Abstract: Operads, interchange, iterated loop space structures, and the dual Deligne Conjecture.

Operads encode algebraic structures. Originally they were introduced to study iterated loop spaces. The algebraic structure of an n-fold loop space $\Omega^n X$ is encoded by a so-called E_n -operad. Each n-fold loop space has an E_n -structure and each connected space with an E_n -structure is of the weak homotopy type of an *n*-fold loop space.

Now $\Omega^n X$ has *n* interchanging single loop space structures. So a space having an E_n -structure should have *n* interchanging E_1 -structures and a space having an E_k - and an E_l -structure which interchange morally should be an E_{k+l} -space. Unfortunately, the situation is not that easy. We state two conjectures, but we are still far away from proving them. The analysis of a special case allows us to verify the dual of the Deligne Conjecture.

There are algebraic versions of E_n -structures, and in 1993 Deligne asked whether the Hochschild cochain complex of an associative ring has a natural E_2 -structure. This conjecture has been proved and extended to other categories such as categories of highly structured spectra in homotopy theory by a number of people. We prove the dual statement by showing that the toplogical Hochschild homology spectrum THH(R) of an E_{n+1} -ring spectrum R is an E_n -ring spectrum.

In the talk we explain the notions of the title, study some interchange results in detail, and sketch the proof of the dual Deligne Conjecture.

Remarks: (1) The result about THH(R) has also been obtained by Maria Basterra and Mike Mandell using different methods.

(2) The talk is about joint work with Morten Brun and Zig Fiedorowicz.