Rigidity of higher-rank lattices actions

Vincent Pecastaing

Université Côte d'Azur, Nice

Kolloquium über Reine Mathematik

Universität Hamburg May 25, 2021

- Higher-rank lattices and Margulis' super-rigidity
- Zimmer's generalization: cocycle super-rigidity
- What is it good for? Actions on G-structures
- Unimodular results (1990's)
- Recent progress on Zimmer's conjectures, non-unimodular results

Zimmer Program: two samples

Theorem (Ghys '99)*

Any \mathcal{C}^1 action $\rho : SL_3(\mathbb{Z}) \to \text{Diff}^1(\mathbb{S}^1)$ has finite image, i.e. factorizes $SL_3(\mathbb{Z}) \to F \to \text{Diff}^1(\mathbb{S}^1)$, with F finite group.

(Related works: Witte 94, Burger-Monod 99, Deroin-Hurtado 20.) Rk: SL₃(\mathbb{R}) acts faithfully on $\mathbb{S}^2 = \{$ half-lines of $\mathbb{R}^3 \}$.

Théorème (Zimmer '86)

If (M^n, g) is a compact Lorentzian manifold, then any isometric action $\rho : SL_3(\mathbb{Z}) \to Isom(M, g)$ has finite image.

The Lorentz signature is "too small" for $SL_3(\mathbb{Z})$.

Rk : $SL_2(\mathbb{R})$ acts on $T^1\Sigma_g$, $g \ge 2$, preserving a Lorentzian metric with K = -1 (AdS₃).

Rk : If $min(p,q) \ge 3$, there are flat metrics on \mathbb{T}^{p+q} of sign. (p,q) which are $SL_3(\mathbb{Z})$ -invariant.

(*) Disclaimer: Ghys' theorem is more general. Same for the rest of the talk.

Motivation: Super-rigidity of lattices in real-rank ≥ 2

Setting: Let G be a real, simple, non-compact Lie group. Ex: $G = SL_n(\mathbb{R}), SO(p, q), SU(p, q)$ etc...

Definition

A lattice Γ of G is a discrete subgroup such that $vol(G/\Gamma) < \infty$. It is cocompact if G/Γ is compact.

For ex: $\Gamma = SL_n(\mathbb{Z})$ is a (non cocompact) lattice of $G = SL_n(\mathbb{R})$. $\Gamma = SL_n(\mathbb{Z}[i])$ is a (non cocompact) lattice of $G = SL_n(\mathbb{C})$.

Arithmetic groups $\Gamma = G_{\mathbb{Z}}$ when G algebraic defined over \mathbb{Q}

 $\Gamma = \pi_1(M)$, with M^n = closed hyperbolic manifold. hol(Γ) $\subset G$ = SO(1, *n*) is a torsion-free cocompact lattice.

Définition

The real-rank of G is the dimension of its maximal \mathbb{R} -split tori.

Ex: $\operatorname{Rk}_{\mathbb{R}} \operatorname{SL}_{n}(\mathbb{R}) = n - 1$, $\operatorname{Rk}_{\mathbb{R}} \operatorname{SO}(p, q) = \min(p, q)$

Margulis ('74) :

If $\operatorname{Rg}_{\mathbb{R}} G \ge 2$, then all its lattices $\Gamma < G$ are arithmetic.

↑

Theorem (Margulis' super-rigidity, '74)

Let G be a simple real Lie group, with real-rank ≥ 2 , and $\Gamma < G$ a lattice. Let H be a simple real algebraic group. Let $\rho : \Gamma \to H$ be a group homomorphism. If $\rho(\Gamma)$ is Zariski-dense, then there exists a Lie group homomorphism $\overline{\rho} : G \to H$ such that $\rho = \overline{\rho}|_{\Gamma}$.

 \Rightarrow Finite dimensional representations of Γ are essentially determined by those of G. It is classic Lie theory.

Rk: A *p*-adic version is needed for arithmeticity theorem. Rk: It does not work for G = SO(n, 1) or SU(n, 1). But it does for Sp(n, 1) and $F_{4(-20)}$ (Corlette 92, Gromov-Schoen 92)

Geometric interpretation

For the rest of the talk, $G = \text{simple Lie group with } \operatorname{Rk}_{\mathbb{R}} G \ge 2$ and $\Gamma < G$ a lattice, typically $G = \operatorname{SL}_n(\mathbb{R})$, $\Gamma = \operatorname{SL}_n(\mathbb{Z})$ with $n \ge 3$.

Let H be as above, say $GL_k(\mathbb{R})$. To any $\rho: \Gamma \to H$ corresponds a principal H-bundle $P^{\rho} \to G/\Gamma$, on which G acts by automorphisms. Definition: $P^{\rho} = (G \times H)/\Gamma$, where $(g, h) \sim (g\gamma, \rho(\gamma^{-1})h)$.

Conversely, if $P \to G/\Gamma$ acted upon by G, there is $\rho : \Gamma \to H$ such that $P \simeq P^{\rho}$, G-equivariantly.

How does the conclusion of Margulis' theorem read? Extending ρ to $\overline{\rho}: G \to H$ yields a global trivialization $P^{\rho} = G/\Gamma \times H$ diagonalizing the G-action: $g.(g_0\Gamma, h) = (gg_0\Gamma, \overline{\rho}(g)h)$.

Margulis' super-rigidity can be seen as a structure result for G-actions on H-principal bundles over G/Γ .

Zimmer's generalization

Zimmer (\simeq '80) : Extends this to *H*-principal bundles $P \rightarrow X$, with non-homogeneous base X. Instead, $(X, \mu) = \text{ergodic } G$ -space.

Let G, Γ, H be as above, *e.g.* $SL_n(\mathbb{R})$, $SL_n(\mathbb{Z})$, $SL_m(\mathbb{R})$, $n \ge 3$.

Theorem (Zimmer's cocycle super-rigidity)

Let $P \rightarrow M$ be an *H*-principal bundle, with M = smooth manifold. Assume that *G* acts on *P* by automorphisms, by preserving a finite Borel measure μ on *M*, with algebraic hull *H*. Then there exist $P \simeq M \times H$ a *measurable* trivialization and

 $ho: {\sf G}
ightarrow {\sf H}$ such that g.(x,h)=(g.x,
ho(g).h) for $\mu ext{-a.e.}$ x.

Rephrasing: any measurable cocycle $c : G \times M \to H$ is measurably cohomologous to a " ρ -simple" cocycle. Rk: Same theorem with $G \leftarrow \Gamma$.

Rk: The asumption μ is restrictive, *e.g.* $SL_n(\mathbb{Z}) \cap \mathbb{R}P^{n-1}$ without any finite invariant measure.

What is it good for?

If M^n is a smooth manifold, its linear frame bundle $\mathcal{F}(M) \to M$ is a $\operatorname{GL}_n(\mathbb{R})$ principal bundle, all $f \in \operatorname{Diff}(M)$ acts naturally on $\mathcal{F}(M)$.

Corollary

Let G be a simple Lie group of rank ≥ 2 , $\Gamma < G$ a lattice. Let $\Gamma \curvearrowright (M^n, \mu)$ be a differentiable action, preserving a finite Borel measure μ .

Then there exists $\rho : G \to \operatorname{GL}_n(\mathbb{R})$ a Lie group homomorphism s.t. $\forall \gamma \in \Gamma$, the Lyapunov exponents of γ are the log($|\lambda|$), λ eigenvalue of $\rho(\gamma)$.

Lyapunov exponents of $f \in \text{Diff}(M) = \text{exponential growth rate of the eigenvalues of } Df^k$ as $k \to \infty$

⇒ If G is "too large", then $\rho \equiv id \Rightarrow all$ exponents of all elements of Γ vanish. For instance when $\Gamma = SL_m(\mathbb{Z})$, m > n.

And this, for all Γ -invariant measure μ . Does it indicate that the action is trivial?

Unimodular G-structures

Another natural context: A pseudo-Riemannian metric g of signature (p, q) on M^n is a smooth assignement of quadratic forms of signature (p, q) on tangent spaces of M. This is the same as an O(p, q)-reduction $\mathcal{O}(M) \subset \mathcal{F}(M)$, the orthonormal frame bundle.

Isometries of (M, g) are diffeomorphisms preserving $\mathcal{O}(M)$, and preserve the volume element $dvol^g$.

If $m \ge 3$ and $\rho : SL_m(\mathbb{Z}) \to Iso(M, g)$ is an isometric action, and if $SL_m(\mathbb{R})$ does not embed into O(p, q), then we obtain the same dynamical conclusion.

Raising the same question: can the action be non-trivial in such a situation?

Zimmer's conjectures $(SL_m(\mathbb{Z}) \text{ case})$

Conjecture 1 (Zimmer \sim '85)

Let (M^n, ω) be a compact manifold, with a volume form ω . Let $\rho : SL_m(\mathbb{Z}) \to Diff(M, \omega)$ be a volume-preserving action. If n < m, then ρ has finite image.

This is optimal as $SL_n(\mathbb{Z})$ acts on $(\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n, vol_{euc})$.

Conjecture 2 (Farb-Shalem '99)

Let M^n be a compact manifold. Let $\rho : SL_m(\mathbb{Z}) \to Diff(M)$. If n < m - 1, then ρ has finite image.

Idem, as $SL_n(\mathbb{R})$ acts projectively on \mathbb{S}^{n-1} and $\mathbb{R}P^{n-1}$.

Theorem (Brown-Fisher-Hurtado '17)

Both conjectures are true (in regularity C^2).

A global rigidity result for unimodular actions

Action(s) at the critical dimension? Uniqueness of $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$? This action preserves a finite volume **and** a flat *connection*.

If ∇ = linear connection on M, $f \in \text{Diff}(M)$ is affine if $f^*\nabla = \nabla$ \Rightarrow for all geodesic γ , $f(\gamma(t))$ is also geodesic.

→ affine dynamics are locally linear.

Theorem (Zeghib '97)

Let $\rho : SL_n(\mathbb{Z}) \to Diff(M^n, \nabla, \omega)$, with ∇ affine connection, ω volume form.

If ρ has infinite image, then (M, ∇) is covered by \mathbb{T}^n .

(In the continuity of Zimmer (86), Feres (92), Goetze (94).)

Rk: Wrong without ∇ (Katok-Lewis 96).

Projective actions of cocompact lattices

Characterization of actions at the critical dimension for non-volume preserving actions?

Définition

Two linear connections ∇ , ∇' are projectively equivalent if they define the same geodesics up to parametrization \rightsquigarrow proj. class $[\nabla]$.

 $\rightsquigarrow f \in \text{Diff}(M)$ is projective w.r.t. ∇ if it sends geodesic locus to geodesic locus. We note $\text{Proj}(M, [\nabla])$ the group of projective diffeomorphisms.

Théorème (P. '19)

Let $(M^n, [\nabla])$ compact projective manifold; and $\Gamma < SL_{n+1}(\mathbb{R})$ cocompact. Let $\rho : \Gamma \to \operatorname{Proj}(M, [\nabla])$ be a projective action If $\rho(\Gamma)$ is infinite, then $(M, [\nabla]) \simeq \mathbb{R}P^n$ or \mathbb{S}^n .

Conjecture: this shall be true without assuming ho projective.

Difficulty: for such structures, no *natural* finite invariant measure (contrarily to isometric actions for instance).

An individual $f \in \text{Diff}(M)$ always preserve $\mu < \infty$ when acting continuously on a compact space X. This is the *amenability* of Z. Other amenable groups: compact, solvable, their extensions.

But $SL_n(\mathbb{R})$, $SL_n(\mathbb{Z})$ (non-compact semi-simple Lie groups G, and their lattices) are not amenable. How to use super-rigidity then?

By contradiction when no such μ shall exist.

Lifting invariant measures

If $f \in \operatorname{Proj}(M, [\nabla])$, then f is not linearizable. But it is 2-rigid: it is determined by its 2-jet at any point.

 \Rightarrow Proj $(M^n, [\nabla])$ acts freely on a sub-bundle $B \subset \mathcal{F}^2(M)$ of the bundle of 2-frames, the associated *Cartan bundle* $\pi : B \to M$. It has structure group $\operatorname{GL}_n(\mathbb{R}) \ltimes \mathbb{R}^n$.

Assume a subgroup $\Gamma = SL_k(\mathbb{Z}) \subset Proj(M, [\nabla])$ preserves μ . If k > n, then $SL_k(\mathbb{R})$ does not embed into $GL_n(\mathbb{R}) \ltimes \mathbb{R}^n$. Super-rigidity $\Rightarrow \Gamma$ preserves a measurable subbundle $M \times K \subset B$, with $K \subset GL_n(\mathbb{R}) \ltimes \mathbb{R}^n$ compact. So Γ preserves $\mu \otimes Haar_K$ on B. But the action is free on B: contradiction.

Conclusion: for $k > \dim M$, $\Gamma = SL_k(\mathbb{Z})$ cannot preserve any finite measure on $(M, [\nabla])$.

Building **F**-invariant measures

Let $\rho : \Gamma \to \text{Diff}(M)$, with $\Gamma < G = \text{SL}_k(\mathbb{R})$ cocompact lattice. *Problem*: Difficult to work with Γ -orbits. We prefer *G*-orbits.

Suspension of
$$\rho$$
: $M^{\rho} = (G \times M)/\Gamma$, $\gamma . (g, x) = (g\gamma, \gamma^{-1}.x)$.
Fibered action of G on M^{ρ} : $g' . [(g, x)] = [(g'g, x)]$.

 Γ cocompact $\Rightarrow M^{
ho}$ compact.

Lemma

 $\exists \nu \ \Gamma$ -invariant on $M \iff \exists \mu \ G$ -invariant on $M^{
ho}$.

Let A < G be a maximal \mathbb{R} -split torus, *e.g.*

$$A = \left\{ \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix} \right\} \subset \mathsf{SL}_k(\mathbb{R}).$$

Since $A \simeq \mathbb{R}^{k-1}$ is amenable, there are A-invariant measures. Brown, Rodriguez-Hertz, Wang gave sufficient criteria for these measures to be G-invariant.

Higher-rank Oseledets' theorem

Let M be a compact manifold, and $\mathbb{R}^k =: A \curvearrowright M$ a differentiable action.

Theorem (Oseledets)

Let μ be a finite A-invariant, A-ergodic measure. Then there exist $\Lambda \subset M$ with $\mu(\Lambda) = 1$, and a measurable splitting $TM|_{\Lambda}$

$$T_x M = E_1(x) \oplus \cdots \oplus E_r(x), A - invariant$$

and linear forms $\chi_1, \ldots, \chi_r \in \mathfrak{a}^*$ s.t. $\forall x \in \Lambda, \ 1 \leqslant i \leqslant r$,

$$\forall X \in \mathfrak{a}, \ v \in E_i(x) \setminus \{0\}, \ \frac{1}{t} \log \|D_x \varphi_X^t v\| \xrightarrow[t \to \pm\infty]{} \chi_i(X).$$

Definition

 χ_1,\ldots,χ_r are the Lyapunov forms (of μ).

Maximal entropy argument

Let μ be a finite *A*-invariant, *A*-ergodic measure on M^{ρ} , projecting to the Haar measure of G/Γ . Let $\chi_1, \ldots, \chi_r \in \mathfrak{a}^*$ be its vertical Lyapunov forms.

Proposition (Brown, Rodriguez-Hertz, Wang 2016) If there exists a non-zero $X \in \mathfrak{a}$ s.t. $\chi_1(X) = \ldots = \chi_r(X) = 0$, then μ is *G*-invariant.

For $G = SL_k(\mathbb{R})$, with $k > n = \dim M$, no such measure exists. As $r \leq n = \dim M$ and $\dim A = k - 1$, we must have $k - 1 \leq n$ and if equality, r = n and (χ_1, \ldots, χ_n) linearly independent.

It is what happens when $\Gamma < SL_{n+1}(\mathbb{R}) = G$ acts on $(M^n, [\nabla])$, for all *A*-invariant measure on M^{ρ} proj. to the Haar measure of G/Γ .

Contracting dynamics

From $\operatorname{Vect}(\chi_1, \ldots, \chi_n)^{\perp} = 0$, we get $\exists ! X \in \mathfrak{a}$ with $\chi_1(X) = \cdots = \chi_n(X) = -1$. Let φ_X^t the corresponding flow on M^{ρ} .

Stable manifolds of φ_X^t , $\rightsquigarrow (\gamma_k) \in \Gamma$, times $(T_k) \to +\infty$, $x \in M$, a neighborhood $U \ni x$ s.t.

{γ_kU} → {x}.
∀v ∈ T_xM non-zero, $\frac{1}{T_k} \log ||D_x \gamma_k v|| → -1.$ Rigidity of [∇] ⇒ valid for all y ∈ U.

Morally, (γ_k) is "asymptotically homothetic" on U.

Standard arguments \Rightarrow vanishing of Cartan curvature on U. Valid in the neighborhood of every compact Γ -invariant. Globalisation.

Thank you for your attention!