of all matroids. We therefore consider the following
conjectures, each of which could be made relative to a class M of matroids.

The Intersection conjecture: Any two matroids in M on the same ground
set have the Intersection property

The pairwise Packing/Covering conjecture: Any pair of matroids from
M on the same ground set has the Packing/Covering property

The Packing/Covering conjecture: Any family of matroids fromM on the
same ground set has the Packing/Covering property

The Packing conjecture: A family of matroids (Mk ∈ M|k ∈ K) on the
same ground set E has a packing if and only if the following condition is
true for every Y ⊆ E:

If (Mk.Y |k ∈ K) has a covering, then it also has a packing.
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The Covering conjecture: A family of matroids (Mk ∈ M|k ∈ K) on the
same ground set E has a covering if and only if the following condition is
true for every Y ⊆ E:

If (Mk�Y |k ∈ K) has a packing, then it also has a covering.

Most crudely, if M is a class of matroids containing U1,2 and closed under
duality, minors and direct sums then all of the above conjectures are equivalent
to each other, with proofs exactly as above. However, particular equivalences
only depend on weaker conditions on the class M. For the equivalence of the
Intersection conjecture with the pairwise Packing/Covering conjecture, both rel-
ative to M, we just need that M is closed under duality. For the equivalence
of the pairwise Packing/Covering conjecture with the Packing/Covering conjec-
ture, we just need that M contains U1,2 and is closed under direct sums. This
equivalence also holds for classes of matroids of bounded size:

Lemma 6.6.1. Let M<κ be the family of all matroids on ground sets of car-
dinality less than κ for some regular5 cardinal κ. Then the pairwise Pack-
ing/Covering conjecture for Mκ is equivalent to the Packing/Covering conjec-
ture for Mκ.

Proof (assuming the axiom of choice). It is clear that the pairwise Packing/Covering
conjecture follows from the Packing/Covering conjecture. For the converse, sup-
pose the pairwise Packing/Covering conjecture holds, and let (Mk|k ∈ K) be a
set of matroids on the same ground set E of cardinality less than κ. For each
e ∈ E, let Ke be the set of k ∈ K for which {e} is independent in Mk. Let
E′ = {e ∈ E|#(Ke) < κ}, and let K ′ =

⋃
e∈E′ Ke. Then K ′ has cardinality

less than κ, so by Proposition 6.2.8 the family (Mk�E′ |k ∈ K ′) has the Pack-
ing/Covering property: call the packing side P and the covering side C, and let
the packing and the covering be (Ik|k ∈ K ′) and (Sk|k ∈ K ′).

Let C ′ = E \ P , and for any k ∈ K \ K ′ let Sk = ∅, which is spanning
in Mk�E′ by the definition of K ′. Using some well-ordering of E \ E′, we can
choose recursively for each e ∈ E \E′ an element k(e) of Ke such that all of the
k(e) are distinct. For each k ∈ K \K ′, we now set Ik = {e ∈ E \ E′|k(e) = k},
which is either empty or has size 1 and is independent in Mk. Then the Sk
form a packing of P and the Ik form a covering of C ′, so (Mk|k ∈ K) has the
Packing/Covering property.

For the equivalence of the Packing/Covering conjecture with the Covering
conjecture, both relative toM, we just need thatM is closed under contraction.
For the equivalence of the Packing/Covering conjecture with the Packing con-
jecture, both relative to M, we just need that M is closed under deletion. To
see this, it is not enough to use the argument in the proof of Proposition 6.5.4,
for that argument goes via the pairwise Packing/Covering conjecture. Instead,
an argument dual to that for the Covering conjecture must be used, relying on

5Recall that an infinite cardinal κ is regular if and only if no set of cardinality κ can be
expressed as a union of fewer than κ sets, all of cardinality less than κ.

172



the existence of maximal cowaves, where a cowave is a pair (C, (Ik|k ∈ K)) with
the Ik forming a covering of (Mk.C|k ∈ K). The existence of maximal cowaves
can be demonstrated by an argument dual to that for Corollary 6.3.4.

6.7 Sketch of the proof of Theorem 6.0.7

The rest of this chapter will consist of a proof of Theorem 6.0.7. Since the proof
is long and technical, let’s first of all step back and look at a sketch of how the
proof will go.

As we have seen, it is enough to prove for pairs (M,N) of matroids as in
Theorem 6.0.7 that for every edge e of the ground set there is either a set P
containing e such that (M�P , N�P ) has a packing (we call such a P a wave) or
a set Q containing e such that (M.Q,N.Q) has a covering (we call such a Q a
co-wave).

We therefore look at an example of how such a wave P can interact with a
common 2-separation of M and N : Assume M = M1⊕2M2 and N = N1⊕2N2

and E(M1) = E(N1) and E(M2) = E(N2).6 We assume that e ∈ E(M1) and
call the gluing edge f .

Now suppose that in (M1 \ f,N1/f) there is a wave P1 containing e with
spanning sets SM and SN , and in (M2, N2) there is a wave P2 avoiding f with
spanning sets TM and TN such that f is in the N2-span of TN . We can stick
together these two waves to give a wave P = P1 ∪ P2 in (M,N) with spanning
sets SM ∪ TM and SN ∪ TN . We imagine the wave P1 as relying on a promise
from P2 that it will N -span the edge f . This is one of the 6 ways, classified
in Section 6.9, in which a wave in (M,N) can be built from waves in the two
smaller pairs.

Our result relies on the determinacy of certain games. The first is called the
Packing game, and is played between two players, called Packer and Coverina:
we think of Packer as trying to build a wave and Coverina as trying to stop him.
At any point in the game, Packer has a partially built wave, together with a
collection of promises on which this ‘partial wave’ relies. Coverina is allowed to
challenge one of these promises, at which point Packer must show that it can be
fulfilled by giving a partial wave fulfilling it, which relies on further promises,
which Coverina may in turn challenge, etc.

The game is designed to have the property that there is a wave containing
e if and only if Packer has a winning strategy in this game. Similarly to the
Packing game, we define a Covering game, where Coverina is trying to build
a suitable co-wave and Packer is trying to prevent her from doing this. These
two games will be determined because Ψ1 and Ψ2 are Borel. Thus, it suffices to
show that we cannot have both a winning strategy for Packer in the Covering
game and a winning strategy for Coverina in the Packing game.

We show that if there were such strategies then it would be possible to in
some sense play them off against each other, recursively producing infinite plays
in each strategy one of which must be losing. Since the strategies were supposed

6Here ⊕2 denotes the 2-sum.
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to be winning, this gives our desired contradiction. In the recursive construction
we can work locally within particular pairs of finite matroids. However, as often
happens, the result about finite matroids which we need to apply is not quite the
specialisation of our result to finite matroids. Instead we need a strengthening
of the Packing/Covering theorem for finite matroids, explained in Lemma 6.12.1
and Lemma 6.12.5.

In order to produce the impossible plays mentioned in the argument above,
we will need the following standard consequence of the axiom of choice.

Lemma 6.7.1 (König’s Infinity Lemma [34]). Let V0, V1, . . . be an infinite se-
quence of disjoint non-empty finite sets, and let G be a graph on their union.
Assume that every vertex in Vn with n ≥ 1 has a neighbour in Vn−1. Then G
includes a ray v0v1 . . . with vn ∈ Vn for all n.

We will use the following notation:
For any vertex t of a rooted tree T other than the root, t− is the unique

neighbour of t which is closer to the root. Whenever, we have a rooted tree T ,
we will consider the edges to be directed towards the root. The terminal vertex
of an edge e is denoted by t(e), and the initial vertex by s(e). For a set X of
edges of such a tree, let TV (X) denote the set of terminal vertices, and SV (X)
the set of starting vertices of edges in X. For a set F of edges, let V (F ) be the
set of vertices incident with edges in F . For a vertex set Z, we denote by E(Z)
the set consisting of those edges with both endvertices in Z.

By π1 and π2 we denote the two coordinate-projections for ordered pairs.
A strategy for the first player in a game G is a set σ of finite odd-length plays

P such that the following is true for all P ∈ σ: Let m be a move of the second
player such that Pm is a legal play. Then there is a unique move m′ of the first
player such that Pmm′ ∈ σ. Furthermore, we require that σ is closed under
2-truncation, that is, for every P ∈ σ there are some P ′ ∈ σ and moves m and
m′ of the second player and the first player, respectively, such that P ′mm′ = P .

An infinite play belongs to a strategy σ for the first player if all its odd length
finite initial plays are in σ. A strategy for the first player is winning if the first
player wins in all infinite plays belonging to σ. Similarly, one defines strategies
and winning strategies for the second player.

6.8 Tooling up

We will need the following lemmas for the main argument.

6.8.1 Waves and cowaves

We know that if (X,SM , SN ) and (Y, TM , TN ) are waves for (M,N) then (X ∪
Y, SM ∪ (TM \X), SN ∪ (TN \X)) is a wave. We will denote this wave X ◦ Y .

If X is a hindrance focusing on e then so is X ◦ Y . If e is M -spanned by X
and not contained in Y then e is M -spanned by X ◦ Y .
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Corollary 6.8.1. Let (M,N) be a pair of matroids on the same ground set E.
If for any set X and any edge e ∈ E \X there is either a wave in (M/X,N/X)
containing e or a cohindrance in (M/X,N/X) focusing on e then (M,N) sat-
isfies the Packing/Covering Conjecture.

Proof. Let X be a maximal wave. Then by Lemma 6.3.7 there is no nontrivial
wave in (M/X,N/X), so by assumption every edge in E \X is at the focus of
some cohindrance. So by the dual of Corollary 6.3.4 there is a cowave for this
pair whose underlying set is E \ X. This cowave, together with X, witnesses
that (M,N) satisfies the Packing/Covering Conjecture.

Lemma 6.8.2. Let (M,N) be a pair of matroids on a common ground set E,
and let f ∈ E. If there is a hindrance (X,SM , SN ) in (M/f,N \ f), then in
(M,N) either X is a wave or there is a hindrance X ′ ⊆ X.

Proof. We may assume that f is not a loop in M , and that SM and SN are
bases of (M/f)�X and (N \f)�X , respectively. Thus SM +f is M -independent.
Let z be in the focus of the hindrance. Let X ′ ⊆ X be the set of edges y for
which there is some (SM + f, SN )-chain from z to y. First we consider the case
that f /∈ X ′. Then (X ′, SM ∩X ′, SN ∩X ′) is a hindrance focusing on z, which
is the second outcome of the lemma.

Thus we may assume that there is an (SM + f, SN )-chain from z to f .
Applying Lemma 6.1.1, we get sets JM ∈ I(M) and JN ∈ I(N) such that
SM∪SN+z = JM∪JN . Moreover, JM and JN spanX inM andN , respectively.
Hence we get the first outcome: (X, JM , JN ) is a wave.

Lemma 6.8.3. Let (M,N) be a pair of matroids on the common ground set E,
and let e ∈ E. If there is a hindrance (X,SM , SN ) for (M,N), then in (M,N)
either there is a hindrance focusing on e or there is a hindrance that does not
contain e.

Proof. If e is not in SM ∪ SN , then we are done. So we assume without loss
of generality that e ∈ SM . Then X − e is a hindrance for (M/e,N \ e). By
Lemma 6.8.2, in (M,N) either X−e is a wave or there is a hindrance X ′ ⊆ X−e.
As we are done in the later case, it suffices to show that e is M -spanned and
N -spanned by X − e. As e ∈ SM , it is N -spanned by SN ⊆ X − e. If e is not
M -spanned by X − e, then (X − e, SM − e, SN ) is a hindrance avoiding e, in
which case we are also done.

Lemma 6.8.4. Let (M,N) be a pair of finite matroids on a common ground
set E, and let e ∈ E. Then either there is a cohindrance focusing on e or e is
contained in a wave.

Proof. We assume that e is not contained in any wave. Let X be a maxi-
mal wave. Let Y be a maximal cowave for (M/(X + e), N/(X + e)). Since
Packing/Covering holds for finite matroids [15], we can apply it to the pair
(M/X \ Y,N/X \ Y ). By Lemma 6.3.7, E \ (X ∪ Y ) does not include a wave,
so is a cowave. It cannot be a wave, so it is a cohindrance. By the dual of
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Lemma 6.3.7, any cohindrance for (M/X \ Y,N/X \ Y ) contains e. So by the
dual of Lemma 6.8.3, we get a cohindrance focusing on e for (M/X\Y,N/X\Y ),
which gives rise to a cohindrance focusing on e for (M,N) by the dual of
Lemma 6.3.7.

Lemma 6.8.5. Let M and N be two matroids on a common finite ground set E.
Let e, f ∈ E distinct. Assume that every nonempty wave for (M,N) contains e.
Then in (M/f,N \ f) either E − f is a cowave or there is a hindrance focusing
on e.

Proof. We assume that E − f is not a cowave for (M/f,N \ f). Then by
Corollary 6.3.4, there is an edge g not in any cowave for (M/f,N \ f). By
the dual of Lemma 6.8.4, we get that there is a hindrance (X,SM , SN ) for
(M/f,N \ f) focusing on g. Now we apply Lemma 6.8.3 to (X,SM , SN ) and
the edge e. To show that there is a hindrance focusing on e, it suffices to show
that there cannot be a hindrance (X ′, S′M , S′N ) with e /∈ X ′. If there were,
then by Lemma 6.8.2 we would get that X ′ is a wave for (M,N) or that there is
a hindrance X ′′ ⊆ X ′ for (M,N). Both of these contradict the assumption that
every wave contains e. Thus there is a hindrance focusing on e, which completes
the proof.

6.8.2 Trees of matroids

Lemma 6.8.6. Let T be a rooted tree with root t0, let T = (T,M) be a tree
of matroids of overlap 1 and let Ψ be a Borel set of ends of T . Let X be any
subset of E(MΨ(T )), and let U be the set of nodes t of T such that e(t−t)
is spanned by X ∩ E(Tt−→t) in MΨ(Tt−→t). Then there is a choice of a Ψ-
precircuit (St, ot) in Tt−→t for each t ∈ U witnessing this in the sense that
e(t−t) ∈ (St, ot) ⊆ X + e(t−t) and such that for any nodes u, v and w with
w ∈ Su ∩ Sv we have ou(w) = ov(w).

Proof. We denote the tree-order in T by ≤T .
We construct the pre-circuits (St, ot) recursively in the height of t in T , so

for each n we choose all (St, ot) with t at height n before choosing those with
greater heights. When choosing (Su, ou), we first of all check whether there is
some t <T u with u ∈ St. If so, we pick t minimal with this property and
let Su = St ∩ Tu−→u and ou(v) = ot(v) for each v ∈ Su. Otherwise, we pick
any (Su, ou) such that e(u−u) ∈ (Su, ou) ⊆ X + e(u−u): there is some such
pre-circuit since u ∈ U .

The only thing to check is that for any nodes u, v and w with w ∈ Su ∩ Sv
we have ou(w) = ov(w). So suppose we have such u, v and w. By construction,
u ≤T w and v ≤T w, so without loss of generality u ≤T v. Since u ≤T v ≤T w
and both u and w are in Su, we must also have v ∈ Su. Let t ≤T u be minimal
with u ∈ St. Then by construction, since v ∈ Su we also have v ∈ St. Further,
t is minimal with v ∈ St since if there were t′ <T t with v ∈ St′ we would
also have u ∈ St′ (since t′ ≤T u ≤T v), contradicting our choice of t. Thus
ou(w) = ot(w) = ov(w), as required.
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Our main result will be the following:

Theorem 6.8.7. Let (T,M) and (T,N) be trees of matroids of overlap 1
such that for any t ∈ V (T ), the matroids M(t) and N(t) have the same fi-
nite ground set E(t). Let ΨM and ΨN be Borel sets of ends of T . Then the pair
(MΨM (T,M),MΨN (T,N)) of matroids satisfies the Packing/Covering Conjec-
ture.

We will go via the following special case of this theorem:

Proposition 6.8.8. Theorem 6.8.7 holds in the case that ΨM and ΨN partition
the set of ends of T .

In Section 6.10, we will prove that Theorem 6.8.7 follows from Proposi-
tion 6.8.8. However, the heart of our proof is the proof of Proposition 6.8.8,
which is the content of Section 6.11 and Section 6.12.

6.9 The Packing game and the Covering game

The purpose of this section is to define the Packing game and the Covering
game as discussed in Section 6.7 and prove some basic facts about these games.
Throughout this section, we fix a tree T , together with two functions M and
N such that T M = (T,M) and T N = (T,N) are trees of matroids of overlap
1 such that for each t ∈ V (T ) the two matroids M(t) and N(t) have the same
finite ground set E(t). We denote the common underlying set of (T,M) and
(T,N) by E(T ). We also fix some e ∈ E(T ), and ΨM ,ΨN ⊆ Ω(T ). Let t0 be
the unique node of T with e ∈ E(t0).

An arena consists of matroids M and N on a common finite ground set E,
a subset F of E and an element e ∈ E \ F . The set F is called the set of upper
edges and e is called the lower edge of the arena.

For t ∈ V (T )− t0, we shall later on consider the arena

A(t) = (M(t), N(t), E(t), Ft, e(tt−)),

where Ft = e“(Xt) and Xt is the set of edges incident with t and not equal to
tt−. For t = t0, we take the same definition of A(t) and Xt0 except that we take
the lower edge to be e.

The promise set P is {⊥,M−,M+, N−, N+,>}. Members of P are called
promises. Given an arena (M,N,E, ∅, e), a wave (W,SM , SN ) in (M,N) fulfils
a promise P if one of the following is true:

1. P = ⊥;

2. P = M+ and e is M -spanned by W ;

3. P = M− and e ∈ SN ;

4. P = N+ and e is N -spanned by W ;
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5. P = N− and e ∈ SM ;

6. P = > and e is both M -spanned and N -spanned by W ;

Note that 6 just means that P = > and W + e is a hindrance focusing on e.
For P,Q ∈ P, we say that P ≥P Q if and only if the following is true:

Whenever there is a wave that fulfils P , there is also a wave that fulfils Q.
For example, if there is a wave (W,SM , SN ) without e that M -spans e, then

(W + e, SM , SN + e) is a wave with e on the N -side. So M+ ≥P M−. Clearly,
≥P defines a partial order on P.

>
M+ N+

M− N−
⊥

Figure 6.3: The partial order ≤P .

Lemma 6.9.1. The partial order ≥P is the one generated from the relations
> ≥P M+,> ≥P N+,M+ ≥P M−, N+ ≥P N−,M− ≥P ⊥, N− ≥P ⊥, see
Figure 6.3.

Proof. It is clear that all these relations hold in≥P . The arenas (U0,1, U1,1, {e}, ∅, e)
and (U1,1, U0,1, {e}, ∅, e) show that any P ∈ {M−,M+} is incomparable with any
Q ∈ {N−, N+}. 7 These arenas also show that > is strictly larger than M+ and
M−, and that ⊥ is strictly smaller than M− and N−.

The arena (U1,2, U1,2, {e, f}, ∅, e) shows that M+ is strictly larger than M−
and also that N+ is strictly larger than N−. This shows that ≥P is generated
from the relations in the lemma.

We let P∗ = {⊥∗,M∗−,M∗+, N∗−, N∗+,>∗} be the set of dual promises. A
cowave (W,SM , SN ) fulfils P ∗ if one of 1-6 above is true with the word ‘spans’
replaced by ‘cospans’. We let P ∗ ≤P∗ Q∗ if and only if P ≤P Q.

Definition 6.9.2. Let (M,N,E, F, e) be an arena and ϕ : F → P a function.
Let M ′ = (M/(ϕ−1{>,M+}) \ (ϕ−1{⊥, N+}) and N ′ = N/(ϕ−1{>, N+}) \
(ϕ−1{⊥,M+}). Then a wave relying on ϕ is a wave (W,SM , SN ) for the pair
of matroids (M ′, N ′) such that SM ∩ ϕ−1(N+) = ∅ and SN ∩ ϕ−1(M+) = ∅.

Moreover, a wave relying on ϕ fulfils a promise P in the arena (M,N,E, F, e)
if it fulfils P in the arena (M ′, N ′, E \ ϕ−1{⊥, N+,M+,>}, ∅, e).

We will now explain a construction by means of which a wave for the pair
(MΨM (T,M),MΨN (T,N)) can be broken down into local waves in the arenas
A(t) at vertices t of T , each relying on promises fulfilled by waves higher in the
tree.

7As usual, we denote by Um,n the uniform matroid of rank m on a set of size n.
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Construction 6.9.3. LetW = (X,SM , SN ) be a wave for (MΨM (T,M),MΨN (T,N))
fulfilling some promise P at e. For each t ∈ V (T ), we shall construct a promise
P (t). This will induce for each t a function ϕt : Ft → P sending e(st) to P (s).
We will also construct for each t a wave W (t) relying on ϕt and fulfilling P (t)
in the arena A(t).

First we define P (t). We let P (t0) = P . If t 6= t0, the construction is as
follows. We abbreviate Et = E(Tt−→t). Very roughly, we take for P (t) the
strongest promise fulfilled by the wave (X ∩ Et, SM ∩ Et, SN ∩ Et), possibly
modified by adding e(tt−) to one of the sides of the wave. More precisely, If
Z(t) = (X ∩ Et + e(tt−), SM ∩ Et, SN ∩ Et) is a hindrance focusing on e(tt−),
we let P (t) = >. Otherwise if Z(t) = (X ∩ Et, SM ∩ Et, SN ∩ Et) is a wave
such that SM ∩ Et spans e(tt−) in M(T Mt−→t), we let P (t) = M+. Otherwise if
Z(t) = (X∩Et+e(tt−), SM ∩Et, SN ∩Et+e(tt−)) is a wave, we let P (t) = M−.
The cases in which we take P (t) = N+ or P (t) = N− are like the cases where
we take P (t) = M+ or P (t) = M− but with the roles of the matroids M and N
reversed. In all other cases we take P (t) = ⊥ and Z(t) = ∅.

Finally, we define W (t). Let Z(t) = (Y (t), SM (t), SN (t)) be as defined
above. Let Ft(M−) be the set of those e(st) ∈ ϕ−1

t (M−) such that e(st)
is N -spanned by SN ∩ E(Ts→t) in MΨN (T Ns→t), and let Ft(N−) be given in
the same way but with the roles of M and N interchanged. We let W (t) =
(Y (t)′, SM (t)′, SN (t)′) where Y (t)′ = Y (t)∩E(t)∪Ft(M−)∪Ft(N−) and SM (t)′ =
SM (t) ∩ Y (t)′ and SN (t)′ = SN (t) ∩ Y (t)′.

It is now straightforward to show that W (t) is a wave relying on ϕt in the
arena A(t) fulfilling P (t).

Definition 6.9.4. Let A = (M,N,E, F, e) be an arena and let P ∈ P. Then
a tactic K attaining P at e consists of a function ϕK : F → P and a wave
(WK , S

M
K , S

N
K ) relying on ϕK and fulfilling P , together with sets CMK and CNK .

If P ∈ {>,M+,M−}, then we require that CMK ∈ C(M) and that e ∈ CMK ⊆
SMK ∪ ϕ−1{>,M+,M−}. Similarly, if P ∈ {>, N+, N−}, then we require that
CNK ∈ C(N) and that e ∈ CNK ⊆ SNK ∪ ϕ−1{>, N+, N−}.

By K = K(A,P ) we denote the set of all tactics K attaining P at e.

Note that ϕ−1(M−) ⊆ SMK , so that we could have left out M− in the term
SMK ∪ ϕ−1{>,M+,M−} above. The same remark is true for N−. A cotactic is
defined in the same way as a tactic but with a star in the appropriate places.
To simplify notation, we will sometimes call cotactics just tactics.

Note that if W is a wave relying on ϕ and fulfilling P then we can choose
some sets CM and CN such that (ϕ,W,CM , CN ) is a tactic attaining P .

We now return to Construction 6.9.3, which started from a wave for the
pair (MΨM (T,M),MΨN (T,N)) and gave us a wave in each of the arenas A(t).
We now show how these waves can be augmented to tactics, in a way which
encodes more precisely how certain edges e(st) were spanned in MΨM (T Mt→s)
and MΨN (T Nt→s).

Construction 6.9.5. Let (W,SM , SN ) be a wave for (MΨM (T,M),MΨN (T,N)),
fulfilling some promise P at e. For each vertex t of T we will construct a tactic
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K(t) = (ϕt,W (t), CMK(t), C
N
K(t)) attaining P (t), with ϕt and W (t) constructed

as in Construction 6.9.3.
As in Lemma 6.8.6, we can pick ΨM -precircuits (SMt , o

M
t ) for each t ∈ V (T )

with P (t) ∈ {>,M+,M−}, such that if w ∈ SMu ∩ SMv , then oMu (w) = oMv (w).
Similarly, we find ΨN -precircuits (SNt , o

N
t ) such that if w ∈ SNu ∩ SNv , then

oNu (w) = oNv (w). If P (t) ∈ {>,M+,M−}, we take CMK(t) = oMt (t). If P (t) ∈
{>, N+, N−}, we take CNK(t) = oNt (t). We complete the definition of K(t) by
assigning CMK(t) an arbitrary value if P (t) /∈ {>,M+,M−}, similarly for CNK(t).

We have seen how to break up any wave for (MΨM (T,M),MΨN (T,N)) into
tactics at each node. In Construction 6.9.7 we will show how to do the reverse:
how to build a wave from a collection of local tactics, as long as they fit well
together. By ‘fit well together’ here, we mean that collectively they form a
winning strategy for a particular game, which we call the Packing game.

Definition 6.9.6. Let P0 ∈ P. The Packing game G(P0) = G(T,M,ΨM , N,ΨN , P0, e)
is played between two players, called Packer and Coverina, as follows:

Play alternates between the players, with Packer making the first move. At
any point in the game there is a current node tc ∈ V (t), and a current edge
ec ∈ E(tc), and a current promise Pc ∈ P. Initially we set ec = e and tc = t0 to
be the node of T with ec ∈ E(tc) and Pc = P0.

For any n the (2n−1)st move is made by Packer: he must play a tactic Kn =
(ϕKn ,WKn , C

M
Kn
, CNKn) that attains the promise Pc in the arena An = A(tc).

Then the 2nth move is made by Coverina: she must play an edge fn ∈
ϕ−1
tc (P −⊥). After she does this, the current edge is updated to fn, the current

node to the unique node tn such that fn = e(tn−1tn), and the current challenge
is updated to ϕKn(fn).

The current challenge fn is M -strong if ϕKn(fn) is in {>,M+,M−} and
fn ∈ CMKn . Otherwise fn is M -weak. Similarly, one defines N -strong and N -
weak.

If play continues forever, the winner is computed from the end ω of T con-
taining (tn|n ∈ N) and the sequences (ϕKn(fn)|n ∈ N) and (fn|n ∈ N). An end
ω is used by M if all but finitely many fn are M -strong. Similarly, ω is used
by N if all but finitely many ϕKn(fn) are in {>, N+, N−} and N -strong.

Packer wins if and only if one of the following is true:

1. ω ∈ ΨM ∩ΨN ;

2. ω ∈ ΨM and ω is not used by N ;

3. ω ∈ ΨN and ω is not used by M ;

4. ω is used by neither M nor N ;

The Covering game G∗(P0) = G∗(T,M,ΨM , N,ΨN , P0, e) is the game like
the dual Packing game G(T,M

∗
,ΨM

{, N
∗
,ΨN

{, P ∗0 , e), but with the roles of
Packer and Coverina reversed. We will also use a different notation for the
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Covering game, putting stars on the notation for the Packing game. Thus for
example the current edge is denoted e∗c , and Coverina’s (2n−1)st move is a tactic
K∗n, and in the 2nth move Packer plays some f∗n ∈ {f∗ ∈ e“F ∗ | ϕK∗n(f∗) 6= ⊥∗},
and the current challenge f∗n is M∗-strong if ϕK∗n(f∗n) is in {>∗,M∗+,M∗−} and
f∗n ∈ CM

∗

K∗n
.

Given a winning strategy σ for the Packing game, we can recover from it a
subtree Z of T together with a tactic at each node of Z. We let Z be the set of
nodes that appear as current nodes in some play according to σ. For each node
t in Z, there is a unique play st ∈ σ in which t is the current node - this play
arises when Packer plays according to σ and Coverina challenges on edges on
the path from t0 to t. Let K(t) be the last move of Packer in st, and P (t) the
promise attained by K(t).

We now show how to build a wave attaining P at e from this collection of
tactics.

Construction 6.9.7. Let τ be a winning strategy for Packer in the Packing
game. By modifying the tactics K played by Packer according to τ , we can
build a winning strategy σ with the property that if ϕK(f) ∈ {M−, N−} then
e(f) ∈WK . Let Z and the K(t) and P (t) be derived from σ as above. Let W =
(
⋃
t∈ZWK(t)) ∩ E, and SM = (

⋃
t∈Z S

M
K(t)) ∩ E, and SN = (

⋃
t∈Z S

N
K(t)) ∩ E.

First we show that (W,SM , SN ) is a wave. Let x ∈ W \ SM be arbitrary.
Our aim is to find some MΨM -circuit o such that x ∈ o ⊆ SM + x. For this we
need some definitions, which are illustrated in Figure 6.4.

s0

t0

CM
K(t)

t

Figure 6.4: The construction of o. Here the highlighted path Q from s0 to t0
has length 2 and all its edges are in U1. The edges in U2 are drawn dashed. The
precircuit (L, o) is drawn in grey.

Let s0 ∈ Z be such that x ∈ E(M(s0)). Let Q be the unique path from t0
to s0. Note that Q ⊆ E(Z).

Let U1 be the set of those edges tu on Q such that the promise fulfilled by
K(t) is N−. Let U2 ⊆ E(Z) be the set of those edges tu not on Q such that the
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promise fulfilled by K(t) is in {>,M+,M−}.
In order to build o, it suffices to build a ΨM -precircuit (L, o) such that

x ∈ (L, o) ⊆ SM + x. We shall ensure that L ⊆ T [U1 ∪ U2].
For this we first define for each t ∈ TV (U1) ∪ SV (U2) + s0 an M(t)-circuit

ot ⊆ SMK(t) ∪ e′′(U1 ∪ U2) + x. If t = s0, there is such an ot with the additional
property that x ∈ ot. Next we consider the case that t ∈ TV (U1) so that there
is some node t′ with t′t ∈ U1. Since ϕK(t)(e(t′t)) ∈ {M−, N−}, the dummy edge
e(t′t) is in WK(t), and thus there is such a circuit ot containing e(t′t).

Finally, we consider the case that t ∈ SV (U2) so that there is some node
u with tu ∈ U2. Here we can just take ot = CMK(t), which has the additional
property that it contains e(tu).

Next we define L. For this we define a sequence (Ln|n ∈ N) of sets Ln ⊆
V (T [U1 ∪ U2]) with distance n from s0. We start with L0 = {s0}. Assume
that Ln is already constructed. Let Ln+1 be the set of those nodes w that have
distance n+ 1 from s0 such that there is some t ∈ Ln with e(tw) ∈ ot, where we
consider tw as an undirected edge. Having defined the Ln, we take L to be the
subtree of T [U1 ∪U2] with vertex set

⋃
n∈N Ln. Then (L, t 7→ ot) is a precircuit.

To see that all ends of L are in ΨM , let ω be an end of L and R ⊆ L a
ray converging to ω. Let R′ be the ray from t0 which shares a tail with R.
Let p be the infinite play according to σ obtained when Packer plays according
to σ and Coverina always challenges on edges of R′. Then the challenges are
eventually all on edges of U2, and so are M -strong. Thus we get an infinite play
belonging to σ which M -uses ω. As σ is winning, it must be that ω ∈ ΨM .
Thus (L, t 7→ ot) is a ΨM -precircuit, giving rise to a circuit o, which witnesses
that SM MΨM -spans x. Thus SM MΨM -spans W . Similarly one proves that
SN NΨN -spans W . So (W,SM , SN ) is a wave.

It remains to show that (W,SM , SN ) fulfils P at e. If P ∈ {>,M−, N−,⊥},
this follows from the fact that (WK(t0), S

M
K(t0), S

N
K(t0)) fulfils P at e. If P = M+,

then we construct an MΨM -circuit oe with e ∈ oe ⊆ SM + e in a similar way to
that described above. The case P = N+ is similar. Thus (W,SM , SN ) fulfils P
at e, which completes the construction.

Lemma 6.9.8. Packer has a winning strategy σ in the Packing game G(P ) if
and only if there is a wave for (MΨM (T,M),MΨN (T,N)) fulfilling P at e.

Proof. First assume that there is a wave (W,SM , SN ) for (MΨM (T,M),MΨN (T,N))
fulfilling P at e. Then Packer has the following winning strategy: at the node
v he plays the tactic K(v) defined in Construction 6.9.5. If Coverina challenges
at some dummy edge f , then the new challenge is ϕK(v)(f) = Pf . It is straight-
forward to check that this is a winning strategy.

Conversely, if Packer has a winning strategy σ then Construction 6.9.7 gives
us a wave fulfilling P at e.

By duality, we get the following:
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Lemma 6.9.9. Coverina has a winning strategy σ∗ in the Covering game
G∗(P ∗) if and only if there is a cowave for (MΨM (T,M),MΨN (T,N) fulfilling
P ∗ at e.

Lemma 6.9.10. If ΨM and ΨN are Borel, then the Packing game is deter-
mined.

Proof. Let X be the set of infinite plays in the Packing game. We endow Ω(T )
with the topology inherited from the Freudenthal compactification of T . For
each infinite play P , the moves of the second player form a ray of T . Let ωP be
the end this ray belongs to. Then the function f mapping P to ωP is continuous.
Thus both f−1(ΨM ) and f−1(ΨN ) are Borel sets.

By S{>,M+,M−} we denote the set of those infinite plays whose challenges are
eventually in {>,M+,M−} and M -strong. The set S{>,M+,M−} is a countable
union of closed sets and thus Borel. Similarly, by S{>,N+,N−} we denote the
Borel set of those infinite plays whose challenges are eventually in {>, N+, N−}
and N -strong.

Now we are in a position to write the set W of infinite plays in which Packer
wins as a Borel set:

W = [f−1(ΨM )∩f−1(ΨN )]∪[f−1(ΨM )\S{>,N+,N−}]∪[f−1(ΨN )\S{>,M+,M−}]∪

[S{>,M+,M−} ∪ S{>,N+,N−}]
{

6.10 Blocking sets

The purpose of this section is to prove that Proposition 6.8.8 implies Theo-
rem 6.8.7. First, we turn our attention to play in an arena without upper edges:
we analyse which collections of promises (or co-promises) can be fulfilled by
waves (or cowaves) in such an arena. For any arena A = (M,N,E, ∅, e), we let
A(A) be the set of promises or co-promises fulfillable in A.

Lemma 6.10.1. There are precisely 5 possible values for A(A), as follows:

1. P +⊥∗

2. P∗ +⊥

3. {⊥,M−,M+,⊥∗, N∗−, N∗+}

4. {⊥, N−, N+,⊥∗,M∗−,M∗+}

5. {⊥,M−, N−,⊥∗,M∗−, N∗−}.

Proof. First we show that all 5 values are possible. We can get all but the last
value from arenas with E = {e}: for the first value we take both M and N to
be U0,1, for the second we take both to be U1,1, and for the third and fourth we
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take one to be U0,1 and the other U1,1. For the final value, we may take M and
N to both be U1,2.

Next we show that no other value is possible. We begin by showing thatA(A)
cannot contain both M+ and M∗−. Suppose for a contradiction that it did, and
let (W,SM , SN ) be a wave fulfilling M+ and (X,TM , TN ) a co-wave fulfilling
M∗−. By removing edges outside W + e and/or contracting edges outside X if
necessary, we may assume without loss of generality that W +e = X = E. Thus
|E| ≥ |SM |+ |SN |+1 ≥ r(M)+r(N\e)+1. But also since TN is co-spanning in
N , TN − e is co-spanning in N\e, and so |E| ≥ |TM |+ |TN − e|+ 1 ≥ r(M∗) +
r((N\e)∗) + 1, so 2|E| ≥ r(M) + r(M∗) + r(N\e) + r((N\e)∗) + 2 = 2|E|+ 1,
which is the desired contradiction.

We continue by showing that at least one of M+ and M∗− must be contained
in A(A). We begin by taking a maximal wave (W,SM , SN ) for (M \ e,N \ e).
If e ∈ ClM (W ) then W fulfills M+. Otherwise, by contracting W if necessary,
we may assume that every nonempty wave contains e. Now we apply the Pack-
ing/Covering Theorem for finite matroids to (M/e,N\e), obtaining a partition
E − e = P ∪̇Q with a packing of P and a covering of Q. Then the packing of P
isn’t a hindrance since if it were then by Lemma 6.8.2 there would be a nontriv-
ial wave for the pair (M,N) not containing e. So it is also a covering, so that
there is a cowave (E − e, TM , TN ). Now if e is an M -loop then the empty wave
fulfills M+ and if not then e is in the M∗-span of TM and so (E, TM , TN + e)
witnesses M∗−.

So far we have shown that A(A) must contain precisely one of M+ and M∗−.
Similarly, it must contain precisely one element of each of the sets {M−,M∗+},
{N+, N

∗
−} or {N−, N∗+}. So if it is not given by the fifth option above, it must

contain one of M+, N+, M∗+ and N∗+: without loss of generality let us say it
contains M+. If it also contains N∗+ then, since it must be down-closed by the
definition of ≤P , it can only be the third option above. But if not then it must
contain N−. Now let W be a wave fulfilling M+ and let X be a wave fulfilling
N−. Then W ◦X is a wave fulfilling > and so, by down-closure again and the
fact that ⊥∗ is witnessed by the empty cowave, A(A) must be the first option
above.

Remark 6.10.2. The only place where the finiteness of E was used in this
argument was in the application of the Packing/Covering Theorem to minors
of (M,N). So we get the same result without assuming finiteness of E, on the
assumption that all minors of (M,N) satisfy the Packing/Covering conjecture.

Definition 6.10.3. A challenger to a promise P in an arena A = (M,N,E, F, e)
is a function γ assigning an element of F to each tactic K in K(A,P ). For any
tactic K we denote by γ(K) the promise ϕK(γ(K)). For any f ∈ F , we denote
by γ[f ] the up-closure of the set {γ(K)|K ∈ K(A,P ) and γ(K) = f}.

Challengers are important in the analysis of winning strategies in the Packing
and Covering games. Let σ be a winning strategy for Coverina in the Packing
game G(P ), and let s ∈ σ be a finite play of length 2n. Let s be P if s has
length 0 and ϕs2n−1(s2n) otherwise (so after the play s we have Pc = s). Since

184



σ is winning, we may define a challenger γσs to s in An+1 = A(tc) by sending
each tactic K attaining s in An+1 to the unique f ∈ e“F such that s ·K · f ∈ σ.
We omit the superscript σ when it is clear from the context which strategy we
are working with.

Definition 6.10.4. A subset of P ∪ P∗ is blocking if it meets all the possible
values of A(A) listed in Lemma 6.10.1.

That is, a set of promises and co-promises is blocking if for any arena with
F = ∅ there exists a promise in the blocking set attainable in this arena.

Lemma 6.10.5. Let A = (M,N,E, F, e) be an arena and ρ a function assigning
to each f ∈ F a subset of P ∪ P∗. Let F ′ be the set of f ∈ F at which ρ(f)
is blocking. Then there is an arena A′ = (M ′, N ′, E′, F ′, e) such that for each
P ∈ P ∪ P∗ and tactic K ′ attaining P at e in A′ there is a tactic K attaining
P at e in A for which the function ϕK extends ϕK′ and CMK ∩ F ′ = CMK′ ∩ F ′
and CNK ∩ F ′ = CNK′ ∩ F ′ and for each f ∈ F \ F ′ we have ϕK(f) 6∈ ρ(f).

Remark 6.10.6. As a consequence, for any promise P and any challenger γ
to P in A such that γ[f ] ⊆ ρ(f) for each f ∈ F , there is a challenger γ′ to
P in A′ such that for each tactic K attaining P at e in A′ there is a tactic K
attaining P at e in A for which γP (K) = γ′P (K ′), the function ϕK extends ϕK′ ,
CMK ∩ \F ′ = CMK′ ∩ F ′ and CNK ∩ F ′ = CNK′ ∩ F ′.
Proof of Lemma 6.10.5. For each f ∈ F \ F ′, choose one of the 5 sets from
Lemma 6.10.1 which ρ(f) fails to meet, and let Fi be the set of those f ∈ F \F ′
for which the ith element of the list was chosen. Let E′ = E \(F1∪F2∪F3∪F4),
M ′ = M/(F1 ∪ F3)\(F2 ∪ F4) and N ′ = N/(F1 ∪ F4)\(F2 ∪ F3). As in the
statement, let A′ = (M ′, N ′, E′, F ′, e).

Let K ′ be a tactic attaining some promise P at e in A′. We define the
corresponding tactic K in A as follows: let WK = W ′K′ , and let ϕKn be obtained
as the extension of ϕ′Kn to F taking the value > on F1, ⊥ on F2, M+ on F3,
N+ on F4, M− on F5 ∩ SM and N− on F5 \ SM . Let CMK be an extension of
CMK′ whose new elements all come from F1 ∪F3 and CNK be an extension of CNK′
whose new elements all come from F1 ∪ F4.

Lemma 6.10.7. Let B be a blocking set and A = (M,N,E, F, e) an arena. For
each P ∈ B, let γP be a challenger to P in A. Then there is some f ∈ F such
that

⋃
P∈B γP [f ] is blocking.

Proof. Suppose for a contradiction that there is no such f . Then we apply
Lemma 6.10.5 with ρ : f 7→ ⋃

P∈B γP [f ] and get an arena with no upper edges
in which none of the promises in B can be attained by any tactic, contradicting
the fact that B is blocking.

This useful property makes it worth looking at blocking sets in detail, and
we will now pause to analyse their structure more carefully. However, we shall
only consider up-closed blocking sets: note that a set is blocking if and only if
its up-closure is and by the definitions of challenger and of ≤P , if we have a
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challenger to every element of some blocking set then we also get a challenger
to every element of its up-closure.

Lemma 6.10.8. An up-closed set is blocking if and only if it includes one of
the following sets as a subset: {⊥}, {⊥∗}, {M+,M

∗
−}, {M−,M∗+}, {N+, N

∗
−},

{N−, N∗+}, {M+, N−,>∗}, {M−, N+,>∗}, {M∗+, N∗−,>} or {M∗−, N∗+,>}.

Proof. Each of the listed sets is clearly blocking. Conversely, let B be an up-
closed blocking set. Since it meets {⊥,M−, N−,⊥∗,M∗−, N∗−} and is up-closed it
must contain one of M−, N−, M∗− or N∗−: by symmetry we may assume without
loss of generality that it contains M−. Since it meets P∗ ∪ ⊥ it must contain
one of >∗ and ⊥ and since it meets {⊥, N−, N+,⊥∗,M∗−,M∗+} it must contain
one of N+ and M∗+. Now if it contains ⊥ then it includes {⊥}, if it contains
M∗+ then it includes {M−,M∗+}, and if it contains neither then it contains both
of >∗ and N+ and so includes {M−, N+,>∗}.

We are now ready to prove the main result of this section:

Proof that Proposition 6.8.8 implies Theorem 6.8.7. Suppose that we have two
trees of matroids as in the statement of Theorem 6.8.7. By Corollary 6.8.1, it
suffices to prove that every edge either lies in some wave or else is the focus
of some cohindrance. So let e be some edge. We now consider the Packing
and Covering games G(M−), G(N−) and G∗(>∗), taking our notation as in
Definition 6.9.6. If Packer has a winning strategy in either of G(M−) or G(N−)
or Coverina has a winning strategy in G∗(>∗) then we are done by Lemma 6.9.8
or Lemma 6.9.9. So we suppose for a contradiction that there are no such
strategies.

By the determinacy of these games (Lemma 6.9.10) we get winning strategies
σM− and σN− for Coverina in G(M−) and G(N−) and a winning strategy σ>∗
for Packer in G∗(>∗). Let σ be the union of these three strategies. For any
finite play s, let l(s) be the last move of s. Note that if s ∈ σ then l(s) is
always of the form e(f) for some f ∈ E(T ). For any edge tt′ of T , let σ[tt′] be
{s|s ∈ σ and l(s) = e(tt′)}. Let U be the set of edges tt′ of T at which σ[tt′] is
blocking, and let T ′ be the subtree of T on the vertices which can be joined to
t0 via a path all of whose edges are in U .

We now define two trees of matroids on T ′, to which we will apply Propo-
sition 6.8.8 to obtain the desired contradiction. For each u ∈ T ′, we apply
Lemma 6.10.5 to the arena A(u) and the function ρ : e(tu) 7→ σ[tu] to get a new
arena A′(u) = (M

′
(u), N

′
(u), E′(u), F ′u, e(uu

−), where we choose the underly-
ing sets E′(u)in such a way that all the sets E′(u) \ (Fu + e(uu−)) are disjoint
and contain no dummy edges. Then (T ′,M

′
) and (T ′, N

′
) are trees of matroids.

Now we consider the Packing game G′(M−) = G(T ′,M
′
,ΨM∩Ω(T ′), N

′
,ΨN∩

Ω(T ′),M−, e). We will use a slightly different notation for this game than for
G(M−), putting dashes on the notation used in G(M−). Thus, for example, the
current promise at any point is denoted by P ′c. We can convert σM− into a
winning strategy for Coverina in G′(M−) as follows: Coverina should imagine
an auxiliary play in the game G(M−), in which she plays according to σM− ,
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and for which she should ensure that at any point the current node, edge and
promise agree with those in G′(M−). When Packer plays a tactic K ′n, Coverina
should choose a tactic Kn attaining Pc = P ′c in Ac as in Lemma 6.10.5 and she
should let her response f ′n be the move fn prescribed by σM− in response to
Kn.

By Lemma 6.9.8, the existence of this winning strategy entails that there is
no wave fulfilling M− in (MΨM∩Ω(T ′)(T ′,M

′
), (MΨN∩Ω(T ′)(T ′, N

′
)). Similarly,

there is no wave fulfilling N− and no cowave fulfilling >∗ for this pair. By
Remark 6.10.2, since the set {M−, N−,>∗} is blocking, there is some minor of
this pair for which Packing/Covering fails to hold. Thus in order to obtain the
desired contradiction by applying Proposition 6.8.8 to this minor, we just need
to show that every end of T ′ is in ΨM4ΨN .

Let ω = (tn|n ∈ N) be an end of T ′. For each n the set σ[tntn+1] is blocking
and does not contain ⊥∗, so must meet P. Thus there must be some play
s ∈ σM− ∪ σN− with l(s) = e(tntn+1). Since there are only finitely many such
plays for each n, we obtain by Lemma 6.7.1 that there is some infinite play ŝ
according to one of σM− or σN− with ŝ2n = e(tntn+1) for each n. But then
since these strategies are winning for Coverina, it follows that ω must be in at
most one of ΨM and ΨN . A similar argument shows that it is also in at least
one of ΨM and ΨN , so that it is in ΨM4ΨN as required.

6.11 Main result

As we have just shown, in order to prove our main result it remains to prove
the special case given in Proposition 6.8.8.

Throughout this section we fix two trees of matroids as in the statement of
Proposition 6.8.8. Our aim is to show that the pair (MΨM (T,M),MΨN (T,N))
satisfies matroid intersection. We shall suppose that it does not, and in the
remainder of this section we will derive a contradiction from that supposition.
However, it will become clear during the course of the proof that we must rely
on two technical lemmas, whose proofs we defer to the next section.

By Corollary 6.8.1, we may assume that there is some edge e of E(T ) which
is not in any wave or cowave for our pair of matroids. We now consider the
Packing and Covering games G(M−) and G∗(M∗+), taking our notation as in
Definition 6.9.6. By Lemma 6.9.8 Packer does not have a winning strategy in
G(M−), and by Lemma 6.9.9 Coverina does not have a winning strategy in
G∗(M∗+). So by the determinacy of these games, there are winning strategies
σM− for Coverina in G(M−) and σM∗+ for Packer in G∗(M∗+). Let σ be the union
of these strategies.

Let t0 be the unique vertex of T with e ∈ E(t0). In order to get a contradic-
tion, we shall recursively construct two infinite plays sM− and sM∗+ in G(M−)
and G∗(M∗+) respectively. We shall construct sM− and sM∗+ such that they are
both played along the same ray (ti|i ∈ N) from t0 and such that either Packer
wins sM− or Coverina wins sM∗+ .
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More explicitly, let us say that a finite or infinite play s is (M, i)-weak if there
is some j ≥ i such that the challenge s2j is defined and M -weak. We define
(N, i)-weak, (M∗, i)-weak and (N∗, i)-weak similarly. We shall recursively build
a ray (ti|i ∈ N) from t0 in T and sequences (Bi|i ∈ N) of blocking sets and
(λi : Bi → σ|i ∈ N) of functions, with the following properties:

1. B0 = {M−,M∗+} and λ0 sends both elements to trivial plays.

2. Each of the sets Bi is one of the blocking sets listed in Lemma 6.10.8.

3. For any P ∈ Bi with i > 0 the play λi(P ) is a play in σ with last move
e(ti−1ti) and λi(P ) ≤ P .

4. For any P,Q ∈ Bi with λi(P ) = λi(Q) we have λi(P ) = λi(Q).

5. For any i > 0 and any P ∈ Bi there is some P ′ ∈ Bi−1 such that λi(P ) is
an extension of λi−1(P ′).

6. For any i there is some j ≥ i such that one of the following is true:

• For each P ∈ Bj ∩ P the play λj(P ) is (N, i)-weak.
• For each P ∈ Bj ∩ P∗ the play λj(P ) is (M∗, i)-weak.

7. For any i there is some j ≥ i such that one of the following is true:

• For each P ∈ Bj ∩ P the play λj(P ) is (M, i)-weak.
• For each P ∈ Bj ∩ P∗ the play λj(P ) is (N∗, i)-weak.

It is possible to recursively build a sequence satisfying 1-5 by Lemma 6.10.7.
To get the additional conditions, we will need to make use of the results of
Section 6.12. But before we do this, we will explain why the existence of such
a sequence would result in a contradiction. As each end of T is in precisely
one of ΨM and ΨN , we may without loss of generality suppose that the end
(ti|i ∈ N) of T is in ΨN \ ΨM . Since each Bi is finite, by Lemma 6.7.1, we
can find an infinite play sM− such that for each i ∈ N the restriction sM−�2i is
in both σM− and the image of λi. Thus sM− is an infinite play according to
σM− . Since this is a winning strategy for Coverina, there must be some iM−
such that (sM−)2j is never an N -weak challenge for j ≥ iM− . Similarly, we can
build an infinite play sM∗+ such that for each i ∈ N the restriction sM∗+�2i is
in both σM∗+ and the image of λi, and there is some iM∗+ such that (sM∗+)2i is
never an M∗-weak challenge for j ≥ iM∗+ . Now let i be whichever of iM− and
iM∗+ is larger, and apply condition 6 above. If the first option holds, then sM−
is (N, i)-weak, contrary to the construction of i. But if the second option holds
then sM∗+ is (M∗, i)-weak, which is again a contradiction.

So to complete our proof it remains to show how we can ensure that the
sequence we recursively construct satisfies the 6th and 7th conditions above.
In order to do this, it is enough to show how, given choices of tk, Bk and λk
for k ≤ i satisfying 1-5 we can extend these finite sequences to longer finite
sequences (tk|k ≤ j), (Bk|k ≤ j) and (λk|k ≤ j) for some j ≥ i such that one of
the following is true:
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• For each P ∈ Bj ∩ P the play λj(P ) is (N, i)-weak.

• For each P ∈ Bj ∩ P∗ the play λj(P ) is (M∗, i)-weak.

For if we can do this, then we can use a symmetrical construction to further
extend our sequences to (Bk|k ≤ j′) and (λk|k ≤ j′) for some j′ ≥ j such that
one of the following is true:

• For each P ∈ Bj ∩ P the play λj(P ) is (M, i)-weak.

• For each P ∈ Bj ∩ P∗ the play λj(P ) is (N∗, i)-weak.

Repeatedly carrying out this pair of constructions and, if they don’t make the
sequences longer, extending them using Lemma 6.10.7, we will obtain infinite
sequences satisfying all the conditions above.

So suppose that we are given choices of tk, Bk and λk for k ≤ i and that we
wish to extend these sequences to satisfy condition 6 at i. The way we do this
depends on the value of Bi. We cannot, by the construction of the Packing and
Covering games, have Bi = {⊥} or Bi = {⊥∗}. If Bi = {M+,M

∗
−}, then we are

done, since the play λi(M+) is necessarily N -weak. The cases where Bi is one
of {M−,M∗+}, {N+, N

∗
−} or {N−, N∗+} are dealt with similarly.

The next case, B = {M−, N+,>∗}, is a little trickier. Here we may be forced
to extend the sequence. The object we need in order to do this is encoded in
the following definition:

Definition 6.11.1. Let A = (M,N,E, F, e), and γM− , γN+ and γ>∗ be chal-
lengers to the respective promises. A tactician+ for a blocking set B at an
edge f ∈ F in A is a function µ sending each P in B to a pair (Q,K), where
Q ∈ {M−, N+,>∗} and K is a tactic attaining Q in A and ϕK(f) ≤ P and
γQ(K) = f .

Note that in the context of Definition 6.11.1, F cannot be empty since
{M−, N+,>∗} is blocking.

We are interested in the case where γM− = γ
σM−
λi(M−) (the challenger deter-

mined by the strategy σM− after the finite play λi(M−)), γN+ = γ
σM−
λi(N+) and

γ>∗ = γ
σM∗+
λi(>∗) In this context, given such f , B and µ, we can extend our se-

quences as follows: we choose ti+1 with f = e(titi+1), we choose Bi+1 to be B,
and for each P ∈ Bi+1 we take λi+1(P ) to be the play consisting of λi(π1(µ(P )))
followed by the tactic π2(µ(P )) and then the edge f . We must be able to find
some extension like this by the following lemma:

Lemma 6.11.2. For each f ∈ F and blocking set B included in γM− [f ] ∪
γN+

[f ] ∪ γ>∗ [f ], there is a tactician+ µB for B at f .

Proof. For each P ∈ B, the promise P is in γQ[f ] for some Q ∈ {M−, N+,>∗}.
Then there is a tactic K fulfilling Q at e such that ϕK(f) = P and γM−(K) = f .
We let µB(P ) = (Q,K).
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In order to ensure that our extension is helpful, we use the following lemma,
to be proved in the next section:

Lemma 6.11.3. Let A = (M,N,E, F, e) be an arena, γM− , γN+ and let γ>∗
be challengers as in Definition 6.11.1. Then there are a blocking set B, an edge
f ∈ F and a tactician+ µ for B at f in A such that one of the following holds:

(i) Double Extension case: B = {M−, N+,>∗} and π1(µ(P )) = P for each
P ∈ B;

(ii) Weak Challenge case in the Packing game: For any tactic K with (N+,K)
in the image of µ, the edge f is an N -weak challenge to K;

(iii) Weak Challenge case in the Covering game: For any tactic K with (>∗,K)
in the image of µ, the edge f is an M∗-weak challenge to K.

The Weak Challenge cases are self-explanatory: for example, if we have the
Weak Challenge case in the Packing game then this ensures that for each P ∈
Bi+1 ∩ P the play λi+1(P ) is (N, i)-weak. The Double Extension case is more
subtle. In this case, we find ourselves in the same situation we were in before,
with Bi+1 = {M−, N+,>∗}, but we don’t seem to have made any progress.
However, we can apply the Lemma again repeatedly to get a contradiction as
follows:

Suppose for a contradiction that there is no finite j ≥ i for which there are
extensions (Bk|k ≤ j) and (λk|k ≤ j) of our sequences which satisfy condition
6 at i and j. Then we recursively build sequences (Bj |j > i), (λj |j > i)
and (tj |j > i), where for each j > i we choose tj , Bj and λj as above using
Lemma 6.11.3. Since as we have noted by our supposition we never have either
challenge case, we get that Bj = {M−, N+,>∗}, λj(M−) extends λj−1(M−) and
λj(N+) extends λj−1(N+) for each j > i. So there are two infinite plays uM−
and uN+ according to σM− such that, for each j ≥ i, each uP extends λj(P ).
Let ω be the end (tk|k ∈ N). As σM− is winning and in uM− all challenges are
eventually N -weak, we must have ω 6∈ ΨM . Similarly ω 6∈ ΨN , which is the
desired contradiction.

Thus there is some finite j ≥ i for which there are extensions (Bk|k ≤ j) and
(λk|k ≤ j) of our sequences which satisfy condition 6 at i and j, as required.
This completes our treatment of the case B = {M−, N+,>∗}. The case B =
{M∗+, N∗−,>} is similar, using the dual of Lemma 6.11.3.

The case B = {M+, N−,>∗}, is very similar, but there is an additional
complexity. Once more we may be forced to extend the sequences (tk), (Bk)
and (λk). This time the object we need in order to do this is encoded in the
following definition:

Definition 6.11.4. Let A = (M,N,E, F, e), and γM+ , γN− and γ>∗ be chal-
lengers to the respective promises. A tactician− for a blocking set B at an
edge f ∈ F in A is a function µ sending each P in B to a pair (Q,K), where
Q ∈ {M+, N−,>∗} and K is a tactic attaining Q in A and ϕK(f) ≤ P and
γQ(K) = f .
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Note that in the context of Definition 6.11.4, F cannot be empty since
{M+, N−,>∗} is blocking.

We are interested in the case where γM+ = γ
σM−
λi(M+), γN− = γ

σM−
λi(N−) and

γ>∗ = γ
σM∗+
λi(>∗). In this context, given such f , B and µ, we can extend our

sequences as follows: we choose ti+1 with f = e(titi+1), we choose Bi+1 to
be B, and for each P ∈ Bi+1 we take λi+1(P ) to be the play consisting of
λi(π1(µ(P ))) followed by the tactic π2(µ(P )) and then the edge f . We must
be able to find some extension like this by the following lemma, which can be
proved similarly to Lemma 6.11.2:

Lemma 6.11.5. For each f ∈ F and blocking set B included in γM+
[f ] ∪

γN− [f ] ∪ γ>∗ [f ], there is a tactician− µB for B at f .

In order to ensure that our extension is helpful, we will once more rely on a
technical lemma, to be proved in the next section:

Lemma 6.11.6. Let A = (M,N,E, F, e) be an arena, γM+ , γN− and let γ>∗
be challengers as in Definition 6.11.4. Then there are a blocking set B, an edge
f ∈ F and a tactician− µ for B at f in A such that one of the following holds:

(i) Double Extension case: B = {M+, N−,>∗} and π1(µ(P )) = P for each
P ∈ B;

(ii) Weak Challenge case in the Packing game: For any tactic K with (N−,K)
in the image of µ, the edge f is an N -weak challenge to K;

(iii) Weak Challenge case in the Covering game: For any tactic K with (>∗,K)
in the image of µ, the edge f is an M∗-weak challenge to K;

(iv) Improvement case 1: B = {M−, N+,>∗};

(v) Improvement case 2: B = {N∗−,M∗+,>}.

The Weak Challenge cases are once more self-explanatory, and the Double
Extension case can be dealt with as before. But Improvement cases 1 and 2
reduce the situation to one in which the current blocking set is {M−, N+,>∗}
or {M∗+, N∗−,>}, and both of these situations have been dealt with above.

This completes our treatment of the case B = {M+, N−,>∗}. The case
B = {M∗−, N∗+,>} is similar, using the dual of Lemma 6.11.3. We have now dealt
with all cases which can arise, and this completes the proof of Proposition 6.8.8
and hence of Theorem 6.8.7.

6.12 Proof of Lemmas 6.11.3 and 6.11.6

6.12.1 Proof of Lemma 6.11.3

The aim of this subsection is to prove Lemma 6.11.3. First we need some inter-
mediate lemmas. We start with a lemma on waves in finite pairs of matroids.
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Lemma 6.12.1. Let M and N be two matroids on the same finite ground set
E. Let G,H, J ⊆ E disjoint and e ∈ E \ (G∪H ∪J). Then one of the following
is true.

1. There is a wave with e on the N -side in (M/(H ∪ J), N/(H ∪ J)).

2. There is a wave N -spanning e in (M \ (G ∪ J), N \G/J).

3. There is some G′ ⊆ G and a cohindrance (Y, TM , TN ) focusing on e in
(M \ (G′ ∪ J), N \ G′/J) such that there is some M -cocircuit b with e ∈
b ⊆ (TM + e) \H.

If G = H = J = ∅, then this lemma just says that {M−, N+,>∗} is blocking.
So this lemma can be seen as an extension of this fact.

Proof. We assume that we do not have outcome 1 or 2 and aim to show that
then we get outcome 3. Thus as {M−, N+,>∗} is blocking by Lemma 6.10.8, in
the pair (M ′, N ′) = (M \ (G ∪ J), N \G/J) it must be that the promise >∗ is
attainable: There is a cohindrance (X,SM , SN ) focusing on e.

Now we tweak this cohindrance a little to get outcome 3. As {M−,M∗+} is
blocking by Lemma 6.10.8 and we do not have outcome 1, in the pair (M/(H ∪
J), N/(H ∪ J)) there is a cowave (Y, TM , TN ) that M -cospans e. In particular,
there is an M -cocircuit b with e ∈ b ⊆ (TM + e). So b avoids H ∪ J ∪G′, where
G′ = G\Y . Then (X\Y, SM\Y, SN\Y ) is a cohindrance focusing on e in the pair
(M ′\Y,N ′\Y ). By the dual of Lemma 6.3.3 (X∪Y, (SM\Y )∪TM , (SN\Y )∪TN )
is a cohindrance in (M \ (G′ ∪ J), N \ G′/J), and together with b it witnesses
that we have outcome 3.

Lemma 6.12.1 is the main principle we use in the proof of Lemma 6.11.3. The
work of bridging from Lemma 6.12.1 to Lemma 6.11.3 is done in the following
lemma.

Lemma 6.12.2. Let γM− , γN+
⊆ P −⊥ and γ>∗ ⊆ P∗−⊥∗ be up-closed such

that γ = γM− ∪ γN+
∪ γ>∗ is blocking. Then one of the following is true.

1. One of the 4 sets {M+,M
∗
−}, {M−,M∗+}, {N+, N

∗
−} or {N−, N∗+} is a

subset of γ;

2. M− ∈ γM− and {N+,>∗} ⊆ γ;

3. N− ∈ γM− and {M+,>∗} ⊆ γ;

4. > ∈ γM− and one of {M∗−, N∗+} ⊆ γ>∗ or {M∗+, N∗−} ⊆ γ>∗ ;

5. γM− ⊆ {M+, N+,>} and γ>∗ ⊆ {M∗+, N∗+,>∗} and one of {M−, N+} ⊆ γ
or {M+, N−} ⊆ γ;

6. γM− = ∅ and N∗− 6∈ γ>∗ and {M∗−, N∗+,>} ⊆ γ and γN+
⊆ {N+,>};

7. γM− = ∅ and {M∗+, N∗−,>} ⊆ γ and γN+
⊆ {M+,>};
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Proof. Since γ ∩ (P + ⊥∗) is nonempty and ⊥∗ /∈ γ, we get that γ ∩ P is
nonempty, thus > ∈ γ. Similarly, >∗ ∈ γ. Now suppose for a contradiction that
we do not have one of the outcomes 1-7. By Lemma 6.10.8, one of the 4 sets
{M+, N−,>∗}, {M∗+, N∗−,>}, {M−, N+,>∗} or {M∗−, N∗+,>} is a subset of γ.

Case 1: {M+, N−,>∗} ⊆ γ or {M−, N+,>∗} ⊆ γ. Then M+ and N+ are in
γ, so M∗− and N∗− are not as we do not have outcome 1. Also, M− 6∈ γM− as
we do not have outcome 2, and N− 6∈ γM− as we do not have outcome 3. Thus
we have outcome 5, which is the desired contradiction.

Case 2: {M∗+, N∗−,>} ⊆ γ. Then M− and N+ cannot be in γN+
as we do not

have outcome 1. Also, γM− must be empty as we do not have outcome 4. Thus
we have outcome 7, which is the desired contradiction.

Case 3: {M∗−, N∗+,>} ⊆ γ but {M∗+, N∗−,>} 6⊆ γ. Then M+ and N− cannot
be in γN+

as we do not have outcome 1. By assumption, N∗− 6∈ γ>∗ . Also, γM−
must be empty as we do not have outcome 4. Thus we have outcome 6, which
is the desired contradiction.

Now we are in a position to prove Lemma 6.11.3.

Proof of Lemma 6.11.3. Suppose for a contradiction that there are an arena
A = (M,N,E, F, e) and challengers γM− , γN+ and γ>∗ for which Lemma 6.11.3
is false. We pick these such that the set F of upper edges is of minimal size.
Although we will not need it, it is worth noting that F is nonempty since
{M−, N+,>∗} is blocking. We abbreviate γ[f ] = γM− [f ] ∪ γN+

[f ] ∪ γ>∗ [f ].

Sublemma 6.12.3. For each f ∈ F the set γ[f ] is blocking.

Proof. This is immediate by the minimality of |F | and Lemma 6.10.5 and Re-
mark 6.10.6.

Sublemma 6.12.4. For each f ∈ F one of the following three conditions from
Lemma 6.12.2 is true.

5. γM− [f ] ⊆ {M+, N+,>} and γ>∗ [f ] ⊆ {M∗+, N∗+,>∗} and one of {M−, N+} ⊆
γ[f ] or {M+, N−} ⊆ γ[f ];

6. γM− [f ] = ∅ and N∗− 6∈ γ>∗ [f ] and {M∗−, N∗+,>} ⊆ γ[f ] and γN+
[f ] ⊆

{N+,>};

7. γM− [f ] = ∅ and {M∗+, N∗−,>} ⊆ γ[f ] and γN+
[f ] ⊆ {M+,>};

Proof. By Sublemma 6.12.3 and Lemma 6.12.2 the sets γM− [f ], γN+
[f ] and

γ>∗ [f ] fulfil one of the outcomes of Lemma 6.12.2. If they satisfy 5,6 or 7 we
are done. Otherwise they satisfy one of the conditions 1-4 of Lemma 6.12.2.
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Case 1: γM− [f ], γN+
[f ] and γ>∗ [f ] satisfy 1: Let B be one of {M+,M

∗
−},

{M−,M∗+}, {N+, N
∗
−} or {N−, N∗+} such that B ⊆ γ[f ]. Then we pick a

tactician+ µB as in Lemma 6.11.2. If B = {M+,M
∗
−} or B = {M−,M∗+},

we get the Weak Challenge case in the Packing game. If B = {N−, N∗+} or
B = {N+, N

∗
−}, we get the Weak Challenge case in the Covering game. Thus

we get a contradiction in this case.

Case 2: γM− [f ], γN+
[f ] and γ>∗ [f ] satisfy 2: Then M− ∈ γM− [f ] and

{N+,>∗} ⊆ γ[f ]. We let B = {M−, N+,>∗}. If N+ ∈ γN+
[f ], then we can

define some µ as in the Double Extension case. Otherwise, N+ ∈ γM− [f ], so that
without loss of generality, the µB from Lemma 6.11.2 is such that π1µB(N+) =
M−. Thus µ−1

B (N+,K) = M− for every tactic K where this is defined. So we
get the Weak Challenge case in the Packing game. Thus we get a contradiction
in this case.

Case 3: γM− [f ], γN+
[f ] and γ>∗ [f ] satisfy 3: Then B = {M+, N−,>∗} ⊆

γ[f ]. Furthermore, there is some tactic K1 fulfilling M− at e such that ϕK1(f) =
N−, and some tactic K2 fulfilling M− or N+ at e with ϕK2(f) = M+. So that
without loss of generality the µB from Lemma 6.11.2 is such that µB(N−) =
(M−,K1) and one of µB(M+) = (M−,K2) or µB(M+) = (N+,K2). In partic-
ular, for every tactic K the set µ−1

B (N+,K) is either empty or is the singleton
{M+}. So we get the Weak Challenge case in the Packing game. Thus we get
a contradiction in this case.

Case 4: γM− [f ], γN+
[f ] and γ>∗ [f ] satisfy 4: Then there is some tactic

K fulfilling M− at e with ϕK(f) = >, and either {M∗−, N∗+} ⊆ γ>∗ [f ] or
{M∗+, N∗−} ⊆ γ>∗ [f ]. If {M∗−, N∗+} ⊆ γ>∗ [f ], then we let B = {M∗−, N∗+,>}. So
that without loss of generality the µB from Lemma 6.11.2 is such that µB(>) =
(M−,K). So we get the Weak Challenge case in the Packing game. The case
{M∗+, N∗−} ⊆ γ>∗ [f ] is similar. Thus we get a contradiction in this case.

Sublemma 6.12.4 motivates the following definition: Let G ⊆ F be the set
of those f ∈ F that satisfy 5 and let H ⊆ F be the set of those f ∈ F \ G
that satisfy 6. Finally let J = F \ G \ J . Note that any f ∈ J satisfies 7 by
Sublemma 6.12.4. Now we apply Lemma 6.12.1 to G, H and J . According to
which outcome we get, we now split into cases.

Case 1: We get outcome 1 of Lemma 6.12.1: There is a wave with e
on the N -side in (M/(H ∪ J), N/(H ∪ J)). This wave gives rise to a tactic K
fulfilling M− at e such that:

ϕK(f) =

{
> if f ∈ H ∪ J
M− or N− or ⊥ if f ∈ G

As γM− is a challenger, there is some f ∈ F such that γM−(K) = f . As
γM− [x] = ∅ for each x ∈ H ∪ J , f cannot be in H ∪ J and it cannot be in
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G either since γM− [x] ⊆ {M+, N+,>} for each x ∈ G. This is the desired
contradiction.

Case 2: We get outcome 2 of Lemma 6.12.1: There is a wave N -spanning
e in (M \ (G ∪ J), N \G/J). This wave gives rise to a tactic K fulfilling N+ at
e such that:

ϕK(f) =


⊥ if f ∈ G
M− or N− or ⊥ if f ∈ H
N+ if f ∈ J

As γN+ is a challenger, there is some f ∈ F such that γN+(K) = f . Note
that f /∈ G. As γN+

[x] ⊆ {N+,>} for each x ∈ H, f cannot be in H and
it cannot be in J either since γN+

[x] ⊆ {M+,>} for each x ∈ J . This is the
desired contradiction.

Case 3: We get outcome 3 of Lemma 6.12.1: There is some G′ ⊆ G and
a cohindrance (Y, TM , TN ) focusing on e in (M \ (G′ ∪ J), N \G′/J) such that
there is some M -cocircuit b with e ∈ b ⊆ (TM + e) \H. This cohindrance gives
rise to a tactic K fulfilling >∗ at e with CM

∗

K = b such that:

ϕK(f) =


>∗ if f ∈ G′
M∗− or N∗− or ⊥∗ if f ∈ H ∪ (G \G′)
M∗+ if f ∈ J

Let f = γ>∗(K). If f ∈ G, then it is in G′ because γ>∗ [x] ⊆ {M∗+, N∗+,>∗}
for each x ∈ G. Then we let B = {M−, N+,>∗} (if {M−, N+} ⊆ γ[f ]) or B =
{M+, N−,>∗} (if {M+, N−} ⊆ γ[f ]). We pick µB such that µB(>∗) = (>∗,K).
Thus we get the Weak Challenge case in the Covering game as CM

∗

K does not
meet G′.

If f ∈ H, then ϕK(f) = M∗− as N∗− 6∈ γ>∗ [f ] and γ>∗ is a challenger. Thus
we let B = {M∗−, N∗+,>} and we pick µB such that µB(M∗−) = (>∗,K). Thus
we get the Weak Challenge case in the Covering game.

If f ∈ J , we let B = {M∗+, N∗−,>} and we pick µB such that µB(M∗+) =
(>∗,K). Thus we get the Weak Challenge case in the Covering game. This
completes the proof.

6.12.2 Proof of Lemma 6.11.6

The aim of this subsection is to prove Lemma 6.11.6. The structure of the proof
will be as in the last subsection.

Lemma 6.12.5. Let M and N be two matroids on the same finite ground set
E. Let H,J ⊆ E disjoint and e ∈ E \H \ J . Then one of the following is true.

1. There is some H ′ ⊆ H such that there is a wave M -spanning e in (M/H ′/J,N\
H ′/J).
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2. There is some J ′ ⊆ J and a wave (X,SM , SN ) with e on the M -side in
(M/J ′, N/J ′) such that there is an N -circuit o with e ∈ o ⊆ (SN + e)\H.

3. There is some H ′ ⊆ H and a cohindrance (Y, TM , TN ) focusing on e
in (M/H ′, N \ H ′) such that there is some M -cocircuit b with e ∈ b ⊆
(TM + e) \ J .

If H = J = ∅, then this lemma just says that {M+, N−,>∗} is blocking. So
this lemma can be seen as an extension of this fact.

Proof. We prove this lemma by induction on the size of E.

Case 1: H = ∅.

Subcase 1.1: There is a nonempty wave (Z,UM , UN ) in (M,N) avoiding
e. Now we apply the induction hypothesis to (M/Z,N/Z) and ∅ and J \Z. If
we have outcome 3, we immediately get outcome 3 in (M,N). If we get a wave
as in outcome 1 or 2, we stick (Z,UM , UN ) onto that wave by Lemma 6.3.3 and
get outcome 1 or 2, respectively, in (M,N).

To complete Case 1, it remains to consider the following subcase.

Subcase 1.2: Every nonempty wave in (M,N) contains e. If J = ∅, we
can just use the fact that {M+, N−,>∗} is blocking by Lemma 6.10.8. So let
j ∈ J . Now we apply the induction hypothesis to (M/j,N\j). If we get outcome
1 or 2, we get outcome 1 or 2, respectively, in (M,N). In particular, there is no
hindrance in (M/j,N \ j) focusing on e. So by Lemma 6.8.5, E − j is a cowave
in (M/j,N \ j). And we may assume that we get a cohindrance (Y, TM , TN )
and an M -cocircuit as in outcome 3. By sticking E − j onto (Y, TM , TN ) if
necessary, we may assume that Y = E − j. The edge j is not an M -loop since
otherwise {j} would be a nonempty wave not containing e, contrary to our
assumption. Thus (E,SM , SN + j) is a cohindrance in (M,N), which together
with b witnesses outcome 3.

Case 2: H 6= ∅.

Subcase 2.1: There is a nonempty cowave (Z,UM , UN ) in M/J,N/J
avoiding e. Now we apply the induction hypothesis to (M \ Z,N \ Z) and
H \ Z and J . Just as in Subcase 1.1, one checks that if one gets outcome 1, 2
or 3 in the minor, then one gets outcome 1, 2 or 3 in (M,N), respectively.

Thus it remains to consider the following subcase:

Subcase 2.2: Every cowave in (M/J,N/J) contains e. As we are in Case
2, there is some h ∈ H, and we apply the induction hypothesis to (M/h,N \ h)
and H−h and J . If we get outcome 1 or 3, we get outcome 1 or 3, respectively,
in (M,N). So we may assume that we have outcome 2: There is some J ′ ⊆ J
and a wave (X,SM , SN ) with e on the M -side in (M/(J ′ + h), N/J ′ \ h) such
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that there is an N -circuit o with e ∈ o ⊆ (SN + e) \ (H − h) = (SN + e) \H.
By adding the edges in J \ (X ∪ J ′) to J ′ if necessary, we may assume that
J ′ = J \X.

The wave (X,SM , SN ) is almost the wave we are looking for, except that
it lives in the wrong pair of matroids. Next, we shall extend (X,SM , SN ) to a
wave living in the right pair of matroids. By the dual of Lemma 6.8.5, either
there is a cohindrance focusing on e in (M/(J + h), N/J \ h) or E \ (J + h) is a
wave in (M/(J +h), N/J \h) with spanning sets TM and TN . We may assume
that the second occurs since the first gives us outcome 3. Then (E \ (J ∪X +
h), TM \X,TN \X) is a wave in (M/(J ∪X + h), N/(J ∪X) \ h). By sticking
X onto that wave, we get that (E \ (J ′ + h), SM ∪ TM \X,SN ∪ TN \X) is a
wave in (M/(J ′ + h), N/J ′ \ h).

The edge h is not an N -coloop since otherwise {h} would be a cowave,
contrary to our assumption in this subcase. So h is not an N/J ′-coloop either.
Thus (E \J ′, (SM +h)∪TM \X,SN ∪TN \X) is a wave in (M/J ′, N/J ′) with
e on the M -side. Moreover the circuit o witnesses that we have outcome 2.

Lemma 6.12.5 is the main principle we use in the proof of Lemma 6.11.6. The
work of bridging from Lemma 6.12.5 to Lemma 6.11.6 is done in the following
lemma.

Lemma 6.12.6. Let γM+
, γN− ⊆ P −⊥ and γ>∗ ⊆ P∗−⊥∗ be up-closed such

that γ = γM+
∪ γN− ∪ γ>∗ is blocking. Then one of the following is true.

1. One of the 6 sets {M+,M
∗
−}, {M−,M∗+}, {N+, N

∗
−}, {N−, N∗+}, {M−, N+,>∗}

or {M∗+, N∗−,>} is a subset of γ;

2. {M+, N−,>∗} ⊆ γ and γM+
meets {M+, N−};

3. > ∈ γM+
and {M∗−, N∗+} ⊆ γ>∗ ;

4. γM+
⊆ {>, N+} and γN− = {>,M+, N+, N−} and >∗ ∈ γ>∗ ⊆ {>∗,M∗+};

5. γM+
= ∅ and > ∈ γN− ⊆ {>, N+} and γ>∗ = {>∗,M∗+,M∗−, N∗+};

Proof. Since γ ∩ (P +⊥∗) is nonempty and ⊥∗ /∈ γ, we get γ ∩ P is nonempty,
thus > ∈ γ. Similarly, >∗ ∈ γ. Now suppose for a contradiction that we do not
have one of the outcomes 1-5. By Lemma 6.10.8, either {M+, N−,>∗} ⊆ γ or
{M∗−, N∗+,>} ⊆ γ as we do not have outcome 1.

If {M+, N−,>∗} ⊆ γ, then N+ ∈ γ. So γ contains neither M∗− nor N∗+
nor M− as we do not have outcome 1. Since we do not have outcome 2, it
must be that γM+

avoids {M+, N−}. Thus γM+
⊆ {>, N+} and so γN− =

{>,M+, N+, N−} and >∗ ∈ γ>∗ ⊆ {>∗,M∗+}, as they are both up-closed. Thus
we have outcome 4, which is a contradiction in this case.

Hence it suffices to consider the case that {M∗−, N∗+,>} ⊆ γ. Then M∗+ ∈ γ.
So γ contains neither M+ nor N− nor N∗− as we do not have outcome 1. Since
we do not have outcome 3, γM+

= ∅. Thus > ∈ γN− ⊆ {>, N+} and γ>∗ =
{>∗,M∗+,M∗−, N∗+} as they are both up-closed. Thus we have outcome 5, which
is the desired contradiction.
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Now we are in a position to prove Lemma 6.11.6.

Proof of Lemma 6.11.6. Suppose for a contradiction that there are an arena
A = (M,N,E, F, e) and challengers γM+ , γN− and γ>∗ for which Lemma 6.11.6
is false. We pick these such that the set F of upper edges is of minimal size.
Although we will not need it, it is worth noting that F is nonempty since
{M+, N−,>∗} is blocking. We abbreviate γ[f ] = γM+

[f ] ∪ γN− [f ] ∪ γ>∗ [f ].
The following sublemma may be proved in a similar way to Sublemma 6.12.3.

Sublemma 6.12.7. For each f ∈ F the set γ[f ] is blocking.

Sublemma 6.12.8. For each f ∈ F one of the following two conditions from
Lemma 6.12.6 is true.

4. γM+
[f ] ⊆ {>, N+} and γN− [f ] = {>,M+, N+, N−} and >∗ ∈ γ>∗ [f ] ⊆

{>∗,M∗+};

5. γM+
[f ] = ∅ and > ∈ γN− [f ] ⊆ {>, N+} and γ>∗ [f ] = {>∗,M∗+,M∗−, N∗+};

Proof. By Sublemma 6.12.7 and Lemma 6.12.6 the sets γM+
[f ], γN− [f ] and

γ>∗ [f ] fulfil one of the outcomes of Lemma 6.12.6. If they satisfy 4 or 5, we are
done. Otherwise they satisfy one of the conditions 1-3 of Lemma 6.12.6.

First suppose for a contradiction that they satisfy 1: Let B be one of
{M+,M

∗
−}, {M−,M∗+}, {N+, N

∗
−}, {N−, N∗+}, {M−, N+,>∗} or {>, N∗−,M∗+}

such that B ⊆ γ[f ]. Then we pick a tactician− µB as in Lemma 6.11.5. If
B = {M−, N+,>∗}, we get Improvement case 1. If B = {>, N∗−,M∗+}, we get
Improvement case 2. If B = {M+,M

∗
−} or B = {M−,M∗+}, we get the Weak

Challenge case in the Packing game. If B = {N−, N∗+} or B = {N+, N
∗
−}, we

get the Weak Challenge case in the Covering game. Thus we get a contradiction
in this case.

Next, we consider the case that γM+
[f ], γN− [f ] and γ>∗ [f ] satisfy 2: {M+, N−,>∗} ⊆

γ[f ] and γM+
[f ] meets {M+, N−}. We let B = {M+, N−,>∗}. If γM+

[f ] ∩
{M+, N−} = {M+}, then N− ∈ γN− [f ], and so we can define some µ as in
the Double Extension case. Otherwise N− ∈ γM+

[f ], so that without loss of
generality µB is such that π1(µB(N−)) = M+. Thus µ−1

B (N−,K) = M+ for
every tactic K where this is defined. So we get the Weak Challenge case in the
Packing game.

Thus, it remains to consider the case that γM+
[f ], γN− [f ] and γ>∗ [f ] satisfy

3: > ∈ γM+
[f ] and {M∗−, N∗+} ⊆ γ>∗ [f ]. We let B = {>,M∗−, N∗+} and define

the tactician− µB such that π1(µB(>)) = M+. So we have the Weak Challenge
case in the Packing game. This completes the proof.

Sublemma 6.12.8 motivates the following definition: Let H ⊆ F be the set
of those f ∈ F that satisfy 4 and let J = F \H. Note that any j ∈ J satisfies
5 by Sublemma 6.12.8. Now we apply Lemma 6.12.5 to J and H. According to
which outcome we get, we now split into cases.
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Case 1: We get outcome 1 of Lemma 6.12.5: There is some H ′ ⊆ H
such that there is a wave M -spanning e in (M/H ′/J,N \ H ′/J). This wave
gives rise to a tactic K fulfilling M+ at e such that:

ϕK(f) =


M+ if f ∈ H ′
M− or N− or ⊥ if f ∈ H \H ′
> if f ∈ J

As γM+ is a challenger, there is some f ∈ F such that γM+(K) = f . As
γM+

[j] = ∅ for each j ∈ J , f cannot be in J and it cannot be in H either since
γM+

[h] ⊆ {>, N+} for each h ∈ H. This is the desired contradiction.

Case 2: We get outcome 2 of Lemma 6.12.5: There is some J ′ ⊆ J and
a wave (X,SM , SN ) with e on the M -side in (M/J ′, N/J ′) such that there is
an N -circuit o with e ∈ o ⊆ (SN + e) \H. This wave gives rise to a tactic K
fulfilling N− at e with CNK = o such that:

ϕK(f) =

{
> if f ∈ J ′
M− or N− or ⊥ if f ∈ H ∪ (J \ J ′)

Let f = γN−(K). If f ∈ H, we let B = {M+, N−,>∗} and we pick µB such
that µB(N−) = (N−,K). Thus we get the Weak Challenge case in the Packing
game. If f ∈ J , then it must be in J ′ because γN− [j] ⊆ {>, N+} for each j ∈ J .
Then we let B = {M∗−, N∗+,>} and we pick µB such that µB(>) = (N−,K).
Thus we get the Weak Challenge case in the Packing game.

Case 3: We get outcome 3 of Lemma 6.12.5: There is some H ′ ⊆ H and
a cohindrance (Y, TM , TN ) focusing on e in (M/H ′, N \H ′) such that there is
some M -cocircuit b with e ∈ b ⊆ (TM + e) \ J . This cohindrance gives rise to a
tactic K fulfilling >∗ at e with CM

∗

K = b such that:

ϕK(f) =

{
N∗+ if f ∈ H ′
M∗− or N∗− or ⊥∗ if f ∈ J ∪ (H \H ′)

Let f = γ>∗(K). If f ∈ H, then it is in H ′ because γ>∗ [h] ⊆ {>∗,M∗+}
for each h ∈ H. Then we let B = {M+, N−,>∗} and we pick µB such that
µB(>∗) = (>∗,K). Thus we get the Weak Challenge case in the Covering game.
If f ∈ J , we let B = {M∗−, N∗+,>} and we pick µB such that µB(M∗−) = (>∗,K).
Thus we get the Weak Challenge case in the Covering game.

6.13 Concluding remarks

There does not seem to be any reason, in principle, why the methods of this
chapter should not extend to trees of matroids with larger overlap. However,
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we have found that the most naive attempt to do this results in an explosion
of the number of cases which must be dealt with. This puts the necessary
computations far beyond the bounds of what we could reasonably attempt.

It is clear that the success of our argument provides only weak evidence for
the truth of the Packing/Covering conjecture in general. However, we think
further evidence for this conjecture is given by the fact that our argument only
just succeeds: an argument which resolved this case more straightforwardly
would have suggested that the conclusion was an artifact of the tree structure,
rather than relying on the matroidal structure.

There are some subtle issues of descriptive set theory surrounding the ques-
tion of how much we have shown. If we have matroidsMΨM (T,M) andMΨN (T,N)
which are matroids because the sets ΨM and ΨN are Borel then our results al-
low us to deduce that (MΨM (T,M),MΨN (T,N)) satisfies Packing/Covering.
The same comment applies if ΨM and ΨN are taken from some other class of
determined sets closed under basic operations such as inverse images under con-
tinuous functions, for example the class of analytic sets if there is a measurable
cardinal. But if MΨM (T,M) and MΨN (T,N) just happen to be matroids then
it is not clear that they must satisfy Packing/Covering, because the games on
whose determinacy our argument relies are quite different from the games whose
determinacy witnesses that MΨM (T,M) and MΨN (T,N) are matroids.

If it could be shown that the determinacy of the latter collection of games
implies that of the former, then this would significantly strengthen our result.
On the other hand, a counterexample to this implication would give a coun-
terexample to the Packing/Covering conjecture. Although for these reasons we
are eager to resolve this issue, only the bare beginnings of an investigation into
questions like this (regarding the relationship of determinacy of particular games
outside well-behaved classes) has been made, in papers such as [49] and [47].
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