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In the last few years there has been a flurry of interest in defining and studying
supersymmetric gauge theories on curved backgrounds, preserving supersymmetry.

Some of the basic ideas and techniques go back to Witten’s 1988 paper where he
reformulated Donaldson’s four-manifold invariants in terms of “topological
quantum field theory.”

Witten’s theory is defined on any Riemannian four-manifold, but in the more
recent developments, which work in a variety of dimensions, one requires certain
specific types of geometric structure.

As in Witten’s theory, for certain observables the path integral is exactly equal to
its semi-classical approximation (a sort of fixed point theorem for supersymmetry
in field space).
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Essentially, one can take any supersymmetric gauge theory, coupled to matter,
and formulate it on an appropriate class of background geometries.

This is interesting, because (a) certain observables may be computed exactly
(non-perturbatively), and (b) these observables in general depend on the
background geometry, leading to a richer structure than for the theory formulated
in flat space.

In these talks I’ll focus on the application of these ideas to the AdS/CFT duality,
which is a conjecture relating strongly coupled gauge theories to semi-classical
gravity.
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Supersymmetric gauge theories are usually formulated in Minkowski spacetime, or
in Wick-rotated Euclidean space.

To be concrete, consider a three-dimensional N = 2 vector multiplet in
Euclidean space E3.

This consists of a gauge field (connection) A, two scalars σ, D, and a fermion
spinor field λ. All are valued in the Lie algebra g of the gauge group G.
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These have associated supersymmetry transformations

δAµ = − i
2
λ†γµχ ,

δσ = − 1
2
λ†χ ,

δD = − i
2
(Dµλ

†)γµχ + i
2
[λ†, σ]χ ,

δλ =
(
− 1

2
γµνFµν − D + iγµDµσ

)
χ ,

δλ† = 0 .

Here χ is a constant spinor, γµ, µ = 1, 2, 3, generate the Clifford algebra
Cliff(3, 0), and Dµ = ∂µ + i[Aµ, · ] is the gauge covariant derivative.
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Then one can check that the Yang-Mills action

S =
1

g2
YM

∫
Tr
(

1
2
FµνFµν + DµσDµσ + D2 + iλ†γµDµλ + i[λ†, σ]λ

)
,

and Chern-Simons action

S =
ik

4π

∫
Tr
(
εµνρ(Aµ∂νAρ + 2i

3
AµAνAρ)− λ†λ + 2Dσ

)
are invariant under δ. In doing so one uses ∂µχ = 0.
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One can consider trying to define such theories on general Riemannian manifolds
(M, g).

In doing so one first replaces ∂µ → ∇µ, where ∇µ is the Levi-Civita connection.

But ∇µχ = 0 would imply the metric is Ricci-flat, hence flat in dimension d = 3.

There are two approaches: (a) Witten’s topological twist, or (b) couple the theory
to supergravity, and take a limit where mpl →∞ ([Festuccia-Seiberg]).
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For the topological twist one needs an R-symmetry – a global symmetry under
which the Killing spinor χ is charged.

Witten considered N = 2 gauge theory in four dimensions, which has an SU(2)R

symmetry. The spin group is Spin(4) = SU(2)+ × SU(2)−, and there is a chiral
spinor χ transforming as ( 1

2
, 1

2
) under SU(2)+ × SU(2)R.

Under the diagonal subgroup of SU(2)+ × SU(2)R the spinor χ transforms as
1⊕ 0, resulting in a scalar satisfying ∂µχ = 0.
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In more recent work, [Pestun] and [Kapustin-Willett-Yaakov] instead defined
N = 2 gauge theories on the round S4 and S3 (respectively), by appropriately
modifying the Killing spinor equation for χ and supersymmetry transformations.

This, and subsequent generalizations, were reinterpreted by [Festuccia-Seiberg] in
terms of minimally coupling the gauge theory to supergravity, and then taking a
limit where the metric becomes non-dynamical.

There are typically other fields, in addition to the metric, in the gravity multiplet,
which also become non-dynamical background fields. Setting the gravitino
variation to zero leads to a Killing spinor equation for χ.
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For example, in d = 4 one can couple any supersymmetric gauge theory with a
U(1) R-symmetry to new minimal supergravity.

The background fields are the metric, a U(1) gauge field A, and a co-closed
one-form V, with Killing spinor equation

(∇µ − iAµ)χ + iVµχ + iVνγµνχ = 0 .

Here χ has positive chirality.

It turns out this is equivalent to M4 being equipped with an integrable complex
structure J, for which g is Hermitian. In particular A and V are fixed by this data
[Dumitrescu-Festuccia-Seiberg].
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At first sight this looks quite different to the topological twist, but they are not
unrelated.

The spinor equation may be rewritten as

(∇c
µ − iAc

µ)χ = 0 ,

where ∇c is the Chern connection, preserving g and J.

In particular this has U(2) = U(1)×Z2 SU(2) holonomy, and positive chirality
spinors may be identified with (Λ0,0 ⊕ Λ0,2)⊗ K1/2, where K = Λ2,0 and Ac is
the induced connection on K−1/2. Thus χ is really a spinc spinor, and effectively
becomes a scalar with ∂µχ = 0.
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A similar construction exists in d = 3, with a similar Killing spinor equation

(∇µ − iAµ)χ + i
2
hγµχ + iVµχ− i

2
Vνγµνχ = 0 .

Notice the additional function h.

It turns out this is equivalent to the three-manifold admitting an almost contact
metric structure, together with an integrability condition
[Closset-Dumitrescu-Festuccia-Komargodski].

Specifically Kµ = χ†γµχ defines a nowhere zero vector field, and the
corresponding foliation is transversely holomorphic.
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Going back to our N = 2 gauge multiplet in d = 3, the supersymmetry
transformations on such a background read

δAµ = − i
2
λ†γµχ ,

δσ = − 1
2
λ†χ ,

δD = − i
2
Dµ(λ†γµχ)+ 1

2
hλ†χ− 1

2
Vµλ

†γµχ + i
2
[λ†, σ]χ ,

δλ =
[
− 1

2
γµνFµν − (D−σh) + iγµ(Dµσ+iVµσ)

]
χ ,

δλ† = 0 .

Here the background fields A and V also appear in the covariant derivatives, e.g.
Dµχ ≡ (∇µ − iAµ)χ+ i

2
Vµχ. The supersymmetric Yang-Mills action similarly

receives minor modifications.
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In quantum field theory we are interested in computing correlation functions

〈O1 · · · On 〉 =

∫
all fields

e−SO1 · · · On ,

where Oi are operators.

The theories I have described have the following localization property: if
O = OBPS is a BPS operator, meaning δO = 0 is invariant under
supersymmetry, then

〈OBPS 〉
exactly

=

∫
δ−invariant fields

e−SOBPS · (one-loop determinant) .
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Concretely, we have δ2 = 0 acting on any field.

We may then deform the original action by adding a δ-exact term

t δTr
[
(δλ)†λ

]
,

where t is any real number. The expectation value of any δ-invariant operator is
then independent of t. The argument is due to Witten. For any operator O we
have

〈O 〉t =

∫
fields

exp(tδ) · e−SO =

∫
fields

e−S (O + tδO)

is independent of t, assuming the measure is δ-invariant, meaning 〈 δO 〉 = 0.
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In particular we now have a term exp[−t(δλ)†δλ] in the integrand, which we
may evaluate in the t→ +∞ limit.

The dominant contribution then comes from field configurations with δλ = 0.

This is similar to the Duistermaat-Heckman theorem in symplectic geometry:

∫
M

e−H+ω =

∫
F

e−H+ω

det(normal)
,

where H is a Hamiltonian function on (M, ω), and F is its critical set {dH = 0}.
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One can argue that for the d = 4 theories defined on a Hermitian manifold
(M4, g, J) the expectation values of δ-invariant operators depend on the
background geometry only through the complex structure J (cf. [Johansen] ).

Similarly, for d = 3 such BPS observables depend only on the transversely
holomorphic foliation.

These statements are established formally by showing that any deformation of the
background preserving these structures is δ-exact.

However, one of the interesting features of these constructions is that one can
calculate very explicitly!
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In [Alday-Martelli-Richmond-JFS] we computed the localized partition function
Z = 〈 1 〉 and BPS Wilson loop VEV 〈W 〉 for a general N = 2 supersymmetric
gauge theory coupled to matter, on M3

∼= S3.

The background admits two Killing spinors, of opposite R-charge and related by
charge conjugation. In particular

K = χ†γµχ∂µ = ∂ψ .

is a Killing vector field.
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The metric is locally

ds2
3 = Ω(z, z̄)2(dψ + a)2 + c(z, z̄)2dzdz̄ .

where z is a complex coordinate for the transversely holomorphic foliation by ∂ψ.

Essentially the background is parametrized by an arbitrary choice of the functions
Ω(z, z̄), c(z, z̄), and local one-form a = a(z, z̄)dz + c.c., and imposing the
Killing spinor equation then fixes everything else in terms of these.
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If all the orbits of K close then M3 is the total space of a U(1) orbibundle over
an orbifold Riemann surface Σ (a Seifert fibred 3-manifold).

On the other hand, if at least one orbit is open then M3 necessarily admits a
U(1)× U(1) isometry, and we may write

K = ∂ψ = b1∂ϕ1 + b2∂ϕ2 ,

where b1, b2 6= 0 can be thought of as parametrizing a choice of K.
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For the vector multiplet we find the localization equation δλ = 0 for M3
∼= S3

implies

A = 0 , Ωσ = σ0 = constant , D = −
h

Ω
σ0 .

A matter chiral multiplet consists of complex scalars φ and F, together with a
fermion spinor field ψ, in an arbitrary representation R of G, plus superpotential.

These localize onto solutions of δψ = 0, δψ† = 0, which force everything = 0.
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The classical action, evaluated on the localization locus, is given entirely by the
Chern-Simons action:

SCS = −
ik

2π
Tr(σ2

0)

∫
M3

h

Ω2

√
det g d3x =

iπk

|b1b2|
Tr(σ2

0) .

In the last step we have rewritten the integral in terms of an equivariant form on
R2 ⊕ R2 ⊃ S3, and used the Berline-Vergne fixed point formula (following a
similar trick of [Martelli-JFS-Yau]).

Most of the work is in computing the one-loop determinants. Individual
determinants cannot be computed in closed form for a general metric, but “most”
eigenvalues pair and cancel by supersymmetry.
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The final result for the partition function is

Z = 〈 1 〉 =
1

|Weyl|

∫
Cartan

dσ0 e
− iπk

|b1b2|
Trσ2

0
∏
α∈∆+

4 sinh
πσ0α

|b1|
sinh

πσ0α

|b2|

·
∏
ρ

sβ

[
i(β + β−1)

2
(1− R)−

ρ(σ0)√
|b1b2|

]
.

Here we have defined β =
√
|b1/b2|, ρ denote weights in a weight space

decomposition of the representation R for the matter fields, R is their R-charge,
and sβ(z) denotes the double sine function. This, and the sinh functions, arise
from zeta function regularization.
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It is also straightforward to insert BPS operators, for example the Wilson loop

W = TrR

[
P exp

∫
γ

ds(iAµẋµ + σ|ẋ|)
]
,

where xµ(s) parametrizes with worldline γ = orbit of K, is δ-invariant.

〈W 〉 is then computed by inserting TrRe
2π`σ0 into the localized partition

function, where 2π` = length of K orbit.

In particular we see that both the partition function and VEV of W depend on
the background geometry only through b1, b2, parametrizing K.
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For comparison with AdS/CFT we should focus on field theories that in
(conformally) flat space have an AdS gravity dual.

There are huge classes of these, described by Chern-Simons-quiver gauge theories,
with G = U(N)p, e.g. the maximally supersymmetric case is the ABJM theory,
living on N M2-branes in flat space.

The gravity duals are M-theory backgrounds of the form AdS4×Y7, with N units
of ∗G4 through the internal space Y7, and arise as e.g. near-horizon limits of N
M2-branes at Calabi-Yau four-fold singularities [Martelli-JFS, many other authors].
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The large N limit of the matrix model partition function was computed in
[Martelli-Passias-JFS], using a saddle point method of
[Herzog-Klebanov-Pufu-Tesileanu].

This involves the asymptotic expansion of the double sine function, and an ansatz
for the saddle point eigenvalue distribution for σ0.

The final results are extremely simple:

log Z =
(|b1|+ |b2|)2

4|b1b2|
· log Zround S3 ,

log〈W 〉 = 1
2
`(|b1|+ |b2|) · log〈W 〉round S3 .

In particular, the dependence on the background geometry factorizes from the
dependence on the choice of gauge theory.

James Sparks (University of Oxford) Hamburg, 8 September 2014 26 / 27



In AdS/CFT the three-dimensional background geometry M3
∼= S3 arises as the

conformal boundary of a four-manifold, in which gravity propagates.

The large N limit in the gauge theory is the same as the classical supergravity
limit, and the conjecture relates gauge theory correlation functions to supergravity.

In the next talk I’ll explain this relation, and then derive the same formulae in a
purely classical computation in four-dimensional gravity. This amounts to a brute
force proof of the conjecture for these particular observables.

I’ll also present some recent results in d = 5.
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