

$G\mbox{-}{\mbox{structures}}$ and their remarkable spinor fields

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg

Hamburg, September 2014 – joint work with Julia Becker-Bender, Simon Chiossi, Thomas Friedrich, Jos Höll, and Hwajeong Kim –

Relations between different objects on a Riemannian manifold (M^n, g) :

Observation:

• \exists multitude of different spinorial field equations, related to different geometric <u>structures</u> and geometric questions

Goal:

- Uniform description of different types of spinor fields
- applications

The Riemannian Dirac operator

 $(M^n,g):$ compact Riemannian spin mnfd, $\Sigma:$ spin bdle

Classical Riemannian Dirac operator D^g :

Dfn: $D^g: \Gamma(\Sigma) \longrightarrow \Gamma(\Sigma), \quad D^g \psi := \sum_{i=1}^n e_i \cdot \nabla^g_{e_i} \psi$

Properties:

- D^g is elliptic differential operator of first order, essentially self-adjoint on $L^2(\Sigma)$, pure point spectrum
- Of equal fundamental importance than the Laplacian
- In dimension 4: $index(D^g) = \sigma(M^4)/8$
- <u>S</u>chrödinger (1932), <u>L</u>ichnerowicz (1962):

 \sim "'root of the Laplacian"' for $\mathrm{Scal}^g=0$

[Atiyah-Singer, \sim 1963]

$$(D^g)^2 = \Delta + \frac{1}{4} \mathrm{Scal}^g$$

Spinors and Riemannian eigenvalue estimates

SL formula \Rightarrow EV of $(D^g)^2$: $\lambda \geq \frac{1}{4} \operatorname{Scal}_{\min}^g$

• optimal only for spinors with $\langle \Delta \psi, \psi \rangle = \| \nabla^g \psi \|^2 = 0$, i.e. parallel spinors

Thm. (M,g) has parallel spinors iff $Hol_0(M) = SU(n), Sp(n), G_2, Spin(7)$, and then $Ric^g = 0$. [Wang, 1989]

Thm. Optimal EV estimate:
$$\lambda \ge \frac{n}{4(n-1)} \operatorname{Scal}_{\min}^{g}$$
 [Friedrich, 1980]

• "=" if there exists a Killing spinor (KS) ψ : $\nabla^g_X \psi = \text{const} \cdot X \cdot \psi \quad \forall X$

Link to special geometries:

Thm. \exists KS \Leftrightarrow n = 5 : (M, g) is Sasaki-Einstein mnfd [\in contact str.] \Leftrightarrow n = 6 : (M, g) nearly Kähler mnfd \Leftrightarrow n = 7 : (M, g) nearly parallel G_2 mnfd

[Friedrich, Kath, Grunewald. . .] 4

Friedrich's inequality has two alternative proofs:

- by deforming the connection $\nabla^g_X \psi \rightsquigarrow \nabla^g_X \psi + cX \cdot \psi$
- by using **twistor theory:** the twistor or Penrose operator:

$$P\psi := \sum_{k=1}^{n} e_k \otimes \left[\nabla^g_{e_k} \psi + \frac{1}{n} e_k \cdot D^g \psi \right]$$

satisfies the identity $\|P\psi\|^2 + \frac{1}{n}\|D^g\psi\|^2 = \|\nabla^g\psi\|^2$

which, together with the SL formula, yields the integral formula

$$\int_{M} \langle (D^{g})^{2} \psi, \psi \rangle dM = \frac{n}{n-1} \int_{M} \|P\psi\|^{2} dM + \frac{n}{4(n-1)} \int_{M} \operatorname{Scal}^{g} \|\psi\|^{2} dM$$

and Friedrich's inequality follows, with equality iff ψ is a twistor spinor,

$$P\psi = 0 \iff \nabla_X^g \psi + \frac{1}{n} X \cdot D^g \psi = 0 \quad \forall X$$

Furthermore, ψ is automatically a Killing spinor.

Killing spinors and submanifolds

Thm. Suppose (M,g) is Sasaki-Einstein (n = 5), nearly Kähler (n = 6), or nearly parallel G_2 (n=7). Then the metric cone

$$(\bar{M}, \bar{g}) := (M \times \mathbb{R}^+, \frac{1}{4}r^2g^2 + dr^2)$$

has a ∇^g -parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy $SU(3), G_2$, resp. Spin(7). [Bryant 1987, B-Salamon 1989, Bär 1993 (+ Wang 1989)]

Observe: Construction relies on existence of a Killing spinor

Thm. Let (M,g) be a spin manifold with a ∇^g -parallel spinor ψ , $N \subset M$ a codimension one hypersurface. Then $\varphi := \psi |_N$ is a generalized Killing spinor on N, i.e. $\nabla^g_X \varphi = A(X) \cdot \varphi$ for a symmetric endomorphism A(Weingarten map). [Friedrich 1998, Bär-Gauduchon-Moroianu 2005]

Observe: Generalizes the Weierstraß representation of minimal surfaces, based on ideas of Eisenhardt (1909)

Spinors and *G*-structures

Observe: Sasaki-Einstein , nearly Kähler, or nearly parallel G_2 -manifolds are not the most general SU(2)-, SU(3)- or G_2 -manifolds.

Q: What can be said for more general *G*-manifolds?

Given a mnfd M^n with G-structure ($G \subset SO(n)$), replace ∇^g by a metric connection ∇ with torsion that preserves the geometric structure!

torsion:
$$T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)$$

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z)$$

1) representation theory yields

- a *classification scheme* for *G*-structures via *intrinsic torsion* [Salamon 1989, Swann 2000]

- a clear answer *which* G-structures admit such a connection; if existent, it's unique and called the *characteristic connection* [Fr-Ivanov 2002, A-Fr-Höll 2013] 7

Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dim. real vector bundle over a n-dimensional manifold (n = 6, 7) admits a section of length one

 \Rightarrow a 6-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from $Spin(6)\cong SU(4)$ to SU(3)

 \Rightarrow a 7-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from ${\rm Spin}(7)$ to G_2

Spin linear algebra in dimension 6 and 7

• In n = 6, 7, the spin representations are real and $2^3 = 8$ -dimensional, they coincide as vector spaces, call it $\Delta := \mathbb{R}^8$.

$$\underline{n=6}$$
 [A-Fr-Chiossi-Höll, 2014]

- Δ admits a Spin(6)-invariant cplx structure j (because Spin(6) \cong SU(4))
- any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into three pieces,

$$\Delta = \mathbb{R} \cdot \phi \oplus \mathbb{R} \cdot j(\phi) \oplus \underbrace{\{X \cdot \phi \, : \, X \in \mathbb{R}^6\}}_{\cong \mathbb{R}^6, \text{ the base space}} \tag{(*)}$$

• the following formula defines an orthogonal cplx str. on the last piece,

$$J_{\phi}(X) \cdot \phi := j(X \cdot \phi)$$

• the spinor defines a 3-form by $\psi_{\phi}(X, Y, Z) := -(X \cdot Y \cdot Z \cdot \phi, \phi).$

Exa. Consider $\phi = (0, 0, 0, 0, 0, 0, 0, 1) \in \Delta = \mathbb{R}^8$. Then:

$$J_{\phi} = -e_{12} + e_{34} + e_{56}, \quad \psi_{\phi} = e_{135} - e_{146} + e_{236} + e_{245}.$$

Spin linear algebra in dimension 6 and 7

Thm. The following is a 1-1 correspondence: (well-known)

• SU(3)-structures on $\mathbb{R}^6 \longleftrightarrow$ real spinors of length one $(\mathrm{mod}\mathbb{Z}_2)$,

 $SO(6)/SU(3) = {SU(3)-structures on \mathbb{R}^6} = \mathbb{P}(\Delta) = \mathbb{RP}^7.$

 $\underline{n=7}$

• any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into two pieces,

$$\Delta = \mathbb{R} \cdot \phi \oplus \underbrace{\{X \cdot \phi \, : \, X \in \mathbb{R}^7\}}_{\cong \mathbb{R}^7, \text{ the base space}} \tag{**}$$

• the spinor defines again a 3-form ψ_{ϕ} , which turns out to be *stable* (i. e. open GL-orbit); but no analogue of neither j nor J_{ϕ}

Thm. The following is a 1-1 correspondence: (well-known)

stable 3-forms ψ of fixed length, with isotropy $\subset SO(7) \longleftrightarrow$. . . (as above),

$$\operatorname{SO}(7)/G_2 = \mathbb{P}(\Delta) = \mathbb{RP}^7.$$
 ¹⁰

Special almost Hermitian geometry

(do only n = 6)

• SU(3) manifold (M^6, g, ϕ) : Riemannian spin manifold (M^6, g) equipped with a global spinor ϕ of length one, j as before, J induced almost cplx str., ω its kähler form, ψ_{ϕ} induced 3-form, $\psi_{\phi}^J := J \circ \psi_{\phi}$.

Decomposition $(*) \Rightarrow \exists_1 \text{ 1-form } \eta \text{ and endomorphism } S \text{ s.t.}$

 $\nabla_X \phi = \eta(X)j(\phi) + S(X) \cdot \phi.$

 η : "intrinsic 1-form", S: "intr. endomorphism" (indeed: $\Gamma = S \lrcorner \psi_{\phi} - \frac{2}{3}\eta \otimes \omega$) **Thm.** $(\nabla_X^g \omega)(Y, Z) = 2\psi_{\phi}^J(S(X), Y, Z), \quad 8\eta(X) = -(\nabla_X^g \psi_{\phi}^J)(\psi_{\phi}).$ This generalizes the classical nK condition $\nabla_X \omega(X, Y) = 0 \ \forall X, Y!$

There are 7 basic classes of SU(3)-structures, called $\chi_1, \chi_{\bar{1}}, \chi_2, \chi_{\bar{2}}, \chi_3, \chi_4, \chi_5$. [Chiossi-Salamon, 2002]

They are a refinement of the classical Gray-Hervella classification of U(3)structures. Write $\chi_{1\bar{2}4}$ for $\chi_1^+ \oplus \chi_2^- \oplus \chi_4$ etc.

Thm. The classes of SU(3) str. are determined as follows:

class	description	dimension
χ_1	$S = \lambda \cdot J_{\phi}$, $\eta = 0$	1
$\chi_{\bar{1}}$	$S = \mu \cdot \text{Id}, \ \eta = 0$	1
χ_2	$S\in\mathfrak{su}(3)$, $\eta=0$	8
$\chi_{\bar{2}}$	$S \in \{A \in S_0^2(\mathbb{R}^6) A J_\phi = J_\phi A\}, \ \eta = 0$	8
χ_3	$S \in \{A \in S_0^2(\mathbb{R}^6) AJ_\phi = -J_\phi A\}, \ \eta = 0$	12
χ_4	$S \in \{A \in \Lambda^2(\mathbb{R}^6) AJ_\phi = -J_\phi A\}, \ \eta = 0$	6
χ_5	$S=0$, $\eta eq 0$	6

where $\lambda, \mu \in \mathbb{R}$. In particular S is symmetric and $\eta = 0$ if and only if the class is $\chi_{\bar{1}\bar{2}3}$.

[Next: express Niejenhuis tensor, $d\omega, \delta\omega$ through ψ^{j}_{ϕ}, η, S .]

The symmetries of S translate into a differential eq. for ϕ :

$$SJ_{\phi} = \pm J_{\phi}S \iff (J_{\phi}Y\nabla_{X}\phi,\phi) = \mp (Y\nabla_{J_{\phi}X}\phi,\phi),$$

$$S \text{ is } \pm \text{-symmetric} \iff (X\nabla_{Y}\phi,\phi) = \pm (Y\nabla_{X}\phi,\phi).$$

12

Thm. The classification of SU(3) str. in terms of ϕ is given by $(\lambda := \frac{1}{6}(D\phi, j(\phi)), \ \mu := -\frac{1}{6}(D\phi, \phi))$: (... and similarly for mixed classes)

class	spinorial equation
χ_1	$ abla^g_X \phi = \lambda X j(\phi) ext{ for } \lambda \in \mathbb{R}$
$\chi_{ar{1}}$	$ abla^g_X \phi = \mu X \phi ext{ for } \mu \in \mathbb{R}$
χ_2	$(J_{\phi}Y abla^g_X \phi, \phi) = -(Y abla^g_{J_{\phi}X} \phi, \phi)$,
	$(Y \nabla^g_X \phi, j(\phi)) = (X \nabla^g_Y \phi, j(\phi)), \ \lambda = \eta = 0$
$\chi_{ar{2}}$	$(J_{\phi}Y abla^g_X \phi, \phi) = (Y abla^g_{J_{\phi}X} \phi, \phi)$,
	$(Y \nabla^g_X \phi, j(\phi)) = -(X \nabla^g_Y \phi, j(\phi))$, $\mu = \eta = 0$
χ_3	$(J_{\phi}Y abla^g_X \phi, \phi) = (Y abla^g_{J_{\phi}X} \phi, \phi)$,
	$(Y abla^g_X \phi, j(\phi)) = (X abla^g_Y \phi, j(\phi))$, and $\eta = 0$
χ_4	$(J_{\phi}Y abla^g_X \phi, \phi) = -(Y abla^g_{J_{\phi}X} \phi, \phi)$,
	$(Y abla^g_X \phi, j(\phi)) = -(X abla^g_Y \phi, j(\phi)) \text{ and } \eta = 0$
χ_5	$\nabla^g_X \phi = (\nabla^g_X \phi, j(\phi)) j(\phi)$

Cor. On a 6-dim spin mnfd, \exists spinor of constant length s.t. $D\phi = 0$ iff admits a SU(3) structure of class $\chi_{2\bar{2}345}$ with $\delta\omega = -2\eta$.

Example: twistor spaces as SU(3)-manifolds

• $M^6 = \mathbb{CP}^3$, $U(3)/U(1)^3$: twistor spaces of S^4 and \mathbb{CP}^2 . Both carry metrics $g_t(t > 0)$ and two almost complex structures $\Omega^{\mathrm{K}}, \Omega^{\mathrm{nK}}$ such that

- $(M^6, g_{1/2}, \Omega^{
 m nK})$ is a nearly Kähler manifold
- $(M^6, g_1, \Omega^{\mathrm{K}})$ is a Kähler manifold

• \exists two real linearly indep. global spinors ϕ_{ε} in Δ_6 ($\varepsilon = \pm 1$). **Both spinors** induce the same almost cplx structure J_{ϕ} ($\Leftrightarrow \Omega^{nK}$)!

• For t = 1/2, ϕ_{ε} are Riemannian Killing spinors. For general t, define $S_{\varepsilon}: TM^6 \to TM^6$ by $S_{\varepsilon} = \varepsilon \sqrt{c} \cdot \operatorname{diag}\left(\frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{1-t}{2\sqrt{t}}, \frac{1-t}{2\sqrt{t}}\right).$

Verify: $\nabla_X^g \phi_{\varepsilon} = S_{\varepsilon}(X)\phi_{\varepsilon}$, hence S_{ε} is the intr. endom. and $\eta = 0$.

• Class:
$$\chi_{\bar{1}\bar{2}}$$
 for $t \neq 1/2$, $\chi_{\bar{1}}$ for $t = 1/2$.

• For t = 1, ϕ_{ε} are Kählerian Killing spinors, but they *do not* induce the Kählerian cplx str. Ω^{K} ! Thus, the Kählerian structure cannot be recovered from the pair of Kählerian Killing spinors (only a U(3)-reduction).

Characteristic connections

Thm. A spin manifold (M^6, g, ϕ) admits a characteristic connection ∇ iff it is of class $\chi_{1\bar{1}345}$ and $\eta = \frac{1}{4} \delta \omega$. It satisfies $\nabla \phi = 0$.

For all other classes, an adapted connection ∇ can be defined as well.

To conclude:

Obtained a uniform description of all possible defining spinorial differential eqs. on 6-dim. SU(3)-manifolds, generalizing Killing spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim, 2000]...

So far, all spinors encountered are generalized Killing spinor with torsion (gKST), i.e.

 $\nabla \phi = A(X) \cdot \phi$

for some symmetric endomorphism $A: TM^6 \to TM^6$.

n = 7: very similar Outlook: n = 8 and Spin(7)-structures

(work in progress – Konstantis) 15

Application I: cone constructions

• How to construct G_2 -str. of any class on cones over SU(3)-manifolds?

Start with (M^6, g, ϕ) with intrinsic torsion (S, η) . Choose a function $h = h_1 + ih_2 : I \to S^1$ and define by

$$\phi_t := h(t)\phi := h_1(t)\phi + h_2(t)j(\phi)$$

a new family of SU(3)-structures on M^6 depending on $t \in I$.

Conformally rescale the metric by some function $f: I \to \mathbb{R}_+$ and consider $M_t^6 := (M^6, f(t)^2 g, \phi_t)$. Intrinsic torsion of $M_t^6 : (\frac{h^2}{f}S, \eta)$.

Dfn. spin cone over M^6 : $(\overline{M}^7, \overline{g}) = (M^6 \times I, f^2(t)g + dt^2)$ with spinor ϕ_t .

Exa. Suppose we want \overline{M}^7 to be a nearly parallel G_2 -manifold: need h'/h constant, so $h(t) = \exp(i(ct + d)), c, d \in \mathbb{R}$. Easiest: sine cone $(M^6 \times (0, \pi), \sin(t)^2 g + dt^2, e^{it/2}\phi)$ [Fernández-Ivanov-Muñoz-Ugarte, 2008; Stock, 2009]

• Similarly, we can construct G_2 -manifolds of any desired pure class (construction really uses the spinor!).

Application II: eigenvalue estimates with skew torsion

(M,g): mnfd with G-structure and charact. connection ∇^c , torsion T, assume $\nabla^c T = 0$ (for exa., naturally reductive)

D: Dirac operator of connection with torsion T/3 (generalizes Dolbeault op. of Hermitian manifolds)

Generalized SL formula:

$$\mathbb{D}^2 = \Delta_T + \frac{1}{4}\operatorname{Scal}^g + \frac{1}{8}||T||^2 - \frac{1}{4}T^2$$

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), A (2002)]

Split spin bundle into eigenspaces of T, estimate action of T on each subbundle \Rightarrow

Corollary (universal estimate). The first EV λ of \mathbb{D}^2 satisfies

$$\lambda \geq \frac{1}{4} \operatorname{Scal}_{\min}^{g} + \frac{1}{8} ||T||^{2} - \frac{1}{4} \max(\mu_{1}^{2}, \dots, \mu_{k}^{2}),$$

where μ_1, \ldots, μ_k are the eigenvalues of T.

[A-Friedrich, 2003]

Universal estimate:

- follows from generalized SL formula
- \bullet does not yield Friedrich's inequality for $T \rightarrow 0$
- optimal iff \exists a ∇^c -parallel spinor:

This sometimes happens on mnfds with $\operatorname{Scal}_{\min}^g > 0$!

— Results:

[• deformation techniques: yield often estimates quadratic in Scal^g, require subtle case by case discussion, often restriced curvature range]

[A-Friedrich-Kassuba, 2008]

• twistor techniques: estimates always linear in Scal^g, no curvature restriction, rather universal, leads to a twistor eq. with torsion and sometimes to a Killing eq. with torsion

[A-(Becker-Bender)-Kim, 2013]

Twistors with torsion

 $m:TM\otimes\Sigma M\to\Sigma M\colon$ Clifford multiplication

p =projection on ker m: $p(X \otimes \psi) = X \otimes \psi + \frac{1}{n} \sum_{i=1}^{n} e_i \otimes e_i X \psi$

 $\nabla^s: \ \nabla^s_X Y := \nabla^g_X Y + 2sT(X,Y,-)$

 $(s = 1/4 \text{ is the "standard" normalisation, } \nabla^{1/4} = \text{char. conn.})$

twistor operator: $P^s = p \circ \nabla^s$

Fundamental relation: $||P^s\psi||^2 + \frac{1}{n}||D^s\psi||^2 = ||\nabla^s\psi||^2$

 ψ is called *s*-twistor spinor $\Leftrightarrow \psi \in \ker P^s \Leftrightarrow \nabla^s_X \psi + \frac{1}{n} X D^s \psi = 0.$

A priori, not clear what the right value of s might be:

different scaling in $\nabla \left[s = \frac{1}{4}\right]$ and $\mathcal{D}\left[s = \frac{1}{4 \cdot 3}\right]!$

Idea: Use possible improvements of an eigenvalue estimate as a guide to the 'right' twistor spinor

Thm (twistor integral formula). Any spinor φ satisfies

$$\begin{split} \int_{M} \langle \not\!\!D^{2} \varphi, \varphi \rangle dM &= \frac{n}{n-1} \int_{M} \|P^{s} \varphi\|^{2} dM + \frac{n}{4(n-1)} \int_{M} \operatorname{Scal}^{g} \|\varphi\|^{2} dM \\ &+ \frac{n(n-5)}{8(n-3)^{2}} \|T\|^{2} \int \|\varphi\|^{2} dM - \frac{n(n-4)}{4(n-3)^{2}} \int_{M} \langle T^{2} \varphi, \varphi \rangle dM, \end{split}$$

where $s = \frac{n-1}{4(n-3)}$.

Thm (twistor estimate). The first EV λ of \mathbb{D}^2 satisfies (n > 3)

$$\lambda \ge \frac{n}{4(n-1)} \operatorname{Scal}_{\min}^{g} + \frac{n(n-5)}{8(n-3)^{2}} \|T\|^{2} - \frac{n(n-4)}{4(n-3)^{2}} \max(\mu_{1}^{2}, \dots, \mu_{k}^{2}),$$

where μ_1, \ldots, μ_k are the eigenvalues of T, and "=" iff

- Scal^g is constant,
- ψ is a twistor spinor for $s_n = \frac{n-1}{4(n-3)}$,

• ψ lies in Σ_{μ} corresponding to the largest eigenvalue of T^2 .

- \bullet reduces to Friedrich's estimate for $T \rightarrow 0$
- estimate is good for $\operatorname{Scal}_{\min}^g$ dominant (compared to $||T||^2$)

Ex. (M^6, g) U(3)-mnfd of class \mathcal{W}_3 ("balanced"), $\operatorname{Stab}(T)$ abelian Known: $\mu = 0, \pm \sqrt{2} ||T||$, no ∇^c -parallel spinors

twistor estimate:
$$\lambda \geq \frac{3}{10} \operatorname{Scal}_{\min}^g - \frac{7}{12} \|T\|^2$$

universal estimate:
$$\lambda \geq \frac{1}{4} \operatorname{Scal}_{\min}^{g} - \frac{3}{8} ||T||^{2}$$

• better than anything obtained by deformation

On the other hand:

Ex. (M^5, g) Sasaki: deformation technique yielded better estimates.

Twistor and Killing spinors with torsion

Thm (twistor eq). ψ is an s_n -twistor spinor ($P^{s_n}\psi = 0$) iff

$$\nabla_X^c \psi + \frac{1}{n} X \cdot \mathcal{D}\psi + \frac{1}{2(n-3)} (X \wedge T) \cdot \psi = 0,$$

Dfn. ψ is a Killing spinor with torsion if $\nabla_X^{s_n} \psi = \kappa X \cdot \psi$ for $s_n = \frac{n-1}{4(n-3)}$.

$$\Leftrightarrow \nabla^c \psi - \left[\kappa + \frac{\mu}{2(n-3)}\right] X \cdot \psi + \frac{1}{2(n-3)} (X \wedge T) \psi = 0.$$

In particular:

- ψ is a twistor spinor with torsion for the same value s_n
- κ satisfies a quadratic eq. linking it to curvature (but, in general, not Einstein)

•
$$\operatorname{Scal}^g = \operatorname{constant}$$
.

In general, this twistor equation cannot be reduced to a Killing equation.

... with one exception: n = 6

Thm. Assume ψ is a s_6 -twistor spinor for some $\mu \neq 0$. Then:

• ψ is a D eigenspinor with eigenvalue $D\psi = \frac{1}{3} \left[\mu - 4 \frac{\|T\|^2}{\mu} \right] \psi$

• the twistor equation for s_6 is equivalent to the Killing equation $\nabla^s \psi = \lambda X \cdot \psi$ for the same value of s.

Ex. Manifolds with Killing spinors with torsion:

- Odd-dim. Heisenberg groups (naturally reductive!)
- Tanno deformations of arbitrary Einstein-Sasaki manifolds, for example SO(n+2)/SO(n) (again naturally reductive!)