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Goals

More systematic classification based on TQFT

Incorporate symmetry breaking

Evaluate partition functions

Determine the group structure on Inv1(G ) and Inv f1 (G , ρ).
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Axiomatic TQFT

Oriented case:

A f.d. complex vector space VM for every closed oriented 1-manifold
M.

VM̄ = V ∗M , where M̄ is orientation reversal of M.

A linear map Φ(Σ,M,M ′) : VM → VM′ for every oriented bordism Σ
from M to M ′.

Empty M maps to C.

Disjoint union maps to tensor product
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Special cases

If M = S1, get a ”TQFT space of states”, which I denote A.

If M = S1 t S1 and M ′ = S1, and Σ is ”pair of pants”,

get a linear map A⊗A → A which makes A into a commutative
algebra.

If M is empty, get a vector in VM′ which depends on Σ.

If Σ is closed, get Z (Σ) ∈ Hom(C,C) = C (the partition function for
Σ).
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Unitary TQFT (Turaev)

Each VM has a Hilbert space structure, so we are given anti-linear
isomorphisms VM ' V ∗M .

Consider Φ(Σ,M,M ′) : VM → VM′ and Φ(Σ̄,M ′,M) : VM′ → VM .
These maps must be adjoint.

One can show that in a unitary TQFT A is a C ∗-algebra and thus is
semi-simple.

Since A is also commutative, it must be a sum of N copies of C. Thus all
unitary 1+1d TQFTs are sums of N copies of the trivial TQFT.

An N > 1 leads to ground-state degeneracy, but this degeneracy is
accidental (not protected by any symmetry).

Anton Kapustin (California Institute of Technology) Lecture 2 July 18, 2017 5 / 32



State-sum construction of a unitary 1+1d TQFT

Let A be a f.d. semi-simple algebra, with basis ej , j = 1, . . . ,N.

ej · ek = C `jke`.

Let
ηjk = TrAejek = C `jmC

m
k`.

This is a non-degenerate metric on A. Let Cjkm = ηm`C
`
jk . Cjkm is

cyclically-symmetric.

Let Σ be a closed oriented 2d manifold. Choose a trivalent graph Σ whose
complement is a bunch of disks and compute the partition function using
”Feynman rules”. Show later that the partition function does not depend
on the triangulation.
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”Feynman rules” for the partition function

k

j

i

= Cijk
i j

= ηij
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Remarks on ”Feynman rules”

In the end need to sum over labelings of the graph (”states”), hence
the name

The cyclic order on edges issuing from a vertex comes from
orientation of Σ

No need to orient edges, since ηjk (the inverse of ηjk) is symmetric

Any two trivalent surface graphs can be connected by a sequence of
Pachner moves, so only need to check invariance under Pachner
moves
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Pachner moves

←→

←→
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State-sum construction of the space of states

Attach to a circle with n points the space A⊗n.

A cylinder bordism between two such circles is a projector Pn

Its image is isomorphic to Z (A), for any n.

To any bordism from M to M ′ with a graph we can attach a map
from Z (A)⊗k to Z (A)⊗` using the same Feynman rules

Thus A = Z (A). It is automatically semi-simple (since A is semi-simple).
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All 1+1d TQFT are boring

Any f.d. semi-simple algebra is a direct sum of matrix algebras
(Wedderburn theorem)

The TQFT corresponding to a matrix algebra A = Mat(N,C) is
almost the same as for A = C: A = C, and the partition functions
are Nχ(Σ), where χ(Σ) = F − E + V is the Euler characteristic of Σ.

There is a special case of a family of unitary invertible TQFTs with
A = C and the partition function λχ(Σ), λ ∈ R.

So the TQFT corresponding to a matrix algebra A can be deformed
to the trivial TQFT.

Up to such deformations, any unitary TQFT is equivalent to a sum of
trivial TQFTs
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G -equivariant field theory

When a system has symmetry G , can try to couple to a background
G -gauge field.

In general, a gauge-invariant coupling may not be possible (’t Hooft
anomalies). But if G acts ultralocally (separately on every site), then no ’t
Hooft anomaly.

From the continuum QFT viewpoint, ’t Hooft anomalies are obstructions
for discretizing the system so that the symmetry acts ultralocally.

For a finite G which acts by internal symmetries, a G gauge field is the
same as a G -bundle, or a map to BG .

Anton Kapustin (California Institute of Technology) Lecture 2 July 18, 2017 12 / 32



Lattice gauge fields

A lattice gauge field is an assignment of g ∈ G to every oriented edge so
that for any face the product of all group elements is 1.

From these data, one can reconstruct a map to BG up to a homotopy.

A gauge transformation at a vertex multiplies group elements for all
outgoing edges by an h ∈ G . The corresponding maps to BG are
homotopic. The partition function must be invariant under gauge
transformations.

N.B. There is a dual construction, where the product of all group elements
for every vertex is 1. Gauge transformations then live on faces and
multiply all group elements by h ∈ G .
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G -equivariant algebras

A G -equivariant algebra A is an algebra with a linear action of G :

g : a 7→ Rg (a), RgRh = Rgh, ∀g , h ∈ G ,

such that
Rg (a) · Rg (b) = Rg (a · b).

We will now construct a G -equivariant TQFT starting from a
G -equivariant algebra A.

N.B. If we use a dual construction for a lattice gauge field, then instead of
a G -equivariant algebra we need to use a G -graded algebra (Turaev). For
our purposes G -equivariant algebras are more convenient.
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G -equivariant vs. G -graded algebras

A G -graded algebra is an algebra A with a decomposition A = ⊕g∈GAg

such that Ag · Ah ⊂ Agh.

Note also that for G = Z2 a G -equivariant algebra is exactly the same as a
G -graded one. But in general they are different.

There is a state-sum construction of G -equivariant 1+1d TQFTs with
starts with a G -graded algebra (Turaev). The gauge field then satisfies a
constraint on vertices instead of faces.

The existence of two different constructions of the same kind of objects
seems puzzling, but has a deep reason for this.
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Categorical Morita equivalence

We have two natural tensor categories associated with a finite group G :
VecG and Rep(G ). The tensor product in VecG looks as follows:

(V ⊗W )g =
⊗
xy=g

Vx ⊗Wy

They are not equivalent, and their properties are rather different for
general G . For example, Rep(G ) is symmetric, but VecG is not symmetric
for nonabelian G .

A G -equivariant algebra is an algebra-object in Rep(G ), a G -graded
algebra is an algebra-object in VecG .

While VecG and Rep(G ) are not equivalent, 2-categories of module
categories over them are equivalent. This is a special of categorical Morita
equivalence.

The approach using G -equivariant algebras is more convenient, because
the stacking operation looks more natural.
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State-sum construction of G -equivariant TQFTs

Let ej be a basis for A, as before. Define Cjk` and ηjk as before. Note that
Rg is orthogonal with respect to ηjk :

TrARg (ej)Rg (ek) = TrAejek = ηjk .

Let ηjk(g) = TrA (ejRg (ek)). Then ηjk(g) = ηkj(g
−1).

Equivariant Feynman rules:

k

j

i

= Cijk
gi j

= ηij(g)
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Classification of G -equivariant semi-simple algebras
(Ostrik)

Let H ⊂ G be a subgroup. Let Qh : U → U, h ∈ H, be a projective
representation of H.

Consider the space of functions on G with values in End(U) satisfying an
H-equivariance constraint:

f (gh) = Q−1
h f (g)Qh.

They form an algebra A with respect to pointwise multiplication. G acts
on A via left translations:

Rg (f )(g ′) = f (g−1g ′).

With this G -action, A becomes a G -equivariant algebra.

This is the most general simple G -equivariant algebra. Any semi-simple
one is a sum of such algebras.
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Special cases

U = C: A is the space of complex functions on G/H.

H = G : A = End(U), Rg (a) = QgaQ
−1
g .

In the 1st case, the partition function vanishes unless the G -connection
reduces to an H-connection. If this is the case, the partition function is
|G/H| regardless of the gauge field. This corresponds to a ”Landau”
phase with G spontaneously broken down to H

In the 2nd case, the partition function is nonzero for any gauge field, and
the TQFT is invertible. The partition function is equal to

Z = exp(2πi

∫
Σ
ω).

Here ω ∈ H2(Σ,R/Z) is a pull-back of a 2-cocycle Ω on BG via the map
Σ→ BG corresponding to the G -connection. The 2-cocycle Ω “measures”
the projectiveness of Qg :

QgQg ′ = exp(2πiΩ(g , g ′))Qgg ′ .
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Bosonic phases with symmetry G , no time-reversal

More generally, one can show that the TQFT depends only on H and the
class [Ω] ∈ H2(H,R/Z) which ”measures” the projectiveness of Qh.

H tells us which subgroup of G is unbroken. [Ω] parameterizes invertible
phases with symmetry H.

In particular, Inv1(G ) ' H2(G ,U(1)), provided G does not contain
time-reversing symmetries (Chen-Gu-Liu-Wen).
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The meaning of A

Consider topological boundary conditions (”branes”) for a TQFT. This
means extending the axioms, so that M can have boundaries and bordism
Σ can have corners.

A is the vector space corresponding to the interval I with a particular
boundary condition (the same one on each end).

Multiplication A⊗ A→ A arises from the following bordism between I t I
and I :
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TQFTs with time-reversing symmetries

Convenient to compose all anti-unitary (time-reversing) symmetries with
CPT, so that they become unitary (and space-reversing).

Such symmetries act on A by anti-automorphisms:

Rg (a · b) = Rg (b) · Rg (a), σ(g) = −1.

Symmetries g with σ(g) = 1 act on A by automorphisms, as before.

We can use A with such a G -action to construct a G -equivariant
unorientable TQFT.
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Example: time-reversal symmetry only

Let G = Z2. If A is an algebra of m ×m matrices, there are two options
for R:

R(a) = JaT J−1 where J = JT

R(a) = JaT J−1 where J = −JT

The first option gives the trivial TQFT.

The second option gives a nontrivial invertible unorientable TQFT with
the partition function (−1)χ(Σ).
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The Freed-Hopkins theorem for G = ZT
2

This is a special case of a special case of the Freed-Hopkins theorem:

Deformation classes of unitary invertible (d + 1)-dimensional TQFTs with
an orientation reversing symmetry ZT

2 are in 1-1 correspondence with the
Poincare-dual of the torsion subgroup of unoriented bordisms of degree
d + 1.

Recall that an unoriented bordism group ΩO
n is the group generated by

n-dimensional closed unoriented manifolds, modulo those which are
boundaries of compact (n + 1)-dimensional unoriented manifolds.

ΩO
2 = Z2, because all closed 2-manifolds with even χ are null-bordant,

while those with odd χ are bordant to RP2.

In other words, the only nontrivial cobordism is
∫

Σ w2 =
∫

Σ w2
1 , where

wi ∈ H i (Σ,Z2) is the i th Stiefel-Whitney class of Σ.
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State-sum construction for unorientable TQFTs

We do not have a preferred cyclic order for edges coming out of a
vertex, so pick an arbitrary orientation/cyclic order

Each edge is assigned ±1 depending on whether the orientation near
its ends agree or disagree

This gives a 1-cocycle on the surface graph representing w1

Use the same ”Feynman rules” as before
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Branes from modules

A “closed” TQFT is described by an algebra A, a brane corresponds to a
module M over A.

A module is a vector space M together with a map T : A→ End(M) s.t.
T (a)T (b) = T (a · b).

Suppose a surface graph has univalent vertices lying on a brane boundary.

µ ν ρ σ

i

We label boundary edges by basis elements mµ ∈ M.

New rule: attach T (ei )
ν
µ to each boundary vertex.
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States from branes

To each brane M one can attach a state φM ∈ Φ(S1). The corresponding
bordism is an annulus whose interior boundary is a brane boundary.

If the outer boundary is subdivided into N intervals, get an element of
A⊗N of the following form:

This state is automatically in the image of the cylinder projector
A⊗N → A⊗N .
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Matrix Product States

Explicitly, the state φM ∈ A⊗N is∑
i1,...,iN

Tr [T (ei1)T (ei2) . . .T (eiN )] |i1i2 . . . iN〉.

States of this form are known as Matrix Product States. TQFT gives MPS
states of a special block-diagonal form:

T (ei ) = diag(T 1(ei ),T
2(ei ), . . . ,T

K (ei )),

where the αth block is spanned by Tα(ei ). Each block corresponds to an
”injective” MPS state.

Such MPS are invariant under real-space RG transformations.
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Generalized MPS

More general states are obtained by inserting a boundary observable
X ∈ EndA(M) on the interior (brane) boundary:∑

i1,...,iN

Tr [XT (ei1)T (ei2) . . .T (eiN )] |i1i2 . . . iN〉.

Such states span the space of states of TQFT.

If A is a sum of K matrix algebras, we expect K linearly independent
state. Can get them by taking any faithful module over A and a suitable
projector X .

If M is irreducible, all nonzero X give the same state on a circle (up to a
factor).
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States on an interval

Let A be a matrix algebra End(U). A module over A has the form
Hom(W ,U), where W is a vector space. M is irreducible iff W is
one-dimensional.

If an interval has been subdivided into N + 1 intervals, ”Feynman rules”
associate to it an element of Hom(M,A⊗N ⊗M).

A rectangle projector projects to a subspace isomorphic to
HomA(M,M) ' Hom(W ,W ).

If W is one-dimensional, the space of states on an interval is
non-degenerate.

Basis elements of W can be thought of as ”Chan-Paton labels” in string
theory.
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Equivariant MPS

In the G -equivariant case, M should be an equivariant module, i.e. M
should be a representation Q̃g ∈ End(M) of G such that

T (Rg (a)) = Q̃gT (a)Q̃−1
g .

Let us specialize our TQFT to a G -equivariant SPT: A = End(U) where
U is a projective representation of G .

Equivariant modules over such A have the form M = Hom(W ,U), where
W is a projective representation of G with the same cocycle as U.

A = End(U) acts on M = Hom(W ,U) by left multiplication.

The space of state on an interval is HomA(M,M) = Hom(W ,W ).
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SPT phases and ground-state degeneracy on an interval

Now we can see where the boundary zero modes and ground-state
degeneracy come from.

Suppose the smallest irreducible projective representation of G with a
2-cocycle [Ω] ∈ H2(G ,U(1)) has dimension n.

Then W has dimension at least n, and the space of ground states on an
interval has dimension at least n2.

For example, for G = Z2 × Z2 and a nontrivial cocycle, we have
degeneracy at least 4.

Larger degeneracy is not required by symmetries and thus is unnatural.
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