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Microscopic Hamiltonians vs. phases

Goal: study and hopefully classify ”phases of quantum matter”, i.e.
phases at zero temperature.

Microscopic Hilbert space: V = ⊗iVi .

Microscopic Hamiltonian H =
∑

i Hi is assumed to be short-range. This
means that ||[Hi ,Oj ]|| decays rapidly with distance (faster than any power
of the distance d(i , j)). Here Oj is localized at site j .

Two microscopic Hamiltonians belong to the same ”phase” (equivalence
class) if there is a deformation connecting them which preserves
macroscopic properties.

Usually assumed: Macroscopic properties are described by effective QFT.

Not an obvious assumption, there are some fairly simple counter-examples
(J. Haah, PhD thesis). These are translationally-invariant Hamiltonians on
a 3d cubic lattice whose ground-state degeneracy depends on the size of
the lattice.
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Gapped vs. gapless

A phase is called gapped if the gap between the energies of the ground
state(s) and the excited states is bounded by ε > 0 as one takes the spatial
volume to infinity. Phases which are not gapped are called gapless.

A QFT for a gapless phases reduces to a nontrivial scale-invariant QFT in
the IR limit. Usually a CFT.

A QFT for a gapped phase usually reduces to a TQFT in the IR limit.
This TQFT describes the ground states and the response of the ground
state to external probes (sources).

Gapped phases described by a QFT are also known as topological phases.
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Equivalence classes of gapped Hamiltonians (Wen, Kitaev)

For gapped Hamiltonians, can try to give a more precise definition of the
equivalence relation(s).

Homotopy between gapped local Hamiltonians

Adding new sites with decoupled degrees of freedom

Existence of the large-volume limit ???
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TQFTs vs. quasi-TQFTs

An important subtlety: sometimes the stress-energy tensor Tµν is a
nonzero c-number. Such QFTs will be called quasi-topological.

Tµν =
2
√
g

δΓ

δgµν
.

In a quasi-TQFT, Γ(g) is a nontrivial function of the background metric.

Γ(g) is defined up to integrals of local diffeomorphism-invariant
expressions.

Nontrivial Γ(g) exist only for d = 4k − 2, k ∈ Z (gravitational
Chern-Simons actions Sgrav

CS ). In practice, this subtlety is important only
for d = 2:

Sgrav
CS = c

∫
Tr

(
ωdω +

2

3
ω3

)
.
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Invariants of (quasi)topological phases

To tell apart phases, we need invariants. Some examples:

The coefficient of Sgrav
CS for d = 2.

Dimension of the space of ground states (on a torus T d or some
other compact d-manifold).

Dimension of the space of sources localized at a point.

Partition function on a compact (d + 1)-manifold.

”Anomalous” boundary behavior
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Symmetries

A more refined classification takes into account symmetries. We will focus
on symmetries which act trivially on the spatial lattice.

Each Vi is a representation of a group G , g 7→ Ri (g) ∈ End(Vi ).

Ri (g) is either unitary or anti-unitary. In the latter case g is
time-reversing.

The Hamiltonian H is invariant under G .

Only allow deformations of Hamiltonians which preserve G .

Note that each Hi need not be separately invariant.
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G -equivariant TQFT and SET phases

If a microscopic theory has a symmetry G acting locally, it can be coupled
to a background G gauge field.

Hence the corresponding TQFT can be coupled to a background G gauge
field. Such TQFTs are called equivariant TQFTs.

The corresponding topological phases are called Symmetry Enhanced
Topological (SET) phases.
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Symmetry breaking

In an infinite volume, symmetry is often spontaneously broken (the
vacuum is not invariant under all elements of G ). The unbroken symmetry
group K ⊂ G is another simple invariant of a phase.

In the 50s and 60s, this was the only known invariant which distinguished
gapped phases (L.D. Landau’s theory of phase transitions). But now we
know many more such invariants. Below I will provide a complete set of
invariant for d = 1 phases.
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Long-range vs. short-range entanglement

Symmetry-breaking phases are examples of phases with long-range
entanglement: some correlators of local quantities do not decay as long
distances. For example, consider the 1d quantum Ising chain:

H = −
∑
i

ZiZi+1 + h
∑
i

Xi , Xi = σxi ,Yi = σyi ,Zi = σzi .

For small enough h, 〈ZiZi+N〉 tends to a nonzero number for N →∞.

For d = 1, all long-range entanglement comes from symmetry breaking,
but in higher dimensions this is not true.

Put differently, TQFT correlators describe precisely the IR limit of
correlators. In d = 1, there are no nontrivial indecomposable TQFTs (if
we ignore symmetry). For d > 1 this is not true.
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SRE phases can be nontrivial

Is a gapped phase with only a short-range entanglement (SRE phase)
trivial? Not necessarily!

The trivial phase has a ground state which is a product state:
|0〉 = ⊗vi , vi ∈ Vi . The trivial phase is an SRE phase, but the opposite
is not true, in general!

Certain invariants can be non-vanishing even for an SRE phase.

For d = 2, the coefficient c of Sgrav
CS can be nonzero.

For d = 1, the edge zero modes might transform in a projective
representation of G (but the whole system transforms in a genuine
representation).

Partition function on a (d + 1)-dimensional compact manifold

Partition function on a (d + 1)-dimensional compact manifold with a
background G gauge field
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Invertible phases

It is a bit tricky to define SRE phases. One necessary property is that the
ground state should be unique on a compact manifold of any topology.

Kitaev: an SRE phase is the same as an invertible phase.

Phases can be tensored (”stacking”)

This operation is associative, commutative, and has a neutral element
(the trivial phase)

Invertible elements in this commutative monoid form an abelian
group. This is the group of invertible phases Invd .

Important problem: compute Invd for any spatial dimension d . More
generally, compute Invd(G ) for any spatial dimension d and any symmetry
G .
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Invertible TQFTs

Analogous notion in TQFT: invertible TQFTs. Usually one assumes
unitarity too.

One can show that the partition function of a unitary invertible TQFT is
nonzero for any compact (d + 1)-manifold M.

The group of unitary invertible TQFTs has been computed (Freed,
Hopkins, 2016), for any G and d , and turns out closely related to
cobordisms of BG , the classifying space of G . More on this later.
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SPT phases vs SRE phases

A symmetry-protected topological phase (SPT phase) is a nontrivial
element of Invd(G ) which becomes trivial when mapped to Invd .

For some d , Invd is trivial, so an SPT phase with a symmetry G is the
same as an invertible (or SRE) phase with symmetry G .

But it is best not to conflate them. We will see an example of an SRE
phase which is not an SPT phase momentarily.
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Why SRE phases are important

Basically, because they are easier to understand.

General topological phases are very complicated already for d = 2: any
modular tensor category gives rise to a d = 2 phase, and these are
hopeless to classify.

For d > 2 we do not even know a complete set of equations which
describe general topological phases (not to speak about SET phases).
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Bosons and fermions

One may allow Vi to be Z2-graded, for all i . The grading operator is
denoted P = (−1)F . The group it generates is denoted ZF

2 .

PO = OP means the observable O is even.

PO = −OP means the observable O is odd.

If odd observables on different sites anti-commute rather than commute,
the system contains fermions.

Phases with fermions are called fermionic phases. Phases without fermions
are called bosonic.

Fermionic phases form a commutative monoid, invertible elements in it
form an abelian group Inv fd .
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Symmetries of fermionic systems

Symmetry of a fermionic system always includes fermion parity P. The
total global symmetry group Ĝ contains ZF

2 as a central subgroup (I
disregard supersymmetries).

Since all physical quantities are bosonic, they are in a faithful
representation of G = Ĝ/ZF

2 .

It is often assumed that Ĝ ' G × ZF
2 , we will call this a split case. In

general, we have a central extension

0→ ZF
2 → Ĝ → G → 0.

Instead of this extension, one can specify an element ρ ∈ H2(G ,Z2). We
will denote by Inv fd (G , ρ) the corresponding group of invertible phases.
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Bosonic SRE phases in d = 1, no time reversing
symmetries

Since nothing interesting happens in the bulk, let’s focus on the boundary
behavior.

On the left boundary, there may be zero modes which act in a boundary
Hilbert space UL. On the right boundary, we have UR .

The group G acts on UL ⊗ UR . It acts independently on the left and right
zero modes, so both UL and UR must carry a representation of G . But
these representations might be projective, with opposite 2-cocycles:

QL(g)QL(g ′) = exp(2πiΩ(g , g ′))QL(gg ′),

QR(g)QR(g ′) = exp(−2πiΩ(g , g ′))QR(gg ′).

It is clear that adding G -invariant impurities can change UL and UR , but
not Ω. This suggests that Inv1(G ) ' H2(G ,U(1)).
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Group cohomology

Let Cn(G ,A) the set of functions f (g1, . . . , gn) with values in an abelian
group A. Consider the maps

δn : Cn(G ,A)→ Cn+1(G ,A),

(δnf )(g1, . . . , gn+1) = f (g2, . . . , gn+1)+
n∑

i=1

(−1)i f (. . . , gi−1, gigi+1, gi+2, . . .)

+ (−1)n+1f (g1, . . . , gn).

They satisfy δnδn−1 = 0. Group cohomology of G with coefficients in A is

Hn(G ,A) = kerδn/imδn−1.

Elements of kerδn are called n-cocycles, elements of imδn−1 are called
coboundaries.
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Low-dimensional group cohomology

(δ0f ) = 0, hence H0(G ,A) = A.

(δ1f )(g1, g2) = f (g2)− f (g1g2) + f (g2), hence H1(G ,A) = Hom(G ,A).

2-cocycles on G with values in A describe possible group laws for a central
extension of G by A:

(g1, a1) ◦ (g2, a2) = (g1g2, a1 + a2 + f (g1, g2)).

If f is a 2-coboundary, this central extension is isomorphic to G ×A. Hence
H2(G ,A) classifies isomorphism classes of central extensions of G by A.

H3(G ,A) classifies crossed modules based on (G ,A).
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Classifying space of G

Group cohomology of G with values in A has a topological interpretation.

For any finite group G there is a certain cell complex BG such that
π1(BG ) = G and πi (BG ) = 0 for i 6= 1.

In other words, it is an Eilenberg-MacLane space of type K (G , 1).

One can show that Hn(G ,A) = Hn(BG ,A).

The space BG looks as follows: it has an n-simplex for any n + 1-tuple
(g1, . . . , gn+1) satisfying g1 . . . gn+1 = 1.

Thus it has one 0-cell, a 1-cell for every g ∈ G , a 2-cell for every pair
(g1, g2), etc. It is an infinite-dimensional simplical complex.

One can show that for any space X homotopy classes of maps X → BG
classify isomorphism classes of G -bundles over X .
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Twisted group cohomology

Let G act on A by automorphisms, a 7→ g · a. We can define twisted
differentials:

δn : Cn(G ,A)→ Cn+1(G ,A),

(δnf )(g1, . . . , gn+1) = g1 · f (g2, . . . , gn+1)+
n∑

i=1

(−1)i f (. . . , gi−1, gigi+1, gi+2, . . .) + (−1)n+1f (g1, . . . , gn).

The corresponding cohomology groups are still denoted Hn(G ,A), where A
is now regarded as a G -module.

Topological interpretation: cohomology of a certain flat bundle over BG
with fiber A. The monodromy of the bundle along a 1-cell g is a 7→ g · a.
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Twisted group cohomology: example

We will only need the case A = U(1), and an action of the form

g : e2πiφ 7→ e iσ(g)2πiφ,

where σ : G → {+1,−1} is a homomorphism. We will use the notation
Hn
σ(G ,U(1)).

For example, a twisted 1-cocycle φ(g) ∈ R/Z satisfies

σ(g1)φ(g2)− φ(g1g2) + φ(g1) = 0.

A twisted coboundary has the form σ(g)φ− φ for some φ ∈ R/Z.
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Physical meaning of H1
σ(G ,U(1))

Suppose we have a system with a unique ground state |0〉. How can G act
on the ground state?

A non-time-reversing g : |0〉 7→ e2πiφ(g)|0〉.

A time-reversing g : |0〉 7→ e2πiφ(g)K |0〉, where K is complex conjugation.

Imposing group law tells us that φ(g) is a twisted 1-cocycle.

Redefining |0〉 by a phase exp(2πiα) modifies this twisted 1-cocycle by a
twisted 1-coboundary.

One can say that H1
σ(G ,U(1)) classifies d = 0 SRE phases.
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Bosonic SRE phases in d = 1, general symmetry

Consider again zero modes on the left boundary. An element g ∈ G
conjugates them by

ML(g)K ε(g),

where ML(g) is a unitary matrix, K is complex conjugation, and ε(g) = 1
if σ(g) = −1 and ε(g) = 0 otherwise.

Now require the group law to hold up to a phase. (This phase is then
canceled by a phase from the right boundary) Then associativity of matrix
multiplication implies that that the phase is a twisted 2-cocycle.

Redefining ML(g) by a phase exp(2πiα(g)) does not affect the action on
zero modes, but it modifies the twisted 2-cocycle by a twisted coboundary.

Hence bosonic SRE phases in d = 1 are classified by H2
σ(G ,U(1)).
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Some examples

For G = Z2, we have H2(G ,U(1)) = 0. Hence no nontrivial SRE phases.

For G = Z2 × Z2 we have H2(G ,U(1)) = Z2. Hence there is a unique
nontrivial SRE phase (Haldane spin chain). The basic projective
representation of G has dimension 2, hence on an interval we have
quadruple degeneracy (two from each end).

For G = ZT
2 (time-reversal symmetry) we have H2

σ(G ,U(1)) = Z2. Hence
a unique nontrivial SRE phase. Each endpoint is doubly degenerate
(”Kramers doublet”), on an interval we have quadruple degeneracy.
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Kramers doublets and Wigner’s theorem

Every unitary transformartion can be diagonalized, and eigenvalues have
the form e iθ.

E. Wigner showed that every anti-unitary can be block-diagonalized, with
1 x 1 blocks of the form K (complex conjugation), and 2 x 2 blocks of the
form

Wθ =

(
0 e iθ/2

e−iθ/2 0

)
K , 0 < θ ≤ π.

If we want W 2
θ be proportional to identity, then θ = π, and Wπ = σ2K .

If T 2 = −1, it acts as Wπ, and each state has a partner (its
time-reversal). This pair of states is called a Kramers doublet.
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Fermionic SRE phases in d = 1

Now let us discuss fermionic SRE phases in d = 1, but only for G = 0
(and Ĝ = ZF

2 ).

The algebra of zero modes on the left boundary can be either
supermatrices, i.e. all operators on a Z2-graded vector space UL, or a
tensor product of such algebra with Cl(1).

I remind that Cl(n) is an algebra generated by n Dirac matrices Γi . For
even n it is isomorphic to an algebra of supermatrices, for odd n it is
isomorphic to a tenspr product of the algebra of supermatrices and Cl(1).

Adding impurities does affect the presence or absence of a Cl(1) factor.
Note also that Cl(1)⊗ Cl(1) ' Cl(2).

Hence fermionic SRE phases in d = 1 are classified by Z2.
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Mayorana chain (Kitaev)

Let us examine the unique nontrivial fermionic SRE phase.

On each booundary one has an odd zero model γL or γR . Together they
form Cl(2).

The basic graded representation of Cl(2) is two-dimensional, so we have
double degeneracy on an interval.

One of these states is bosonic, the other one is fermionic. The degeneracy
cannot be lifted by any local modification of the Hamiltonian.

γL acts by σ2, γR acts by σ3.
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Hamiltonian for the Majorana chain

Place fermionic cj , c
†
j on the j th site, j = 1, . . . ,N. Let

γj = cj + c†j , γ′j = i(cj − c†j ).

These are generators of Cl(2N) (”Majorana fermions”). Let

H = −it
N−1∑
j=1

γjγ
′
j+1.

The unpaired Majorana fermions γ′1 and γN can be identified with γL and
γR .
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Majorana chain as a topological superconductor

In terms of cj , c
†
j , the Majorana chain Hamiltonian is:

H = t
N−1∑
j=1

(
c†j cj+1 + cjcj+1 + h.c.

)
.

The 1st term is a hopping term, the 2nd term is a superconducting pairing
term breaking U(1) (particle number symmetry). Thus the Majorana
chain is a 1d topological superconductor.

Stacking two chains gives a system equivalent to the trivial SRE phase.
Indeed, two zero modes γL, γ̃L can be lifted by a local boundary term

HL = −itLγLγ̃L,

and similarly for the right boundary.

Thus fermionic 1+1d SRE phases without any bosonic symmetries are
classified by Z2.
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