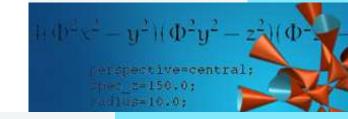


On the classification of naturally reductive homogeneous spaces in small dimensions

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg

Hamburg, September 2014

- joint work with Ana Ferreira and Thomas Friedrich -



Naturally reductive homogeneous spaces

Traditional approach: (M,g) a Riemannian mnfld, M=G/H s. t. G is a group of isometries acting transitively and effectively

Dfn. M = G/H is naturally reductive if \mathfrak{h} admits a reductive complement \mathfrak{m} in \mathfrak{g} s. t.

$$\langle [X,Y]_{\mathfrak{m}},Z\rangle + \langle Y,[X,Z]_{\mathfrak{m}}\rangle = 0 \text{ for all } X,Y,Z \in \mathfrak{m},$$
 (*)

where $\langle -, - \rangle$ denotes the inner product on $\mathfrak m$ induced from g. The PFB $G \to G/H$ induces a metric connection ∇ with torsion

$$T(X,Y,Z) := g(\nabla_X Y - \nabla_Y X - [X,Y],Z) = -\langle [X,Y]_{\mathfrak{m}},Z\rangle,$$

the so-called *canonical connection*. It always satisfies $\nabla T = \nabla \mathcal{R} = 0$.

Observations:

- If G/H is symmetric, then $[\mathfrak{m},\mathfrak{m}]\subset \mathfrak{h}$, hence T=0 and $\nabla=$ Levi-Civita connection ∇^g
- condition $(*) \Leftrightarrow T$ is a 3-form, i.e. $T \in \Lambda^3(M)$.

Conversely:

Thm. A Riemannian manifold equipped with a [regular] homogeneous structure, i. e. a metric connection ∇ with torsion T and curvature \mathcal{R} such that $\nabla \mathcal{R} = 0$ and $\nabla T = 0$, is locally isometric to a homogeneous space. [Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection ∇ with skew torsion (T is 3-form) such that $\nabla T = \nabla \mathcal{R} = 0$

→ generalisation of Riemannian symm. spaces (class. by Cartan)

However, a classification in all dimensions is impossible!

Main pb: $\not\exists$ invariant theory for $\Lambda^3(\mathbb{R}^n)$ under SO(n) for $n \geq 6$

- Use the recent progress on metric connections with [parallel] skew torsion
- Use torsion (instead of curvature) as basic geometric quantity, find a G-structure inducing the nat. red. structure

In this talk: General strategy, some general results, classification for $n \leq 6$

(Not in this talk: applications of the classification)

Set-up: (M,g) Riemannian mnfd, ∇ metric conn., ∇^g Levi-Civita conn.

$$T(X,Y,Z) = g(\nabla_X Y - \nabla_Y X - [X,Y], Z) \in \Lambda^3(M^n)$$
$$\nabla_X Y = \nabla_X^g Y + \frac{1}{2}T(X,Y,-)$$

(M,g,T) carries nat. red. homog. structure if $\nabla \mathcal{R}=0$ and $\nabla T=0$

Obviously:

nat.red.homog.
Riemannian mnfds

(homogeneous) Riemannian mnfds with parallel skew torsion

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.

$$S^{2n+1} = SO(2n+2)/SO(2n+1) = SU(n+1)/SU(n),$$

 $S^6 = G_2/SU(3), S^7 = Spin(7)/G_2, S^{15} = Spin(9)/Spin(7).$

But: If (M,g) is not loc. isometric to a sphere or a Lie group, then its admits at most one naturally reductive homogeneous structure. [Olmos-Reggiani, 2012]

Review of some classical results

- all isotropy irreducible homogeneous manifolds are naturally reductive
- the \pm -connections on any Lie group with a biinvariant metric are naturally reductive (and, by the way, flat) [Cartan-Schouten, 1926]
- construction / classification (under some assumptions) of left-invariant naturally reductive metrics on compact Lie groups [D'Atri-Ziller, 1979]
- All 6-dim. homog. nearly Kähler mnfds (w. r. t. their canonical almost Hermitian structure) are naturally reductive. These are precisely: $S^3 \times S^3$, \mathbb{CP}^3 , the flag manifold $F(1,2) = \mathrm{U}(3)/\mathrm{U}(1)^3$, and $S^6 = G_2/\mathrm{SU}(3)$.
- Known classifications:
- dimension 3 [Tricerri-Vanhecke, 1983], dimension 4 [Kowalski-Vanhecke, 1983], dimension 5 [Kowalski-Vanhecke, 1985]

These proceed by finding normal forms for the curvature operator, more details to follow later.

An important tool: the 4-form σ_T

Dfn. For any $T \in \Lambda^3(M)$, define $(e_1, \ldots, e_n \text{ a local ONF})$

$$\sigma_T := \frac{1}{2} \sum_{i=1}^n (e_i \, \lrcorner \, T) \wedge (e_i \, \lrcorner \, T) \quad (= 0 \text{ if } n \le 4)$$

[Exa: For
$$T=\alpha\,e_{123}+\beta\,e_{456}$$
, $\sigma_T=0$; for $T=(e_{12}+e_{34})e_5$, $\sigma_T=-e_{1234}$]

- ullet σ_T measures the 'degeneracy' of T and, if non degenerate, induces the geometric structure on M
- σ_T appears in many important relations:
 - * 1st Bianchi identity: ${}^{X,Y,Z}_{\mathfrak{S}}$ $\mathcal{R}(X,Y,Z,V) = \sigma_T(X,Y,Z,V)$
 - * $T^2 = -2\sigma_T + ||T||^2$ in the Clifford algebra
 - * If $\nabla T = 0$: $dT = 2\sigma_T$ and $\nabla^g T = \frac{1}{2}\sigma_T$

σ_T and the Nomizu construction

Idea: for M = G/H, reconstruct \mathfrak{g} from \mathfrak{h} , T, \mathcal{R} and $V \cong T_xM$

Set-up: \mathfrak{h} a real Lie algebra, V a real f.d. \mathfrak{h} -module with \mathfrak{h} -invariant pos. def. scalar product \langle,\rangle , i.e. $\mathfrak{h}\subset\mathfrak{so}(V)\cong\Lambda^2V$

 $\mathcal{R}:\Lambda^2V o\mathfrak{h}$ an \mathfrak{h} -equivariant map, $T\in(\Lambda^3V)^{\mathfrak{h}}$ an \mathfrak{h} -invariant 3-form,

Define a Lie algebra structure on $\mathfrak{g} := \mathfrak{h} \oplus V$ by $(A, B \in \mathfrak{h}, X, Y \in V)$:

$$[A + X, B + Y] := ([A, B]_{\mathfrak{h}} - \mathcal{R}(X, Y)) + (AY - BX - T(X, Y))$$

Jacobi identity for $\mathfrak{g} \Leftrightarrow$

•
$$\mathcal{E}^{X,Y,Z}$$
 $\mathcal{R}(X,Y,Z,V) = \sigma_T(X,Y,Z,V)$ (1st Bianchi condition)

•
$$\mathfrak{S}^{X,Y,Z}$$
 $\mathcal{R}(T(X,Y),Z)=0$ (2nd Bianchi condition)

Observation: If (M, g, T) satisfies $\nabla T = 0$, then $\mathcal{R} : \Lambda^2(M) \to \Lambda^2(M)$ is symmetric (as in the Riemannian case).

Consider $C(V) := C(V, -\langle , \rangle)$: Clifford algebra, (recall: $T^2 = -2\sigma_T + ||T||^2$)

Thm. If $\mathcal{R}: \Lambda^2 V \to \mathfrak{h} \subset \Lambda^2 V$ is symmetric, the first Bianchi condition is equivalent to $T^2 + \mathcal{R} \in \mathbb{R} \subset \mathcal{C}(V)$ ($\Leftrightarrow 2\sigma_T = \mathcal{R} \subset \mathcal{C}(V)$), and the second Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant); crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A, '03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one condition!

Splitting theorems

Dfn. For T 3-form, define

introduced in AFr, 2004]

- kernel: $\ker T = \{X \in TM \mid X \rfloor T = 0\}$
- Lie algebra generated by its image: $\mathfrak{g}_T := \operatorname{Lie}\langle X \,\lrcorner\, T \,|\, X \in V \rangle$ \mathfrak{g}_T is *not* related in any obvious way to the isotropy algebra of T!

Thm 1. Let (M, g, T) be a c.s.c. Riemannian mfld with parallel skew torsion T. Then $\ker T$ and $(\ker T)^{\perp}$ are ∇ -parallel and ∇^g -parallel integrable distributions, M is a Riemannian product s.t.

$$(M, g, T) = (M_1, g_1, T_1 = 0) \times (M_2, g_2, T_2), \text{ ker } T_2 = \{0\}$$

Thm 2. Let (M,g,T) be a c.s.c. Riemannian mfld with parallel skew torsion T s.t. $\sigma_T=0$, $TM=\mathcal{T}_1\oplus\ldots\oplus\mathcal{T}_q$ the decomposition of TM in \mathfrak{g}_T -irreducible, ∇ -par. distributions. Then all \mathcal{T}_i are ∇^g -par. and integrable, M is a Riemannian product, and the torsion T splits accordingly

$$(M,g,T) = (M_1,g_1,T_1) \times \ldots \times (M_q,g_q,T_q)$$

A structure theorem for vanishing σ_T

Thm. Let (M^n,g) be an *irreducible*, c.s.c. Riemannian mnfld with parallel skew torsion $T \neq 0$ s.t. $\sigma_T = 0$, $n \geq 5$. Then M^n is a simple compact Lie group with biinvariant metric or its dual noncompact symmetric space.

Key ideas: $\sigma_T = 0 \Rightarrow$ Nomizu construction yields Lie algebra structure on TM

use \mathfrak{g}_T ; use a Skew Holonomy Theorem by Olmos-Reggiani (2012), based on A-Fr (2004), to show that G_T is simple and acts on TM by its adjoint rep.

prove that $\mathfrak{g}_T=\mathfrak{iso}(T)=\mathfrak{hol}^g$, hence acts irreducibly on TM, hence M is an irred. symmetric space by Berger's Thm

Exa. Fix $T \in \Lambda^3(\mathbb{R}^n)$ with constant coefficients s. t. $\sigma_T = 0$. Then the flat space (\mathbb{R}^n, g, T) is a reducible Riemannian mnfld with parallel skew torsion and $\sigma_T = 0 \to \text{assumption } M$ irreducible is crucial! (the Riemannian manifold is decomposable, but the torsion is not)

Classification of nat. red. spaces in n=3

[Tricerri-Vanhecke, 1983]

Then $\sigma_T = 0$, and the Nomizu construction can be applied directly to obtain in a few lines:

Thm. Let $(M^3, g, T \neq 0)$ be a 3-dim. c.s.c. Riemannian mnfld with a naturally reductive structure. Then (M^3, g) is one of the following:

- \mathbb{R}^3, S^3 or \mathbb{H}^3 ;
- isometric to one of the following Lie groups with a suitable left-invariant metric:

$$SU(2)$$
, $\widetilde{SL}(2,\mathbb{R})$, or the 3-dim. Heisenberg group H^3

N.B. A general classification of mnfds with par. skew torsion is meaninless – any 3-dim. volume form of a metric connection is parallel.

Proof: $T = \lambda \ e_{123}$; M is either Einstein (\rightarrow space form) or \mathfrak{hol}^{∇} is one-dim., i.e. $\mathfrak{hol}^{\nabla} = \mathbb{R} \cdot \Omega$ and $\mathcal{R} = \alpha \Omega \odot \Omega$.

By the Nomizu construction, e_1, e_2, e_3 , and Ω are a basis of $\mathfrak g$ with commutator relations

$$[e_1, e_2] = -\alpha \Omega - \lambda e_3 =: \tilde{\Omega}, \quad [e_1, e_3] = \lambda e_2, \quad [e_2, e_3] = -\lambda e_1,$$

 $[\Omega, e_1] = e_2, \quad [\Omega, e_2] = -e_1, \quad [\Omega, e_3] = 0.$

The 3-dimensional subspace $\mathfrak h$ spanned by e_1,e_2 , and $\tilde \Omega$ is a Lie subalgebra of $\mathfrak g$ that is transversal to the isotropy algebra $\mathfrak k$ (since $\lambda \neq 0$). Consequently, M^3 is a Lie group with a left invariant metric. One checks that $\mathfrak h$ has the commutator relations

$$[e_1, e_2] = \tilde{\Omega}, \quad [\tilde{\Omega}, e_1] = (\lambda^2 - \alpha)e_2, \quad [e_2, \tilde{\Omega}] = (\lambda^2 - \alpha)e_1.$$

For $\alpha = \lambda^2$, this is the 3-dimensional Heisenberg Lie algebra, otherwise it is $\mathfrak{su}(2)$ or $\mathfrak{sl}(2,\mathbb{R})$ depending on the sign of $\lambda^2 - \alpha$.

Classification of nat. red. spaces in n=4

Thm. $(M^4, g, T \neq 0)$ a c.s.c. Riem. 4-mnfld with parallel skew torsion. Then

- 1) V := *T is a ∇^g -parallel vector field.
- 2) $\operatorname{Hol}(\nabla^g) \subset \operatorname{SO}(3)$, hence M^4 is isometric to a product $N^3 \times \mathbb{R}$, where (N^3, g) is a 3-manifold with a parallel 3-form T.
- T has normal form $T=e_{123}$, so $\dim \ker T=1$ and 2) follows at once from our 1st splitting thm: but the existence of V explains directly & geometrically the result in a few lines.
- Thm shows that the next result does not rely on the curvature or the homogeneity

Since a R. product is is nat. red. iff both factors are nar. red., we conclude:

Cor. A 4-dim. naturally reductive Riemannian manifold with $T \neq 0$ is locally isometric to a Riemannian product $N^3 \times \mathbb{R}$, where N^3 is a 3-dimensional naturally reductive Riemannian manifold. [Kowalski-Vanhecke, 1983] ₁₂

Classification of nat. red. spaces in n=5

Assume $(M^5,g,T\neq 0)$ is Riemannian mnfd with parallel skew torsion

ullet \exists a local frame s.t (for constants $\lambda, arrho \in \mathbb{R}$)

$$T = -(\varrho e_{125} + \lambda e_{345}), \quad *T = -(\varrho e_{34} + \lambda e_{12}), \quad \sigma_T = \varrho \lambda e_{1234}$$

- Case A: $\sigma_T = 0 \ (\Leftrightarrow \varrho \lambda = 0)$: apply 2nd splitting thm, M^5 is then loc. a product $N^3 \times N^2$ (if nat. red., N^2 has constant Gaussian curvature)
- Case B: $\sigma_T \neq 0$, two subcases:
 - * Case B.1: $\lambda \neq \varrho$, $\operatorname{Iso}(T) = \operatorname{SO}(2) \times \operatorname{SO}(2)$
 - * Case B.2: $\lambda = \varrho$, $\operatorname{Iso}(T) = \operatorname{U}(2)$

Recall: Given a G-structure on (M,g), a characteristic connection is a metric connection with skew torsion preserving the G-structure (if existent, it's unique)

n=5: The induced contact structure

Case B: $\sigma_T \neq 0$

Dfn. A metric almost contact structure (φ, η) on (M^{2n+1}, g) is called $(N: Nijenhuis tensor, <math>F(X,Y) := g(X, \varphi Y))$

- ullet quasi-Sasakian if N=0 and dF=0
- α -Sasakian if N=0 and $d\eta=\alpha F$ (Sasaki: $\alpha=2$)

Thm. Let (M^5, g, T) be a Riemannian 5-mnfld with parallel skew torsion T such that $\sigma_T \neq 0$. Then M is a quasi-Sasakian manifold and ∇ is its characteristic connection.

The structure is α -Sasakian iff $\lambda=\varrho$ (case B.2), and it is Sasakian if $\lambda=\varrho=2$.

Construction: $V:=*\sigma_T\neq 0$ is a ∇ -parallel Killing vector field of constant length \equiv contact direction $\eta=e_5$ (up to normalisation) Check: $T=\eta\wedge d\eta$, define $F=-(e_{12}+e_{34})$, then prove that this

works.

n=5: Classification I

For $\lambda = \varrho$ (case B.2), no classification for parallel skew torsion is possible (many non-homogeneous Sasakian mnfds are known). But for

Case B.1: $\lambda \neq \varrho$

Thm. Let (M^5,g,T) be Riemannian 5-manifold with parallel skew torsion s.t. T has the normal form

$$T = -(\varrho e_{125} + \lambda e_{345}), \quad \varrho \lambda \neq 0 \text{ and } \varrho \neq \lambda.$$

Then $\nabla \mathcal{R} = 0$, i.e. M is locally naturally reductive, and the family of admissible torsion forms and curvature operators depends on 4 parameters.

[Use Clifford criterion to relate \mathcal{R} and σ_T]

Now one can apply the Nomizu construction to obtain the classification:

n=5: Classification II

Thm. A c. s. c. Riemannian 5-mnfld (M^5,g,T) with parallel skew torsion $T=-(\varrho e_{125}+\lambda e_{345})$ with $\varrho\lambda\neq0$ is isometric to one of the following naturally reductive homogeneous spaces:

If
$$\lambda \neq \varrho$$
 (B.1):

- a) The 5-dimensional Heisenberg group H^5 with a two-parameter family of left-invariant metrics,
- b) A manifold of type $(G_1 \times G_2)/\mathrm{SO}(2)$ where G_1 and G_2 are either $\mathrm{SU}(2)$, $\mathrm{SL}(2,\mathbb{R})$, or H^3 , but not both equal to H^3 with one parameter $r \in \mathbb{Q}$ classifying the embedding of $\mathrm{SO}(2)$ and a two-parameter family of homogeneous metrics.

If $\lambda = \varrho$ (B.2): One of the spaces above or SU(3)/SU(2) or SU(2,1)/SU(2) (the family of metrics depends on two parameters).

[Kowalski-Vanhecke, 1985]

Example: The (2n+1)-dimensional Heisenberg group

$$H^{2n+1} = \left\{ \begin{bmatrix} 1 & x^t & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}; \ x, y \in \mathbb{R}^n, z \in \mathbb{R} \right\} \cong \mathbb{R}^{2n+1}, \ \text{local coordinates} \\ x_1, \dots, x_n, y_1, \dots, y_n, z$$

• Metric: described by parameters $\lambda = (\lambda_1, \dots, \lambda_n)$, all $\lambda_i > 0$

$$g_{\lambda} = \sum_{i=1}^{n} \frac{1}{\lambda_i} (dx_i^2 + dy_i^2) + \left[dz - \sum_{j=1}^{n} x_j dy_j \right]^2$$

- Contact str.: $\eta = dz \sum_{i=1}^n x_i dy_i$, $F = -\sum_{i=1}^n \frac{1}{\lambda_i} dx_i \wedge dy_i$
- Characteristic connection ∇ : torsion: $T = \eta \wedge d\eta = -\sum_{i=1}^{\infty} \eta \wedge dx_i \wedge dy_i$
- Curvature: $\mathcal{R}=\sum_{i\leq j}^n\sqrt{\lambda_i\lambda_j}(dx_i\wedge dy_i)^2$ [read as symm. tensor product of 2-forms]

Now check that $\nabla T = \nabla \mathcal{R} = 0$.

The case n=6 I

Assume $\ker T = 0$ from beginning. Distinction $\sigma_T = 0$ is too crude.

* σ_T : a 2-form \equiv skew-symm. endomorphism, classify by its **rank!** (=0,2,4,6 / Case A, B, C, D)

Geometry: Can $*\sigma_T$ be interpreted as an almost complex structure?

Recall: $\Lambda^3(\mathbb{R}^6) \overset{\mathrm{SU}(3)}{=} W_1^{(2)} \oplus W_3^{(12)} \oplus W_4^{(6)}$: type of torsion $T \in \Lambda^3(\mathbb{R}^6)$ describes all almost hermitian mnfds with characteristic connection [Gray-Hervella, 1980; Friedrich-Ivanov, 2003]

Exa. On $S^3 \times S^3$, there exist 3-forms with the following subcases:

Type	$W_1 \oplus W_3$	W_1	$W_3 \oplus W_4$	
$\operatorname{rk}\left(*\sigma_{T}\right)$	6	6	2	0
iso(T)	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	T^2	$\mathfrak{so}(3) \times \mathfrak{so}(3)$

Case A: $\sigma_T = 0$

This covers, for example, torsions of form $\mu e_{123} + \nu e_{456}$. This is basically all by our 2nd splitting thm:

Thm. A c. s. c. Riemannian 6-mnfld with parallel skew torsion T s. t. $\sigma_T = 0$ and $\ker T = 0$ splits into two 3-dimensional manifolds with parallel skew torsion,

$$(M^6, g, T) = (N_1^3, g_1, T_1) \times (N_2^3, g_2, T_2)$$

Cor. Any 6-dim. nat. red. homog. space with $\sigma_T=0$ and $\ker T=0$ is locally isometric to a product of two 3-dimensional nat. red. homog. spaces.

The case n=6 II

Case B:
$$\operatorname{rk}(*\sigma_T) = 2$$

A priori, it is not possible to define an almost complex structure.

Thm. Let (M^6,g,T) be a 6-mnfd with parallel skew torsion s.t. $\ker T=0,\ \operatorname{rk}(*\sigma_T)=2.$ Then $\nabla \mathcal{R}=0$, i. e.M is nat. red., and there exist constants $a,b,c,\alpha,\beta\in\mathbb{R}$ s.t.

$$T = \alpha(e_{12} + e_{34}) \wedge e_5 + \beta(e_{12} - e_{34}) \wedge e_6$$

$$\mathcal{R} = a(e_{12} + e_{34})^2 + c(e_{12} + e_{34}) \odot (e_{12} - e_{34}) + b(e_{12} - e_{34})^2$$

with the relation $a + b = -(\alpha^2 + \beta^2)$.

Now perform Nomizu construction to conclude:

Thm. A c. s. c. Riemannian 6-mnfd with parallel skew torsion T and $\operatorname{rk}(*\sigma_T)=2$ is the product $G_1\times G_2$ of two Lie groups equipped with a family of left invariant metrics. G_1 and G_2 are either $S^3=\operatorname{SU}(2)$, $\widetilde{\operatorname{SL}}(2,\mathbb{R})$, or H^3 .

The case n=6 III

Case B:
$$\operatorname{rk}(*\sigma_T) = 4$$

Thm. For the torsion form of a metric connection with parallel skew torsion $(\ker T = 0)$, the case $\operatorname{rk}(*\sigma_T) = 4$ cannot occur.

[but: such forms exist if $\nabla T \neq 0$! – these results explain why a classification is possible without knowing the orbit class. of $\Lambda^3(\mathbb{R}^6)$ under SO(6)]

The case n=6 IV

Case C:
$$\operatorname{rk}(*\sigma_T) = 6$$

Thm. Such a 6-mnfd with parallel skew torsion admits an almost complex structure J of Gray-Hervella class $W_1 \oplus W_3$.

All three eigenvalues of $*\sigma_T$ are equal, hence $*\sigma_T$ is proportional to Ω , the fundamental form of J. It's either nearly Kähler (W_1) , or it is naturally reductive and $\mathfrak{hol}^{\nabla} = \mathfrak{so}(3)$.

N.B. If class W_1 (M^6 nearly Kähler mnfd): the only homogeneous ones are $S^6, S^3 \times S^3, \mathbb{CP}^3, F(1,2)$. [Butruille, 2005]

It is not known whether there exist non-homogeneous nearly Kähler mnfds.

Again, we have an explicit formula for torsion and curvature, then perform the Nomizu construction (. . . and survive).

The case n=6 V

Final result of Nomizu construction:

Thm. A c. s. c. Riemannian 6-mnfd with parallel skew torsion T, $\operatorname{rk}(*\sigma_T) = 6$ and $\ker T = 0$ that is **not** isometric to a nearly Kähler manifold is one of the following Lie groups with a suitable family of left-invariant metrics:

- The nilpotent Lie group with Lie algebra $\mathbb{R}^3 \times \mathbb{R}^3$ with commutator $[(v_1,w_1),(v_2,w_2)]=(0,v_1\times v_2)$,
- ullet the direct or the semidirect product of S^3 with \mathbb{R}^3 ,
- the product $S^3 \times S^3$,
- ullet the Lie group $\mathrm{SL}(2,\mathbb{C})$, viewed as a real mnfld (with a deformed complex str.!)
- prove that manifold is indeed a Lie group,
- identify its abstract Lie algebra by degeneracy / EV of its Killing form,
- find 3-dim. subalgebra defining a 3-dim. quotient and prove that the 6-dim. Lie alg. is its isometry algebra;

for example, $\mathrm{SL}(2,\mathbb{C})$ appears because it's the isometry group of hyperbolic space \mathbb{H}^3

Homework. Identify the 6-dimensional Lie algebra $\mathfrak{g} := \mathfrak{h} \oplus \mathfrak{m}$, $\mathfrak{h} = \operatorname{span}(\Omega_1, \Omega_3, \Omega_5)$, $\mathfrak{m} := \operatorname{span}(e_2, e_4, e_6)$ defined by $(\alpha, \alpha', \beta \in \mathbb{R})$

$$[\Omega_1, \Omega_3] = (\alpha - 2\beta)\Omega_5, \quad [\Omega_1, \Omega_5] = (2\beta - \alpha)\Omega_3, \quad [\Omega_3, \Omega_5] = (\alpha - 2\beta)\Omega_1$$

$$[\Omega_1, e_4] = [e_2, \Omega_3] = (\alpha - 2\beta)e_6, \ [\Omega_1, e_6] = [e_2, \Omega_5] = (2\beta - \alpha)e_4,$$

$$[\Omega_3, e_6] = [e_4, \Omega_5] = (\alpha - 2\beta)e_2.$$

$$[e_2, e_4] = -\beta \Omega_5 - \alpha' e_6, \quad [e_2, e_6] = \beta \Omega_3 + \alpha' e_4, \quad [e_4, e_6] = -\beta \Omega_1 - \alpha' e_2.$$

and use it to deduce the previous theorem.

Hint: Prove first that \mathfrak{g} is not semisimple iff $\alpha = 2\beta$ or $4\beta(\alpha - 2\beta) = {\alpha'}^2$.

Example: $SL(2,\mathbb{C})$ viewed as a 6-dimensional real mnfd

- Write $\mathfrak{sl}(2,\mathbb{C}) = \mathfrak{su}(2) \oplus i \, \mathfrak{su}(2)$; Killing form $\beta(X,Y)$ is neg. def. on $\mathfrak{su}(2)$, pos. def.on $i \, \mathfrak{su}(2)$
- $M^6 = G/H = \mathrm{SL}(2,\mathbb{C}) \times \mathrm{SU}(2)/\mathrm{SU}(2)$ with $H = \mathrm{SU}(2)$ embedded diag (recall that $\mathfrak{hol}^{\nabla} = \mathfrak{so}(3)$; want that isotropy rep. = holonomy rep.)
- \mathfrak{m}_{α} red. compl. of \mathfrak{h} inside $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{su}(2)$ depending on $\alpha \in \mathbb{R} \{1\}$,

$$\mathfrak{h} = \{(B,B) : B \in \mathfrak{su}(2)\}, \quad \mathfrak{m}_{\alpha} := \{(A+\alpha B,B) : A \in i \mathfrak{su}(2), B \in \mathfrak{su}(2)\}.$$

Riemannian metric:

$$g_{\lambda}((A_1 + \alpha B_1, B_1), (A_2 + \alpha B_2, B_2)) := \beta(A_1, A_2) - \frac{1}{\lambda^2}\beta(B_1, B_2), \quad \lambda > 0$$

• In suitable ONB: almost hermitian str.: $\Omega := x_{12} + x_{34} + x_{56}$ with torsion

$$T = N + d\Omega \circ J = \left[2\lambda(1 - \alpha) + \frac{4}{\lambda(1 - \alpha)} \right] x_{135} + \frac{2}{\lambda(1 - \alpha)} [x_{146} + x_{236} + x_{245}].$$

- Curvature: has to be a map $\mathcal{R}: \Lambda^2(M^6) \to \mathfrak{hol}^{\nabla} \subset \mathfrak{so}(6)$, here: mainly projection on $\mathfrak{hol}^{\nabla} = \mathfrak{so}(3)$.
- $\nabla T = \nabla \mathcal{R} = 0$, i. e. naturally reductive for all α, λ ; type $W_1 \oplus W_3$ or W_3 25

The skew torsion holonomy theorem

Dfn. Let $0 \neq T \in \Lambda^3(V)$, \mathfrak{g}_T as before, $G_T \subset SO(n)$ its Lie group. Hence, $X \sqcup T \in \mathfrak{g}_T \subset \mathfrak{so}(V) \cong \Lambda^2(V) \ \forall \ X \in V.$ Then (G_T, V, T) is called a skew-torsion holonomy system (STHS). It is said to be

- *irreducible* if G_T acts irreducibly on V,
- transitive if G_T acts transitively on the unit sphere of V,
- and symmetric if T is G_T -invariant.

Recall: The only transitive sphere actions are:

SO(n) on $S^{n-1} \subset \mathbb{R}^n$, SU(n) on $S^{2n-1} \subset \mathbb{C}^n$, Sp(n) on $S^{4n-1} \subset \mathbb{H}^n$, G_2 on S^6 , $\operatorname{Spin}(7)$ on S^7 , $\operatorname{Spin}(9)$ on S^{15} . [Montgomery-Samelson, 1943]

Thm (STHT). Let (G_T, V, T) be an irreducible STHS. If it is transitive, $G_T = SO(n)$. If it is not transitive, it is symmetric, and

- V is a simple Lie algebra of rank ≥ 2 w.r.t. the bracket [X,Y]=T(X,Y), and G_T acts on V by its adjoint representation,
- T is unique up to a scalar multiple.

[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013] 26