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In the first part of this talk I described a computation of the partition function
Z = 〈 1 〉 and BPS Wilson loop VEV 〈W 〉 for N = 2 supersymmetric gauge
theories on a class of three-manifolds M3

∼= S3.

The background geometry has an almost contact structure, with Reeb vector field
K = b1∂ϕ1 + b2∂ϕ2 in terms of the standard action of U(1)2 on S3 ⊂ R2 ⊕ R2.

For an appropriate class of G = U(N)p gauge theories, the large N limit of the
partition function and Wilson loop may be computed analytically, leading to

log Z =
(|b1|+ |b2|)2

4|b1b2|
· log Zround S3 ,

log〈W 〉 = 1
2
`(|b1|+ |b2|) · log〈W 〉round S3 .
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This class of gauge theories is expected to have a dual description in terms of
four-dimensional supergravity.

In AdS/CFT the geometry M3 arises as the conformal boundary of a
four-manifold M4 in which gravity propagates.

In the case at hand this is N = 2 gauged supergravity in four dimensions –
Einstein-Maxwell theory, with Abelian gauge field A and negative cosmological
constant.

Near infinity (r =∞) the metric on M4 should take the form

ds2
M4
'

dr2

r2
+ r2ds2

M3
.
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The equations of motion are

Rµν + 3gµν = 2(F ρ
µ Fνρ − 1

4
F2gµν) ,

d ∗4 F = 0 .

A solution is supersymmetric if it admits a non-trivial solution to the Killing
spinor equation [

∇µ − iAµ + 1
2
Γµ + i

4
FνρΓ

νρΓµ
]
ε = 0 .

Here Γµ generate Cliff(4, 0) in an orthonormal frame.

Any supersymmetric solution of this theory on M4 uplifts to a supersymmetric
solution of M-theory on M4 × Y7 [Gauntlett-Varela]. A choice of internal space
Y7 determines the gauge theory on the conformal boundary M3 = ∂M4.
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The AdS/CFT correspondence says that the large N gauge theory partition
function Z should equal the supergravity partition function:

log Z = −SSUGRA .

More precisely, the right hand side is the least action solution to the Einstein
equations, with fixed conformal boundary M3.

For M3 = round S3, this is the vacuum Euclidean AdS4 (hyperbolic ball). Here
the Maxwell U(1) gauge field A = 0, and the metric is

ds2
EAdS4

=
dr2

r2 + 1
+ r2ds2

S3
round

.
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The on-shell action of any such solution to the Einstein equations is divergent,
but it may be regularized:

SSUGRA = SEinstein−Maxwell + SGibbons−Hawking + Scounterterms .

Here

SEinstein−Maxwell = −
1

16πG4

∫
M4

(R + 6− F2)
√

det g d4x ,

SGibbons−Hawking = −
1

8πG4

∫
∂M4

K
√

det γ d3x ,

Scounterterms =
1

8πG4

∫
∂M4

(2 + 1
2
R(γ))

√
det γ d3x ,

where M4 is cut off at some radius, γij is the induced metric on ∂M4, K is the
trace of the second fundamental form, and R(γ) denotes the Ricci scalar.
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For Euclidean AdS4 this gives

SSUGRA =
π

2G4

.

The four-dimensional Newton constant G4 is determined by the choice of internal
space Y7, or equivalently choice of gauge theory on M3.

For example, when Y7 is a Sasaki-Einstein seven-manifold

π

2G4

= N3/2

√
2π6

27Vol(Y7)
,

and this formula has been shown to agree with the large N partition function on
the round S3 for a variety of gauge theories in [Martelli-JFS], [Cheon-Kim-Kim],
[Jafferis-Klebanov-Pufu-Safdi].
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In this talk I want to focus on the dependence of the partition function on the
choice of background geometry M3.

This is a Dirichlet filling problem: one should solve the Einstein equations with
fixed conformal boundary data.

From gauge theory, we expect the least action solution to satisfy

SSUGRA =
(|b1|+ |b2|)2

4|b1b2|
·
π

2G4

.
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The local form of Euclidean supersymmetric solutions to Einstein-Maxwell theory
was studied by [Dunajski-Gutowski-Sabra-Tod].

In particular, there is a class of self-dual solutions in which ∗4F = −F is
anti-self-dual, and the four-metric is Einstein with anti-self-dual Weyl tensor.

We also have a Killing vector

K = iε†ΓµΓ5ε∂µ = ∂ψ .
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Self-dual Einstein metrics with a Killing vector have a rich geometric structure.
They are (locally) conformal to a scalar-flat Kähler metric, with the metric
determined entirely by a solution to the Toda equation:

ds2
4 =

1

y2
ds2

Kahler =
1

y2

[
V−1(dψ + φ)2 + V(dy2 + 4ewdzdz̄)

]
.

where V = 1− 1
2
y∂yw, the expression for dφ is known (but complicated), and

∂z∂z̄w + ∂2
ye

w = 0 (Toda) .
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The conformal boundary is at y = 0, and one can show that the structure
induced on the conformal boundary is precisely the three-dimensional background
geometry of [Closset-Dumitrescu-Festuccia-Komargodski].

In particular

ε = y−1/2

[(
1 + Γ0 + 1

4
yw(1)Γ0

) ( χ
0

)
+O(y2)

]
,

where χ is a three-dimensional spinor satisfying the Killing spinor equation we
saw last time, and we expand w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) +O(y2).
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Our strategy for constructing gravity duals to the boundary geometries on
M3
∼= S3 is to begin with an arbitrary U(1)× U(1)-invariant self-dual Einstein

metric on a four-ball M4
∼= B4, which is asymptotically locally AdS with

conformal boundary ∂B4 = [M3].

The space of such metrics is infinite-dimensional (a change of coordinates due to
[Calderbank-Pedersen] maps the Toda equation to a linear eigenvalue equation on
H2 = hyperbolic upper half plane).

We then established a converse to the result in [Dunajski-Gutowski-Sabra-Tod]:
any self-dual Einstein metric with a choice of Killing vector K = ∂ψ determines a
choice of conformal Kähler metric. Taking the Maxwell field A to have curvature
F = dA = 1

2
Ricci-form of the conformal Kahler metric, the resulting background

admits a Killing spinor ε (related to the canonical spinc spinor for the conformal
Kähler metric).
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By construction, for each metric and each choice of Killing vector
K = b1∂ϕ1 + b2∂ϕ2 we locally get a supersymmetric supergravity solution.

For fixed choice of self-dual Einstein metric, this leads to a one-parameter family
of gauge fields A with anti-self-dual curvature F = dA, labelled by b1/b2, which
are globally regular iff b1/b2 > 0 or b1/b2 = −1.

One can then compute the regularized on-shell action SSUGRA for any such
solution.
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Example: Euclidean AdS4 has metric

ds2
EAdS4

=
dr2

r2 + 1
+ r2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
.

Choosing the Killing vector K = b1∂ϕ1 + b2∂ϕ2 the corresponding instanton
U(1) gauge field is

A =

(
b1 + b2

√
r2 + 1

)
dϕ1 +

(
b2 + b1

√
r2 + 1

)
dϕ2

2

√(
b2 + b1

√
r2 + 1

)2

cos2 ϑ +
(

b1 + b2

√
r2 + 1

)2

sin2 ϑ

.
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Returning to the action for a general solution, the individual terms certainly
depend on the detailed solution. For example

1

16πG4

∫
B4

F2
√

det g d4x = −
π(|b1 + b2|)2

8G4|b1b2|

+
1

256πG4

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det g3 d

3x .

Here we have assumed the topology M3
∼= S3 and M4

∼= B4.
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However, the final result is

SSUGRA =
(|b1|+ |b2|)2

4|b1b2|
·
π

2G4

,

agreeing with the field theory computation!

The Wilson loop in the fundamental representation maps to a supersymmetric
M2-brane, wrapping a calibrated copy of the M-theory circle [Farquet-JFS], and
with a minimal surface Σ ⊂ B4 with ∂Σ = γ = orbit of Reeb vector K.

log〈W 〉gravity is identified with minus the regularized action of the M2-brane,
and in [Farquet-JFS] we showed this reproduces the large N field theory result.
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Although the two computations agree, it’s not clear why.

For any self-dual Einstein background one can use the APS index theorem to write

Spure gravity = −
3π

4G4

η(∂M4) +
π

4G4

(χ(M4) + 3σ(M4)) ,

where η(∂M4) is the APS eta invariant [Anderson].

[Operator (−1)p(∗d− d∗) acting on Ω2p(∂M4) has eigenvalues λi, and define

η(s) =
∑
λi 6=0

signλi/|λi|s, η = η(0).]

Including the instanton A, one can rewrite the whole action in terms of η and
η(Dirac coupled to A).
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We now change focus to d = 5. [Imamura] has defined five-dimensional
supersymmetric gauge theories on the SU(3)× U(1)-invariant squashed
five-sphere background

ds2
5 =

1

s2
(dτ + C)2 + ds2

CP2

where 1
2
dC = ω = Kähler form for the Fubini-Study metric on CP2. Here s =

squashing parameter, with s = 1 the round five-sphere.

There is also a background R-symmetry gauge field

AR =
1

s2
(1 + Q

√
1− s2)

√
1− s2(dτ + C) ,

where U(1)R ⊂ SU(2)R and Q = 1, Q = −3 give rise to 3/4 BPS and 1/4
BPS solutions, respectively.
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The perturbative partition function again localizes onto an integral over the
constant mode σ0 of the scalar in the vector multiplet, and the final formula
involves triple sine functions.

A particular class of five-dimensional gauge theories, with gauge group USp(2N)
and arising from a D4-D8 system, is expected to have a large N description in
terms of massive type IIA supergravity [Ferrara-Kehagias-Partouche-Zaffaroni],
[Brandhuber-Oz].

In [Jafferis-Pufu] the large N limit of the partition function of these theories on
the round sphere was computed and successfully compared to the entanglement
entropy of the dual warped AdS6 × S4 supergravity solution.
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In [Alday-Fluder-Gregory-Richmond-JFS] we computed the large N limit of the
USp(2N) gauge theories on the squashed five-sphere, finding the free energy

log Z =
(|b1|+ |b2|+ |b3|)3

27|b1b2b3|
· log Zround S5 ,

where

{
b1 = b2 = b3 1/4 BPS

b1 = −1−
√

1− s2 , b2 = b3 = 1−
√

1− s2 3/4 BPS

There is again a supersymmetric Killing vector bilinear K, and embedding
S5 ⊂ R2 ⊕ R2 ⊕ R2, this is K = b1∂ϕ1 + b2∂ϕ2 + b3∂ϕ3 .
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We also computed the large N limit of BPS Wilson loops. If the worldline wraps
the S1

i ⊂ S5 at the origin of two copies of R2, then we find

log〈W 〉 =
|b1|+ |b2|+ |b3|

3|bi|
· log〈W 〉round S5 .

We have reproduced these formulae from a dual supergravity computation.

We work in six-dimensional Romans F(4) gauged supergravity, which is a
consistent truncation of massive IIA supergravity on S4 [Cvetic-Lu-Pope]. As well
as the metric, there is a scalar X, two-form potential B, one-form potential A,
and an SO(3) ∼ SU(2) R-symmetry gauge field AI, I = 1, 2, 3.
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The one-form A is a Stueckelberg field, which may be set to A = 0 by a gauge
transformation. The B-field then becomes massive, and the Euclidean action is

Sbulk = −
1

16πGN

∫
M6

[
R ∗ 1− 4X−2dX ∧ ∗dX

−
(

2
9
X−6 − 8

3
X−2 − 2X2

)
∗ 1− 1

2
X−2

(
4
9
B ∧ ∗B + FI ∧ ∗FI

)
− 1

2
X4H ∧ ∗H− iB ∧

(
2

27
B ∧ B + 1

2
FI ∧ FI

)]
.

Notice the cubic Chern-Simons coupling for B. Its curvature is H = dB.

A solution to the corresponding equations of motion is supersymmetric provided
the Killing spinor equation and dilatino equation hold.
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The squashed five-sphere background has SU(3)× U(1) symmetry, and one
expects this to be preserved by the bulk filling. This leads to the ansatz

ds2
6 = α2(r)dr2 + γ2(r)(dτ + C)2 + β2(r)ds2

CP2 ,

B = p(r)dr ∧ (dτ + C) + 1
2
q(r)dC ,

AI = fI(r)(dτ + C) ,

together with X = X(r).

We have constructed smooth, supersymmetric, asymptotically locally Euclidean
AdS solutions with the topology M6

∼= B6, with conformal boundary the
squashed five-sphere backgrounds of [Imamura]. These may be given as
expansions around the conformal boundary r =∞, and/or as expansions in the
squashing parameter s.
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Reparametrization invariance allows us to set β(r) = 3
√

6r2 − 1/
√

2 to its
AdS6 value, and an SO(3) rotation sets f3(r) = f(r), f1(r) = f2(r) = 0.

For example, for the 3/4 BPS solution the first few terms in the expansion around
r =∞ are

α(r) =
3
√

2
r +

8 + s2

36
√

2s2

1

r3
+ . . . ,

γ(r) =
3
√

3

s
r +
−16 + 7s2

12
√

3s3

1

r
−
−1280 + 1120s2 + 241s4

2592
√

3s5

1

r3
+ . . . ,

X(r) = 1 +
1− s2 − 3

√
1− s2

54s2

1

r2
+

s2
√

1− s2κ

12
(

1− s2 +
√

1− s2
) 1

r3
+ . . . ,

p(r) = −
i
√

2
3

(
s2 + 3

√
1− s2 − 1

)
s3

1

r2
+ . . . ,

q(r) = −
3i
(√

6
√

1− s2
)

s
r +

√
2
3
i
√

1− s2
(

5s2 + 9
√

1− s2 − 5
)

3s3

1

r
+ . . . ,

f(r) =
1− s2 +

√
1− s2

s2
+

2
(
−2 + 2s2 − (2 + s2)

√
1− s2

)
9s4

1

r2
+
κ

r3
+ . . . .
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The parameter κ is uniquely determined by requiring this to extend to a smooth
solution on the ball M6

∼= B6. As an expansion in

δ =
√
−1 + s−1

this is

3
√

3

4
κ = δ +

√
2

3
δ2 +

113

36
δ3 +

25

9
√

2
δ4 +

1127

288
δ5 +

35

9
√

2
δ6 + ...

Similar results hold in the 1/4 BPS case, except here we find a two-parameter
family of solutions, leading to a new supersymmetric squashing of S5. In
particular this includes a one-parameter subfamily of 1/2 BPS solutions.
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As in four dimensions the regularized action is

SSUGRA = Sbulk + SGibbons−Hawking + Sct .

However, unlike in four dimensions the counterterms Sct had not been computed.

This is a straightforward, but very long, computation. In particular the B-field is
both massive and has a cubic Chern-Simons interaction, which leads to a much
more complicated analysis than for more standard fields.
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Sct =
1

8πGN

∫
∂M6

{[ 4
√

2

3
+

1

2
√

2
R(h)−

1

6
√

2
‖B‖2

h +
3

4
√

2
R(h)ijR(h)ij −

15

64
√

2
R(h)2 −

3

4
√

2
‖FI‖

2
h

+
1

12
√

2
TrhB4 +

5

8
√

2
‖d ∗h B +

i
√

2

3
B ∧ B‖2

h −
1

4
√

2
〈B, dδhB +

i
√

2

3
d ∗h B ∧ B〉h −

1
√

2
‖dB‖2

h

+
4
√

2

3
(1− X)2 −

1
√

2
〈Ric(h) ◦ B, B〉h +

9

32
√

2
R(h)‖B‖2

h −
13

192
√

2
‖B‖4

h

]√
det h d

5x

−
1

4
√

2
B ∧

[
d ∗h dB +

√
2i

3
B ∧ δhB−

2

9
B ∧ ∗h(B ∧ B)

]}
.

Here Ric(h)ij = R(h)ij denotes the Ricci tensor of the boundary metric hij, with
R(h) the Ricci scalar. The inner product of two p-forms ν1, ν2 is defined by

〈ν1, ν2〉h
√

det h d5x = ν1 ∧ ∗hν2, which then also defines the square norm via
‖ν‖2

h = 〈ν, ν〉h. The adjoint δh of d with respect to hij acting on the two-form

B is δhB = ∗hd ∗h B, and we have also defined TrhB4 ≡ B j
i B k

j B l
k B i

l . Finally,

we have defined the p-form (S ◦ ν)i1···ip ≡ S[i1
jν|j|i2···ip], where Sij is any

symmetric 2-tensor, and ν is any p-form.
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Using this we may compute the holographic free energy. For example, for the 3/4
BPS solution we find

Sbulk + SGibbons−Hawking + Sct = −
27π2

4GN

(
1 +

8

3
δ2 +

16
√

2

27
δ3 +

68

27
δ4

+
28
√

2

27
δ5 +

32

27
δ6 + . . .

)
.

This agrees with the field theory result!
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The BPS Wilson loop maps to a fundamental string in type IIA, at the “pole” of
the internal S4 [Assel-Estes-Yamazaki]. The renormalized string action is

Sstring =

∫
Σ

[
X−2

√
det γ d2x + iB

]
−

3
√

2
length(∂Σ) ,

and also agrees with the large N field theory results.

There is clearly more to understand – some kind of geometric structure that
explains the particularly simple forms for the BPS quantities being computed (in
particular the factors (|b1|+ |b2|)2/4|b1b2| and
(|b1|+ |b2|+ |b3|)3/27|b1b2b3| that appear in the partition functions in four
and six dimensions, respectively).
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