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1977.... INSTANTONS
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• connection on R4, Ai(x) n× n skew Hermitian

• covariant derivative

∇i =
∂

∂xi
+Ai

• curvature Fij = [∇i,∇j]

• equations

F12 + F34 = 0 = F13 + F42 = 0 = F14 + F23
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• anti-self-dual Yang-Mills F + ∗F = 0

• boundary conditions

�

R4
�F�2 < ∞

• gauge equivalence g : R4 → U(n)

∇i �→ g−1∇ig

M.F.Atiyah,N.J.Hitchin,V.G.Drinfeld & Yu.I.Manin: Construc-

tion of instantons, Phys. Lett. A 65 (1978) 185-187.
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1981 .... MONOPOLES
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• connection on R3

• Ai(x) + Higgs field φ, n× n skew Hermitian

• curvature Fij = [∇i,∇j]

• equations

F12 + [∇3,φ] = 0 = F23 + [∇1,φ] = 0 = F31 + [∇2,φ]
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• anti-self-dual Yang-Mills, invariant under x4-translation

• φ ∼ A4

• boundary conditions

�

R3
�F�2 + �∇φ�2 < ∞

N.J.Hitchin On the construction of monopoles, Comm.Math.Phys.
83 (1982) 579–602.
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TWO DIMENSIONS....
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• connection on R2

• Ai(x) + Higgs fields φ1,φ2, n× n skew Hermitian

• curvature Fij = [∇i,∇j]

• equations

F12 + [φ1,φ2] = 0 = [∇1,φ2] + [∇2,φ1] = [∇1,φ1] + [∇2,φ2]
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TWO- A N D  T H R E E - D I M E N S I O N A L  I N S T A N T O N S  

M.A. LOHE 
Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2BZ, U.K. 

Received 6 June 1977 

The four-dimensional Yang-Mills Lagrangian implies corresponding structures in lower dimensions. Instantons, 
characterized by a zero energy-momentum tensor as well as finite action, emerge as the solutions of coupled first 
order equations. For the Abelian case all such solutions are determined by the nonqinear Poisson-Boltzmann equation. 

In searching for solutions of  the classical field equa- 
tions of  gauge theory models one is shackled by the 
strong demands of  both finite energy (or finite action) 
and a non-zero topological quantum number. The dif- 
ficulty of  satisfying these dual requirements is partic- 
ularly evident for the case o f  SU(2) magnetic mono- 
poles, where even now one has only the spherically 
symmetric solution o f ' t  Hooft  and Polyakov [1 ]. This 
situation, however, can be alleviated under certain con- 
ditions, the best known example being the four- 
dimensional pure Yang-Mills theory, with instanton 
solutions [2]. Here one looks for solutions of  the self- 
dual equations 

Fur =- ! euv~;3Fa3 = +-F~v ' (1) 

and the requirements of  finite action and a non-zero 
topological index merge together; they are incorpo- 
rated merely as boundary conditions on solutions of  
eqs. (1). Of course the solutions of  eqs. (1) (which 
imply the field equations) represent a restricted, but 
nevertheless rich, class of  solutions, namely those 
which saturate the lower action bound, or equivalent- 
ly carry an energy-momentum tensor which is zero. 
Such solutions are probably those of  most interest, if 
one requires minimal action field configurations, or if 
one wishes to interpret instantons as being relevant to 
the vacuum structure, when a zero energy-momentum 
tensor seems desirable. 

We show now that many of  these simplifying fea- 
tures have corresponding analogues in three and in 
two dimensions, where instantons can alternatively be 
regarded as static magnetic monopoles or vortices. Let 
us start with the Lagrangian (in four euclidean dimen- 
sions taking for example an SU(2) gauge group), 

a a £ = ~ F ~ v F u v .  (2) 

The action is 

s =  f d 4 x £  

8rc2N = ~ f d 4 x ( F ~ ,  + p~,)2 z- 
e 2 

>~ 8n21NI (3) 
e2 ' 

where the topological index 

e2 4 a - a  
N = - -  f d x F ; v F ; v  

32n2 

and is necessarily an integer [2]. The action is there- 
fore bounded below with equality for solutions of eqs. 
(1), and the energy-momentum tensor Tuv is auto- 
matically zero [3]. In fact we can write [4] 

.~ u~,F~Fa a a Tuv 1 a = _ F~hFvh 

= -~-(F/x - F~x)(Fva~ + Pax) 

+ (g <--> v) ,  (4) 

showing easily that Tuv = 0 for solutions o f  eqs. (1) ~. 
It has been noticed for dyon solutions [5] that, 

except for sign, gauge fields can be interpreted as iso- 
triplet Higgs fields. This interpretation is valid in 
euclidean space, and so we reconsider the Lagrangian 
[2] in three dimensions by letting all gauge fields de- 
pend only on x 1 , x 2 , x 3 and writing ca = A~, now 
called a Higgs field. We find 

~abc.~b Ac F/~ = OiA~ + e ~ .,..ti~4=DidP a , 

* Obviously, if the converse holds, the first order equations 
provide all such solutions. This applies to the other models 
considered here. 
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and the Lagrangian becomes 

£=~,' (Fi~)2 + ½ (D i :)2 
The self-dual equations (1) become 

IF] = +ei/kDk~ a , 

and imply the field equations. The action is 

S = f d 3 x £  

= f d 3 x  ! a + a 2 4 ( f  i~ _ 6i/kDk 4 ) -T- - -  
4rrNI41o 

e 

(5) 

(6) 

(7) 

where 

I fd3x ~aO/~ao/~bok~c N = ~ ei]k6abc~i 
is an integer, the topological quantum number. Here 
4: = ~a/141, and I¢10 is the value of 141 at infinity and 
is necessarily a constant because D i oa = 0 at infinity. 
The action is therefore bounded below, S >i 4rr1410 IN lie 
and this bound (due to Bogomolny) is saturated by 
solutions of  eqs. (6). The energy-momentum tensor is, 
from eqs. (4) 

1 ~ a  1 a a I a 
Tij = -71(Di - 2eiklF~l)(Dj4 + ~6/mnF~n) 

I a 
--'4(F~k -- eiklOl¢a)(F~k + elklDl 4a)  

+ (i ~ / ) ,  (8) 

and.again is zero. The only known solutions of  eqs. (6) 
are the spherically symmetric ones o f ' t  Hooft  and 
Polyakov [1 ], but which simplify for our case of  a 
zero potential in the Lagrangian (5). The first order 
equations, with appropriate boundary conditions, can 
be integrated to give [6] 

4 a = --Xa (1 - k r  coth Xr) 
er 2 

er 2 sinh Xr ] (9) 

andwe obtain N = 1, I¢10 = X/e, where X is an arbi- 
trary scale constant. The instanton action, or equiva- 
lently monopole mass, is therefore S = 4~rX/e 2. 

Let us continue down to two euclidean dimensions. 
The gauge and Higgs fields in the Lagrangian (5) now 
depend only o n x  1 a n d x 2 ,  and we set qja =A~,  to be 
interpreted as a second Higgs isotriplet field. We find 

F~3 = D i t~ a , 

and 

D3 4a = e e abc ~b(oc (i = 1,2,  a = 1,2,  3) .  

The latter term provides a potential in the Lagrangian 
(5) which becomes 

1-'(Ra~2 + l (D i~a)2  £ = 4v*'ii/ + !(Di~a) 2 

+ ~-e2 ~2(b 2 -- ~-e2(#-d~)2 . (10) 

This model has been considered by Nielsen and Olesen 
[7]. We are led naturally in our approach to the intro- 
duction of  two iso-triplet Higgs fields, and we find ad- 
ditionally that the coupling constants in the potential 
term have acquired special values. One can obtain first 
order equations which imply the field equations, and 
these are deduced from eqs. (6): 

F~ = +-e e i j eabc~b¢  c , 

Dit) a +- ei/D/4 a = O. (1 I) 

Unfortunately, in this case the model is not interesting 
because the action is always zero. We obtain 

s = f d 2 x £  

1 2 a t~bdpc)2 = a f d  x(Fi~ +-e ei/e abc 

1 f d 2 x ( O i  ca  -T- ei/D/~a) 2 (12) +~ 

since the surface terms do not contribute when we 
apply the usual boundary conditions. Therefore S = 0 
when eqs. (11) are imposed. However, now we can see 
how to proceed to the Abelian model. 

We consider the Lagrangian (in two euclidean di- 
mensions): 

£= ¼(Fi/) 2 + ~(Di~/)2 + X(42 -02) 2 , (13) 

v > 0, where 4 = (~bl, ~2) is a two-component real 
field, and the covariant derivative is given by 

Di~j  = 3i~j  - e e j k A i 4  k . 

This Lagrangian can be obtained from eq. (10), but 
without the essential symmetry breaking term, by set- 
t ingA] = A  2 = 0 =  q~3 = ~b3,and 

~i  -+ 6ijdPj/N/~' ~i -+ +~i/N/~,  i = 1 , 2 .  

In addition, the coupling constant X acquires in this 
way the special value h = e2/8. We are forced to accept 
this value if we insist on a zero energy-momentum 
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• [∇1 + i∇2,φ1 + iφ2] = 0 Cauchy-Riemann

• z = x1 + ix2 ∈ C

• Φ = (φ1 + iφ2)d(x1 + ix2)

• F + [Φ,Φ∗] = 0 conformally invariant

⇒ define on any Riemann surface

6



• C∞ Hermitian vector bundle E

• connection A+ Higgs field Φ ∈ Ω1,0(EndE)

• Equations: ∂̄AΦ = 0, FA + [Φ,Φ∗] = 0

• moduli space M = all solutions modulo C∞ unitary auto-
morphisms of E

2



THE CASE OF U(1)

• E = line bundle L, EndL trivial bundle

• Φ = holomorphic 1-form

• A = flat connection on L

• moduli space = Jac(Σ)×H0(Σ,K) = T ∗ Jac(Σ)

4



• M finite-dimensional

• non-compact

• hyperkähler metric

3



SOLUTIONS

4



HOLOMORPHIC VECTOR BUNDLES

• Riemann surface Σ

• + holomorphic vector bundle E

• + holomorphic section Φ of EndE ⊗K

Hermitian metric on E ⇒ compatible connection ∇

.... find a metric such that FA + [Φ,Φ∗] = 0
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• (E,Φ) stable ⇒ there exists a unique solution

• NJH, The self-duality equations on a Riemann surface, Proc.
London Math. Soc. (3) 55 (1987), 59–126.

(modelled on Donaldson’s proof of Narasimhan-Seshadri)

• C.Simpson, Higgs bundles and local systems, Inst. Hautes
Études Sci. Publ. Math. 75 (1992), 595.

(modelled on Uhlenbeck-Yau’s theorem on Hermitian Yang-
Mills)
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• V ⊂ E subbundle

• Φ-invariance = Φ(V ) ⊂ V ⊗K ⊂ E ⊗K

• stable = for each Φ-invariant subbundle

deg(V )

rkV
<

deg(E)

rkE
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FLAT VECTOR BUNDLES

• Riemann surface Σ

• flat connection ∇ on vector bundle E

Hermitian metric on E ⇒ π1-equivariant map

f : Σ̃ → GL(n,C)/U(n)

..... find an equivariant harmonic map f .

5
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• ∇ irreducible (irreducible representation π1(Σ) → GL(n,C))
⇒ there exists a unique solution

• S.K.Donaldson, Twisted harmonic maps and the self-duality

equations, Proc. London Math. Soc. 55 (1987) 12713.

• K.Corlette, Flat G-bundles with canonical metrics, J. Differ-
ential Geom. 28 (1988), 361382.

Equations ∇0,1Φ = 0, FA + [Φ,Φ∗] = 0

⇒ ∇A +Φ+Φ∗ is a flat connection
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ANOTHER VIEWPOINT
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• charge one SU(2)-instanton on R4

• SO(4)-invariant solution

• quaternion x = x0 + ix1 + jx2 + kx3

• connection

A = Im

�
xdx̄

1+ |x|2

�

9



• curvature

FA =

�
dx ∧ dx̄

(1 + |x|2)2

�

• translate from centre 0 to ai

• A1 + . . .+Ak approximate charge k solution if ai far apart

• Taubes grafting ⇒ exact solution

10



• charge one SU(2)-monopole on R3

• SO(3)-invariant solution

• x = ix1 + jx2 + kx3

• connection

A =
� 1

sinh r
−

1

r

� 1

r
x× dx

Higgs field

φ =
� 1

tanh r
−

1

r

� 1

r
x
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• translate from centre 0 to ai

• A1 + . . .+Ak approximate charge k solution if ai far apart

• Taubes grafting ⇒ exact solution

• A.Jaffe & C.Taubes, Vortices and monopoles, Birkhäuser,
Boston (1980)

12



• SU(2) Higgs bundle equations on R2

• SO(2)-invariant?

• = anti-self-dual Yang-Mills on R4 invariant by R2 × SO(2)

• R.Mazzeo, J.Swoboda, H.Weiss & F.Witt, Ends of the mod-

uli space of Higgs bundles, arXiv 1405.5765v2

13



570 

The metric is Euclidean on the real slice ? = 7, { = -c~and ultrahyperbolic on ? = 7, 
{ = F. we require that 

(i) G should be generated by three commuting conformal Killing vectors X, Y, Z; 
(ii) G should should be non-degenerate in a sense that we shall define later (this ples  

out the simplest case of translations, where reduction leads, for example, to the Nahm 
equations, and a number of other degenerate groups that yield equations that can be solved 
by classical functions). 

Up to conjugation, there are five possible choices for G. The first corresponds to the 
Painlev6 equations PI and Pn; the remaining four to the four equations Pm-Pw. The 
generators are as as follows. 

P1.n: A null translation, a null rotation combined with a null translation, and a non-null 
translation: 

L J Mason and N M J Woodhouse 

x = a, Y = r(af -ae) + ({ -e)a, + a, z =af + af. 
Reduction by X and Z gives either the KdV equation or the nonlinear Schrodinger equation 
[IO, 111. Fokas and Ablowitz [4] and Tajiri [I31 showed, respectively, that these have 
further reductions to PI and PE. 

Pm: Two translations and a rotation: 

x = a i  Y=tag-{af z = a , .  
The reduction by Y and X + Z gives the Emst equation, which is known to have a further 
reduction to Pm (as well as to Pv): see the papers cited in [l, p 3441. 

Prv: A null translation, a rotation combined with a dilatation, and an anti-self-dual 
rotation combined with a null translation: 

x = a, Y = 2 0 a f  + tar )  z = saf + ga? + ae, 
Pv: A null translation, and two other conformal Killing vectors: 

x = a ,  Y=ra ,+gag  z = e a f + r a , .  
P,: Combinations of a dilatation, a rotation in the r ,  ?-plane, ,and a rotation in the 

< ?  g-plane: 

x = -ra, .-fat Y =eat +?ai z =  ra,+gag. 
Reduction by X + Y and Y + Z also gives the Emst equation [31. 

The SDYM equations for an sl(2, e)-valued potential I-form @ = OZ d r  + 0s d? + 
@,de+@gdg are 

agar - aZag + [at, azl = o a p P i  - a s E  + [ag, @?I = o 
and 

afag - a p E  - arQi , + a,@,, + [oF, -tar, oil = 0. 

In the next section, section 2, we describe the reductions of these equations in each of the 
five cases. The results can be checked by d m t  calculation. 

• Ernst equation: stationary axisymmetric spacetimes

• Painlevé III:

ψxx =
1

2
e
2x sinh2ψ

14
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L.Mason & N.Woodhouse, Self-duality and the Painlevé tran-

scendents, Nonlinearity 6 (1993), 569–581.
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• SU(2) Higgs bundle equations on R2

• SO(2)-invariant?

• = anti-self-dual Yang-Mills on R4 invariant by R2 × SO(2)
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normal using the constant Hermitian metric

A SINGULAR SOLUTION

• connection

A =
1

8

�
1 0
0 −1

��
dz

z
−

dz̄

z̄

�

• U(1)-connection FA = dA = 0

• Higgs field Φ, need [Φ,Φ∗] = 0

Φ =

�
0 r1/2

zr−1/2 0

�

dz

17
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Φ =

�
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dz

•

ht(r) = ψ(log(8tr3/2/3)) ft(r) =
1

8
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r
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• ψ special solution to Painlevé III

A REGULAR SOLUTION

• connection

At = ft(r)

�
1 0
0 −1

��
dz

z
−

dz̄

z̄

�

• Higgs field

Φ =

�
0 r1/2eht(r)

eiθr1/2e−ht(r) 0

�

dz

•

ht(r) = ψ(log(8tr3/2/3)) ft(r) =
1

8
+

1

4
r
dht
dr

18



Thm (MSWW)

• (At,Φt) is smooth at the origin and converges exponentially
in t, uniformly in r > r0 to the singular solution.

• (At,Φt) satisfy the equations ∂̄AΦt = 0, FAt
+ t2[Φt,Φ∗

t ] = 0

• ⇒ (At, tΦt) satisfies the Higgs bundle equations.

18



COMPACT RIEMANN SURFACE g > 1

23



• compact Riemann surface Σ

• can’t widely separate approximate solutions

• but...if (V,Φ) is stable, so is (V, tΦ) t �= 0

(stability condition on Φ-invariant subbundles)

• ⇒ if (A,Φ) is a solution, then there is also a solution (At, tΦ)

24



• study solutions (At, tΦ) as t → ∞

• Note 1: (A, eiθΦ) is a solution if (A,Φ) is [eiθΦ, (eiθΦ)∗] =
[Φ,Φ∗]

• Note 2: Consider V = L⊕ L∗

Φ =

�
0 a

0 0

�

tΦ =

�
t1/2 0
0 t−1/2

��
0 a

0 0

��
t−1/2 0
0 t1/2

�

defines same point in moduli space
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• Higgs field

Φ =

�
0 r1/2eht(r)

eiθr1/2e−ht(r) 0

�

dz

• detΦ = −zdz2

• in general, for SU(2), detΦ is a holomorphic quadratic dif-
ferential on the Riemann surface Σ

• invariant by gauge transformations Φ �→ g−1Φg

• ⇒ defined by each pont in the moduli space.
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• Higgs field

Φ =

�
0 r1/2eht(r)

eiθr1/2e−ht(r) 0

�

dz

• detΦ = −zdz2

• in general, for SU(2), detΦ is a holomorphic quadratic dif-
ferential on the Riemann surface Σ

• invariant by gauge transformations Φ �→ g−1Φg

• ⇒ defined by equivalence class in the moduli space.

19



• quadratic differential = holomorphic section of K2

• degK2 = 4g − 4, g = genus

• generically detΦ has 4g − 4 simple zeros.

20



• Definition: A limiting configuration for a Higgs bundle (A,Φ)
where detΦ has simple zeros is (A∞,Φ∞) satisfying

FA∞ = 0, [Φ∞,Φ∗
∞] = 0

and behaving like the model singular solution near each zero
of detΦ.

28



A SINGULAR SOLUTION

• connection

A =
1

8

�
1 0
0 −1

��
dz

z
−

dz̄

z̄

�

• U(1)-connection FA = dA = 0

• Higgs field Φ, need [Φ,Φ∗] = 0

Φ =

�
0 r1/2

zr−1/2 0

�

dz

18

• put z = w2, detΦ = −zdz2 = −(2w2dw)2

• eigenvalues of Φ ±2w2dw

• holomorphic 1-form α = 2w2dw

• σ(w) = −w, σ∗α = −α

29



GLOBALLY...

• detΦ = −q, q holomorphic section of K2

• K defines a double covering S branched over the zeros of q

• S compact Riemann surface genus gS = 4g − 3

• x =
√
q defines a holomorphic 1-form α with double zeros on

the ramification points

• involution σ : S → S exhcnages sheets, σ∗α = −α

30
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• on S let L be a flat line bundle with σ∗L ∼= L∗

• rank 2 vector bundle E = L⊕ L∗

• Higgs field Φ = (α,−α) – satisfies equations with [Φ,Φ∗] = 0

• (E,Φ) is σ-invariant

31



• σ-invariant Higgs bundle on S =

• orbifold Higgs bundle on Σ

• parabolic Higgs bundle, singular connection ....

32



Thm (MSWW)

• Take a limiting configuration (A∞,Φ∞).

• Then there exists a family (At, tΦt) of solutions to the Higgs
bundle equations for large t where (At,Φt) → (A∞,Φ∞)

• If (A∞,Φ∞) is associated to a solution (A0,Φ0) then (At,Φt)
is gauge-equivalent to (A0,Φ0).

23
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EVIDENCE 1

• describes [A0, tΦ0] in moduli space as t → ∞

• circle action Φ �→ eiθΦ

• for higher Teichmüller space unique fixed point

• ... = uniformizing representation

π1(Σ) → SL(2,R) Sm
→ SL(m+1,R)

11



GEOMETRY OF THE MODULI SPACE

25



• M has a natural complete hyperkähler metric

• complex structures I, J,K

• Kähler forms ω1,ω2,ω3

• circle action fixing ω1, rotating ω2,ω3

35



HIGGS BUNDLES

• Σ compact Riemann surface

• V smooth vector bundle with Hermitian metric

• A = infinite-dimensional affine space of ∂̄-operators on V

∂̄A : Ω0
(V )→ Ω0,1

(V )

∂̄A(fs) = f ∂̄A(s) + ∂̄fs

• ∂̄A − ∂̄B ∈ Ω0,1
(End(V ))
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• M = A×Ω1,0
(End(V ))

• TAM = Ω0,1
(End(V ))⊕Ω1,0

(End(V ))

• Hermitian form ω1 ∼
�

Σ
(tr aa∗ + φφ∗)

•

ω2 + iω3 =

�

Σ
tr aφ

• flat hyperkähler manifold

6
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• G = group of U(n) gauge transformations

• g = {ψ ∈ Ω0
(End(V )), ψ∗ = −ψ}

• g∗ = {ω ∈ Ω2
(End(V )), ω∗ = −ω}

• moment map µ(∂̄A,Φ) = (FA + [Φ,Φ∗
], ∂̄AΦ)

• FA= curvature of Hermitian connection with ∇0,1
= ∂̄A

7
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• µ(∂̄A,Φ) = (FA + [Φ,Φ∗
], ∂̄AΦ)

• hyperkähler quotient = µ−1
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