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Abstract.

Givens’ transformation [1954] was originally applied to real matrices. We shall give
an extension to complex and quaternion valued matrices. We observe that the classical
Givens rotation in the real and in the complex case is itself a quaternion using an
isomorphism between certain (2 x 2) matrices and R* equipped with the quaternion
multiplication. In the real and complex case Givens’ (2 x 2) matrix is determined
uniquely up to an arbitrary (real or complex) factor o with |o| = 1. However, because
of the noncommutativity of quaternions we shall show that in the quaternion case such
a factor must obey certain additional restrictions. There are two numerical examples.

AMS subject classification: 12E15 65F25 65F30.
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1 Introduction.

The ordinary Givens transformation is an orthogonal, real (2 x 2) matrix

(1.1) G= (_z i)

(cf. GOLUB & VAN LOAN[2, p. 215]). For a given vector x = (z1,22)" € R*\{0},
the elements ¢ and s of G are chosen in such a way that G is orthogonal, i.e.
+s2=1,and

(1.2) G'x=u=wue; where e; =(1,00" € R® and wu € R\{0}.

If we set ¢ = cosa, s = sina and x = r(cosp,sing)T, then GTx = u =
r(cos(p+a),sin(p+a))t. Thus, we can see the rotational effect of G. Therefore,

G is also called a Givens rotation. In the literature (e. g. STOER[7, p. 252]) one
also finds instead of G the matrix

6=( o= =)

*Received November 2002. Communicated by Zdenek Strakos.
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which is called a Givens reflection. This form has the advantage that (?,' is
symmetric. But since, in general, s¢ — 5¢ # 0 for s, ¢ € C, the matrix G is
neither an orthogonal, nor a unitary matrix in a general complex case.

Our aim is to compute the matrix G in (1.1) in such a way that GT rotates
the given vector x € R?\{0} in the positive orientation into the vector u which is
positioned on the x; —axis, i.e. the rotation angle « lies in [0, w[. In the case that
x is already on the x; —axis, i.e. zo = 0, x will remain unchanged. If z; = 0,
i.e. the vector x is on the zy—axis, then we rotate the vector x = (0,22)7T into
the vector u = (—z2,0)T. Taking into account all these requirements, we have
to solve the following set of equations (||x|| # 0):

cxy —sras = u#0,
sx1+cxa = 0,

@(3)-(3). (2)-(7)

For the matrix G in (1.1), we obtain the following formulae (||x|| # 0):

(L.3) A +s?=1,

1 if 2o =0, zy  if my =0,

|2
14) s=-—,c= sgn T2 )x U=
(14) [|x]| _(sgnm)a else, —||x||sgnza else.

Let us remark that as a consequence of a € [0, 7] we have s > 0. If we do not
insist on positively oriented rotations and we prefer rotations a €] — 7/2,7/2]
(i.e. ¢ > 0), we have to modify the formulae (1.4) (cf. SCHWARZ[6, p. 291], for
the reflection case STOER[7, p. 253]):

1 if rK = 0, —I2 if 1 = 0,
_ =]

(1.5) s= (sgnz1)x2 c=1— u=

=== else, x| ||x|[sgnz;  else.

2 Givens’ transformation in the complex case.

In order that the Givens transformation G also works in the complex case
some changes are necessary'. In the first place we define

(2.1) G= (_ )

A complex matrix G is called unitary if G*G = I, where G* is formed from G
by transposition and complex conjugation of the elements and I is the identity
matrix. The matrix G in (2.1) will be unitary if and only if |s|?+|c|? = 1. Assume
throughout this section, that x € C?\{0} is a given vector. The requirement

(22) G*x=u=ue; where e; =(1,0T €C® and wu e C\{0}

1A short treatment of the Givens’ transformation in the complex case can be found in the
book of GREENBAUM[3, p. 40], the Householder transformation in the complex case is treated
in OPFER[5, p. 250].



GIVENS WITH QUATERNIONS 3

yields the equations corresponding to (1.3):

, cry — sty = u#0,
(1.3) sx1 +cxa = 0.

Because |s|? + |c¢|?> = 1, the second equation in (1.3') implies

T2 X1
(2.3) o = 122l = Il

11" x|

which yields the general solution of (1.3')

T2 T1

(2.4) s=—07—, ¢c=7v7—7, 6Y€C, |o=|y=1
[Ix||’ x> ’ ’

where the minus-sign in front of ¢ and the complex conjugations are taken for

later convenience. In case z;z2 = 0, we can put the solution of (1.3') into a

similar form:

sz—a|z—2|,c:0 ifxy =0,
2
(2.5) = u=olx|[, |o|=1
c= s=0 ifxy =0,
Tl

LEMMA 2.1. Let s,c be defined as in (2.4) and x1x2 # 0. Then, 5x1+¢xs =0
implies
(2.6) y=o0, u=o|x|]

PRrROOF. The given condition yields
1

HH EI

521 +Cxp = 1+ (=7 +7)z122 = 0. 0

With (2.4) and (2.6), all possible solutions of (2.2) are given. We shall use the
following notation (also in the quaternion case H = R*, to be treated later):

| =l

(2.7) sgnz = —, z€K\{0}, Ke{R,C, Hj}.

x

Consequently, zsgnx = |z|. There are two favorite options for the choice of o.
One can make s > 0 by choosing 0 = —§gnz; (in case z» # 0) which in the
real case corresponds to a rotational angle a € [0, [ or one can make ¢ > 0 by
choosing ¢ = sgnz; (in case z1 # 0) which in the real case corresponds to a
rotational angle a €] — 7/2,7/2]. The first option yields

_ |:U2| _ ]._ e lf $2 0, 1 2
(28) s=1—=,c=< _(sgnZ3)71

U=
||X||, IIx]] else, —||x|| sgnzz else,
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whereas the second option yields

1 ifxy =0, —x5 ifz; =0,
(29) s=<¢ (sgnZ)7

Il

CcC = —|:L.1| u =
else, x|’ [|x|lsgnzy  else.

Some more details with respect to these formulae are given in Section 4, see
(4.17), (4.18).

3 Short review on the algebra of quaternions.

Let H = R* be equipped with the ordinary vector space structure and with
an additional multiplicative operation H x H — H which most easily can be
defined by a multiplication table (see Table 3.1) for the four basis elements

(]‘707070)217 (07]‘7070):i7

(3.1)
(0’07150)=j7 (0707071)=k'

Table 3.1: Multiplication table for quaternions
1 i j k
11 i j k
i|i -1 k —j
ilji -k -1 i
k |k j —-i -1

An element z = (1, T2, T3, z4) € H has the representation

(3.2) z= 11+ mzi+z3j+ask = Rz + Vecz,

where x1, T2, 23,24 € R, Rz = 21 is the real part of x, Vecx = 221 + z3j + 14k
is the vector part of . We will identify the quaternion z = (z1,0,0,0) with
the real number z;, the quaternion z = (z1,z2,0,0) will be identified with the
complex number z; + izy. If we denote v = (3, 3,z4) € R® the vector part of
z then the quaternion x has the representation:

(3.3) r=(x1,v), 71 €R velR.

For z = ($1,$2,$3,$4) = (:L'lav) € HJ Yy = (y17y27y37y4) = (ylaw) € H it
follows that
zy = (T1y1 — T2y2 — T3Y3 — Tays) 1+ (T1y2 + T2y1 + T3ys — Tays) i+
+(@1y3 — T2ys + T3y1 + Tay2) j + (T1y4 + T2y3 — T3y2 + Tay1) K
= (p1y1 — VW, ZIW+ Y1V +V X W),

where -, x are the scalar, vector products in R?, respectively. Obviously, in
general, multiplication is not commutative here, but there are some classes of
quaternions for which the product commutes (for example if one of the factors
is real).
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Given z according to (3.2), the conjugate T of x is defined to be
(3.4) T = (21, T2, —T3,—24) = Rx — Vecz.
Let us note that conjugation obeys the rules
Ty =7 T, T=nu.

We define the absolute value of x by

(3.5) |z| = \/x%+x§+$§+zi.
We will use the following properties of |z|:
(3.6) o* =2eT =72, oyl = |yz| = |allyl.

The space H is a normed vector space over H, where the norm is introduced
in (3.5).
Let us remark, that for any = € H\{0} an inverse quaternion z~! is defined,
X

-1 _
(3.7 xT = PEk

Simple calculations give some more properties of operations on quaternions.
Let £ = (x1,%2,%3,24), ¥y = (y1,Y2,¥3,y1) € H be two quaternions. Then

2 = 23 — a3 — 23 — 2] + 221 (221 + 23§ + 24k) = 2(R2)7 — |27,
(Vecz)? = —a3 — 22— 123 =—|Vecz|?
(3.8) R(zy) = m1y1 — T2y2 — T3ys — Tays = R(y7).

Two quaternions x and y are called equivalent if y = a~'za, for some a € H\{0}.
Let us remark that z and y are equivalent if and only if Rz = Ry and |z| = |y|.
Let x = (z1,22,...,%,)" € H* and define

(3.9) 1] =

The space H" becomes a normed vector space over H with the norm defined
in (3.9). For x € H", we denote by x* the transpose of the entrywise conjugate
of x.

Let B € H™*™ be a matrix with quaternion entries. The matrix B represents
a linear mapping with respect to the multiplication from the right:

B(x+y) = Bx+By Vx,ye€H",
B(xh) = (Bx)h VxeH",VheH.

Let us note that for multiplication from the left we obtain

(B(hx)); = Z bjkhzy # hz bjrzr = (hBx);.
k k
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We define the conjugate transposition of the matrix B = (b;;) € H"*" as

B* = (b;;) € H"*™ . The square quaternion valued matrix B € H"*" is called
Hermitean if B = B*, and B is positive definite if it is Hermitean and

x*Bx>0 VxeH"\{0}.

A matrix B € H"*" is said to be unitary if B*B = 1.

THEOREM 3.1. A matriz B € H"*" is unitary if and only if |Bx|| = ||x|| for
all x € H".

PrOOF. Let B € H"*™ be unitary, x € H*. Then

(Bx)*"Bx = x*B*Bx = x"x, ie. |[Bx| = |x]-

To verify the converse, let us suppose that ||Bx|| = ||x|| for all x € H"* and B*B =

I+ A for a matrix A € H**™ . By assumption, x*(I+ A)x = x*x+x*Ax = x*x

which implies x*Ax = 0 for all x € H*, i.e. A =0 and B is unitary. O
DEFINITION 3.1. Let B € H™*". If there exist a vector x € H*\{0} and a

quaternion A € H such that

(3.10) Bx = x),

we call A an eigenvalue of B and x an eigenvector corresponding to .

Let us point out that in the above definition we have put A as a right factor
of x, i.e. A is the right eigenvalue of B. This coincides with the fact that B
represents a linear mapping with respect to multiplication from the right. In the
literature, e.g. ZHANG[9], the left eigenvalues and the left eigenvectors are also
defined, but these belong to a nonlinear theory.

The number of the eigenvalues of a quaternion valued matrix B € H™ " is,
in general, not finite. If X is an eigenvalue, one can easily show that the whole
equivalence class [A] consists of eigenvalues, where

Al = {:ua m= hil)‘ha h e H\{O}} :

We say that two eigenvalues A;, A2 are equivalent, denoted by Ay ~ Ag, if
they belong to the same equivalence class [A]. As in the real and complex case
one can show, that eigenvectors x;,x» which correspond to two non equivalent
eigenvalues A1, A2 are (right) linearly independent. Therefore, the number of
equivalence classes is at most n. If the eigenvalue X is real, then h=!\h = A for
any h € H\{0}, thus, [\] = A. It can be shown, that in [A] there is exactly one
complex number with non negative real part. More precisely, one can show, that
two quaternions \j, Ap are equivalent if and only if ®A\; = R\ and || = [Az].
Thus, A = (I1,ls,15,14) and X = (I, /IZ + 12 +12,0,0)) are equivalent and \is
complex with non negative imaginary part and apparently the only equivalent
quaternion with these properties.

The existence of a Schur canonical form guarantees the existence of n eigen-
values for any square quaternion matrix where the eigenvalues are either real or
complex with positive imaginary part. Other canonical forms which are known
to exist for quaternion valued matrices could do the same purpose. See ZHANG[9]
for an overview.
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THEOREM 3.2. Let A € H**" be Hermitean. Then A has only real eigenval-
ues and their number is n.

PROOF. Let x # 0, Ax = x\. Then x*Ax = ||x||?)\. Since x*A* = A\x*, we
obtain x*A*x = x*Ax = ||x||?), i.e. Aisreal. O

THEOREM 3.3. For any unitary quaternion valued matriz A, the eigenvalues
A satisfy |\ =1.

PrROOF. Let A be an eigenvalue of a unitary quaternion valued matrix A,
x # 0 a corresponding eigenvector. We multiply the equation Ax = x\ from
the left by (Ax)*, i.e.

(3.11) (Ax)*Ax = (Ax)*xA.

On the left-hand side of the equation (3.11) we use the fact that A*A =1,
on the right-hand side we substitute x*A* = Ax*. We obtain [|x||?> = ||x||?|A|?
which implies |A\| =1. O

4 Givens’ transformation in the quaternion case.

Let h € H have the representation
(41) h = a11+a2i+a3j+a4k.

By a well known isomorphism (cf. van der Waerden [1960, p. 55]) between H
and complex 2 x 2 matrices of the form

(4.2) INIZ(_% g),a:a1+ia2,ﬂ:a3+ia4,

we see that the Givens matrix G, defined in (2.1) as well as G* has exactly the
quaternion form (4.2). Since we can extend any complex vector x = (z1,z2)T €
1 —XI2
T2 T1
tion u = G*x may be regarded as a multiplication of quaternions

C? to a quaternion by defining X = ( ) , the matrix-vector multiplica-
y =Gx,

where the first row of y represents the product u. We are not sure whether this
interpretation has been given elsewhere in the literature.

We begin again with the following setting. A vector x € H?\{0} is given and
a unitary matrix G has to be constructed according to the following rules:

c

43) G= (—E z> e H**? G*x =u=uey, e; = (1,0)F € H2, u € H\{0}.

LEMMA 4.1. The matriz G given in (4.3) is unitary if and only if

(4.4) s 41 = 1,

(4.5 S€¢ = Gs.
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PRrooF. Exercise. 0
In order to find G of (4.3) we have to solve the following quaternion equations
for s and ¢ where 1,2 are given quaternions, not both zero:

cr1 — sty = u#0,
(46) sx1+cra = 0,
subject to (4.4), (4.5) mentioned in Lemma 4.1.

The second condition (4.5) requires that s and ¢ commute in H. Since real
numbers commute with quaternions, a solution with real s (or real ¢) would
satisfy (4.5). By using (4.4) the second equation of (4.6) yields

|22 |1 |
(4.7 sl =1—, |c|=1—.
= 1] ]

That implies, that the general solution of (4.6) must have the form
(4.8) s= —a”w—QH, c= fy“w—l“, where 0,7 € H with |o| = |y|=1.
X X

Since there are several forms for the general solution, we have chosen one which is
similar to the complex case, Section 2, equation (2.4). The special case 122 = 0
yields formally the same solution (2.5) as in the complex case.

LEMMA 4.2. Let x = (z1,22)" € H? be given with x125 # 0. Define s,c as in
(4.8). Then, (i) s¢ =¢s, (i) Sx1 +Cxa =0, (i) u = cx1 — sz2 # 0 imply

(4.9) v=0, u=olx|.

PRroOF. If we make use of formulae (4.8), we find from condition (i)

(410) O'ZU_Q 11717 = 11717 O'IL'_Q,
N e et
b a a b
and from condition (ii)
(411) .7317 X9 = X290 7.
~~ -
a b

If we multiply equation (4.11) from the left by b, we obtain bazs = |b|?z; =
|z2|?21. By using (4.10) we replace ba with ab,

|z2|?z1 = abzy = x170T3ws = 1Yo |T2|* = 21 = 1170 = 1 =70 = 0 = 7.

The equation for u follows straightforwardly from (iii), by replacing v with o. O

In order to determine o, we inspect (4.10), (4.11) again. If we set v = o we
see, that both equations are equivalent: one follows from the other. Thus, we
have to determine the set

(4.12) Y:={o€H: oTzz = 3730, |o| =1}
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The set ¥ is not empty, since it contains the subset {+sgn#7,+sgnzz}. But
it is different from the whole unit sphere, since +1 are in general not contained

in X.

THEOREM 4.3. Let x = (x1,72)" € H? be gien with x1x9 # 0. Set & =

21Ty = (€1,62,€3,84), 1 = Taw1 = (1,72,73,74). Then § and 0 are equivalent
(as quaternions) and the above Y. has the form

(4.13) Y={c€eH: & =on, |og|=1}.

In order to determine X we shall distinguish the following two cases:

a) Let x1,zo be linearly dependent, in the sense 1 = axs where a € R\{0}.

Then
(4.14) Y={ceH:|s|=1}.

b) Let x1,z2 not be linearly dependent in the above sense. In this case

asgnTy + fsgn Ty
lasgn 71 + Bsgn 72|’

(4.15)2:{06]1—11:0: a,B €R, |a|+|ﬁ|>0}.

PROOF. Since by (3.6) and (3.8) |¢| = |n| and R¢ = Ry, the quaternions &,
are equivalent and if they are real they coincide.

a)

b)

In case x1, 9 are linearly dependent, we have £ = n € R\{0}. The result
follows from (4.13) immediately.

Let 1,22 be linearly independent. This implies, that both, £ and n are
not real. The equation o = on is equivalent to a homogeneous linear
system of four equations of the form

Ao =0, rank(A) = 2, A € R¥4,

Thus, the solution set is a two-dimensional linear space. Since we already
know two independent solutions, namely oy = sgnZy, o9 = sgnzs, the
space is spanned by these solutions. Since we are only interested in solu-
tions with |o| = 1, we have to add the given normalization. It remains to
show, that rank (A) = 2. Let us set

azf_n:(alaa%aﬂ;a‘l)a b:§+77:(b1,b2;b3;b4)-
Since & = R, a1 = 0. Then, £o —on = 0 is equivalent to Ao = 0, where

0 —as9 —as —ay4
+as 0 —b4 +b3
+as +by 0 —by |’
+ays —=bg +bo 0

A e RV,

Observe, that A + AT = 0. Hence, all eigenvalues of A are located on the
imaginary axis. Since purely imaginary eigenvalues always come in pairs
of conjugate eigenvalues, the matrix A can have only even ranks: 0, 2 or 4.
Let rank (A) = 0. Then as = a3 = a4 = bs = b3 = by = 0. However, this
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implies that both, £ and 7 are real, a contradiction. If the rank is four, the
system has only the trivial solution ¢ = 0. This is again a contradiction,
since we have already found some nontrivial solutions. The only remaining
case is rank (A) = 2. 0

We summarize the results in the following theorem.
THEOREM 4.4. Let x = (z1,22)" € H*\{0} be given. Define
c s Ty

G= _ € H?*? with s=—0w—2, c=0—,
-5 c (1| (||

lo| =1,
where o is arbitrary in case x1,xs are linearly dependent over R. Otherwise, it
must be chosen according to formula (4.15). Then G is a unitary matriz and
G*x = u = o||x||(1,0)".

ProoF. Contained in Theorem 4.3. O

Since for practical reasons we are interested in simple solutions, we could
choose ¢ in such a way, that s > 0 or ¢ > 0. This leads to ¢ = —sgnzs or
o = sgnZy, respectively. The solution is formally the same as in the complex
case, see Section 2, equations (2.8), (2.9). Therefore, we do not repeat it here.

When applying Givens’ transformation, it is necessary to compute v = G*y
for many vectors y for one fixed matrix G. Let y = (y1,42)T, v = (vi,v2)7,
then, explicitly, we have to compute (cf. (4.6))

Il

U1 CY1 — SYa2,

4.16 _ _
( ) V2 = SY1 +Cya.

We can - for real s - slightly rearrange formulae (4.16) to obtain

Vy = §y1 + Eyz,
(4.16") _ c
o= g lte) -,

If we choose s > 0 we can safely define a new quaternion constant p = T ;
s
for the operation count see Table 4.1.

Table 4.1: Number of operations

formula (4.16) | formula (4.16)
multiplication real by gua,termon ‘ 2 1
quaternion by quaternion 2 2
addition of quaternions 2 3

As we can see from the Table 4.1, we exchange one multiplication real by
quaternion by one addition of two quaternions. This is probably only a slight
advantage. However, we can do a little more by recovering s and ¢ from p by

_1—|pP
L4 [’

2
c=1+8)p=-———-u, where p=

417
(417) e

1+s
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Therefore, it is reasonable to compute only u rather than s and ¢ by the formula

1 if Ty = 0,
(4.18) p=q _Sgnz:2a
[Ix[[ + ||

The following Algorithm 4.1 (a MATLAB program) computes p and on demand
also u. It relies on several subprograms which handle quaternion arithmetic.

ALGORITHM 4.1. Givens’ code for quaternion valued 2-vectors x

%function [mu,ul=quat_givens(x);
%Givens code for quaternion-valued 2-vector x.
%The result will be quaternions mu, u.

AMatrices are all cells.
#The following seven subprograms have to be provided:

%1. function [no,noinf]=quat_normvector(x);
%computes euclidean and max-norm
%2. function result=quat_iszero(M);
%if M is a zero quaternion matrix, result=1, else 0.
%3. function g=quat_realmult(p,a);
% p*a: p is quaternion (may be matrix), a is real
%4. function a=quat_sign(x);
%elementwise sign(h)=h/|h|, for h\not=0,
%sign([0 0 0 01)=[1 0 0 O].
%5. function s=quat_mult(hl,h2);
%elementwise quaternion product of hil, h2
%6. function Astar=quat_conj(A);
%Astar=A"* (A must not be square)
%7. function a=quat_abs(x);

© 00 N O Ot W N -

P el e e e el e e =
© 00 N OO R W NN = O

20 %elementwise absolute value of quaternion x, a is real,
21 Ysame size as x

22

23 function [mu,ul=quat_givens(x);

24 bi{1}=x{1}; b2{1}=x{2};

25 h=quat_normvector(x); u=bl;

26 if h==0 | quat_iszero(b2)

27 mu{1}=[1,0,0,0]’; return

28 end; %if

29 a=quat_realmult(quat_sign(b2),-1);

30 mu=quat_realmult(quat_mult(a,quat_conj(bl)),1/(h+quat_abs(b2)));
31 if nargout==2

32 u=quat_realmult(a,h);
33  end; %if
34 return

EXAMPLE 4.1. For x = ([1,2,3,4],[-4,-3,-2,—1])T (in this example we
write quaternions in square brackets) the above program yields
p=1[0.27614237491540, —0.13807118745770, 0, —0.27614237491540],

u = [5.65685424949238, 4.24264068711928, 2.82842712474619,1.41421356237309].
By hand computation we obtain yu = ‘/53’1[2, -1,0,-2], u = V2[4,3,2,1], s =
0.5v/2, ¢ = %[2, —1,0,—2], which coincides with the above given numerical so-
lution in the given precision. The MATLAB flop count for this example is 114.
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Let us repeat this example with the strategy

sgnxy + sgn Ty
o= ——"—-.
[sgnZ1 + sgn T3]

We obtain:
—0.67082039324994 —5.19615242270663
—0.22360679774998 ue |~ 1.73205080756888
g 0.22360679774998 |’ o 1.73205080756888 | ’
0.67082039324994 5.19615242270663
—0.28867513459481 0.28867513459481
0.28867513459481 o= 0.28867513459481
—0.00000000000000 |’ ~ | 0.00000000000000
0.57735026918963 0.57735026918963

We also see by examples, that a choice of o with |o| =1 but o ¢ ¥ where ¥ is
defined in (4.15), p. 9 fails to produce a unitary matrix G.

General information on quaternions may be obtained from KUIPERS[4]. A
survey on older and recent quaternion literature was given by ZHANG[9)].
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