Knot contact homology and topological strings

Tobias Ekholm

Uppsala University and Institut Mittag-Leffler

Overview

These lectures will explain how certain properties of topological open string theories in non compact CY 3-folds can sometimes be captured from comparatively simple holomorphic curve theories at infinity.

We will start by introducing the relevant theories and then show how to relate them.

Knot contact homology and topological string

- Symplectic and contact geometry
- CE-algebras
- Conormals of knots and links
- The augmentation variety
- Chern-Simons, topological string, and large N duality
 - * Augmentations and the GW-disk potential
- Legendrian SFT and quantization of the augmentation variety
- Recursion relation for the colored HOMFLY
- * A-model topological recursion
- * The skein relation via holomorphic curves

Symplectic manifolds

$$(X, \omega)$$
 dim $X = 2n$
 ω non-deg 2-form, dw = 0

Example

$$X = T \times M$$
 , $\omega = -d\theta$ where θ is the Liouville form $\theta = p \cdot dq = \sum_{j=1}^{n} p_j dq_j$.

Lagrangian submanifolds

Example

X is exact if
$$\omega = d\theta$$

LcX exact if $\theta|_{L} = df$.

Contact manifolds

$$Y$$
, $Jim(Y) = 2n-1$
 α 1-form, $\alpha \wedge d\alpha \wedge ... \wedge d\alpha \neq 0$
 $n-1$

= Ker(a) - contact structure

Legendrian submanifolds

$$\Lambda \subset Y$$
, $\dim(\Lambda) = n-1$, $\alpha |_{\Lambda} = 0$

Example

$$Y = ST^*M$$
, $\alpha = \theta = p \cdot dq$
 $\Lambda = ST^*M$

Symplectization and contact boundary

$$\mathbb{R} \times Y$$
, $\omega = d(e^{t}\alpha) =$
 $= e^{t}(dt \wedge \alpha + d\alpha)$
 $\mathbb{R} \times \Lambda \subset \mathbb{R} \times Y$ Lag.

If $(X, L) \approx (T, \infty) \times (Y, \Lambda)$
outside compact then

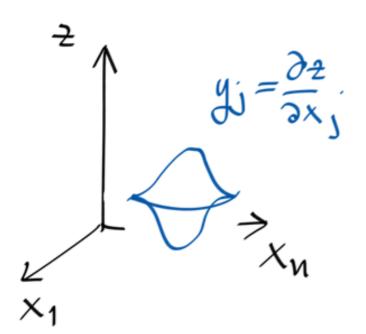
 (Y, Λ) ideal contact boundary.

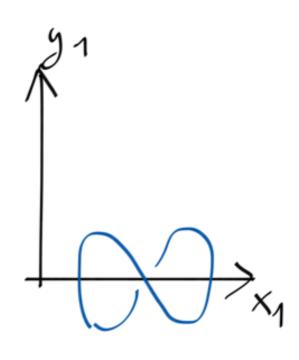
Parboux coordinate models

$$\mathbb{R}_{st}^{2n}, \quad \omega = \sum_{j=1}^{n} dx_j \wedge dy_j$$

$$\mathbb{R}_{st}^{2n-1}, \quad \alpha = dz - \sum_{j=1}^{n-1} y_j dx_j$$

Fronts





Contact homology dg-algebras

$$(Y, \alpha)$$
 contact mfd
 R - Reeb vector field
 $d\alpha(\cdot, R) = 0$; $\alpha(R) = 1$
Reeb orbit - critical loop
of
 $A: Loop(Y) \rightarrow IR$
 $A(\gamma) := \int_{Y} \alpha$

Holomorphic curves in R x Y

$$\frac{\delta A}{\delta \eta} = \int_{\gamma} d\alpha (\dot{\gamma}, \eta)$$

$$u: \mathbb{R} \times S^1 \longrightarrow \mathbb{R} \times Y$$

$$\frac{\partial h}{\partial v} + J \frac{\partial u}{\partial \tau} = 0 \approx gradient.$$

Lagrangian boundary conditions

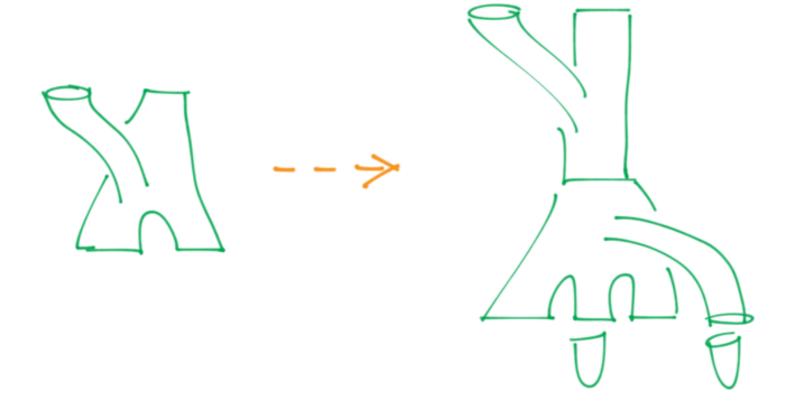
A: Path
$$(\Lambda, \Lambda) \longrightarrow \mathbb{R}$$

 $A(c) = \int_{c} \propto$
 $w: (\mathbb{R} \times [0,1], \mathbb{R} \times 0 \cup \mathbb{R} \times 1) \longrightarrow (\mathbb{R} \times Y, \mathbb{R} \times \Lambda)$

 $\frac{\partial h}{\partial x} + 1 \frac{\partial h}{\partial x} = 0$

SFT-compactness and dg-algebras

A sequence of finite energy punctured holomorphic curves in $(R \times Y, R \times \Lambda)$ has a subsequence that converges to a several level holomorphic building.



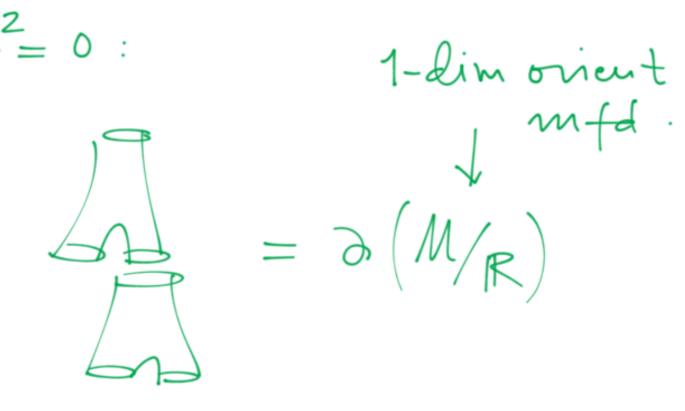
Orbit algebra

$$c_1(\xi) = 0$$
.

$$|\gamma| = CZ(\gamma) + (n-3)$$

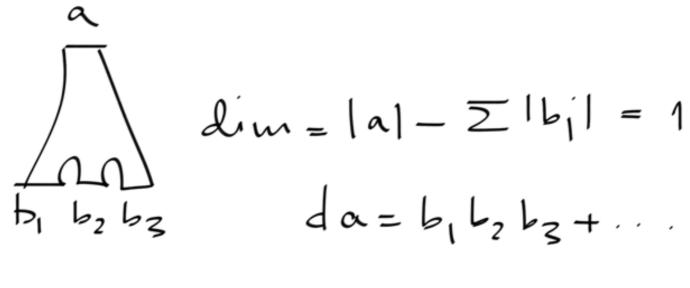
$$\beta_1 \beta_2 \beta_3 = |\gamma| - \sum |\beta_j| = 1$$

$$d^2 = 0$$
:

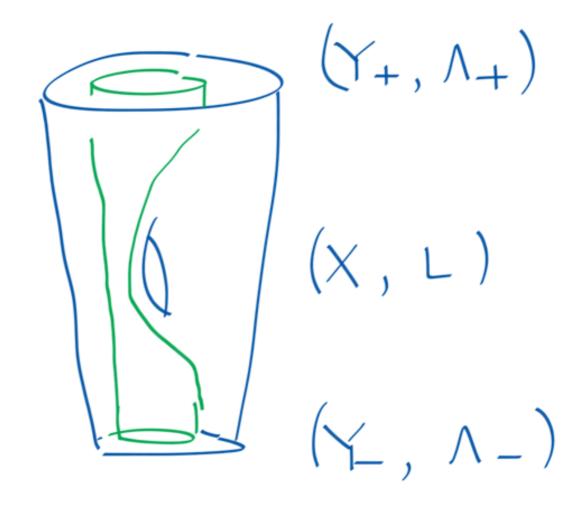


CE(1) = Q(Y) < Reeb chords>

d: CE(N) 5 counts



Functoriality



$$\overline{\Phi}_{(k,l)} : CE(\Lambda_+) \longrightarrow CE(\Lambda_-)$$

counts Jaim = c

Orbit augmentations

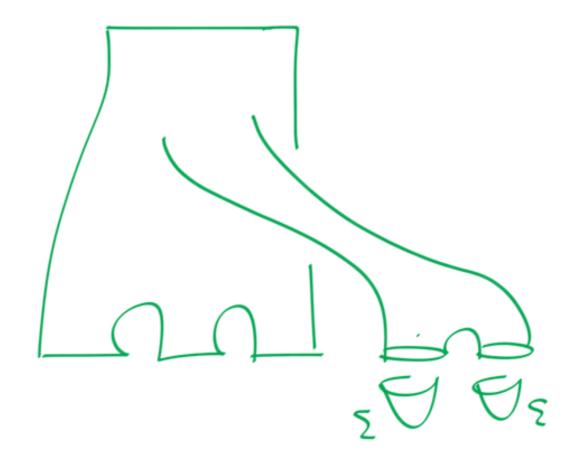
If Y bounds

$$z = \Phi_x : Q(Y) \longrightarrow \Phi$$

chain map gives augmented

 $J: CE(\Lambda) \longrightarrow CE(\Lambda)$

which counts



and gives CE(1) as algebra over I.

Coefficients for CE

Chains on based loop space $C_{\star}(\Omega \Lambda)$

Reference
path

Majbaba

by bz

 $\frac{1}{2} a = \left[M(a; b_1, b_2) \right] + \dots =$ $= \sum_{i=1}^{n} \sigma_1 b_1 \sigma_2 b_2 \sigma_3 + \dots$

Group algebra of 2nd homology

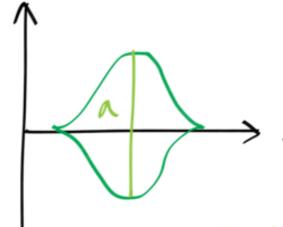
[[tl2(Y, 1)]

 $\tau \in H_2(Y, \Lambda)$ = 0

da = etb, b2 + ...

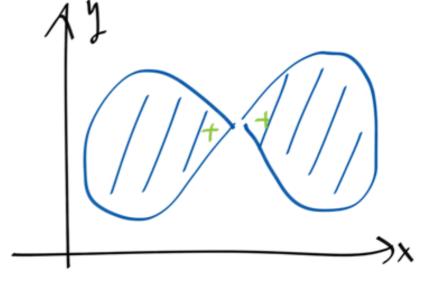
Examples

$$\left(6r S_{st}^{3} \right)$$

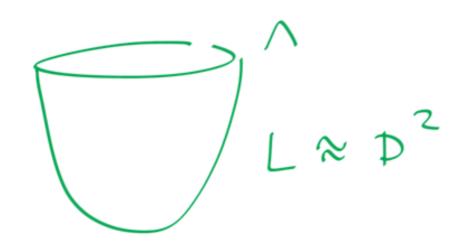


$$|a| = 1$$

$$C_*(S^1) = C[t,t^{-1}]$$

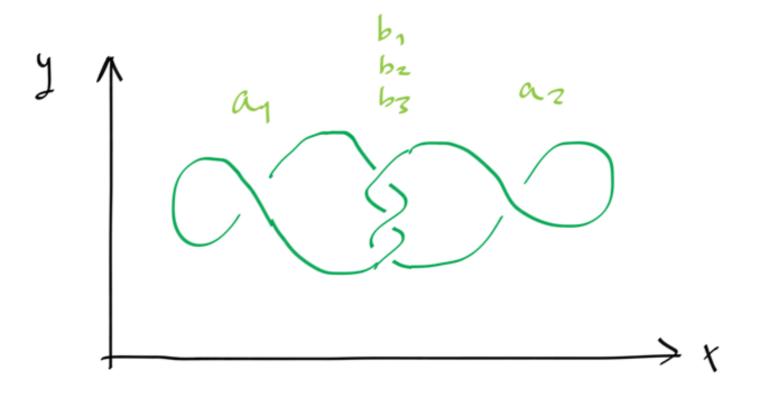


 $C-\omega eff$, set t=1 da=0, $CE(\Lambda) \approx C[\alpha]$. t=1 induced from Lagridisk



Orientations uses spin str on Λ , t=1 corresponds to the spin str that extends to L.

Trefoil In 183



$$|a_{j}| = 1$$
, $|b_{j}| = 0$
 $da_{1} = 1 - b_{1} - b_{3} - b_{3}b_{2}b_{1}$
 $da_{2} = 1 + b_{1} + b_{3} + b_{1}b_{2}b_{3}$

5 augmentations from toms filling $CE(\Lambda) \approx \mathbb{C}[b_1, b_2, b_3]/11-b_1-b_2-bb_b)$

Unknot in dim n-1

$$\frac{1}{2} \int_{X_{n-1}} \frac{1}{x^{n-1}} dx = \frac{1}{2} \int_{X_{n-$$

With C - well da= 0 CE(N) ≈ C[a].

Legendrian surgery and Floer cohomology

CE(1) with C- wells computes unapped Floer whomology

CE(
$$\Lambda$$
) \approx CW(C)
 $\Lambda = unknot \Rightarrow X_{\Lambda} = T^*S^{N}$
 $CW(C) \approx C_*(\Omega S^{N}) \approx C[a]$

$$\Lambda = \text{trefil} \implies X_{\Lambda} = \left\{1 + x + y + xy^2 = 0\right\}$$

 $CW(\Lambda) = CE(\Lambda)$ proves mirror symmetry for X_{Λ} .

CE(Λ) with $C_{X}(\Lambda \Lambda)$ —well computes CW(c) in X'_{Λ}

 $\Lambda = \text{Leg} \text{ unknot } X'_{\Lambda} = T^* \mathbb{R}^N$ $CW(\Lambda) = \mathbb{C}$

Knot contact homology - definition

$$\Lambda_{K} = L_{K} \cap ST^{*}S^{3} \approx S' \times S'$$

$$0 \rightarrow H_{2}(ST^{*}S^{3}) \rightarrow H_{2}(ST^{*}S^{3}, \Lambda_{K}) \rightarrow H_{1}(\Lambda_{K}) \rightarrow 0$$

$$t \longrightarrow t, \chi, p \longrightarrow \chi, p$$

$$\mathbb{C}\left[H_{2}(ST*S^{3}, \Lambda_{K})\right] \cong \mathbb{C}\left[e^{\pm x_{j}}, e^{\pm \gamma_{j}}, Q^{\pm 1}\right]_{j=1,...,k}$$

$$\mathbb{K} = \mathbb{K}_{1} \cup ... \cup \mathbb{K}_{K}, Q = e^{\pm x_{j}}$$

$$\mathbb{K}_{not} \text{ contact homology}$$

$$\mathbb{A}_{K} := \mathbb{C} \in (\Lambda_{K})$$
algebra over $\mathbb{C}\left[e^{\pm x_{j}}, e^{\pm \gamma_{j}}, Q\right]$

Knot contact homology - loop space coefficients

$$C_*(\Omega \Lambda_K) \approx \mathbb{C}[e^{\pm x}, e^{\pm p}]$$

commute w/ Reeb chords

Let
$$\Sigma_{q} = ST_{q}^{*} S^{3}$$

 $q \notin K$

Thun (E.-Ng-Shende, 16)

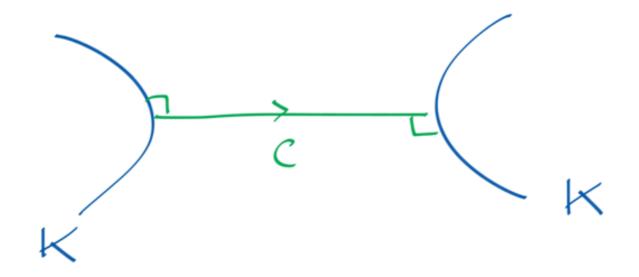
CE (NKU Zq) is a complete Knot invariant (knows π_1 (S^3-K) & peripheral structure)

The proof uses a connection to string topology developed by Cieliebale - E - Latscher - Ng.

Knot contact homology - calculation

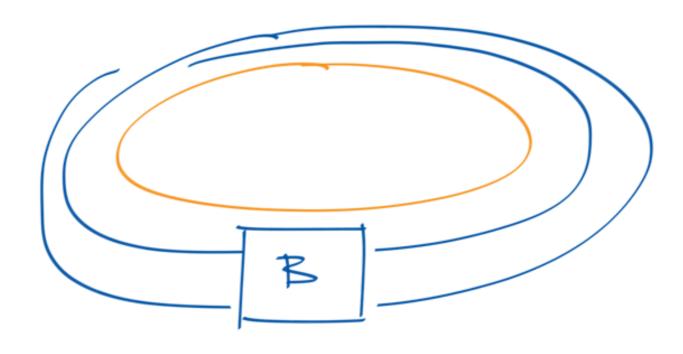
Reeb chords on 1 KCST*S3~

Oriented binormal geodesics on K



|c| = Morse index (c) (e {0,1,2} in flat R3)

To compute AK, braid K around the unknot



then $\Lambda_K \subset N(\Lambda_U) \approx J^1(\Lambda_U)$ and holomorphic disks on 1x can be computed from disks on Au and flow trees of NKC I'(Nu)

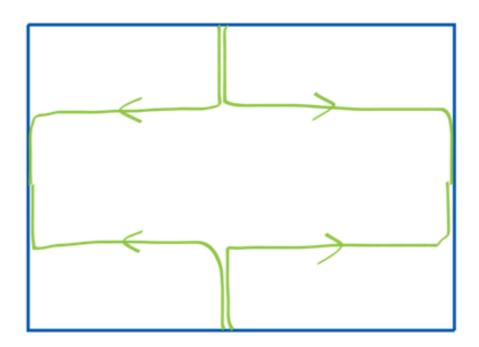
For braid on n strands:

$$n(n-1)$$
 deg 0 chords
 $n(2n-1)$ deg 1
 n^2 deg 2

Knot contact homology of the unknot

$$A_{u} = \mathbb{C}[e^{\pm x}, e^{\pm y}, Q^{\pm 1}] < c, e > \frac{1}{|c|=1}, |e|=2$$

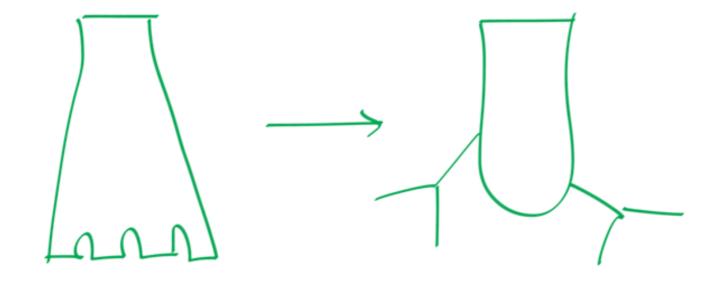
Boundaries of the four disks on the conormal



Knot contact homology of the trefoil

General: as $\Lambda_K \longrightarrow \Lambda_U$

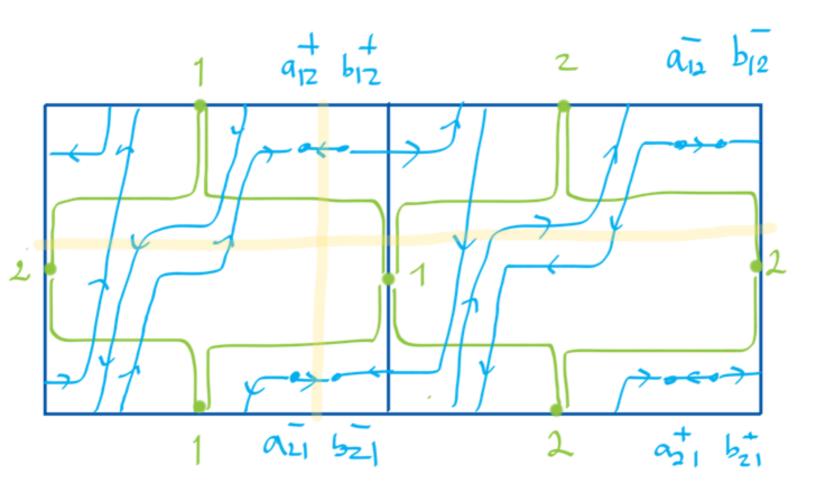
disk on 1/4 -> disk on 1/4 wy tree



$$A_{+} = \mathbb{C}[e^{\pm x}, e^{\pm y}, 0^{\pm 1}] < a_{12}, a_{21}, b_{12}, b_{21}, c_{11}, e_{11} > a_{12}, a_{21}, b_{12}, b_{21}, c_{11}, e_{11} > a_{11} = 0, |b_{11}| = |c_{11}| = 1$$

$$|a_{11}| = 0, |b_{11}| = |c_{11}| = 1$$

$$|e_{11}| = 2$$



Differential in degree 1

$$db_{12} = e^{-x}a_{12} - a_{21}$$

$$db_{21} = e^{x}a_{21} - a_{12}$$

$$dc_{11} = e^{x}e^{x} - e^{x} - (2a - e^{x})a_{12} - Qa_{12}^{2}a_{21}$$

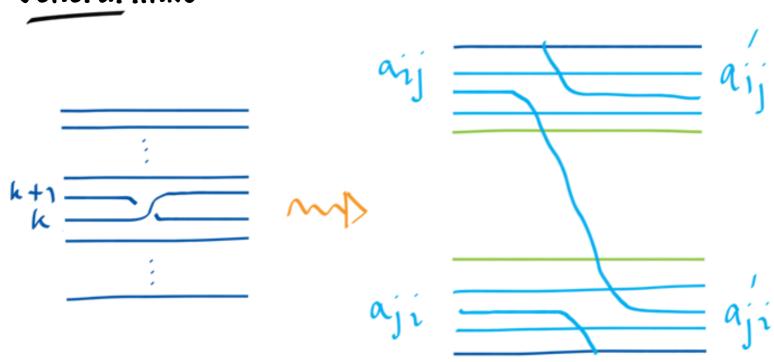
$$dc_{12} = Q - e^{x} + e^{x}a_{12} + Qa_{12}a_{21}$$

$$dc_{21} = Q - e^{x} + e^{x}a_{21} + Qa_{12}a_{21}$$

$$dc_{21} = Q - e^{x} + e^{x}a_{21} + Qa_{12}a_{21}$$

$$dc_{21} = e^{x} - 1 - Qa_{21} + e^{x}a_{21}a_{21}$$

General links



A twist in the braid gives rise to a homomorphism of the algebra of degree 0 chords that is a linear change of variables except for two quadratic terms. Composing these gives explicit matrices $\Phi_{\rm g}$ and $\Phi_{\rm g}$ that gives the effect of these isomorphism on an algebra corresponding to a braid with one extra trivial strand.

Write generators aij, bij A = aij etc Thundon Ak is given by 4 V = D $dB = -\lambda^{-1} \cdot A \cdot \lambda + \phi_B \cdot A \cdot \phi_B^R$ $dC = A \cdot \lambda + A \cdot \Phi_B$ d== B·(ΦB)-1+ B·λ-1 - ΦB·C·λ-1 + λ-1·C·(ΦB) Augmentations

Consider XK as a funily of algebras over (C*)2hx C* where pts correspond to k values of (e^{xj}, e^{pj}, Q)_{j=1} An augmentation is chain max z: AK -> C $r \cdot d = 6$

The augmentation variety VK is the alg. closure of { (exj, epi, Q); XK has ang }. If k=1 the augmentation polynomial Ax is the polynomial of Vx. and can be computed by elimination theory.

Examples

$$A_{in} = 1 - e^{x} - e^{x} + Qe^{x}e^{x}$$

$$A_{T} = (e^{4p} - e^{3p}) e^{2x}$$

$$+ (e^{4p} - Qe^{3p} + 2Q^{2}e^{2p} - 2Qe^{p} - Q^{2}e^{p} + Q^{2}|e^{x} + (-Q^{3}e^{p} + Q^{4})|e^{x} + (-Q^{4}e^{p} + Q^{4})|e^{x} + (-Q^{4}e^{p} + Q^{4}e^{p} + Q^{4$$

Properties

The A-polynomial divides AK | Q=1. Other factors from flat CL(n) com.

We will eventually relate Vx to open string (GWtheory).