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Strong and Weak Approximation Methods for
Stochastic Differential Equations — Some Recent
Developments

Andreas RoRler

Abstract Some efficient stochastic Runge—Kutta (SRK) methods fosttang as
well as for the weak approximation of solutions of stoclasliferential equa-
tions (SDEs) with improved computational complexity aresidered. Their con-
vergence is analyzed by a concise colored rooted tree agpfoaboth, Itd as well
as Stratonovich SDEs. Further, order conditions for théfioients of order 1.0 and
1.5 strong SRK methods as well as for order 2.0 weak SRK methmzlgiven. As
the main novelty, the computational complexity of the preed order 1.0 strong
SRK method and the order 2.0 weak SRK method depends onbrlinen the di-
mension of the driving Wiener process. This is a significartriovement compared
to well known methods where the computational complexifyetels quadratically
on the dimension of the Wiener process.

1 Approximation of Solutions of Stochastic Differential
Equations

Let (Q,.#,P) be a complete probability space with a filtratiGg )i>o fulfilling
the usual conditions and le¥ = [tp, T] for some 0<tp < T < . We denote by
X = (X )te.~ the solution of thel-dimensional SDE system

t moot _
X =X+ [ alsX)ds+ Y [ bl(sXe) <] @
to =1/t
with anm-dimensional driving Wiener procedt )i>o = (W, ..., W™ T )i=o w.rt.

(Z1)i=0 ford,m> 1 andt € .#. We writexdWd = dW¢ in the case of an Itd stochas-
tic integral and«dW¢ = odW¢ for a Stratonovich stochastic integral. Suppose that
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a:.# xRY - RYandb: .7 x RY — RI*™ gre continuous functions which fulffill
a global Lipschitz condition and denote by the jth column of thed x m-matrix
functionb = (b)) for j = 1,...,m. Let %, € L?(Q) be the.,-measurable ini-
tial value. In the following, we suppose that the conditiafighe Existence and
Unigueness Theorem (cf., e.g., Kloeden and Platen (1989juHilled for SDE (1)
and we denote by - || the Euclidean norm. Legs(RY,R) denote the space of all
g C'(RY,R) with polynomial growth, see e.g. Kloeden and Platen (199®ler
(2006,2009) for details. Thembelongs taCK' (.7 x RY,R) if g e CK!(.# x RY,R)
andg(t,-) € C5(RY,R) is fulfilled uniformly int € .#.

For the numerical approximation let a discretizatigh = {to,t1,...,tn} with
to <ty <...<ty=T of the time interval.# with step sized, = t,,1 —t, for
n=0,1,...,N—1 be given. Further, lelh = maxp<n<«nhn denote the maximum
step size. If one is interested in a good pathwise approiomatf the solution of
SDE (1), then strong approximation methods convergingémtiean—square sense
are applied. Note that mean—square convergence impl@systonvergence.

Definition 1. A sequence of approximation proces¥8s- (Y (t))te.s, cOnvergesin
the mean—square sense with orgdo the solutionX of SDE (1) at timeT if there
exists a constar@ > 0 and somey > 0 such that for each €]0, &

(E(|Xr =Y"(T)[?)2 < ChP. @)
However, if one is interested in the approximation of sonstritiutional character-
istics of the solution of SDE (1), then weak approximatiortimels are applied.

Definition 2. A sequence of approximation procesd@s= (Y (t))ic.;, converges
in the weak sense with ordgrto the solutionX of SDE (1) at timeT if for each

fe c,i(p“) (RYR) exists a constai@; and somey > 0 such that for each< |0, &)

|E(f(Xr)) — E(F(Y"(T)))] < CrhP. (3)

2 A General Class of Stochastic Runge—Kutta Methods

For the approximation of the solutiofiof SDE (1) we consider the universal class
of stochastic Runge—Kutta (SRK) methods introduced inl&4R006): Let # be

an arbitrary finite set of multi-indices witk = |.#| elements, Iee,(k)(h) € L?(Q)
for 1 € .# and 0< k < m be some suitable random variables. Further, define
bO(t,x) := a(t,x). Then, ars-stages SRK method is given dy= X, and

s m
3 3 3 AT (e ) @

forn=0,1,...,N—1withY, =Y(ty), tn € .#,, and with stages
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V) _ V), (10:(1) (1) (1)
i —Yn+JZ“;uEZ%Z” b(tn+cj et )

fori=1,...,sandv € .#Z. Here, let 0= .# and letfori,j=1,...,s

K), K),(v) | (k ), W),0,(1) q
Zi( ),(v) _ z yi(l) 91( )(hn), Zi(jV) (0 _ Z Cl(jl) 9{( )(hn)
reH el
1y (V),(0,(k)

. (0) .. (1K) (v)
with 6, (hn) = hy, and the coefficients; ,Cij € R of the SRK
method. In the following, we use the notatiaff- (V) = (zi(k)’(v))lgigs € RS and
ZWH k) = (M), € RS, The vector of weights can be defined by

(©) (V)0
|j e (5)

withe= (1,...,1)T ¢ RS. If Cl(j')(v) O =0 for j >ithen (4) is called an explicit

SRK method, otherwise it is called implicit. We assume thatftandom variables
6,(") (h) satisfy the moment condition

m
E( rL((el(lk)(h))p‘I (8% (n))PE)) = O (WP RSP P2) ()
k=

for all p}‘ € Ng, k=0,1,....m, and; € .#, 1 <i < k. Further, we assume
that in the case of an implicit method each random variabfebmexpressed as
6%Mn) =h-98% and ¥ (h) = vh- 8%, 1 <k < m, for 1 € .# with suitable
bounded random variablﬁ(o),ﬁ,(k) € L?(Q) such that each stage can be solved

W.r.t. Hi(") for sufficiently smallh. These conditions are not necessary in the case of
explicit SRK methods (see also Rof3ler (2006) or Milsteid @retyakov (2004)).

3 Colored Rooted Tree Analysis

In the following, we present a concise rooted tree analymishfe convergence of
the general class of SRK methods (4). For simplicity, werigsbur investigations
without loss of generality to the autonomous SDE (1) in teigtion. We denote by

T Sthe set of all stochastic trees, see also RoRler (2004)2@hich have a root
1,=[] and which can furthermore be composed of deterministic nogle- @

and stochastic nodes = O j with somej € {1,...,m}. The index| is associated
with the jth component of therdimensional driving Wiener process of the consid-
ered SDE. Some examples of treeJ iBare presented in Fig. 1. Ldft) denote the
number of deterministic nodes and lets(t) denote the number of stochastic nodes
1 with j € {1,...,m} of the treet € TS The orderp(t) of the treet € T Sis defined
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i3 ja
i2 i3 ia
i2
t = j1 ty = t = i tv = i1 i
i1

Fig. 1 Four elements of Swith somejs, j2, j3, ja € {1,...,m}.

asp(1y) =0andp(t) =d(t)+ %s(t). As an example, for the trees in Fig. 1 we have
p(t) =p(tn) =p(tv) =2andp(t ) = 2.5.

Every tree can be written by a combination of bracketsj If. ., tx are colored
subtrees then we denote fy, ..., ty]; the tree in whichy, ..., tx are each joined by
a single branch to the nodg for somej € {y,0,1,...,m}. Therefore proceeding
recursively, for the trees in Fig. 1 we obtain= [[To, Tj,]j, ]y, th = [[[Ti3> Tis) o) is) v
t = [To, [To] ]y andtiv = [[Tjq]jy, [Tja)jo)y-

Next, we assign to each trée T San elementary differential which is defined
recursively byF (1) (x) = f(x), F(1;)(x) = bl (x) and

(k) =
F = { (000 Fm00. Fl) fort=fo.tdy
b () - (F(t) (%), ., F(t) () fort=[ts,..., tl;

for j € {0,1,...,m}. Here f¥ and bi® define a symmetri&-linear differential
operator, and one can choose the sequence of subfreesty in an arbitrary order.

Finally, we assign to every tree a multiple stochastic iraed-et (Z )i>t, be a
progressively measurable stochastic process. Then, weedefit € T Sthe corre-
sponding multiple stochastic integral recursively by

rllt'tot ift:[tl,...,tk]y
/r!h,,toys*dvvsi)[z.] if t = [ts,....tj, j € {0,1,....m}
0|

Jig i

(8)

lttpt[Z

with *d\NO ds, |1—J Iot[ ] jt ZS*GVVS, |Tyt0t[ ] Zs, Ittot = |tt0t[ ] provided
that the stochastlc integral eX|sts and by using the natatio

// / *dW]l*dWJZ *dWJn)[ 1= dzedn [Z 0t
to Jto to

9)
—// Zsl >kd\N'1>kd\NJ2 *d\Nan”
to Jto

in (8). The product of two stochastic integrals can be wmits a sum (cf., e.g.,
Kloeden and Platen (1999))
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t .ot . t
| Xs * WV | Ys * AW =/t Xs¥s Lii—j 200} dS
° t s ’ ) '0 t (10)
Xs ([ Y M)+ Wi + (/Xu*d\N) Y + AW
o Jto

to fo

for 0 <i, j < m, where the first summand on the right hand side appears ottgin
case of Itd calculus. E.g., we calculate fpandt,

lty:t0.4 [1] / Itoit0.5 17, o, sdW1[1] = 1(0,i2,i0) [Ltot +1(j2,0,j1)[Lltot »

|t|| tot / /t ITJ3t0u|TJ4tou*d\NJZ >kd\/\/11
0
= Nig.iaizin) Lot + Via.is.ioin) Lot +10,i5,0) [L{ja=jar0ns0} o1
where the last summand fay, 1, +[1] only appears in the case of Itd calculus.

Table 1: All trees € TSof orderp(t) < 1.5 with j1,j2,j3 € {1,...,m}
arbitrarily eligible.

[t ] tree | ltt.t | o(t) lp(t)]
to1 Ty 1 1 0
t0,571 [le]y I(jl) [1]t0,t 1 0.5
tin| [Ty o) [Lo. 1 1
tiz | [T Tioly (iz.i2) (ot + 1.1 [Ltor S R
+lo [1{11 Jz/\*#}]tot
t13 [[Tio)ialy L0 [1to 1 1 1
tisa| [[TjiJoly (110)[1]tot 1 15
tisz| [[Tolj,ly L0, [Ltort 1 15
{153 [T07TJ'1]V 0 ,j1) [1] t"’l (j1,0) mto, 1 15
t15.4{[Tjs, Tiz: Tisly 11,12 ia) mtot 1 (j1.j3.2) (L. I+ 1j=jorisy | 15
iz, 13)[ Ltor +1 (i2:J3:01) (Lo, +1{J1:J3¢J'2}
Tjjn. 12)[ Lot +1 (i)J2,01) (Lo TL{j=ja#in}
+(l (j1,0 (L. o,y [ }tot)l{Jz janstol |19 Liji=jo=ja}

)

(12,0 [Ltot +1(0,j) [Lto.t) L j=jansrto}
+((15.0)[Htot +1(0,i)[Lto.t) L jy=jorie}
tiss| [[Tisljrs Tisly Lizjain) [Htot +1(ia,52.51) [Lot 1 15
_H(iz,ll i3) [t + I(0J1 [1{J2 J3/\*750}]t0=t

H(12.0) [L{j1=jarso} ot

tiss| [Tias Tislialy (a.d2.10) (Lot + 112, ja.52) Lo I+ 1(,=js |19
(0,0 [ j2=jansot o
t157| [[[Tialjolialy |(i.p.00) Lt 1 1.5

Lett € TSwith t = [t1,...,t1, 12, o e b T = [U1 052, t”k}J, j €
{y,0,1,...,m}, wherety,...,ty are distinct subtrees with muItipIiC|t|en‘17
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respectively. Then the symmetry factwiis recursively defined by (t;) = 1 and

k

a(t)= uni! o(t)"m. (11)

For the trees in Fig. 1, we obtam(t|) = o(t; ) = 1. For the tred;, we have to
consider two cases: i # j4 we haveo(t; ) = 1. However, in the case g§ = ja4
we have some symmetry and thus we calcutat ) = 2. Further, for tre¢)y we
geta(tiy) =2if jy = jpandjz3 = jsando(tyy ) = 1 otherwise. E.g., all trees up to
order 1.5 and the corresponding multiple integrals aregortesl in Tab. 1.

Next, we define the coefficient functiahs which assigns to every tree an ele-
mentary weight. For evertye T Sthe function®s is defined by®s(1,) = 1 and

k
st it =[ta, ...ty
Ps(t) =4 '

o (12)
S 2 rlwW)(ti) if t=[ts,...,t]j, j € {0,1,...,m}
veH i=

where ¢(V)(0) = e with the representatiom; = [0]; and for each subtree=
[t1,...,tg)i with somel € {0,1,...,m} we recursively define

q
w(t) = ZWOW) I t). (13)
ueZ// il:l

Heree= (1,...,1)T and the product of vectors in the definition®f") is defined by
component-wise multiplication, i.e. witfay, ..., an)(b1,...,bn) = (a1b,...,anbn).
In the following, we also write®s(t;t,t + h) = ®g(t) in order to emphasize the
dependency on the current time step with step kize

Now, the following local Taylor expansions can be proved: the solutionX
of SDE (1) and forp € 3N with f € C2P*2(RY R) anda, bl € C2P+Y(RY, RY) for
j=1,...,m, we obtain the expansion (see RoRler (2004,2010))

Ity t .
(%) = %S FO%) 5y T #otto) (14)
p(H<p

P-a.s. with remainder terd(t, to) provided all multiple It0 integrals exist. For the
approximation by the SRK method (4) and fgu € 2No with f € C?P*1(RY,R)
anda,bl € C?P(RY4,RY), j =1,...,m, we get the expansion (see RoRler (2006,2009))

®g(t;to,1)

o) + 25 (t,1o)

fY(t)) = tgs F(t)(Y(to)) (15)

pH<p

P-a.s. with remainder ter 4 (t, to).
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4 Order Conditions for Stochastic Runge—Kutta Methods

Using the colored rooted tree analysis, we obtain order itiond for the random
variables and the coefficients of the SRK method (4) if it iplegal to SDE (1).
The following results can be applied for the developmentRKSnethods for the
Itd as well as the Stratonovich version of SDE (1). First, se@sider conditions
for strong convergence with some ordqee %N due to RoRBler (2009). Therefore,
let TS denote the set of treesc T Swhich have only one ramification at the root
noderty, i.e. which are of typd]...];], for somej € {0,1,...,m}. The reason is,
that we are interested in the approximation<gfthus we have to chooséx) = x.
However, in this case all elementary differentials vanistept for the trees it S°.
For example, the treds,, t153, t154 andty 55 in Tab. 1 as well as the tregg and
tiv in Fig. 1 do not belong td@ S'. A comparison of the Taylor expansions (14) and
(15) results in the following two theorems.

Theorem 1.Let pe $Ngand abl € CIPI2P+1( 7 x RY RY) for j =1,...,m. Then,
the SRK method (4) has mean—square order of accuracy p ibthditions

a) forallte TS withp(t) < p
lerrn = Ps(t;t,t+h) P-a.s, (16)
b) for all t € TS with p(t) = p+ 3
E(lttt+n) = E(Ps(t;t,t +-h)), (17)
are fulfilled for arbitrary tt +h € .# and if (5) and (6) hold.

For the proof of Theorem 1 we refer to Roler (2009). Next,gie conditions
for the weak convergence of the SRK method (4) based on neES having also
multiple ramifications at the root node (see Theorem 6.4dRIB"(2006)).

Theorem 2.Let pe N and abi € CE™+%*"2(7 x R4 RY) for j = 1,...,m. Then
the SRK method (4) is of weak order p if foraét TS withp(t) < p+ % the order
conditions

E(lt+n) = E(Ps(tit,t +h)) (18)

are fulfilled for arbitrary tt+h € .#, provided that (5) and (6) apply and that the
approximation Y has uniformly bounded moments w.r.t. telrar N of steps.

For the proof of Theorem 2 we refer to RoRler (2006).

Remark 1The approximatior¥ by the SRK method (4) has uniformly bounded
moments if bounded random variables are used by the meth@), is fulfilled
and if EZ%")7e) = 0 for L< k < mandv € .# (see RoRler (2006) for details).
Further, Theorem 2 provides uniform weak convergence witleiqp in the case of

a non-random time discretizatioft,.
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5 Strong Approximation of SDEs

For higher order strong numerical approximation method$SEs, the simulation
of multiple stochastic integrals is necessary in genetaéréfore, fott,,th. 1 € S
and 1<i,j <mlet

thil i thel S i i
I(i).n: dwy, I(i,j),n: dwowy,
th th th

denote the multiple Itd stochastic integrals. For coneroe we write e.gl

li),n if Nis obvious from the context. The increments of the W|enecessl<|) n
are independeri (0, hy) distributed withhy = th 1 —tn. From (10) follows that
L0y = hnl(i) — l(i,0)- In the case of = j, formula (10) results it j = 2( o) —hp).

Further, let; ;) = 6(I() 3l(0)l(i))- In the following, the multiple integrals; o) can
be simulated by;; o) = 2hn( \[G) with some independeht(0, h,) distributed

random variableg; which are independent fromp;) for all 1 < j <m (cf, e.g.,
Kloeden and Platen (1999) or Milstein (1995)). Howeversithe exact distribution
and thus the exact simulation of the multiple stochastiegrlsl; ) for 1 <i, j <

m with i # j is not known, we substitute them in our numerical experimdyt
sufficiently exact and efficient approximations as receptyposed by Wiktorsson
(2001). Further, letpp, ps) with pp > ps denote the order of convergence of the
considered SRK scheme if it is applied to a deterministictoctsastic differential
equation, respectively.

5.1 Order 1.0 Strong SRK Methods

Firstly, we consider an efficient order 1.0 strong SRK metlooditd SDESs (1). Yet,
known derivative free order 1.0 strong approximation mdthsuffer from an inef-
ficiency in the case of am-dimensional driving Wiener process. For example, the
derivative free scheme (11.1.7) in Kloeden and Platen (L866ds one evaluation
of the drift coefficienta, howeverm+ 1 evaluations of each diffusion coefficient
bl, j=1,...,m, each step. Thus, the computational complexity grows Guiiaily
in m which is a significant drawback especially for high dimensioproblems.
Therefore, efficient SRK methods were firstly proposed iffleb(2009) where the
number of necessary evaluations of each drift and eachsibfficoefficient is inde-
pendent of the dimensian of the driving Wiener process.

For the multi-dimensional I1td SDE (1) withm > 1, the efficiens-stages order
1.0 strong SRK method due to RoRler (2009) is giverygs: X, and
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s
Ynr1=Yn+ Zl aja(ty + Ci(O)hn, Hi(O)) hn
" (19)

m s

£33 (B0 + B2 /) B (tn + ¢V, H)

k=1i=

forn=0,1,...,N— 1 with stages

B|<JO) bl (tn + C§1>hn, H (l)) |<|>

S
H® =Yo+ 3 AP alta+ ¢, H{”) o+ !
=1

3 ,LMB
7] '!‘Mw

J

S |
(k) 1) (0) 0 Dyl (1) )y 1k
H. _Y+§A-- th+c ’hy, H; h+§§B--bt+-hH-
I " =1 ! a(n CJ " ) " I=1j=1 ! (n CJ m )\/hn

(20)

fori=1,...,sandk=1,...,m. A modified version of the efficient SRK method (19)
suitable for Stratonovich SDEs can be found in Rofler (2008e SRK method
(19) can be characterized by its coefficients given by amelad Butcher tableau:

cOla®| B (22)
aT g7 |g@"

Here, the class of SRK methods (4) is applied with= {v : 0 < v <m} and

400 _ gy 200400 _ O, ZO®.00 _gOy
!
£90 g1 1+ B2 by, 20000 gD, 2000 _gnlix

, VR’
for 1 < k,I < mand all other coefficients in (4) are set equal to zero. Thuss, t
presented SRK method (19) belongs to the general classt{é)application of the

rooted tree analysis and Theorem 1 gives order conditions sipong order 1.0 for
the coefficients of the SRK method (19), see also RoRIerqr00

Theorem 3.Let abl € C12(.7 x RY,RY) for j = 1,...,m. If the coefficients of the
SRK method (19) fulfill the equations

1 aTe=1 2 BWle—1 3 B@Te—o
then the method attains order 0.5 for the strong approxiomatf the solution of

the 1 SDE (1). If abl € CY3(.# x R4, RY) for j = 1,...,m and if in addition the
equations

4. pWTBWe=0 5 p@TBWe—1 6. BT AYe=0
7. BT (BYg?=0 8 B (BYEYe) =0
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0 0

oo |o 1)1 0

000 |0 0 000 |0 0

0 0

oo |1 1)1 1

000 |10 110 |-10
1001 000% -3 $10/1000%-3

Table 2 Coefficients for the strong SRK schemes SRI1 of o(ded, 1.0) on the left hand side and
SRI2 of order(2.0,1.0) on the right hand side.

are fulfilled and if &) = Al)e for i = 0,1, then the SRK method (19) attains order
1.0 for the strong approximation of the solution of thie 8DE (1).

For the detailed proof of Theorem 3 we refer to RoRler (200%e Euler—
Maruyama scheme EM is the basic explicit order 0.5 strong S&t€me witls= 1
stagea; = Bil) =1 andBl(z) = A(ﬂ = Aﬁ = Bﬂ = Bﬁ = 0. As an example for
some explicit order 1.0 strong SRK schemes, the coefficigrasented in Tab. 2
define the ordef1.0,1.0) strong SRK scheme SRI1 and the or@20,1.0) strong
SRK scheme SRI2. As the main advantage, the scheme SRI1 oiee@valuation
of the drift coefficienta and only 3 evaluations of each diffusion coefficidst
j =1,...,m, each step. Thus, the number of evaluations of the drift affialstbn
coefficients is independent of the dimensiof the Wiener process.

5.2 Order 1.5 Strong SRK Methods for SDEswith Scalar Noise

In contrast to the multi-dimensional Wiener process cagghdn order 1.5 strong
approximation methods can be applied if the driving Wienecpss is scalar. E.g.,
order 1.5 strong SRK methods for Stratonovich SDEs with &st&iener process
have been proposed by Burrage and Burrage (1996,2000) g@nhiar hand, for 1td
SDEs with a scalar Wiener process order 1.5 strong SRK methade been pro-
posed by Kaneko (1995) and by Kloeden and Platen (1999). i#awihe scheme
due to Kaneko (1995) is not efficient because it needs 4 eiahsaof the drift
coefficienta, 12 evaluations of the diffusion coefficiemtind the simulation of two
independent normally distributed random variables fohesiep. On the other hand,
the scheme (11.2.1) in Kloeden and Platen (1999) due torPteieds 3 evaluations
of the drift coefficienta, 5 evaluations of the diffusiobn and also the simulation of
two independent normally distributed random variablefietep. In contrast to this,
we consider the order 1.5 strong SRK method for I1td SDEs ek computational
complexity proposed in RoRler (2009).

For the Itd SDE (1) withd > 1 andm = 1 the efficient order 1.5 strong SRK
method due to RoBler (2009) is defined¥gy= X, and
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Ynt1=Yn+ Zal tn+C( )hn, (>)hn

I I
_(2) , (3)1(1,0) (4)1(1L11) (DY
+ E +B| \/h_n+BI hn +B| hn )b(tn+c| ny Ul )
(22)
forn=0,1,...,N— 1 with stages

I
Yn+ZA a(ta+¢{”hn, H”) hn+ZB|J tn+c§1’hn,Hfl’)%:>
(23)

s
Yn+ZA| tn“rC hm O Z tn+C hnaHj(D)\/h_n

fori=1,...,s. Amore general version of the order 1.5 strong SRK methojif(#2
SDEs with diagonal noise and a simplified version for additioise can be found
in RoRler (2009). The SRK method (22) is characterized byBthtcher tableau:

(24)

For the SRK method (22) we choos# = {0,1} and we then define

| | |
©.0 _ o h 00 _gw,  pelen  selee e lewy
Z| aiNn, Z| B| (1) + B| \/h_n + B| hn + B| hn 5

I
0),(0),(0 0 0),(1),(1 0) (10

1),(0),(0 1 1),(1),(1 1
2O _ a7 0O _gh)

with all remaining coefficients in (4) defined equal to zerbefi, the SRK method
(22) is also covered by the class (4) of SRK methods. Thusane@pply Theorem 1
with p = 1.5 to obtain strong order 1.5 conditions, see RoRler (200)étails.

Theorem 4.Let ab e CY2(.7 x RY, RY). If the coefficients of the SRK method (22)
fulfill the equations

1 aTe=1 2 pWTe—1 3 B@Te—0

4. g®Te—0 5 B@ e

then the method attains order 0.5 for the strong approxioratif the solution of the
Itd SDE (1). If ab € C13(.# x RY,RY) and if in addition the equations
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0 0
313 3
43 2 11 0
o[o 0 00 LR 1 3
olooo |0 0 ojooo |0 0 O
0 0
1|1 1 11 1
414 2 414 2
1110 |-1 0 110 1 0
1 1 1 1 1 1
Hool |53 1 ool [2 -1}
12 4 2 4 1 112 4 2 4 1
353500-13 50-15-50 6639-13 501-330
4 2 5 2 4 2 5 2
2 ~3-30-23-31 2 —3-50-23 —351

Table 3 Strong SRK scheme SRI1W1 of ordg.0,1.5) on the left hand side and SRI2W1 of
order(3.0,1.5) on the right hand side.

6. pUTBWe—0 7. p@TBWe=1
8. p¥'BYe—0 9. BW BWe—0
are fulfilled and if ¢) = Al)e for i = 0,1, then the SRK method (22) attains order

1.0 for the strong approximation of the solution of thie ®DE (1) with scalar noise.
Ifa,b e C24(.7 x R4 RY) and if in addition the equations

10. aTA(O)e:% 15 @ Ale= _1 20 p@" (BWe)2 =2

11 a"B®e=1 16 A ADe=0 21 g BV (BYe) =0
12 aT<B<°>e>2:§ 17. 0T (BYe2 =1 22 g7 (BW(BWe)) =
13 BWTAWe=1 18 p@TBYWe2=0 23 O (BYBYe) =0
14 @ AYe—0 19 pOTBWe2=—_1 24 @ (BYBYe) =1

25 B (AVBOe) + 2B (AV(BCe) =0

are fulfilled and if 6) = A)e for i = 0,1, then the SRK method (22) attains order
1.5 for the strong approximation of the solution of thé 8DE (1) in the case of
scalar noise.

For a proof of Theorem 4 we refer to RoRler (2009). Coeffisdor the order 1.5
strong SRK schemes SRI1W1 of ordé0,1.5) and SRI2W1 of orde(3.0,1.5)
are given in Tab. 3. The SRK scheme SRI1W1 needs only 2 eiahsadf the
drift coefficient, 4 evaluations of the diffusion coeffictdmand the simulation of
two independent normally distributed random variablesfoch step. Note that the

explicit 2—stages SRK method (22) with coefficients= B” = p{? = Aéli =
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number of evaluatiorjsandom variablels
schemelordera| b [ 2 i 10| 1ap)
EM 05|d md — -
ML |1.0|d md md?
SPLI [ 1.0 [ d [(mP+m)d| -
SPLIW1| 1.5 |3d 5d —
SRI1 | 1.0|d 3md -
SRI1WY1 1.5 |2d 4d —

I+ [+ 1

+ 4|+ +|+ +

+ 1|+ |

Table 4 Computational complexity of some schemes per step fdr@dimensional SDE system
with am~dimensional Wiener processi& 1 for SPLIW1 and SRI1IW1).

By =1, p” = ~Landey = B, = AP = B = f° = p° =" = 3" =0

3

coincides with the order 1.0 strong scheme (11.1.3) in Kéoezhd Platen (1999).

5.3 Numerical Results

The presented efficient SRK methods are applied to some BiSs $ order to
analyze their performance. Let EM denote the order 0.5 gtEuler—Maruyama
scheme and let MIL denote the order 1.0 strong Milstein sehi@rMilstein (1995).
Further, the order 1.0 strong scheme (11.1.7) denoted at &MlLthe order 1.5
strong scheme (11.2.1) called SPLIW1 for It6 SDEs with acabise in Kloeden
and Platen (1999) are applied. As a measure for the compuoigdeffort, we take the
number of evaluations of the drift and diffusion coefficeeas well as the number
of realizations of (normally distributed) random variableeeded each step. If the
approximation method needs the random variabjgsfor 1 <i,j < mwithi # j,
thenl; ;) is simulated by the method due to Wiktorsson (2001) and we teesim-
ulate %m(mf 1) + 2mq independent normally distributed random variables each
step withq < [1/5m2(m— 1)/(2412) h~%/2] in the mean (see Wiktorsson (2001)),
provided that then random variable; are given. Thus, the additional computa-
tional effort increases with ord@(hfl/z) ash — 0. The computational complex-
ity is given in Tab. 4. E.g., the computational complexitytbé scheme MIL is
d+md+md +m+ %m(mf 1) + 2mqwhereas scheme SRI1 has only complex-
ity d+3md+ m+ %m(m— 1) +2mqeach step. Thus, the scheme SRI1 has lower
computational complexity than the Milstein scheme MIL ie ttase ofl > 2 and
m > 1 even if we neglect the effort for the calculation of the datives ofb! needed
by the Milstein scheme. Further, the scheme SRI1 has alserloamputational
complexity than the scheme SPLI1 due to Platen in the cadeof andm > 2.

We simulate 2000 trajectories and take the mean of the attarors afl =1
as an estimator for the expectation in (2). Then, we analyz@tean—square errors
versus the computational effort as well as versus the seepisiog—log—diagrams
with base two. We denote by.f the effective order of convergence which is the
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Id(error)
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Id(error)
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o

*-EM -+ -EM
_30 MIL —20f| = MIL
-o- SPLI o= SPLI
—35{{ - SPLIW1 =25 -+ SPLIW1
—=—SRI1 —=—SRI1
—40[| ——sRi1w1 ~30[| ——sRi1w1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Id(computational effort) Id(computational effort)

Fig. 2 Errors vs. effort for SDE (25) and SDE (26) with=m= 1.

Id(error)
Id(error)

-+-EM
-12 MIL -12 o MIL
—14y - SPLI -14 -e- SPLI
_16l|—=SRI1 _16 ——SRI1
6 8 1012 14 16 18 20 22 24 26 28 30 -16 -14 -12-10 -8 -6 -4 -2 0
ld(computational effort) Id(step size)

Fig. 3 Errors vs. effort for SDE (26) and errors vs. step sizes foE$26) withd = m= 10.

slope of the resulting line in the mean—square errors veffot diagrams. Consid-
ering the effective order may cause an order reduction swatran strong order 1.0
scheme attains the effective ordes = 2/3 ash — 0. This is due to the effort for
the simulation of the multiple integralg ;, which depends oh. Dotted order lines
with slope 0.5, 1.0, 2/3 and 1.5 are plotted as a referenearl®| a more efficient
method to simulate the multiple integras;, would result in a higher effective or-
der. However, compared to the Euler—-Maruyama scheme EMpijth= 0.5, there
is still a significantly improved convergence for the ordé€rrhethods. As a result of
this, the order 1.0 strong approximation methods are soip@rthe order 0.5 strong
Euler—-Maruyama scheme, which is also confirmed by the sioulaesults.
As the first example, consider fdr= m= 1 the nonlinear I1td SDE

2
d)g:-(%)) sin(xt)co§(xt)dt+%)co§(xt)dV\b X=1, (25

with solutionX; = arctar 1—10W +tan(Xp)) in Kloeden and Platen (1999). The results
forh=29,...,2716 are plotted on the left of Fig. 2. Scheme SRI1W1 has effective
order 1.5 and performs better than the other schemes duertmiiced complexity.
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In order to consider also a multi-dimensional Itd SDE wdtim > 1, we define
A € R%*Y as a matrix with entries\; = & if i # j andAj = —3 for 1<i,j <d.
Further, define8* € R9*? by BY = 15, for i # j andBf = ¢ for 1<i,j < d and
k=1,...,m. Then, we consider the Itd SDE

dX = AXdt+ 5 BX AW, Xo=(L,....1)T €RY, (26)
k=1

with solutionX = Xoexp((A— 3 3/, (B4)?)t + 3 BYWK). For the case ofl =
m= 1 the numerical results far=2°,...,216 are presented on the right of Fig. 2
where the scheme SRI1W1 has the best performance. On thdhati for the case
of d = m= 10 the effective and the strong orders are analyzet fer2°,... 215

in Fig. 3. Here, the schemes MIL, SPLI, and SRI1 have strodegrot.0 while the
Euler—-Maruyama scheme EM has order 1/2. Further, due tdftire fer the simula-
tion of the multiple integrals, all order 1.0 strong schemttain the effective order
2/3 and thus perform significantly better than the Euler—Mamg scheme EM
with effective order 1/2. The scheme SRI1 shows the besbpeagnce, especially
compared to the Milstein scheme MIL and the scheme SPLI.

6 Weak Approximation of SDEs

In contrast to strong approximation methods, we now comsigethods which are
designed for the approximation of distributional charesties of the solution of

SDEs. Numerical methods for the weak approximation do netriaformation

about the driving Wiener process, their random variables lma simulated on a
different probability space. Therefore, we can make usewéflom variables with
distributions which are easy to simulate. In the following make use of random
variables which are defined by

) %(L(k)li(l)_\/h_nl:(k)) if k<l
I(k,l): %(I(k)|(|)+\/h_n|(|)) if | <k 27
3(0%) —w) it k=1

for 1 < k,I < m with independent random variabll%ﬁ), 1< k< m, and random

variabled ), 1 <k <m-— 1, possessing the moments

0 forge {1,3,5} 0 forqe {1,3}
E() =< (@-1h¥? forqe {24} , E(if) =14 for q =2
oh¥?  forqg>6 o(h¥?) forg>4

(28)

Thus, only 2n— 1 independent random variables are needed for eachnstep
0,1,...,N— 1. For example, we can chookg as three point distributed random
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variables with Bf, = ++/3hy) = % and R}, = 0) = 4. The random variableig,,
can be defined by a two point distribution withiR) = ++/hn) = 3.

6.1 Order 2.0 Weak SRK Methods

We consider the class of efficient SRK methods introducedidl& (2009) for the
weak approximation of the solution of the 1td SDE (1) whére humber of stages

is independent of the dimensiomof the driving Wiener process. A similar class of
second order SRK methods for the Stratonovich version of @DEan be found in
RoRler (2007). For the Itd SDE (1) thedimensional SRK approximatiori with

Yn =Y (tn) for t, € 4, due to RoRBler (2009) is defined by = xp and

S
Ynr1=Yn+ Zl ajaty+ Ci(o)hn, Hi(o)) h,

S m s m
+3 3 BB G+ o H + 55 B G+l H)
i=1k=1 i=1k=1

vhn
Bi(4) b*(th + Ci< ?hn, ':|i<k))\/h—n
1

m

s m s
(3) (I
+ B 0 (th + 67 hn, H )T +

i= kgll " ! me “ i;k

forn=0,1,...,N— 1 with stage values

Mo
M3

Il
=

Es,I "Bt + ¢, HY) /Do

™Mo

Yn+ZA| tn+c )hn, ©) hn+

[%2]

109

B b (tn+ ¢ 'hn, HIY) N
n

Yn+ZA| tn+C hl’h )hn

+IM 3

=1

fori=1,...,sandk=1,...,m. In the case of a scalar driving Wiener process, i.e.
for m= 1, the SRK method (29) reduces to the SRK method proposed®ieR "
(2006). The coefficients of the SRK method (29) can be reptedéry an extended
Butcher array:
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Applying the rooted tree analysis and Theorem 2 with 2, we obtain order
two conditions for the SRK method (29) which were calculateRoRler (2009).

Theorem 5.Letd, b € C3%(.# xRY,R) for 1<i <d,1< j < m. If the coefficients
of the stochastic Runge—Kutta method (29) fulfill the eaunesti

1 aTe=1 2 BWe=0 3 B¥e=0
4. (BWTe2=1 5 p@'e=0 6. Y BYe=0
7. @ ARe—0 8 BOBPe—0 9o pW (BPe?2=0

then the method attains order 1 for the weak approximatiothefsolution of the
Itd SDE (1). Further, if 4b'l € C3%(.# x R4, R) for 1 <i<d,1< j<mandifin
addition the equations

10. a"APe=1 11 a"(B9e)? =1

12 (V' e)(a™BO¢) = 1 13 (BVTe)(B Y AYe) = 1
14, pOTA®e—0 15 g2 BWe—1

16. f@ BPe=1 17 (B )BT (BWe)?) = 1
18 (BV7e)(B®" (B®e)?) = § 19. gV (BY(BVe) =0

20. O (B (BYe)) =0 21 g7 (B®BY(BYVe)) =0
22 pWT (AL (BOg) =0 23 AT (A?(BOg) =0

24, BT (APe)2 =0 25 BAT(A@AOg) =0

26. a"(BO(BVe)) =0 27. BT ADe—0

28. BT (AVe)(BVe)) = 0 29 g7 ((APe)(B?e)) =0
30. @7 (A?(BOg)) =0 31 @7 (AY(BOe) =0

32 BT (BPe?2(APe) =0 33 @ (A2 (BOe)?) =0

34, @7 (AV(BOg)?2) =0 35 gWT(BY(AYe) =0

36. ¥ (B (AVe)) =0 37. @7 (BVe?2 =0

38 g4 (B®(BYe)) =0 39 @7 (BY(BYe) =0

40. BV (BWe) =0 41 g (BPe®=0

42 BT (BY(BWe?2) =0 43 " (B®(BYe)2) =0

44. T (BPe)* =0 45 @7 (B2 (BWe)2 =0

46. @7 (B®e)(B? (BYe))) =0 47. a7 ((Be)(BO (BWe))) =0
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a8. BT (AV(B®e))(BVe) =0 49 B (A® (B%%e))(B?e)) = 0
50. gV (AW (BO(BYe))) =0 51 BT (A@BO(BVe)) =0
52 B4 ((B?(AVe))(B?e)) =0 53 BT (BY(AD(BOe)) =0
54. 7 (B? (AL (BOe))) =0 55 T ((BVe)(BY(BYe))) =0
56. B3 ((B®e)(B?(BYe))) =0 57. VT BV (BY(BYe))) =0
58 B<4>T<<B<2>e><8<2><8<1><B<l>e>>>>=o 59 ' ((B2e)(B?(BYe)) =0

are fulfilled and if &) = Ale for i = 0,1,2, then the stochastic Runge—Kutta
method (29) attains order 2 for the weak approximation ofgbkution of the &
SDE (2).

Proof. We only give a sketch of the proof and refer to Rol3ler (2008)He detailed
proof. Calculating the order conditions by Theorem 2, ihtuout that there are some
trees which restrict the class of efficient SRK methods §icanitly and which give
a deep insight to the necessary structure of such methodsefbine, we concentrate
our investigation to the trees

t212=[Tjy, Tips [Tialjalys  t2a5=[[Tjo)js: [Tialjalys (30)

with somej, jo, j3,ja € {1,...,m}. Then, we haVé(tz,lz) = (t2715) = 5,p(t2712) =
p(t215) = 2 ands(tz12) = s(t2,15) = 4. Now, for the SRK method (29) we choose
A ={(0),(v),(v,0),(v,1):1<v<m}and

_(0),<0):ai hn zi(k)’(k’o) B +B '<kk> z|(k) (k1) _ B +B \/—
) 1 ’ 1 )

n

0),(0),(0 0 k,0),(0),(0 1 k,1),(0),(0 2
Zi(j)()()_Ai(j)h7 Z'(j )()()_Ai(j)hna Zi(j )()()_Ai(]_)hm

0),(k),(k,0 0)pr k,0),(k),(k,0 1 k,1),(1),(1,0 2|A‘
Zi<j)<)( )_Bi(j)l(k)’ Z'(j ), (K).( )_Bi(j) /hna Zi(j ),(D),( )_Bi(j) (kr:r)]’

for 1 < k| < mwith k1 and withH*? = H¥ andH®*Y =A™ for 1 < i, j <
s. Thus, the class of SRK methods is covered by the genera ¢#sThen, the
coefficient function (12) yields

(tz 12) (Z Jlo e+ Z(]l) (Jlal)Te)(Z(JZ) (12 O) e+ Z(jZ)v(ijl)Te)

X (Z JSO (]3 0),(ia):(ja; 0)e+ 2(13) (Jss 1) Z(j3vl)1(j4)v(j4vo)e>7

31
(t2 15) (Z Jlo (1170)7(12)7(1270>e+ Z(Jl)7(J171) Z(jlvl)v(jZ)V(ijO)e> ( )

x (219130 7(130)(1a) (140 g y Aia)(1a.) T Z(1s.1).((a)-(20)g)

)

for j1, 2,3, ja € {1,...,m}. Further, the multiple stochastic integrals are
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lto 1zt t+0 = Vi js iz nnerh T aisivianeeh T nisisianeeh T Naisis iz teeh
+1(0,j5.i2)tt+h L i1=1a) T 1 ia0,j0)tah L ii=is}] 1 (ia iz 0t tn Ljr=ia}]
Flsizisivnerh T aizivionerh T nisizisneeh T sisiz s teeh
FlogziattenLi=ia] Ta0iattrn =iz s 20t een L i=15)]
iz, 1., joitt+ht |(12,14 jnja)ttrh t I(J1,1'2,1'4 ja)itt+ht |(127J17J4 j3)itt+h
+1(0,ja, la)tt+h[1{ll Jz}]_H (J2,0,j3) tt+h[1{il=l4}] +| (i2,]4,0) tt+h[l{11 13}}
10 jzjvttrnL{o=jat) +Gp0dattrnLj=ja] +10.5052) tt+h[1{12 ja}]
a0 jvttrnLio=jst + niaote+h L= T 1Ga 00t e01{o= s}
Floottrh[Lj=ja1 Lja=jst) + '(070>:t7t+h[1{1'z=j3}1{J1=J4}]

and

Itz,15;t7t+h =g iz iz intt+h T s izis inttrh T ioiais inttrh T o iads)tt+h
st Yi=ia] T Ga0intrni=ist] 102000 ten L i=10)]
Fliminiatteh T aioin s tt+h T 100t t+h L {i=js} Lip=ia} ]
Flaio0ttrnia=ist + 1 inia0ittrn[Lji=jst] + 10,0 ja) L i=ia}] -

If we apply Theorem 2 td» 1, andt, 15, then we have to consider the cages- j,
andjx # ji for1 <k < <4.Inthe case of; = jo = j3 = j4 We obtaino(t12) =2
and E(Itz’lz;tﬁh) = h?. The order condition (18) yields that @s(tp12;t,t +h)) =
h? has to be fulfilled. Applying (31) and taking into account tiveler conditions
B@ e=0andB® e=0 due to the treefy s = [T}, ]y andtys.s = [T}, Tj,, Tialy
(see Roller (2009) for details) yields

E(@s(tz12)) = E(((B(”Tef () +B<2)Ter“‘%> (B el + B evh)?
< (BT BYel , v+ g2 BVe i1l Vi)
=BV e+ B e) (B(Z)TB(%) B8 (a2

Due to E(I l(jvin) = h?, the order condition is fulfilled if for the coefficients

holds (3" e+B Te2(B@TBWe) = 1. In the case of1 = j3 # j» = ja we
calculate witho(ty12) = 2 and Eltz,lz;t,tJrh) = 1h? from (18) the order condition
E(®s(t212;t,t+h)) = %hz. Then, we obtain for the SRK method (29)
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T ~ T i, T ~ T
E(®s(t212) = E((BY el(j,) + P e + (B el + B evh))

A T 0 T A T
X (B el + 2 e 22 4 (B el + B evh))
< (BBl L1z + BT BEevRlL))

T T T
=(BY e+ B3 (B B@e) E(i(j,)ij)(jpir) -

Now, we can calculate that(&j,)l(j,[(j,.j,)) = 3h?. Thus, the order condition is
fulfilled if (B0 e+ B3 e)2(B@ T BRe) = 1.

For t215, we calculate in the case ¢f = jo» = j3 = j4 with o(t215) = 2 and
E(lty,qt1+h) = 3h? from (18) the order condition @s(t215;t,t +h)) = $h?. Again,
applying (31) results in

T A T (i i
E(®s(tz15)) = E((BY BWel(;,vh+ @ B(l)e%\/ﬁf)

T T

= (B BYe)? E(P(jl))h+(ﬁ<2) BMe)? E(I,i)-

Now, due to Ei? ) =hand Ei?, ;) = 3h? the order condition i§(L T BWe)2 1
%(ﬁ@)TB(De)Z = 1. On the other hand, in the case pf= j3 # j2 = j4 with
0(t215) = 2 and Ely, 1 1+n) = 3h?, we get from (18) that Ebs(tz15:t,t +h)) =
%hz has to be fulfilled. Now, we obtain with (31) that

T N 1 T 0o
E(®s(t215) = E((B® BIZei(j,) 1342 1 ¥ BPevhliz)?)

T K22 =2 (2 -1 T 5(2) 02 =12
= (B'® BPe)2 E(if )17, 1, )h+ (B BPe2E(If, ).

Due to EIA(zl'l)IA(21'1~,l'2)) = h? and HIﬂz(il-,iz)
(B B@e)2+ 1(BWTB2e)2 = 1.
For all remaining cases of typg = j; or jkx # j) for L <k < | < 4, we have
E(lt,5tt+h) = E(lt,,5t1+n) = 0 and we also calculate that @s(t2 12;t,t +h)) =
E(®s(t2,15:1,t+h)) = 0. Therefore, (18) is fulfilled in these cases without any ad-
ditional restrictions for the coefficients. Applying theoted tree analysis and The-
orem 2 to all remaining rooted trees up to order 2.5, we catutate the complete
order two conditions for the SRK method (29), see RoR1ed920 O

)= %hz, we finally get the order condition

Remark 2In the case om= 1 and if we choos@\i(jz) =0for1<i,j <sthenthe
59 conditions of Theorem 5 reduce to 28 conditions (see afstieR (2006)). For
an explicit SRK method of type (29> 3 is needed due to conditions 4., 6. and
17. Further, in the case of commutative noise significanhpfified SRK methods
have been developed in RoRler (2004).

For example, the well known Euler-Maruyama scheme EM beddnghe intro-
duced class of SRK methods having weak order 1 withl stage and with coeffi-
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0 0
1)1 2 1|1 1
5125 35 5
| 142 144 -3 0 0|00 00
0 0
(1 1
il a p 11 1
(1 1
10 |-1o 110 [-10
0 0
0| 0 1 0|0 1
000 O -1 0 0|00 (-10
1 3 24 11 1 11 1 1
T 14 35| 1+ —1-101-1 55005 22053
T 1 _1lgl 1 “111]pl _1
2 4 4 2 2 2 4 4 2 2

Table 5 Weak SRK scheme RI5 of ordgp = 3 andps = 2 and RI6 of ordeipp = ps = 2.

cientsa; = Bfl) =1, 31(2) = [31(3) = 31(4) =0, A(lof = A<111) =0 andB<10) = Bgll) =0.

We refer to Debrabant and RoR3ler (2009) for a detailed aisabf the solution space
of the order conditions in Theorem 5 and for some coefficiamish minimize the
error constants of the SRK method (29). The SRK scheme REgepted on the left
hand side of Table 5, is of ordgis = 2 andpp = 3, while the SRK scheme RI6
on the right hand side of Table 5 is of ordgs = ps = 2. Considering the com-
putational complexity of the efficient SRK schemes RI5 an@, Rle take again the
number of evaluations of the drift and diffusion functiomsldhe number of random
numbers needed in each step as a measure for the complethigysthemes. Then,
the SRK scheme RI5 needs 3 evaluations of the dnifhile the SRK scheme RI6
needs 2 evaluations af Furthermore, we have to point out that only 5 evaluations
of each diffusion functiom for k= 1, ..., mare needed by both SRK schemes RI5
and RI6. This is due to the fact that the number of stages8 does not depend on
the dimensiomm of the driving Wiener process and becausdH&) = ﬁ(k), which
saves one evaluation of eabhin the case of explicit SRK schemes. As a further
feature, only Ph— 1 independent random numbers have to be generated for the new
SRK schemes in each step. Thus, the scheme RI6 has compatatamplexity

2d + 5md+ 2m— 1 while e.g. the order 2.0 weak SRK method PL1WM due to
Platen (see Kloeden and Platen (1999) or Tocino and VigoiakgdA002)) has com-
putational complexity &+ (2m? 4 m)d +m+ %m(m— 1) which grows quadratically
with the dimensiomm of the Wiener process. Thus, this is a significant reductfon o
complexity for the new SRK method (29) compared to well kn@&RK methods.

7 Numerical Results

We compare the schemes RI5 and RI6 with the order one EulemMema scheme
EM, with the order 2.0 weak SRK scheme PL1WM due to Platen Keeden



22 Andreas RoRler

and Platen (1999) or Tocino and Vigo-Aguiar (2002)) and with extrapolated
Euler-Maruyama scheme ExEu due to Talay and Tubaro (19&0hisig order two.
In the following, we approximate (& (X)) for f(x!,...,x%) = x! by Monte Carlo
simulation. Therefore, we estimaté¢ Y )) by the sample average bf indepen-
dently simulated realizations of the approximatid¥r k), k= 1,...,M, with Yr x
calculated by the scheme under consideration. The obtaimeds at timel = 1.0
are plotted versus the corresponding step sizes or thespmmeing computational
effort with double logarithmic scale in order to analyze #mepirical order of con-
vergence and the performance of the schemes, respectively.

The first test equation is a non-linear SDE systemdes m = 2 with non-
commutative noise given by

(3= (R (V07 B0k

+ (\/%(th)z — PO+ I ()7 + 2_10) M2,

V OR)2 =X+ X2+

(32)

with initial value Xo = (75, #5)7. Then, we calculate the first moments g8 =
Zsexp(t) for i = 1,2. Here, we choosk! = 10° and the corresponding results are
presented in Figure 4.

Next, we consider a non-linear SDE with non-commutativesacind some
higher dimensiom = 4 which is given forA, u € {0,1} as
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Fig. 4 Computational effort vs. error for the approximation @i&) for SDE (32) in the left and
for SDE (33) forA = u =0 withm= 2 in the right figure.

s B
3 5 -8
S-12r =]
-10
-14 Euler -12 Euler
&~ ExEu -4~ ExEu
“16 .- pLIWM 1 -14 -« PLIWM
—— RI6 —— RI6
-18 RIS 1 -16 RIS
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10
ld(computational effort) Id(computational effort)

with initial valueXo = (3, 4,1, 3)T. Then, we haven= 2+ 2A + 2y as the dimen-
sion of the driving Wiener process. The moments of the smiutian be calculated
as EX}) = fexp(2T) fori = 1,2,4 and EX$) = exp(2T). We compare the perfor-
mance of the considered schemes for the cases2 withA =y =0, form=4

with A =1 andu =0, and form=6 if A = u = 1. Here,M = 10® independent
trajectories are simulated and the results are presentédumes 4-5. On the right

Fig. 5 Computational effort vs. error for the approximation qp&) for SDE (33) forA = 1,
= 0withm= 4 in the left and foA = 1 = 1 with m= 6 in the right figure.

s s
5 8 g 8
= =2
-10r * -10
-12 Euler B -12 Euler
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3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11 12
Id(computational effort) Id(computational effort)

hand side in Figure 4 and in Figure 5, we can see the perforenainthe consid-
ered schemes as the dimensiorincreases from 2 to 6. Comparing these results,
we can see the significantly reduced complexity for the nel S€hemes RI5 and
RI6 compared to the well known SRK scheme PL1WM in the caga of2. This
benefit becomes more and more significant if we increase therdiionm of the
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driving Wiener process, which confirms our theoretical lsséror the considered
examples, we obtained very good results especially for Ri¢ &heme RI5 having
orderpp = 3 andps = 2.
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