ON THE LAGRANGIAN EMBEDDING OF THE KLEIN BOTTLE

VSEVOLOD V. SHEVCHISHIN

Abstract. The notion of symplectic manifold takes its origin in mechanics. Trying to write down the canonical formalism in a coordinate-free way, one comes naturally to the definition of symplectic structure on manifolds. It is given by a closed non-degenerate 2-form ω , and such a symplectic manifold (X, ω) can be seen as a phase space of a Hamiltonian dynamical system. This point of view allows to pose global topological questions, for example, about special properties of (compact) manifolds admitting a symplectic structure, or what kind of non-isomorphic symplectic structures on a given manifold X one could have.

Symplectic manifolds admit locally special class of Lagrangian submanifolds $L \subset (X, \omega)$ which are especially interesting from the point of view of mechanics and symplectic geometry. They are characterised by the properties $\omega|_L \equiv 0$ and dim $L = \frac{1}{2} \dim X$. For example, completely integrable systems can be viewed as foliations in Lagrangian tori.

In 1986 Givental' had shown that every compact embedded Lagrangian surface V in \mathbb{R}^4 satisfies the condition $\chi(V) = 0$ in the orientable case and $\chi(V) \equiv 0 \mod 2$ in the nonorientable case, and had constructed explicit examples of non-orientable Lagrangian surface $V \subset \mathbb{R}^4$ with $\chi(V) = -4k < 0$. The result was strengthened by M. Audin in 1990 who showed the condition $\chi(V) \equiv 0 \mod 4$ in the non-orientable case. However, the remaining question

Does there exists a Lagrangian embedding of the Klein bottle in \mathbb{R}^4 ? was open until 2007.

In my talk I explain the ideas behind the proof of non-existence of Lagrangian embedding of the Klein bottle in \mathbb{R}^4 and in \mathbb{CP}^2 .

INIVERSITÄT HAMBURG, DEPARTMENT MATHEMATIK, BUNDESSTRASSE 55, 20146 HAMBURG, GER-MANY

E-mail address: shevchishin@googlemail.com

²⁰⁰⁰ Mathematics Subject Classification. 57R17, 53D12, 20F36, 20F55.

Key words and phrases. symplectic geometry, Lagrangian submanifold, Lefschetz pencil, monodromy, mapping class group.