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Relations between different objects on a Riemannian manifold (M", g):

geometric
structures
curvature, contact str., adapted connection,
Ric=M\.g almost complex str. . . Berger's thm if V = VY
solutions of - . new invariant connection
field egs. V and its holonomy
Einstein eq., twistor eq., Hol(M; V) C SO(n)

Killing eq., parallel tensor / spinor. . .
N.B. V7 := Levi-Civita connection



Observation:

e J multitude of different spinorial field equations, related to different
geometric structures and geometric questions

Goal:
e Uniform description of different types of spinor fields

e applications



The Riemannian Dirac operator

(M™, g): compact Riemannian spin mnfd, >: spin bdle

Classical Riemannian Dirac operator DY:
Dfn : DI: T'(X) —T(X), D% = > e Vi
Properties:

e DY is elliptic differential operator of first order, essentially self-adjoint on
L?(X), pure point spectrum

e Of equal fundamental importance than the Laplacian

e In dimension 4: indeX(Dg) = U(M4)/8 [Atiyah-Singer, ~ 1963]

e Schradinger (1932), Lichnerowicz (1962): (D9)* = A + XScal’

~ "‘root of the Laplacian”’ for Scal? = 0



Spinors and Riemannian eigenvalue estimates

SL formula = EV of (D9)%: X > 1Scal?

e optimal only for spinors with (A1, ¢) = ||[V9%9||? = 0, i. e. parallel spinors
Thm. (M, g) has parallel spinors iff Holy(M) = SU(n), Sp(n), G2, Spin(7),

and then Ric? = 0. [Wang, 1989]

Thm. Optimal EV estimate: A\ > n Scal? . [Friedrich, 1980]
4(n _ 1) min

o "="if there exists a Killing spinor (KS) ¢: V%1% =const- X -¢p VX

Link to special geometries:

Thm. 3KS < n=5:(M,g) is Sasaki-Einstein mnfd [€ contact str]
< n=6:(M,g) nearly Kahler mnfd
< n="7T:(M,g) nearly parallel G mnfd

[Friedrich, Kath, Grunewald. . .| ,



Friedrich’s inequality has two alternative proofs:
e by deforming the connection V% ~» V%19 + cX -

e by using twistor theory: the twistor or Penrose operator:

- 1
Py = AV —er - DY
b= Do ens [Tt e D)
satisfies the identity || Py||* + || D9%y||? = || VI9||?
which, together with the SL formula, yields the integral formula

n
n—1

4(n —1)

[ woopppan = L [ polan+ [ searyiar
M M M

and Friedrich’s inequality follows, with equality iff ¢ is a twistor spinor,

1
Pp=0 & Vi +-X -DW=0 VX

Furthermore, 1 is automatically a Killing spinor.



Killing spinors and submanifolds

Thm. Suppose (M, g) is Sasaki-Einstein (n = 5), nearly Kahler (n = 6), or
nearly parallel G3 (n=7). Then the metric cone

(M, g) :== (M x R", 1 r2%g% 4 dr?)

has a V9-parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy
SU(3), Go, resp. Spin(7). [Bryant 1987, B-Salamon 1989, Bir 1993 (+ Wang 1989)]

Observe: Construction relies on existence of a Killing spinor

Thm. Let (M, g) be a spin manifold with a V9-parallel spinor ), N C M
a codimension one hypersurface. Then ¢ = zp\N is a generalized Killing
spinor on N, i.e. V%p = A(X) - ¢ for a symmetric endomorphism A
(Weingarten map). [Friedrich 1998, Bar-Gauduchon-Moroianu 2005]

Observe: Generalizes the WeierstraBB representation of minimal surfaces,
based on ideas of Eisenhardt (1909)



Spinors and G-structures

Observe: Sasaki-Einstein , nearly Kahler, or nearly parallel Go-manifolds
are not the most general SU(2)-, SU(3)- or G2-manifolds.

Q: What can be said for more general G-manifolds?

Given a mnfd M™ with G-structure (G C SO(n)), replace V9 by a metric
connection V with torsion that preserves the geometric structure!

torsion: T(X,Y,7Z) = g(VxY —VyX — [X,Y], 2)

Special case: require T' € A3(M") (< same geodesics as VY)

1) representation theory yields

- a classification scheme for G-structures via intrinsic torsion [Salamon 1989,
Swann 2000]

- a clear answer which GG-structures admit such a connection; if existent, it's
unique and called the ‘characteristic connection’ [Fr-lvanov 2002, A-Fr-Holl 2013]



Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dim. real vector bundle over a n-dimensional manifold (n = 6,7)
admits a section of length one

= a 6-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(6) = SU(4) to SU(3)

= a 7-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(7) to Gs



Spin linear algebra in dimension 6 and 7

e In n = 6,7, the spin representations are real and 23 = 8-dimensional, they
coincide as vector spaces, call it A := RS,

n==~6 [A-Fr-Chiossi-Holl, 2014]

e A admits a Spin(6)-invariant cplx structure j (because Spin(6) = SU(4))
e any real spinor 0 # ¢ € A decomposes A into three pieces,

A=R-¢dR-j@)d{X ¢ : X cR%} (%)

~—
~R6. the base space

e the following formula defines an orthogonal cplx str. on the last piece,
Jo(X)- ¢ = j(X - ¢)

e the spinor defines a 3-form by ¥4(X,Y,Z) :=—(X -Y - Z - ¢, 9).

Exa. Consider ¢ = (0,0,0,0,0,0,0,1) € A = R®. Then:

Jp = —e12 + €34 + €56, Yy = €135 — €146 + €236 + €245.



Spin linear algebra in dimension 6 and 7
Thm. The following is a 1-1 correspondence: (well-known)

e SU(3)-structures on R® «— real spinors of length one (modZs,),
SO(6)/SU(3) = {SU(3)-structures on R%} = P(A) = RP".
n=>=1

e any real spinor 0 # ¢ € A decomposes A into two pieces,

A=R-¢®{X -¢: XeR"} ()

~
~R7, the base space

e the spinor defines again a 3-form 4, which turns out to be stable
(i.e. open GL-orbit); but no analogue of neither j nor J,

Thm. The following is a 1-1 correspondence: (well-known)

stable 3-forms 1 of fixed length, with isotropy C SO(7) <— ... (as above),
SO(7)/Gy = P(A) = RP.
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Special almost Hermitian geometry
(do only n = 6)

e SU(3) manifold (M?, g, ¢): Riemannian spin manifold (M, g) equipped
with a global spinor ¢ of length one, 5 as before, J induced almost cplx str.,
w its kahler form, 14 induced 3-form, wé = J oy,

Decomposition (x) = 31 1-form 1 and endomorphism S's.t.

Vo = n(X)j(6) + S(X) - ¢.
n: "intrinsic 1-form”, S: "intr. endomorphism” (indeed: I' = S_1py — 2n @ w)
Thm.  (V4w)(Y,2) = 200(S(X),Y, 2),  8n(X) = —(V%wd) ().
This generalizes the classical nK condition Vxw(X,Y) =0VX,Y!

There are 7 basic classes of SU(3)-structures, called x1, X1, X2, X3, X3, X4, X5-
[Chiossi-Salamon, 2002]

They are a refinement of the classical Gray-Hervella classification of U(3)-
structures. Write y134 for X7 @ x5 @ x4 etc.



Thm. The classes of SU(3) str. are determined as follows:

class description dimension
X1 S=A-Jp,n=0 1

X1 S=up-1d,n=20 1

X2 SGE’J(B), n=20 8

X3 S e {A < Sg(R6)‘AJ¢ - J¢A}, n=20 8

X3 S e {A c Sg(R6)|AJ¢ = —J¢A}, n=20 12

X4 S e {A S AQ(R6)|AJ¢ - —J¢A}, n=20 6

X5 S=0,n#0 6

where A, u € R. In particular S is symmetric and n = 0 if and only if the
class is x133.

[Next: express Niejenhuis tensor, dw, dw through w;, n, S.]

The symmetries of S translate into a differential eq. for ¢:

S is £-symmetric <= (XVy¢,09)==E£(YVxp,0o).
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Thm. The classification of SU(3) str. in terms of ¢ is given by

(A= %(D¢,j(¢)), = —%(D¢, ®)): (... and similarly for mixed classes)
class spinorial equation
X1 V%o = AXj(p) for A € R
X1 V%9 = puXo for pc R
X (ToYV%8.6) = — (Y5, 36,0,
(YV%0,j(0) = (XVy,j(8), A=n=0
= (JoYV%6.6) = (Y5, x6.0),
YV0,j(0) = —(XVy9.j(¢), p=1=0
v (JoYV%0.0) = (YVY 6.0),
(YV0,j(8) = (XVy¢,i(¢)) and n =0
X4 (J¢YV ¢, ¢) = (YV%¢X¢7 ),
(YV56.,j(9) = —(XVy6,j(¢)) and n =0
X5 V¢ = (V9.5(9))i()

Cor. On a 6-dim spin mnfd, d spinor of constant length s.t. D¢ = 0 iff
admits a SU(3) structure of class x33345 With dw = —2.



Example: twistor spaces as SU(3)-manifolds

o MY = CP3, U(3)/U(1)3: twistor spaces of S* and CP?. Both carry
metrics g;(t > 0) and two almost complex structures Q¥ Q"% such that

- (M5, g1 /2, Q") is a nearly Kahler manifold
- (M6, g1, Q%) is a Kahler manifold

e 7 two real linearly indep. global spinors ¢. in Ag (¢ = =£1).
Both spinors induce the same almost cplx structure Jy (< Q°F)!

e For t = 1/2, ¢. are Riemannian Killing spinors. For general ¢, define

Se: TM®° - TM°by S, = 5\/E'diag(\§7\§7\§7 \QE?;%’;Q%)

Verify: V%-¢. = Sc(X)e, hence S. is the intr. endom. and n = 0.
e Class: i3 fort #1/2, x1 for t =1/2.
e For t =1, ¢. are Kahlerian Killing spinors, but they do not induce the

Kahlerian cplx str. QX1 Thus, the Kihlerian structure cannot be recovered
from the pair of Kahlerian Killing spinors (only a U(3)-reduction).
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Characteristic connections

Thm. A spin manifold (M®, g, ) admits a characteristic connection V iff
it is of class x17345 and n = iéw. It satisfies V¢ = 0.

For all other classes, an adapted connection V can be defined as well.
To conclude:

Obtained a uniform description of all possible defining spinorial differential
egs. on 6-dim. SU(3)-manifolds, generalizing Killing spinors, generalized
Killing spinors, quasi-Killing spinors [Friedrich-Kim, 2000]. . .

So far, all spinors encountered are generalized Killing spinor with torsion
(gKST), i.e.

Vo =A(X) ¢
for some symmetric endomorphism A : TM® — T M.

n = 7: very similar

Outlook: n = 8 and Spin(7)-structures (work in progress — Konstantis) .



Application I: cone constructions
e How to construct Go-str. of any class on cones over SU(3)-manifolds?

Start with (M9, g,¢) with intrinsic torsion (S,n). Choose a function
h = hy +ihy : I — S' and define by

¢t = h(t)p := hi(t)p + ha(t)j(@)

a new family of SU(3)-structures on M?° depending on t € I.

Conformally rescale the metric by some function f : I — R, and consider
2
MP := (MP°, f(t)?g, ¢;). Intrinsic torsion of M} : (hTS, n).

Dfn. spin cone over M%: (M7, g) = (M° x I, f?(t)g + dt?) with spinor ¢;.

Exa. Suppose we want M7 to be a nearly parallel Gs-manifold:
need h'/h constant, so h(t) = exp(i(ct + d)), c,d € R.
Easiest: sine cone (M6 x (0,7),sin(t)2g + dt?, e/2¢) [Fernandez-Ivanov-

Mufioz-Ugarte, 2008; Stock, 2009]

e Similarly, we can construct (Gs-manifolds of any desired pure class
(construction really uses the spinor!).
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Application ll: eigenvalue estimates with skew torsion

(M,g): mnfd with G-structure and charact. connection V¢, torsion T,
assume VT = 0 (for exa., naturally reductive)

ID: Dirac operator of connection with torsion 7'/3 (generalizes Dolbeault op. of

Hermitian manifolds)

Generalized SL formula: [A-Friedrich, 2003]
1

1 1
2 2 2
D° = Ap+ —=Scal? +—||T||* — =1
g 4 o 8” H 4

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), A (2002)]

Split spin bundle into eigenspaces of 1', estimate action of 1" on each
subbundle =
Corollary (universal estimate). The first EV \ of [D? satisfies

1 1 1
A > JSeally, + S| TI? = max(ud, . 7).

min 4

where i1, ..., ug are the eigenvalues of T.



Universal estimate:
e follows from generalized SL formula
e does not yield Friedrich’s inequality for T" — 0

e optimal iff 4 a V%parallel spinor:

This sometimes happens on mnfds with Scal?. > 0!

—» Results:

[ deformation techniques: yield often estimates quadratic in Scal?, require
subtle case by case discussion, often restriced curvature range]

[A-Friedrich-Kassuba, 2008]

e twistor techniques: estimates always linear in Scal’, no curvature
restriction, rather universal, leads to a twistor eq. with torsion and sometimes
to a Killing eq. with torsion

[A-(Becker-Bender)-Kim, 2013]
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Twistors with torsion

m:TM ® XM — XM: Clifford multiplication
p = projection on kerm: p(X ® ) = X @y + > ;@ e; Xt
Ve VLY (= V%Y + 2sT(X,Y, —)
(s = 1/4 is the "standard” normalisation, V/* = char. conn.)
twistor operator: P® = po V?®
Fundamental relation: ||P5y||? 4+ L||D%y||* = | V5|
Y is called s-twistor spinor < ¢ € ker P° < V59 + %XD%& = 0.
A priori, not clear what the right value of s might be:
different scaling in V [s = 2| and P |s = ]!

Idea: Use possible improvements of an eigenvalue estimate as a guide to
the ‘right’ twistor spinor
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Thm (twistor integral formula). Any spinor ¢ satisfies

2 s 112 n 2
dM = P dM Scal? dM
| w0 [ iPrelrar + s [ st
+ 2 [elran - 2= [ (1%, g
8(n — 3)? 4(n—3)2% Ju ’ ’
Wheres:Ll(Z—__lg).

Thm (twistor estimate). The first EV X of [D? satisfies (n > 3)

n n(n —5) n(n — 4)
A > Scal? T||? L
— 4(TL— 1) ca m1n+ 8(’]1 ) H || 4(’]1—3)2 ma’X(:ula nukz)a
where 11, ..., ug are the eigenvalues of T', and "=" iff

e Scal? is constant,

n—1

® ¢ is a twistor spinor for s,, = (n=3)"

e ¢ lies in X, corresponding to the largest eigenvalue of T2, 20



e reduces to Friedrich's estimate for 7' — 0

e estimate is good for Scal? . dominant (compared to ||T]|?)

Ex. (M5, g) U(3)-mnfd of class W5 ("balanced”), Stab(T') abelian

Known: p = 0,4+/2||T

, no V¢-parallel spinors

_ _ 3 7
twistor estimate: A > -——Scal?. — —||T||?
10 min- 19

min

1 3
universal estimate: A\ > ZScalg —§||TH2

e better than anything obtained by deformation

On the other hand:

Ex. (M?,g) Sasaki: deformation technique yielded better estimates.



Twistor and Killing spinors with torsion

Thm (twistor eq). v is an s,-twistor spinor (P*") = 0) iff

c 1 _

Dfn. ¢ is a Killing spinor with torsion if V¢ = kX -9 for s,, = 4(7;”1—__13).

& Ve — [/45—1—2( (X AT = 0.

2(n — 3)

In particular:
e ) is a twistor spinor with torsion for the same value s,

e r satisfies a quadratic eq. linking it to curvature (but, in general, not
Einstein)

e Scal? = constant. 22



In general, this twistor equation cannot be reduced to a Killing equation.
.. with one exception: n =06

Thm. Assume 1) is a sg-twistor spinor for some p # 0. Then:

2
o ¢ is a ] eigenspinor with eigenvalue Py = 3 [,u - 4@} (8

e the twistor equation for sg is equivalent to the Killing equation V%Y =
AX -1 for the same value of s.

Ex. Manifolds with Killing spinors with torsion:
e Odd-dim. Heisenberg groups (naturally reductive!)

e Tanno deformations of arbitrary Einstein-Sasaki manifolds, for example
SO(n 4 2)/SO(n) (again naturally reductive!)

23



