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ANALOGUES OF CAYLEY GRAPHS FOR TOPOLOGICAL GROUPS

BERNHARD KRÖN AND RÖGNVALDUR G. MÖLLER

ABSTRACT. We define for a compactly generated totally disconnected locally compact group a graph, called
a rough Cayley graph, that is a quasi-isometry invariant of the group. This graph carries information about
the group structure in an analogue way as the ordinary Cayley graph for a finitely generated group. With this
construction the machinery of geometric group theory can be applied to topological groups. This is illustrated
by a study of groups where the rough Cayley graph has more than one end and a study of groups where the
rough Cayley graph has polynomial growth.

INTRODUCTION

The concept of a Cayley graph has become a standard part of the toolkit used to investigate and
describe groups. It has become particularly important in the study of infinite finitely generated groups,
where the Cayley graph and related concepts provide a way to treat the group as a geometric object. When
the group is finitely generated it can be shown that various properties of Cayley graphs are the same no
matter which finite generating set is used to construct the Cayley graph. This part becomes problematic
when we consider groups that are not finitely generated.

The aim of this paper is to present a construction of a graph for compactly generated totally discon-
nected locally compact groups that can be used in a similar way as the Cayley graph is used in the study of
finitely generated groups. This construction allows us to apply the machinery of geometric group theory
to compactly generated totally disconnected locally compact groups. We illustrate this by looking at the
theory of ends of groups and groups of polynomial growth.

There is an extensive literature on group actions on graphs, see e.g. the survey [36], linking together
algebraic properties and properties of the group action. The real novelty of the present approach is that
we start just with a group, not with a given action of a group on a graph, making this approach a useful
tool in group theory.

In [60], Woess studied the automorphism group of and infinite, connected, locally finite transitive
graph as topological groups. A neighbourhood of the identity is given by the pointwise stabilizers of
finite sets of vertices. Such automorphism groups are compactly generated, totally disconnected and
locally compact. Hence they are a special case of the groups studied in the present paper. The crucial
difference is that we start only with a given group instead of starting with a group action on a graph. Our
construction will yield a group action on a graph, which we will call a “rough Cayley graph”. The rough
Cayley graphs will turn out to be unique up to quasi-isometry, see Theorem 2. Hence we are in a similar
situation as when studying ordinary Cayley graphs of finitely generated groups: The geometric structure
(the graph) is uniquely determined (up to quasi-isometry) by the algebraic structure.

In the first section we present definitions and background material on permutation groups, graphs,
topological groups and the interplay of these concepts. The construction is presented in Section 2. We
start with a compactly generated totally disconnected locally compact group G, choose a compact open
subgroup U and a finite set {s1,s2, . . . ,sn} such that U ∪{s1,s2, . . . ,sn} generates G, and use these to
construct a graph X . The graph X is locally finite and connected and the group G acts transitively on X .
This graph will be called a rough Cayley graph for G. In Section 2 it is shown that any two such graphs
for G are quasi-isometric. If G is finitely generated and U is the trivial group then this construction yields
a usual Cayley graph of G. Hence finitely generated Cayley graphs are special cases of rough Cayley
graphs.
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In Sections 3 and 4 we illustrate the use of the concept of rough Cayley graph. In Section 3 we define
the space of ends of compactly generated totally disconnected locally compact groups. We prove an ana-
logue of Stallings’ Ends Theorem for groups with infinitely many ends in Section 3.2. The construction
of rough ends and the analogue of Stallings’ Ends Theorem are related to the work of Abels in [1]. This
relationship is discussed in Section 3.6. In Section 3.3 we focus on the concept of accessibility. The
natural translation of the definition of an accessible group into terms appropriate for our totally discon-
nected locally compact groups is shown to be equivalent to the graph X being accessible in the sense of
[53]. In Section 3.5 we investigate the action of group elements on a rough Cayley graph and how this
action can be used to divide G into three disjoint classes (ellpitic, parabolic, hyperbolic) resembling the
classification of isometries in hyperbolic geometry. In the final part of Sections 3 we relate the concept
of ends of pairs of groups to the rough ends. As a byproduct we deduce a result due to Dunwoody and
Roller [11] (also proved by Niblo [43] and Scott and Swarup [49]).

In Section 4 the growth of the graph X is related to the growth of the topological group G. The
outcome is a version of Gromov’s theorem on groups of polynomial growth for compactly generated
totally disconnected locally compact groups. Many of the results and methods used can be found in the
papers by Losert [32] and Woess [60].

The final section is a collection of remarks and comments on the previous sections and the possibilities
for further work using rough Cayley graphs.

1. PRELIMINARIES ON GRAPHS AND GROUPS

1.1. Permutation groups and graphs. All the graphs in this paper are undirected except the orbital
graphs defined below and the structure trees discussed in Chapter 3. Our graphs are without loops or
multiple edges. Thus one can think of a graph X as an ordered pair (V X ,EX) where V X is a set and EX
is a set of two element subsets of V X . The elements of V X are called vertices and the elements of EX
are called edges. Vertices v and u are said to be neighbours, or adjacent, if {v,u} is an edge in X . A path
of length n from v to u is a sequence v = v0,v1, . . . ,vn = u of vertices, such that vi and vi+1 are adjacent
for i = 0,1, . . . ,n−1. A graph is connected if for any two vertices v and u there is a path from v to u in
the graph. Let d(x,y) denote the length of a shortest path from a vertex x to a vertex y. If X is connected
then d is a metric on V X . When we are dealing with different graphs at the same time we will sometimes
write dX instead of d. Let A be a set of vertices in X . The subgraph spanned by A is a graph having A
as a vertex set and the edge set is the set of all edges in X such that both end vertices belong to A. We
say that A is connected if the subgraph spanned by A is connected. The connected components (or just
components) of a graph are the maximal connected sets of vertices.

Let G be a group acting on a set Y . The action is transitive if for any two points x,y in Y there is an
element g ∈ G such that gx = y. For a point x ∈ Y the stabilizer in G of x is the subgroup

Gx = {g ∈ G | gx = x}.

We define the pointwise stabilizer of a set A ⊆ Y as the subgroup

G(A) = {g ∈ G | gx = x for every x ∈ A}.

When A = {x,y} then we write Gx,y for G(A).
Suppose U is a subgroup of a group G. The group G acts on the set G/U of left cosets of U such that

the image of a coset hU under an element g ∈ G is (gh)U . This action is transitive. Conversely, if G acts
transitively on some set Y and x is a point in Y then Y can be identified with G/Gx in the following way:
For each y ∈ Y we choose an element hy ∈ G such that hyx = y. Then the function θ : Y → G/Gx, where
y 7→ hyGx, is bijective. For every y ∈ Y and every element g ∈ G we get θ(gy) = gθ(y), that is, θ gives
an isomorphism of G-actions or, phrased differently, θ is covariant with the action of G.

The orbits of the stabilizer Gx are called suborbits of G and the orbits of G on Y 2 are called orbitals.
When G acts transitively on Y there is a simple one-to-one correspondence between the orbits of Gx and
the orbitals: the suborbit Gxy corresponds to the orbital G(x,y). A (directed) orbital graph X = (V X ,EX)
is formed by letting the set of vertices V X be equal to Y and letting the set of edges EX be a union of some
orbitals. The graphs we get by this construction are directed graphs but in our case we want undirected
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graphs. Hence we use a similar method to construct a graph X where V X = Y and EX is a union of orbits
of G on two element subsets of Y . These graphs can be called undirected orbital graphs.

It is easy to see that G acts on an undirected orbital graph as a group of graph automorphisms, because
if g ∈ G and {x,y} is an edge in an orbital graph, then {gx,gy} is in the same orbit and thus also an edge.
When all the suborbits of G are finite and the edge set of an orbital graph is a union of finitely many
orbitals then this orbital graph is locally finite (i.e. each vertex in it has only finitely many neighbours).

A block of imprimitivity for G is a subset A of Y such that for g ∈ G, either gA = A or A∩ gA = /0.
The existence of a non-trivial proper block of imprimitivity A (non-trivial means that |A|> 1 and proper
means that A 6= Y ) is equivalent to the existence of a non-trivial proper G-invariant equivalence relation
∼ on Y . When G acts transitively on Y , the block A and its translates under G give the ∼-classes, and
conversely, if ∼ is a non-trivial proper G-invariant equivalence relation then each ∼-class is a non-trivial
proper block of imprimitivity for G. If ∼ is a G-invariant equivalence relation on Y then G permutes the
∼-classes and thus G acts on the set Y/∼ of equivalence classes.

Finally, we review the definition of a Cayley graph of a group. Let G be a group and S a subset of G.
The (undirected) Cayley graph Cay(G,S) of G with respect to S has the set of elements in G as a vertex
set and {g,h} is an edge if h = gs or h = gs−1 for some s in S. The Cayley graph Cay(G,S) is connected
if and only if S generates G. The left regular action of G on itself gives us a transitive action of G as a
group of graph automorphisms on Cay(G,S).

1.2. Topological groups and the permutation topology. A topological space is said to be totally dis-
connected if the only connected subsets are single element sets. It is an old result of van Dantzig that
a totally disconnected locally compact group always contains a compact open subgroup (see [5] or [21,
Theorem 7.7]). A topological group G is compactly generated if there is a compact subset that generates
G.

Let G be a group acting on a set Y . The action of G on Y can be used to introduce a topology on
G. (The survey paper by Woess [60] contains a detailed introduction to this topology.) The topology
of a topological group is completely determined by a neighbourhood basis of the identity element. The
permutation topology on G is defined by choosing as a neighbourhood basis of the identity the family
of pointwise stabilizers of finite subsets of Y , i.e. a neighbourhood basis of the identity is given by the
family of subgroups

{G(F) | F is a finite subset of Y}.
Think of Y as having the discrete topology and elements of G as maps Y → Y . Then the permutation
topology is equal to the topology of pointwise convergence, and it is also the same as the compact-open
topology. A sequence (gi)i∈N of elements in G has an element g ∈ G as a limit if and only if for every
x ∈ Y there is a number N (depending on x) such that gnx = gx for every n ≥ N.

Various properties of the action of G on Y are reflected in properties of this topology on G. For instance,
the permutation topology on G is Hausdorff if and only if the action of G on Y is faithful (faithful means
that the only element of G that fixes all the points in Y is the identity). Moreover, G is totally disconnected
if and only if the action is faithful.

When G is a permutation group on Y , that is, G acts faithfully on Y , one can think of G as a subgroup
of Sym(Y ), the group of all permutations of Y . We say that G is a closed permutation group if it is a
closed subgroup of Sym(Y ), where Sym(Y ) has the permutation topology.

Let us now turn the tables and assume that G is a topological group and U a compact open subgroup
of G. Define Y = G/U . Let x = U ∈ Y , that is, x is equal to the coset U . Thus Gx = U . Suppose
F = {y1, . . . ,yn} is a finite subset of Y and g1, . . . ,gn are elements in G such that gix = yi. Then

G(F) = Gy1 ∩·· ·∩Gyn = (g1Gxg−1
1 )∩·· ·∩ (gnGxg−1

n )

= (g1Ug−1
1 )∩·· ·∩ (gnUg−1

n ).

This implies that in the permutation topology on G with respect to the action of G on Y = G/U , all
the elements in the neighbourhood basis of the identity are open in the given topology on G. Therefore
the permutation topology is contained in the topology on G. The permutation topology can be different
from the topology on G. For instance because the permutation topology does not separate points in
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K =
⋂

g∈G gUg−1, the kernel of the action of G on Y . Note that for every y ∈ Y the orbit Gxy = Uy is
finite. This is so because, if g is an element of G such that gx = y then U ∩gUg−1 is an open subgroup of
the compact subgroup U and thus

|Gxy|= |Gx : (Gx∩Gy)|= |U : (U ∩gUg−1)|< ∞.

Therefore, all suborbits in the action of G on Y are finite.
Compactness has a very natural interpretation in the permutation topology as shown in the following

lemma. A subset of a topological space is said to be relatively compact if it has compact closure. The
following lemma was formulated by Woess ([60, Lemma 2]) for automorphism groups of locally finite
connected graphs, but it holds in our more general setting as well where it is not assumed that the action
of the group is faithful.

Lemma 1. ([60, Lemma 2]) Let G be a totally disconnected locally compact group and U a compact
open subgroup of G. Set Y = G/U. A subset A of G is relatively compact in G if and only if the set Ax is
finite for every x in Y .

Furthermore, if A is a subset of G and Ax is finite for some x in Y then Ax is finite for all x in Y .

Turning back to the case when G is a permutation group on Y , we notice that G is closed in the
permutation topology of Sym(Y ) if and only if Gx is closed in Sym(Y ). (It is obvious that if G is closed
in Sym(Y ) then Gx is also closed. For the reverse implication assume that f is an element in Sym(Y ) that
is contained in the closure of G. Since the set U = {g ∈ Sym(Y ) | g(x) = f (x)} is an open neighbourhood
of f it must contain an element from G. Suppose g ∈ G such that g(x) = f (x). If V is some open
neighbourhood of f in Sym(Y ) then U ∩V is an open neighbourhood of f that intersects gGx. But the
the set gGx is closed and thus g ∈ gGx ⊆ G. Hence G is closed.) It is easy to show that if G is a closed
permutation group and all the suborbits of G are finite then Gx is compact and G is a totally disconnected
locally compact group (see [60, Lemma 1]).

2. ROUGH CAYLEY GRAPHS

Definition 1. Let G be a topological group. A connected graph X is said to be a rough Cayley graph of
G if G acts transitively on X and the stabilizers of vertices are compact open subgroups of G.

When G is a topological group with a compact open subgroup U then one can construct a rough Cayley
graph in the following fashion which resembles the construction of the ordinary Cayley graph of a group:
Suppose G is a topological group and U a compact open subgroup. For a subset S of G form the ordinary
Cayley graph of G with respect to S. Then define X as the graph that has vertex set G/U and two distinct
left cosets xU and yU are adjacent if there are elements g ∈ xU and h ∈ yU such that g and h are adjacent
in Y . The natural action of G on the set of left cosets of U gives an action of G on the graph X .

Conversely, suppose X is a rough Cayley graph of a topological group G. Let U be the stabilizer
of a vertex x in X . Find a family {gi}i∈I of elements from G such that {gi(x) | i ∈ I} equals the set of
neighbours of x in X . Set S = U ∪{gi(x) | i ∈ I} and define Y as the ordinary Cayley graph of G with
respect to S. Then the quotient graph of Y with respect to U (as defined in the previous paragraph) is
equal to X .

In Sections 3 and 4 it is shown that when the group G is a compactly generated totally disconnected
locally compact group then a rough Cayley graph carries information about the group in much the same
way as an ordinary Cayley graph of a finitely generated group does.

Theorem 1. Let G be a totally disconnected locally compact group. Then G has a connected locally
finite rough Cayley graph if and only if G is compactly generated.

A more detailed version of this theorem (see below) can be found in [39]. There the immediate
purpose was to show that the subgroup of FC−-elements in a compactly generated totally disconnected
locally compact group is closed. Here the aim is a general investigation of the relationship between the
group and the graph we construct.

Theorem 1+([39, Corollary 1]) Let G be a totally disconnected compactly generated locally compact
group. Then there is a locally finite connected graph X such that:
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(i) G acts as a group of automorphisms on X and is transitive on V X;
(ii) for every vertex v in X the subgroup Gv is compact and open in G;

(iii) if Aut(X) is equipped with the permutation topology then the homomorphism π : G → Aut(X)
given by the action of G on X is continuous, the kernel of this homomorphism is compact and the
image of π is closed in Aut(X).

Conversely, if G acts as a group of automorphisms on a locally finite connected graph X such that G
is transitive on the vertex set of X and the stabilizers of the vertices in X are compact and open, then G is
compactly generated.

We will give two different constructions of the graph X in the first half of the Theorem 1+ above. The
first one follows the construction used in [39], whereas the second one uses the ordinary Cayley graph
of G with respect to some compact generating set and is related to the concept of a topological graph
from Abels’ paper [1] (this relationship will be discussed in Section 3.6). In the following, let G be a
compactly generated topological group with a compact generating set S and a compact open subgroup U .

The first construction is based on the following Lemma.

Lemma 2. (Cf. [39, Lemma 2]) Let G be a compactly generated totally disconnected locally compact
group. Let U be a compact open subgroup of G. Then there is a finite set T = {h1, . . . ,hn} such that
H = 〈h1, . . . ,hn〉 acts transitively on the set of left cosets G/U. Furthermore, every element in G can be
written as hi1hi2 · · ·hik u where u ∈U.

The set T can be found as follows. The left cosets of U form an open covering of a compact generating
set S. Hence there is a finite subcovering consisting, say, of U,g1U, . . . ,gkU . Each double coset UgiU is
compact and the set W = U ∪ (Ug1U)∪ ·· · ∪ (UgkU) is thus also compact. Hence it is possible to find
finitely many elements h1, . . . ,hn, none of which is contained in U , such that U ∪ h1U ∪ ·· · ∪ hnU = W .
Set T = {h1, . . . ,hn}. That US ⊆W = TU follows from the proof of Lemma 2 in [39].

Definition 2. Let G be a compactly generated totally disconnected locally compact group. A compact
open subgroup U together with a finite set T as described in Lemma 2 above is said to form a good
generating set.

Construction 1. The graph X is defined such that the vertex set is G/U and the edge set is G{v,h1v}∪
· · · ∪G{v,hnv}, where G{v,hiv} denotes the orbit of the set {v,hiv} under the diagonal action of G. The
group G acts transitively as a group of automorphisms on X . It follows from [39, Lemma 1] that the graph
X is connected. The orbit of hiv under Gv is finite since |Gv : Gv,hiv| is finite. Hence the graph X is locally
finite.

Construction 2. Form the Cayley graph Cay(G,S) of G with respect to a compact generating set S. The
left regular action of G on itself gives us a transitive action of G on Cay(G,S). The left cosets of U form
the classes of an equivalence relation on the vertices of Cay(G,S) that is preserved by the action of G.
Define X as the quotient graph of Cay(G,S) with respect to this equivalence relation. The vertices of X
are the left cosets of U . Two vertices g0U and h0U in X are adjacent if there are elements g in g0U and h
in h0U such that h = gs or h = gs−1 for some s in S. Since S is a generating set for G, the graph Cay(G,S)
is connected and thus the quotient graph X is also connected. A vertex gU in X which is the neighbour
of the vertex U must intersect US∪US−1. This latter set is compact because a set that is the product (in
the group G) of two compact sets is compact. The set US∪US−1 can thus be covered with finitely many
left cosets of U and U is hence only adjacent to finitely many vertices in X . Since X is a transitive graph,
it follows that X is locally finite.

Assume that G acts transitively on a locally finite connected graph X such that the stabilizer of a
vertex v is a compact open subgroup U of G. (For instance, G could be the automorphism group of a
transitive graph X endowed with the permutation topology. We identify the vertex set of X with G/U and
then choose a finite set {g1, . . . ,gn} of group elements such that {g1v, . . . ,gnv} is the set of neighbours
of v. The graph X is the same as the graph we get in Constructions 1 and 2 using the compact open
subgroup U and T = {g1, . . . ,gn}. Thus if X is a rough Cayley graph for a compactly generated totally
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disconnected locally compact group G then there is a compact open subgroup U and a finite set T such
that X = RCay(G,U,T ).

Every connected locally finite transitive graph is a rough Cayley graph of its automorphism group.
But, not every rough Cayley graph is a Cayley graph of some group, since there are examples of infinite
transitive connected locally finite graphs that are not isomorphic to a Cayley graph of some groups,
e.g. [7].

Notation. A rough Cayley graph of G constructed above by using a good generating set consisting of a
compact open subgroup U and a finite set T is denoted by RCay(G,U,T ).

Remark 1. Constructions such as described above have been widely used. The first instance is in a paper
from 1964 by Sabidussi [47] where it is shown how a finite transitive graph can always be described as a
quotient of a Cayley graph.

In order for this construction to be truly useful in group theory we would like to show that the choice
of the subgroup U and the finite set T has only a limited effect on the properties of RCay(G,U,T ). The
concept of quasi-isometry was introduced by Gromov [17] and has been widely used and studied since.

Definition 3. Two metric spaces (X ,dX ) and (Y,dY ) are said to be quasi-isometric if there is a map
ϕ : X → Y and constants a ≥ 1 and b ≥ 0 such that for all points x1 and x2 in X

a−1dX (x1,x2)−a−1b ≤ dY (ϕ(x1),ϕ(x2))≤ adX (x1,x2)+ab,

and for all points y ∈ Y we have
dY (y,ϕ(X))≤ b.

A map ϕ between two metric spaces satisfying the above conditions is called a quasi-isometry.

Two connected graphs X and Y are called quasi-isometric if (V X ,dX ) and (VY,dY ) are quasi-isometric.
Note that dX (x1,x2)≥ 1 for all distinct vertices x1 and x2. It is worth noting that in the case of connected
graphs this implies that the definition of quasi-isometry can be simplified by replacing the first inequality
with

a−1dX (x1,x2)−a−1b ≤ dY (ϕ(x1),ϕ(x2))≤ adX (x1,x2).
Being quasi-isometric is an equivalence relation on the class of metric spaces.

Theorem 2. Let G be a compactly generated totally disconnected locally compact group. Any two con-
nected locally finite rough Cayley graphs of G are quasi-isometric.

It is convenient to have an explicit description of a quasi-isometry that is in some sense canonical.
Suppose X1 = RCay(G,U1,T1) and X2 = RCay(G,U2,T2) are rough Cayley graphs of G (recall that every
rough Cayley graph can be presented in this way). The vertex sets of X1 and X2 can be identified with
G/U1 and G/U2, respectively. Let H1 be a set of representatives of the left cosets of U1 in G. Define
a map ψ : V X1 → V X2 such that if v = hU1 in V X1, where h ∈ H1, then ψ(v) = hU2 ∈ V X2. Using the
map ψ we give a more explicit version of Theorem 2. In particular we prove that ψ is quasi-co-variant
with the actions of G on X1 and X2. That is, there is a constant c such that dX2(ψ(gv),gψ(v)) ≤ c for all
v ∈V X1.

Theorem 2+ Let G be a compactly generated totally disconnected locally compact group. Suppose
X1 = RCay(G,U1,T1) and X2 = RCay(G,U2,T2) are rough Cayley graphs of G. The map ψ defined above
is a quasi-isometry and there is a constant c such that for every vertex v in X1 and every element g in G
we have

dX2(gψ(v),ψ(gv))≤ c.

Theorem 2+. The proof is split up into three cases depending on the relationship between U1 and U2.

Case 1. Assume that U1 = U2
Under this assumption we can identify the vertex sets of the two graphs and the map ψ defined above

becomes the identity map.
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Because G only has finitely many orbits on the edges of X1 there is a constant a such that whenever
v and u are neighbours in X1 then dX2(v,u) ≤ a. By choosing a large enough, we may also assume that
dX1(v,u) ≤ a for any vertices v and u which are adjacent in X2. ¿From this it follows that for any pair of
vertices v and u we have

1
a

dX1(v,u)≤ dX2(v,u)≤ adX1(v,u).

Thus X1 and X2 are quasi-isometric. In this case, ψ is the identity map. Hence dX2(gψ(v),ψ(gv)) = 0
and ψ is co-variant with the action of G.

Case 2. Assume that U1 ≥U2. The left cosets of U1 give us a G-invariant equivalence relation ∼ on
the vertices of X2 (two cosets of U2 belong to the same ∼-class if they are both contained in the same
U1 coset). Since U2 is an open subgroup of the compact group U1, we see that |U1 : U2| < ∞ and the
∼-classes are finite. We can identify the vertex set of the quotient graph X3 = X2/∼ with the vertex set
of X1. By the first case above, the identity map ψ1 : X1 → X3 is a co-variant quasi-isometry and there is a
constant a such that 1

a dX1(v,u) ≤ dX3(ψ1(v),ψ1(u)) ≤ adX1(v,u) for every pair v and u of vertices in X1.
Define a map ψ2 : X3 → X2 such that ψ2(hU1) = hU2 where h is in H1. Let c denote the diameter of the
∼-classes in X2. Then for every pair of vertices v,u in X3 the following inequalities hold,

dX3(v,u)≤ dX2(ψ2(v),ψ2(u)) and dX2(ψ2(v),ψ2(u))≤ (c+1)dX3(v,u).

For every pair of vertices v,u in X1 this implies,

dX3(ψ1(u),ψ1(v))≤ dX2(ψ2ψ1(u),ψ2ψ1(v))

and
dX2(ψ2ψ1(u),ψ2ψ1(v))≤ (c+1)dX3(ψ1(u),ψ1(v)).

Set ψ = ψ2 ◦ψ1. Then
1
a

dX1(u,v)≤ dX3(ψ1(u),ψ1(v))≤ dX2(ψ(u),ψ(v))

≤ (c+1)dX3(ψ1(u),ψ1(v))≤ a(c+1)dX1(u,v),

and therefore ψ is a quasi-isometry from X1 to X2. Suppose v = hU1 is a vertex in X1 and g is an element
of G. We write h′U1 = ghU1 where h and h′ are in H1. Then ψ(gv) = h′U2 and gψ(v) = ghU2. Both h′U2
and ghU2 belong to the same ∼-class and thus dX2(gψ(v),ψ(gv))≤ c.

Case 3. Let us now look at the general case. Set U3 = U1∩U2. Define X3 as a rough Cayley graph of
G with respect to U3 and some finite set T3 as described in Construction 1. Define a map ψ1 : X1 → X3
such that if v = hU1, with h in H1, then ψ1(v) = hU3. Let H3 denote a set of coset representatives of
U3. Then define ψ2 : X3 → X2 such that if v = hU3, where h ∈ H3, then ψ2(v) = hU2 (note that ψ2 does
not depend on the choice of coset representatives in H3). The map ψ2 is a quasi-isometry. It is also
worth noting that ψ2 is co-variant with the action of G. Because both ψ1 and ψ2 are quasi-isometries we
can conclude that ψ = ψ2 ◦ψ1 is a quasi-isometry. Since ψ2 is co-variant with the action of G, we see
that gψ(v) = g(ψ2 ◦ψ1(v)) = ψ2(gψ1(v)). We know from Case 2 that there is a constant c1 such that
dX3(gψ1(v),ψ1(gv))≤ c1 for all vertices v in X1. Since the map ψ2 is an quasi-isometry we conclude that
there is a constant c such that

dX2(gψ(v),ψ(gv)) = dX2(ψ2(gψ1(v)),ψ2(ψ1(gv)))≤ c.

�

Remark 2. (i) We can also ask about the effect of the particular choice of a set of coset representatives
when constructing ψ . Suppose θ and θ ′ are two quasi-isometries from X1 to X2, constructed with respect
to different choices of coset representatives. Then θ(v) and θ ′(v) are vertices in X2 corresponding to two
left U2 cosets that both intersect the same left U1 coset. There are only finitely many left U2 cosets that
intersect a given left U1 coset. Suppose h1U2, . . . ,hkU2 is the collection of all the cosets that intersect
U1 then gh1U2, . . . ,ghkU2 is the collection of all the cosets that intersect gU1. When we consider the left
cosets of U2 as vertices in X2 we see that the diameter in X2 of cosets that intersect a given left coset of
U1 is always the same. Hence there is a constant c such that dX2(θ(v),θ ′(v))≤ c for all vertices v in X1.
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(ii) In the construction of a rough Cayley graph and the proof of Theorem 2+ we only use the property
of compact open subgroups that any two such subgroups U1 and U2 are commensurable (i.e. U1∩U2 has
finite index in both U1 and U2) and that a compact open subgroups is commensurable with its conjugates.
Suppose G is a group acting transitively on two locally finite connected graphs X1 and X2. Furthermore,
assume that for all v1 in V X1 and all v2 in V X2, the subgroups U1 = Gv1 and U2 = Gv2 are commensurable.
Then the same argument as in the proof above shows that the graphs X1 and X2 are quasi-isometric.

Theorem 3. Let G be a totally disconnected locally compact group. Suppose G acts on a connected
locally finite graph X such that the stabilizers of vertices are compact open subgroups and G has only
finitely many orbits on V X. Then G has a locally finite rough Cayley graph X ′ which is quasi-isometric
to X.

Proof. Choose some vertex v in X and denote the orbit of v by A. Since G has only finitely many orbits
on the vertex set of X there is a number k such that for each vertex u in X there is some vertex in A in
distance at most k from u. Construct a new graph Y such that Y has the same vertex set as X and two
vertices u and u′ are adjacent in Y if and only if dX (u,u′)≤ 2k +1. The graph Y is also locally finite and
the group G acts on Y . Let X ′ denote the subgraph of Y spanned by A. Suppose u and u′ are some vertices
in X ′. Since the graph X is connected there is a path u0 = u,u1, . . . ,un−1,un = u′ in X . For each vertex ui
we can find a vertex vi in A such that dX (vi,ui)≤ k and

dX (vi,vi+1)≤ dX (vi,ui)+dX (ui,ui+1)+dX (ui+1,vi+1)≤ 2k +1.

Either vi = vi+1, or vi and vi+1 are adjacent in Y . From the sequence u,v1, . . . ,vn−1,u′ we can thus get a
path in X ′ from u to u′. Therefore X ′ is a connected locally finite graph and G acts transitively on X ′. It
follows from the construction that X ′ is quasi-isometric to X . �

The following Corollary is proved by using Theorem 3 in combination with the latter part of Theo-
rem 1+.

Corollary 1. Let G be a totally disconnected locally compact group. Suppose G acts on a connected
locally finite graph X such that the stabilizers of vertices are compact open subgroups and G has only
finitely many orbits on V X. Then G is compactly generated.

Let H be a subgroup of G. The quotient topology on G/H is the finest topology such that the projection
from G to G/H is continuous. A subset {gH | g∈ A} of G/H, A⊂G, is open, if and only if AH is open in
G. A subgroup H of a topological group G is said to be cocompact if the quotient space G/H is compact.
Suppose G is a totally disconnected locally compact group acting transitively on a set Ω such that the
stabilizers of points in Ω are compact open subgroups of G. It is shown in [38, Lemma 7.5] and [42,
Proposition 1] that a subgroup H of G is cocompact if and only if H has only finitely many orbits on Ω .
The first part of the corollary below is well known, and is also true without the assumption that the group
G is totally disconnected.

Corollary 2. Let G be a compactly generated totally disconnected locally compact group and H a closed
cocompact subgroup of G.

(i) The subgroup H is compactly generated.
(ii) If YH and YG be connected locally finite rough Cayley graph of H and G, respectively, then YH

and YG are quasi-isometric.

Proof. The group H is in its own right a totally disconnected locally compact group. Let X be some rough
Cayley graph for G. Then H acts on X with only finitely many orbits and the stabilizers of vertices are
compact open subgroups of H. By Theorem 3, H acts transitively on a connected locally finite graph X ′

such that X ′ is quasi-isometric to X and the stabilizers in H of vertices in X ′ are compact open subgroups
of H. Theorem 1 says that the group H is compactly generated and the graph X ′ is a rough Cayley
graph of H. If YG is some rough Cayley graph of G and YH is some rough Cayley graph of H then YG
is quasi-isometric to X and YH is quasi-isometric to X ′ and hence YG and YH are quasi-isometric to each
other. �
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3. ENDS OF COMPACTLY GENERATED GROUPS

3.1. Preliminaries on ends and structure trees.

3.1.1. Ends of graphs. There are various ways of defining the ends of a graph. The graph theoretical
approach is to define the ends as equivalence classes of rays. A ray in a graph X is a sequence of distinct
vertices v0,v1, . . . such that vi and vi+1 are adjacent for all i. A line in X is a two way infinite sequence
. . . ,v−1,v0,v1,v2, . . . of distinct vertices such that vi and vi+1 are adjacent for all i.

Definition 4. ([18]) Let X be a connected graph. Two rays R1 and R2 in X are said to be in the same end
of X if there is a ray R3 in X which contains infinitely many vertices from both R1 and R2.

If X is a tree then two rays are in the same end if and only if their intersection is a ray.
It is easy to check that being in the same end is an equivalence relation on the set of rays in X . The

equivalence classes are called the ends of X and the set of ends is denoted by ΩX .
Another way of phrasing the definition is to say that R1 and R2 are in the same end if and only if for

every finite set F ⊆V X there is a path in V X \F from a vertex in R1 to a vertex in R2. This in turn leads
to yet another reformulation of the definition: two rays R1 and R2 are not in the same end if and only if
one can find a finite set F of vertices and distinct components C1 and C2 of V X \F such that C1 contains
infinitely many vertices of R1 and C2 contains infinitely many vertices of R2. A locally finite connected
graph X has more than one end if and only if there is a finite set of vertices F such that V X \F has more
than one infinite component.

For a set C ⊆V X , we define the (vertex) boundary ∂C as the set of vertices in V X \C that are adjacent
to a vertex in C. The coboundary δC is defined as the set of edges that have one end vertex in C and the
other one in V X \C.

¿From Definition 4 it is evident that if a set of vertices C ⊆V X with finite boundary contains infinitely
many vertices from some ray R then C also contains infinitely many vertices from every ray in the same
end as R. Thus it is reasonable to say that C contains the end that R is in. Let ΩC denote the set of ends
that are contained in C. If F ⊆V X is finite and two ends ω and ω ′ are in different components of V X \F
then we say that F separates the ends ω and ω ′. In this paper we are predominantly concerned with
locally finite graphs. In a locally finite graph any two distinct ends can also be separated by removing
finitely many edges.

Ends come in two basic sizes: thick and thin. An end ω is said to be thick if it contains an infinite
set of pairwise disjoint rays, and thin otherwise. For an end ω define m1(ω) as the supremum of the
cardinalities of sets of pairwise disjoint rays in ω . Halin proves in [19] that if ω is thin then m1(ω) is
finite.

One can also think of the ends as a boundary of the graph. This becomes clearer if we give a topological
definition. This definition can be traced back to Freudenthal’s thesis in 1931, [12, 13], and the ideas are
adapted to locally finite graphs in [14].

Now we add the assumption that X is locally finite. Let F denote the set of all finite subsets of V X .
For F ∈F define CF as the set of all infinite components of V X \F . If F1 and F2 are two elements of F
such that F1 ⊆ F2 then there is a natural projection CF2 → CF1 : a component of V X \F2 being mapped to
the component of V X \F1 that contains it. Thus {CF}F∈F ordered such that CF1 ≤ CF2 if F1 ⊆ F2. Let
Ω denote its inverse limit. Now we want to identify Ω and ΩX . An element of Ω can be represented
as a family (CF)F∈F such that if F1 ⊆ F2 then CF2 ⊆ CF1 . Given an end ω ∈ ΩX it is easy to find the
corresponding element in Ω : for F ∈F we let CF denote the component of V X \F that ω belongs to and
then (CF)F∈F does the trick. The next step is to show how we find the end corresponding to an element
in Ω . Let (CF)F∈F be an element in Ω . Take a strictly increasing sequence F1 ⊂ F2 ⊂ . . . of finite subsets
of V X such that V X =

⋃
i∈N Fi. Then {CFi}i∈N is a decreasing sequence. First of all it is clear that any

two ends in X are separated by some set Fi. Hence there is at most one end ω that belongs to all of the
sets CFi . However, one can find a ray that includes at least one vertex from ∂CFi for all i ∈ N. The end
that this ray belongs to is contained in all the sets of the sequence {CFi}i∈N. For a finite set F of vertices
we find i such that F ⊆ Fi. Then CFi ⊆CF and thus ω ∈CF . Hence ω is the only end that is contained in
CF for every F ∈F .
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The inverse limit construction gives a topology on ΩX . A basis of open sets for this topology is given
by sets ΩC where C ⊆V X and C has finite boundary. If we extend this topology to V X ∪ΩX then a basis
of open sets is given by the sets of the form C∪ΩC where C has finite boundary. When X is locally finite
then it is easy to see that V X ∪ΩX is compact with this topology and ΩX is also compact. This topology
on V X ∪ΩX is also compact without the assumption of local finiteness, see [27, Theorem 1], but the set
of ends ΩX alone without the set of vertices V X is not compact in general. One can view V X ∪ΩX as a
compactification of V X .

The usefulness of the concept of quasi-isometry introduced in the last section is that various structural
properties are preserved under quasi-isometries. One of these properties is the number of ends. Think now
of the ends as a compactification of the graph. If ψ is a quasi-isometry between two locally finite graphs
X1 and X2 then ψ has a unique extension ψ : X1 ∪ΩX1 → X2 ∪ΩX2 that is continuous when X1 ∪ΩX1
and X2 ∪ΩX2 are viewed as topological spaces. The restriction of ψ to ΩX1 is a homeomorphism Ψ :
ΩX1 → ΩX2 (cf. [35, Proposition 1] and [27, Theorem 6]).

Remark 3. It is a common theme in graph theory to study what happens if some vertices are removed
from the graph. The end concept defined above is a natural extension of these ideas to infinite graphs.
Instead of removing a finite set of vertices we could as well remove a finite set of edges or a set of vertices
which is bounded with respect to natural metric of the graph. Then we obtain edge ends and metric ends,
respectively. These concepts are compared in [27]. In locally finite graphs, these different end concepts
coincide.

3.1.2. Automorphisms and ends. In this section we assume that X is a connected locally finite graph.
Local finiteness is not necessary for all the results described but it simplifies the discussion, and our
interest is in applications to locally finite rough Cayley graphs.

It is clear from the definition of ΩX that an automorphism of X has a natural action on ΩX . As shown
by Halin in his fundamental paper [20], the action on the ends gives vital clues to how the automorphism
behaves. The same is also evident from Tits’ paper [54], where group actions on infinite trees are studied.
Halin shows how automorphisms of X can be divided up into three disjoint classes. For an automorphism
g of X one of the following holds:

(i) g leaves invariant some non-empty finite subset of V X ;
(ii) g fixes precisely one thick end and does not satisfy (i);

(iii) g fixes precisely two thin ends and does not satisfy (i).

Automorphisms that satisfy (ii) or (iii) are often called translations. For a translation g it is possible to
find a line in X such that some power of g that acts like a non-trivial translation on that line. If X is a tree
then g will act like a translation on the line. Automorphisms that satisfy (i) are called elliptic, those that
satisfy (ii) are called parabolic and those that satisfy (iii) are called hyperbolic (or proper translations).

It is simple to describe how one finds an invariant line in cases (ii) and (iii). Suppose that g does
not satisfy (i). Set n0 = mind(gk(v),v), where k is a non-zero integer and v a vertex in X . Find k0 ∈ N
and v0 ∈ V X such that d(gk0(v0),v0) = n0. Then take a path P of length n0 from v0 to gk0(v0) and set
L =

⋃
i∈Z gik0P. It is obvious that L is an invariant infinite path and that gk0 acts like a translation on L.

The interesting thing proved by Halin (see [20, Theorem 7]) is the fact that L is a line, i.e. that L consists
of distinct vertices. Say the line L is the sequence . . . ,v−1,v0,v1,v2, . . .. The ends that the rays v0,v−1, . . .
and v0,v1, . . . belong to are fixed by g, and these are the only ends fixed by g (see [20, Theorem 8]). If
g is parabolic then g fixes only one end of X and both rays belong to the same end. In the case where g
is hyperbolic the two rays will belong to distinct ends of X . If we suppose that gk0(v0) = vl with l > 0
then the end that the ray v0,v1, . . . belongs to is denoted by D(g). The end D(g) called the direction of
g. The ray v0,v−1, . . . belongs to the direction D(g−1). Note that if v is a vertex in X and g is either
parabolic or hyperbolic then the sequence gn(v) converges to D(g) in the topology on V X ∪ΩX (see [59,
Lemma 2.4]).

Now one can ask for the existence of hyperbolic automorphisms in Aut(X). This question is answered
by the following result of Jung [24].
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Theorem 4. (Cf. [24, Theorem 1]) Let X be a connected locally finite transitive graph. Suppose C is an
infinite subset of V X with infinite complement and finite boundary. Then there is an element g ∈ Aut(X)
such that gC ( C and g is a hyperbolic automorphism.

Not only does a transitive group of automorphisms of a locally finite graph with more than one end
contain hyperbolic elements, they are abundant. Theorem 4 implies that in connected locally finite transi-
tive graphs with more than one end the directions of hyperbolic automorphisms are dense in ΩX , where
ΩX has the topology defined towards the end of Section 3.1.1. Pavone has shown that if in addition there
is no end fixed by the action of Aut(X) then the directions of hyperbolic elements are bilaterally dense in
ΩX , i.e. if U1 and U2 are disjoint open sets in ΩX then there is some hyperbolic automorphism g of X
such that D(g−1) ∈U1 and D(g) ∈U2 (see [45, Theorem 5]).

¿From Theorem 4 it can be deduced that if X has more than two ends then there are no isolated points
in ΩX . As a consequence we obtain Theorem 5 below which was proved by Hopf in [22] in the context
of Freudenthal’s ends of locally compact connected spaces, see [12, 13]. For the case of vertex ends in
non-locally finite graphs see [20, Corollary 15], and for the case of metric ends see [29, Corollary 3.15]
and [30, Theorem 4].

Theorem 5. An infinite connected locally finite transitive graph has either 1 or 2 ends, or ΩX is a Cantor
set.

3.1.3. Structure trees. The fundamental results behind the theory of structure trees are from the book by
Dicks and Dunwoody [6, Chapter II], but the connections and uses of this theory to study infinite graphs
and group actions on such graphs are developed in [34] and [53]. The survey paper [36] gives an overview
of this technique and the main results on group actions on graphs with infinitely many ends.

For a subset e⊆V X we set e∗ = V X \e. A cut (or more precisely an edge cut) is a subset e⊆V X such
that the coboundary δe of e is finite. A cut e is said to be tight if both e and e∗ are connected subsets of
X . Define BnX to be the Boolean ring generated by all cuts c such that |δc| ≤ n. We also define BX as
the Boolean ring generated by all the cuts. All the elements in BX are cuts.

A set E of cuts is said to be a nested if for each choice of e, f ∈ E one of the intersections

e∩ f , e∩ f ∗, e∗∩ f , or e∗∩ f ∗

is empty, (i.e. e⊆ f ∗, e⊆ f , e∗ ⊆ f ∗ or e∗ ⊆ f ). A nested set E is a tree set if for all elements e, f ∈ E such
that e⊆ f there are only finitely many elements g∈E such that e⊆ g⊆ f . A tree set E is called undirected
if whenever e∈E then e∗ ∈E. A tight cut e is called a Dunwoody-cut (or a D-cut) if E = Ge = {ge | g∈G}
is a tree set. Furthermore, we say that a tree set is tight if every element is a tight cut. In their book [6]
Dicks and Dunwoody prove the following remarkable theorem.

Theorem 6. ([6, Theorem II.2.20]) Let X be a connected graph and G ≤ Aut(X). Then there is a chain
of G-invariant undirected tree sets E1 ⊆ E2 ⊆ . . . in BX such that all elements in En are tight and En
generates BnX for all n.

¿From a tight undirected G-invariant tree set E in BX we can build a directed tree
−→
T =

−→
T (E). This

construction is first described in [8, Theorem 2.1]. It is also treated in [6, Section II.1], [28], [36] and
[53]. The reader is referred to those references for more details and proofs.

For elements e, f ∈ E we define f b e if f ( e and if f ⊆ g⊆ e then e = g or f = g. Define a relation ∼
on E such that e∼ f if e = f or f ∗ b e. In the proof of [8, Theorem 2.1] it is shown that∼ is an equivalence
relation. The vertex set of

−→
T is the set of ∼-classes. There is a one-to-one correspondence between the

edges of
−→
T and the elements of E: An element e∈ E corresponds to a directed edge~e from the ∼-class of

e∗ to the ∼-class of e. Hence we may consider elements of E as edges of
−→
T . We have already defined an

inversion ∗ on the set E and we can also define an inversion ∗ on E
−→
T so that if~e = (α,β ) is an edge in E

−→
T

then~e∗ = (β ,α). We see that if e ∈ E and~e = (α,β ) of
−→
T then e∗ corresponds to the edge~e∗ = (β ,α).

Furthermore, e, f ∈ E correspond to edges~e = (α,β ) and ~f = (β ,γ) in
−→
T if and only if f b e. Define a

partial ordering on E
−→
T such that~e≥ ~f if there is a path of distinct vertices α0,α1, . . . ,αn−1,αn in T such

that ~e = (α0,α1) and ~f = (αn−1,αn). The tree set E is also partially ordered with respect to inclusion.
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From the construction it is clear that the two partial ordered sets E and E
−→
T are order isomorphic. Let

T denote the undirected graph which has the same vertex set as
−→
T and {α,β} is an edge if and only if

(α,β ) is an edge in
−→
T . The directed graph

−→
T is a tree in the sense that the undirected graph T is a tree.

The tree
−→
T =

−→
T (E) is called a structure tree of X . Note that structure trees are directed graphs.

Our group G acts on the tree set E and the equivalence relation ∼ is invariant under this action. Hence
G acts both on

−→
T and T . The space of ends Ω

−→
T of the directed graph

−→
T is defined as being the same as

the space of ends of the undirected graph T .
Next we define maps ϕ : V X → V

−→
T and Φ : ΩX → V T ∪Ω

−→
T . Think of an element e in E as a

directed edge ~e = (α,β ) in the tree
−→
T . We say that ~e points towards a vertex γ in

−→
T if γ is in the same

component of
−→
T \ {~e,~e∗} as β . That is, a path from α to γ must contain β . Let v be a vertex in X . We

locate ϕ(v) by the property that all the elements in E that contain v should point towards ϕ(v), when they
are viewed as edges of

−→
T . Suppose that e and f are elements in E and ~e = (α,β ) and ~f = (β ,γ) are

the corresponding edges in
−→
T . If ϕ(v) = β then v ∈ e but v 6∈ f . In fact, e is minimal in E subject to

containing v and f is maximal subject to not containing v. From this we can observe that for v,u ∈ V X
it follows that ϕ(v) 6= ϕ(u) if and only if there is an element e ∈ E such that e contains precisely one of
the vertices v and u (i.e. v and u belong to different components of X when the edges in δe have been
removed). The group G acts on both V X and V

−→
T , and the map ϕ commutes with these actions.

An element e ∈ E thought of as a directed edge ~e = (α,β ) in the tree
−→
T , points towards an end ω

in
−→
T if ω is in the same component of

−→
T \ {~e,~e∗} as β . The map Φ is defined in a similar way as ϕ:

those elements in E
−→
T that contain an end ω of X should point towards Φ(ω) when considered as edges

in
−→
T . For an end ω we may get an infinite sequence of decreasing cuts in E, all of which contain ω . This

sequence defines a ray R in
−→
T and we define Φ(ω) as the end of

−→
T that R belongs to. If there is no such

sequence then there is a vertex α in V
−→
T such that any cut in E that points to α contains ω . In this case

we set Φ(ω) = α . The vertices of
−→
T that are in the image of Φ are recognizable as those vertices that

have infinite degree or whose pre-image under ϕ is infinite, [34, Lemma 4]. If Φ(ω) is a vertex α ∈V
−→
T

then we say that the end ω lives inside the vertex α . As for vertices of X , we see that two ends of X
have distinct images under Φ if there is some element e ∈ E such that δe separates the two ends. Take a
tree set E that generates BnX . Then, if some two ends can be separated by a set containing n or fewer
edges then there will be an element e ∈ E such that δe separates the ends (i.e. the ends belong to different
components of X when the edges in δe have been removed). Again it is clear that the map Φ commutes
with the actions of G on ΩX and V

−→
T ∪ΩT .

The following Lemma describes the relationship between the action of G on X and the action of G on−→
T .

Lemma 3. ([34, Corollary 1]) Let X be a connected locally finite graph and
−→
T =

−→
T (E) some structure

tree of X, where E is a tight undirected tree set.

(i) If g ∈Aut(X) acts like a translation on
−→
T then g acts like a translation on X and g is hyperbolic.

(ii) If g ∈ Aut(X) is a translation (a parabolic or hyperbolic automorphism of X) then either g acts
as a translation on

−→
T or there is a unique vertex of

−→
T fixed by g and that vertex has infinite

degree.
(iii) If g ∈ Aut(X) is hyperbolic then there is a tight undirected tree set Eg such that g acts as a

translation on
−→
T (Eg).

3.1.4. Ends of groups. The number of ends of a finitely generated group G is defined as the number of
ends of a Cayley graph of G with respect to some finite generating set. As will be explained in the next
section, the choice of a finite generating set will not affect the outcome.

¿From Theorem 5 it follows that a Cayley graph of a finitely generated group either has no ends, one
end, two ends or infinitely many ends. The structure of groups with more than one end is described in the
following theorems. The first one, which is a conjunction of results of Hopf [22, Satz 5] and Wall [56,
Lemma 4.1], gives a clear description of the groups that have precisely two ends.
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Theorem 7. Let G be a finitely generated group. Then the following are equivalent:

(i) G has precisely two ends;
(ii) G has an infinite cyclic subgroup of finite index;

(iii) G has a finite normal subgroup N such that G/N is either isomorphic to the infinite cyclic group
or to the infinite dihedral group.

Definition 5. A group G is said to split over a subgroup H if G can be decomposed into a non-trivial
amalgamated free product A∗H B of subgroups A and B (non-trivial means that H 6= A and H 6= B), or if
G is an HNN-extension A∗H x, where x denotes the stable letter.

Theorem 8. (Stalling’s Ends Theorem, [52]) Suppose G is a finitely generated group with more than one
end. Then G splits over a finite subgroup.

This theorem can be deduced from the general theory of structure trees (described in the previous
section) with the aid of Bass-Serre theory of groups acting on trees (see [50]). In Bass-Serre theory it is
usually assumed that a group G acts on a tree T without inversion, meaning that no element in the group
transposes a pair of adjacent vertices. ¿From the Bass-Serre theory of groups acting on trees we need the
following.

Theorem 9. (Cf. [50, Theorem 6]) Suppose G is a group acting without inversion on a tree T such that
G has just a single orbit on the edges of T . Suppose {u,v} is an edge in T . If G has two orbits on the
vertices of T then G = Gu ∗Gu,v Gv. If G has just one orbit on the vertices of T then G can be written as a
HNN-extension Gu ∗Gu,v x.

The condition that the group acts without inversion is not a serious restriction, because by replacing T
with its barycentric subdivision (adding a new vertex at the “middle” of each edge) we are sure to get an
action without inversion.

Suppose G acts transitively on a locally finite connected graph with infinitely many ends. We find a
Dunwoody-cut e of X and define

−→
T as the structure tree of X with respect to the tree set E = Ge∪Ge∗.

The group G acts on
−→
T and also on the undirected tree T , but we can not be sure that the action is

without inversion. Suppose e corresponds to an edge {α,β} in T . If G acts on T without inversion then
G = Gα ∗Ge Gβ , or G is an HNN-extension Gα ∗Ge x. If G acts with inversion, i.e. there is an element in g
such that gα = β and gβ = α , then G = Gα ∗Ge H where H is the setwise stabilizer of the set {α,β}. This
says that G splits over a group Gδe where e is some Dunwoody-cut in G and Gδe denotes the subgroup
of all elements in G that leave the set δe invariant. Note that if e is a cut then the set Ae of vertices in
e that are adjacent to vertices in e∗ is the set ∂ (e∗). The setwise stabilizer H1 of e in G is equal to the
intersection of the setwise stabilizers of ∂e and ∂ (e∗). Let H2 denote the stabilizer of a vertex in X . Both
∂e and ∂ (e∗) are finite so H1 is commensurable with H2, meaning that both indices |H1 : H1 ∩H2| and
|H2 : H1∩H2| are finite.

With further reference in mind we state the outcome of the considerations above.

Corollary 3. Let G be a group acting transitively on a locally finite connected graph X with more than
one end. Then G splits over a subgroup commensurable with the stabilizer in G of a vertex in X.

3.2. Stallings’ Ends Theorem for rough ends. The theorem from Section 2 that any two rough Cayley
graphs of a compactly generated totally disconnected locally compact group are quasi-isometric and the
result from Section 3.1.1 that locally finite graphs which are quasi-isometric have homeomorphic end
spaces allow us to use rough Cayley graphs to define ends for compactly generated totally disconnected
locally compact groups.

Definition 6. The space of rough ends of a compactly generated totally disconnected locally compact
group G is the end space of a rough Cayley graph of G.

The following corollary to Theorem 3 links together the rough ends of a compactly generated totally
disconnected locally compact group G and the rough ends of a closed cocompact subgroup.
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Corollary 4. Let G be a compactly generated totally disconnected locally compact group and H a closed
cocompact subgroup. Then the spaces of rough ends of G and H are homeomorphic. In particular H has
the same number of rough ends as G.

Proof. By Corollary 2 a rough Cayley graph of G is quasi-isometric to a rough Cayley graph of H. Hence
they must have homeomorphic spaces of rough ends. �

Let X1 and X2 be rough Cayley graphs for G. Suppose ψ : X1 → X2 is a quasi-isometry like in Theo-
rem 2+. Let ψ and Ψ be as described at the end of Section 3.1.1. Because ψ is continuous, we see that
if a sequence of vertices vi in X1 converges to an end ω in ΩX1 then the sequence ψ(vi) converges to the
end ψ(ω) = Ψ(ω) in ΩX2. The action of G on X1 induces an action of G on ΩX1. Hence gvi converges
to gω . Similarly, the sequence gψ(vi) in X2 must converge to the end gΨ(ω) in ΩX2 and the sequence
ψ(gvi) must converge to the end Ψ(gω). Because there is a constant c such that dX2(gψ(vi),ψ(gvi))≤ c
for all i, we can conclude that the sequences gψ(vi) and ψ(gvi) converge to the same end of X2. Thus
gΨ(ω) = Ψ(gω) and the map Ψ is covariant with the action of G. In this context one can also note that
different choices of coset representatives when constructing the map ψ do not affect the map Ψ . These
considerations are so fundamental in what follows that we state the results as a theorem.

Theorem 10. Let X1 and X2 be rough Cayley graphs for some compactly generated totally disconnected
locally compact group. Let ψ : X1 → X2 be a quasi-isometry as in Theorem 2+. There is a unique
extension ψ : V X1 ∪ΩX1 → V X2 ∪ΩX2 of ψ whose restriction Ψ to ΩX1 is a homeomorphism ΩX1 →
ΩX2 which is covariant with the actions of G on ΩX1 and ΩX2, i.e. Ψ(gω) = gΨ(ω) for all ω ∈ ΩX1
and g ∈ G.

Now we turn our attention to group theoretic properties related to rough ends. Our aim is to show that
a compactly generated totally disconnected locally compact group with more than one rough end splits
over some compact open subgroup, and thus to derive an analogue of Stallings’ Ends Theorem.

Let G act transitively on a locally finite connected graph X with infinitely many ends. Then Dun-
woody’s theory of structure trees yields an action on a directed tree with infinitely many ends which has
at most two orbits on the edges, and consequently at most two orbits on the vertices. We will show how
we also can go the other way.

If we start with an action of G on a tree T such that the stabilizers of edges are compact open subgroups
of G and G has only finitely many orbits on the edges then we will show how T can be used to construct
a tree set of Dunwoody-cuts of some rough Cayley graph. In our discussion it is sometimes convenient to
think of T as a directed graph

−→
T . This is purely a formal device to ease the presentation. The vertex sets

of T and
−→
T are the same and each undirected edge {u,v} in T is represented by two directed edges (u,v)

and (v,u) in
−→
T . In the following we will be discussing a tree set E, the set of edges E

−→
T of the directed

tree
−→
T and ET the set of edges of T . These sets are related and we will typically use e and f to denote

elements of E, for the corresponding elements of E
−→
T will be denoted with ~e and ~f and e and f for the

corresponding elements of ET .
Let u be a fixed vertex in T and let Eu denote the set of edges in T with u as an end vertex. The set Ue, f

of elements of G that map a given edge e of T to a given edge f of Eu is open because the edge stabilizers
are open. The set of elements of G that map a given edge e of T to a an edge of Eu is thus open because
it is the union of the open sets Ue, f for f ∈ Eu. Suppose {u,v} and {u,w} are distinct edges in T . Both

V1 = {g ∈ G | g{u,v} ∈ Eu} and V2 = {g ∈ G | g{u,w} ∈ Eu}

are open subsets of G. Their intersection is an open set and Gu = V1∩V2. Hence Gu is an open subgroup
of G. (This conclusion is obviously also true if there is only one edge in T with u as an end vertex.)
Because Gu is an open subgroup it is also a closed subgroup of G.

The stabilizer V of an edge {u,v} in T is a compact open subgroup of G. Because Gu is both open
and closed, the subgroup Gu ∩V is open and compact and is equal to the stabilizer of the edge (u,v) in
−→
T . Let U denote some compact open subgroup of Gu. Define X as RCay(G,U,S) where U together with
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S = {s1, . . . ,sn} form a good generating set. Let~e = (v,w) be an edge in
−→
T . Remove the edge {v,w} from

T and the tree T splits into two subtrees T~e and T(~e)∗, where T~e contains w and T~e∗ contains v. Define

c~e = {gU | gu ∈V T~e} ⊂ G/U = V X .

Note that c(~e)∗ = V X \ c~e = (c~e)∗. The assumption that U ⊆ Gu guarantees that if h ∈ gU then hu = gu.

Theorem 11. Let G be a compactly generated totally disconnected locally compact group. Suppose G
acts on a tree T such that the stabilizers of the edges are compact open subgroups of G and G has only
finitely many orbits on the edges of T . Suppose

−→
T ,U,S,X and u are as above.

Then, for an edge~e in
−→
T the set c~e is a cut in X and it is possible to choose S such that c~e is connected.

The set E = {c~e | e ∈ E
−→
T } is a tree set. If the map E

−→
T → E, ~e 7→ c~e is bijective and the sets c~e are

connected then
−→
T is isomorphic to the structure tree

−→
T (E). If T has an edge f such that both components

of T \ { f} contain infinitely many vertices from the orbit of the vertex u in T then X has more than one
end.

Proof. Our first task is to prove that c~e is indeed a cut of X . This means we have to show that δc~e is finite.
By Lemma 1, each orbit of G~e, the stabilizer of the edge~e = (v,w) in

−→
T , on the edges of T is finite (note

that T need not be locally finite) and thus every orbit G~e on the vertex set of T is also finite. We split the
proof of the finiteness of δc~e up into two parts.

Define a graph Y such that the vertex set of Y is the same as the vertex set of T but the edge set of Y is

EY = G{u,s1u}∪ · · ·∪G{u,snu}.

The group G acts on Y as a group of automorphisms. The distance in T between the end vertices of edges
in Y is bounded, because G has only finitely many orbits on the edges of Y . We show that there are only
finitely many edges in Y with one end vertex in V T~e and the other in V T~e∗ . Suppose there are infinitely
many edges in Y with one end vertex in V T~e∗ and the other in V T~e. This would allow us to find infinitely
many edges {vi,wi} in EY with the following three properties:

(i) vi ∈V T~e∗ and wi ∈V T~e for all i,
(ii) all these edges are in the same G-orbit, and

(iii) dT (v,vi) = dT (v,v j) and dT (w,wi) = dT (w,w j) for all i and j.
The third item follows from the fact that if a = min{dT (u,siu)} then dT (vi,wi) ≤ a for all i and since
vi ∈ T(~e)∗ and wi ∈ T~e there are only finitely many possibilities for dT (v,vi) and dT (w,wi). An element in
G that maps an edge {vi,wi} to an edge {v j,w j}must fix the edge {v,w} in T . This leads to a contradiction
since the stabilizer of the edge {v,w} in G is compact and thus has only finite orbits on the edges of T ,
and therefore the orbits on the vertices of T are also finite. Whence there are only finitely many edges in
Y with one end vertex in V T~e∗ and the other in V T~e.

Let Y ′ denote the subgraph spanned by the orbit of u under G. Both end vertices of an edge in Y always
belong to VY ′. Define a map θ : V X → VY ′ such that θ(hU) = hu. It follows from the assumption that
U ≤ Gu that θ is well defined. The fibers of θ form a G invariant equivalence relation ∼ on V X and the
map θ is covariant with the action of G on these equivalence classes. From the way X and the edge set
of Y are defined, it is clear that an edge in X is either mapped to an edge of Y ′ or both end vertices are
mapped to the same vertex of Y ′. Suppose there were infinitely many edges in X with one end vertex in
c~e and the other in c~e∗ . These will be mapped to edges in Y ′ that have one end vertex in V T~e and the other
in V T~e∗ . There are only finitely many such edges. Infinitely many of the edges in X with one end vertex
in c~e and the other in c~e∗ would then be mapped to the same edge e′ in Y , and, because G has only finitely
many orbits on the edges of X , infinitely many of these would belong to the same G-orbit. If f is an edge
in X and f and g f are both mapped by θ to the same edge e′ in Y then g ∈ Ge′ . Hence the group Ge′

would have infinite orbits on the edges of X . But the stabilizer of the edge e′ is a compact subgroup of G
and would therefore have finite orbits on the edges of X . We have reached a contradiction and conclude
that there are only finitely many edges in X with one end vertex in c~e and the other one in c~e∗ .

Let~e now be some edge in
−→
T . It is not clear that c~e is a connected subset of X , but it is clear that c~e has

only finitely many connected components, because δc~e is finite. Choose one vertex from each component
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of c~e to get a collection of vertices v1, . . . ,vm. Now replace the graph X by the graph one gets by adding
the sets G{vi,v j} for i 6= j to the set of edges in X . (One can also think of this in terms of adding to the
set S group elements ti j such that {U, ti jU} is in the same G-orbit as {vi,v j} .) Note that this new graph is
locally finite and the set c~e is connected and so are also all the cuts in the G-orbit of c~e. The group G has
only finitely many orbits on the edges of T and thus only finitely many orbits on the cuts c~e one gets from
T . Therefore one only needs to repeat the above construction finitely many times for c~e1 , . . . ,c~ek where
~e1, . . . ,~ek are representatives for the orbits of G on the edges of

−→
T to get a locally finite connected graph

X such that c~e is a connected cut for every edge~e in
−→
T .

Let E denote the set of all the cuts of X which we get in this way by removing the edges of
−→
T . That

E is a tree set follows from the construction, because the ordering of E by inclusion mirrors the ordering
of E

−→
T given by the tree, precisely as in the relationship between a tree set of cuts and a structure tree.

If this map is bijective then it gives an isomorphism of the tree
−→
T and the structure tree

−→
T (E). The last

statement in the Theorem follows trivially because if {v,w} is such an edge and ~e = (v,w) then both c~e
and the complement of c~e contain infinitely many vertices and hence X must have more than one end. �

Remark 4. (i) If G is a finitely generated group then the theorem above says that every action of G on
a tree with finite edge stabilizers corresponds to a tree set of Dunwoody-cuts of some ordinary Cayley
graph for a finite generating set.

(ii) It is possible that two different edges in
−→
T give the same cut of X . Suppose that ~e = (v,w) and

~e ′ = (v′,w′) are edges in
−→
T . The cuts c~e and c~e′ are equal if and only if the trees T~e and T~e ′ contain

precisely the same vertices from the orbit of u under G. It is possible to “prune” the tree T to get a new
tree that G acts on where this situation does not arise. If ~e = (v,w) is an edge in

−→
T and T~e contains no

vertex from the orbit Gu then we delete T~e together with the edge {v,w} from T . When all subtrees of
this form have been deleted we are left with a new tree T ′ containing the orbit of u under G. Note that
the action of G on T restricts to an action on T ′. It still may happen that there are edges e and e ′ in T
such that corresponding directed edges in

−→
T ′ give rise to the same cut in E in X , but that must be because

T \{e,e ′} has a component not including any vertices from Gu. Because of the pruning already done we
can conclude that all the vertices in this component have degree 2. Hence there is a path v0,v1, . . . ,vk−1,vk
in the tree T ′ that starts with the edge e and ends with the edge e ′ and all vertices in this path, with the
possible exceptions of v0 and vk, have degree 2. Throw out the vertices v1, . . . ,vk−1 and put in a single
edge {v0,vk}. When all such instances have been treated then we are left with a tree T ′′ that G acts on
and the action on this tree gives rise to precisely the same cuts of X as the action on the original tree T but
now the map from the edges of

−→
T ′′ to the set of cuts is bijective. Hence T ′′ is isomorphic to the structure

tree.

Theorem 1 says that a totally disconnected locally compact group acting transitively on a connected
locally finite graph with compact open stabilizers of vertices is compactly generated. We use this result
to prove that the stabilizer of a vertex in a structure tree (as in Theorem 11) is compactly generated. To
do so we use the following construction from [53, Section 7]. Let X be a graph and

−→
T a structure tree

of X with respect to some tree set consisting of tight cuts (i.e. each cut is a connected subset of V X).
Suppose G is a group acting transitively on X . (Note that in [53, Section 7] the group action considered
is the action of the full automorphism group of X , but all the arguments hold true for any transitive group
action on X .) Given a vertex α in

−→
T we want to produce a connected subgraph Xα of X such that Gα acts

with finitely many orbits on Xα .
For an element e ∈ E (corresponding to an edge~e of

−→
T ) and a natural number q we define Rq(e) as the

subgraph of X spanned by the vertices in e (where we think of e as a cut of X) that are at distance less or
equal to q from the vertex boundary ∂e of e in X . Using the property that e is connected we can clearly
choose q so large that the following condition (†) is satisfied:

(†) If P1, . . . ,Pr are pairwise edge-disjoint paths in e∪∂e between vertices in ∂e, and all other vertices
in these paths are contained in e then Rq(e)∪∂e contains pairwise edge-disjoint paths P′

1, . . . ,P
′
r
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such that P′
i and Pi have the same end vertices for all i = 1, . . . ,r and all vertices in the paths P′

i
apart from the end vertices are in Rq(e).

Because G acts with only finitely many orbits on E
−→
T , we can find a number q such that Rq(e) satisfies

(†) for all~e ∈ E
−→
T . Let Xα be the subgraph of X induced by the union of the set ϕ−1(α) and the vertices

in Rq(e) for all e ∈ E
−→
T of the form (α,β ).

Because G has only finitely many orbits on E
−→
T , we know that Gα (the stabilizer of α in G) has only

finitely many orbits on the set of edges in
−→
T with initial vertex α . Also note that the group Gα acts

transitively on the vertices in ϕ−1(α). The subgraph Xα of X is invariant under Gα and, by the above,
Gα acts on Xα with only finitely many orbits. The ends of X that are mapped to α by the structure map
are in a natural correspondence to the ends of Xα . It is instructive to go through the argument that shows
this. Suppose R is a ray in an end ω that is mapped to α . Suppose~e = (α,β ) is an edge in

−→
T and e is the

corresponding cut in X . Then the end ω does not lie in e, so e will at most contain finitely many disjoint
finite subpaths from R. The end vertices of these finite subpaths are all in ∂e. Now we use property (†)
to replace each of these finite paths with a path in Xα that has the same end vertices. The resulting 1-way
infinite path may have repeated vertices but because the graph is locally finite this 1-way infinite path will
contain a ray R′ which is clearly also in the end ω . Using (†) one can also show that two rays in Xα that
belong to the same end of X must also belong to the same end of Xα . Hence the end of Xα that R′ belongs
to does not depend on the choice of the ray R in ω and we have the promised correspondence between
ends of X mapped by the structure map to α and ends of Xα .

Theorem 12. Suppose G is a compactly generated totally disconnected locally compact group and X
is some rough Cayley graph of G. If

−→
T is a structure tree of X then the stabilizers of edges in

−→
T are

compact open subgroups of G and the stabilizers of vertices in
−→
T are compactly generated subgroups of

G that are both closed and open in G.

Proof. An edge in
−→
T corresponds to a Dunwoody-cut e of X . A group element stabilizing an edge in T

must stabilize (setwise) the coboundary of a Dunwoody-cut. The boundary δe is a finite set of edges and
the stabilizer of each edge of X is a compact open subgroup of G. Hence we see that the stabilizer of an
edge in

−→
T is a compact open subgroup of G.

Let us now look at the stabilizer of a vertex α in
−→
T . Suppose that ~e is an edge in

−→
T that has α as

one end vertex. Since Gα contains the compact open subgroup G~e we conclude that Gα is a closed open
subgroup of G. The group Gα acts with finitely many orbits on the locally finite connected graph Xα

with compact open stabilizers of the vertices. By Corollary 1, we can conclude that Gα is compactly
generated. �

Theorem 13. Let G be a compactly generated totally disconnected locally compact group.
The group G splits over some compact open subgroup if and only if it has more than one rough end.
More precisely, if G has more than one rough end then G = A∗C B or G = A∗C x where the subgroups

A and B are compactly generated and open, and C is a compact open subgroup.

Proof. If some rough Cayley graph of G has more than one end then we get an action of G on a tree such
that the stabilizers of edges are compact open subgroups of G and the stabilizers of vertices are closed
open subgroups of G that are compactly generated (by Theorem 12). Now we can refer to the Bass-Serre
theory of groups acting on trees to get the result.

To prove the latter part of the theorem we use the Bass-Serre theory to get an action of G on a tree T
with just one orbit on the edges and such that the stabilizers of edges are conjugates of C. First suppose
that G can be written as an HNN-extension G = A∗C x. Then G acts on a tree with just one orbit on the
vertices and clearly

−→
T is isomorphic to the structure tree we get from Theorem 11 and the result now

follows from Theorem 12. Now suppose that G = A ∗C B. Then G has two orbits on the vertices of the
Bass-Serre tree T . If

−→
T is isomorphic to the structure tree we get from Theorem 11 then there is nothing

more to do. But it could happen that T is not isomorphic to the structure tree. This will only happen when
the vertices in one of the orbits on T have degree 2. Let us assume that B is the stabilizer of vertex of
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degree 2 in T . Then B is compact. When we prune the structure tree by removing the vertices of degree
2 we get a tree T ′ such that T is the barycentric subdivision of T ′ and

−→
T ′ is isomorphic to the structure

tree we get from T . The stabilizers of vertices in this structure tree are conjugates of A which is therefore
compactly generated. �

Remark 5. Abels, [1, Struktursatz 5.7 and Korollar 5.8], proves much the same result but his approach is
very different. The methods used in this paper are compared with Abels’ methods in Section 3.6.

Remark 6. In this context it is worth noting a result of Morris and Nicholas, [41], that a locally compact
group that can be expressed as a nontrivial free product must be discrete.

Example 1. The group SL2(Qp) is a free product with amalgamation of two copies of SL2(Zp). Hence
SL2(Qp) has infinitely many rough ends.

Theorem 13 in conjunction with Corollary 4 give the following.

Corollary 5. Let G be a compactly generated totally disconnected locally compact group and H a closed
cocompact subgroup. Then G splits over a compact open subgroup if and only if H splits over a compact
open subgroup.

Theorem 14. (Cf. [40, Proposition 2.3]) Let G be a compactly generated totally disconnected locally
compact group. Suppose that the space of rough ends has precisely two points. Then G has a compact
open normal subgroup N such that G/N is either isomorphic to Z or D∞, the infinite dihedral group.

Proof. Let X be a rough Cayley graph of G. Then X is a locally finite graph with two ends and G acts
transitively on X . By [40, Proposition 2.3] there is a normal subgroup N with finite orbits (and thus
compact closure) such that G/N is either equal to Z or D∞. To complete the proof we have to show that
N is open. The condition on G/N implies that if A1 and A2 are some two distinct orbits of N then the
subgroup of G that stabilizes both A1 and A2 setwise is N. Since A1 and A2 are both finite we conclude
that N is open. �

3.3. Accessibility. The usefulness of rough Cayley graphs can be demonstrated further by considering
the concept of accessibility.

Definition 7. A finitely generated group is said to be accessible if it has an action on a tree T such that:
(i) the number of orbits of G on the edges of T is finite;

(ii) the stabilizers of edges in T are finite subgroups of G;
(iii) every stabilizer of a vertex in T is a finitely generated subgroup of G and has at most one end.

We only need to change the above definition slightly to fit into our framework.

Definition 8. A compactly generated totally disconnected locally compact group is said to be accessible
if it has an action on a tree T such that:

(i) the number of orbits of G on the edges of T is finite;
(ii) the stabilizers of edges in T are compact open subgroups of G;

(iii) every stabilizer of a vertex in T is a compactly generated subgroup of G and has at most one
rough end.

Accessibility also has a graph theoretical aspect.

Definition 9. ([53, p. 249]) Let X be a connected locally finite graph. If there is a number k such that
any two distinct ends can be separated by removing k or fewer edges from X then the graph X is said to
be accessible.

As pointed out in [44, Theorem 0.4], the property of a locally finite connected transitive graphs being
accessible is preserved by quasi-isometries.

It was an open question for a long time if every finitely generated group is accessible. Dunwoody
proved in [9] that every finitely presented group is accessible, but in [10] he constructed a finitely gen-
erated group that is not accessible. Thomassen and Woess prove in [53, Theorem 1.1] that a finitely
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generated group is accessible if an only if its Cayley graphs are accessible. They also proof that a locally
finite connected transitive graph X is accessible if and only if there is a number n such that BnX = BX
(see [53, Theorem 7.6], for notation see Theorem 6 above). With reference to Theorem 6 this implies that
X is accessible if and only if there is a tree set En ⊆BnX that generates BX .

The following is an analogue of the result of Thomassen and Woess.

Theorem 15. Let G be a compactly generated totally disconnected locally compact group. Then G is
accessible if and only if every rough Cayley graph of G is accessible.

Proof. First we suppose that a rough Cayley graph X of G is accessible. Then we can find a structure tree−→
T =

−→
T (E) of X such that for any vertex α of

−→
T the graph Xα has at most one end, [53, Theorem 7.6

and Proposition 7.7]. This means that Φ−1(α) contains at most one end. The rough Cayley graphs of Gα

are quasi-isometric to the one ended graph Xα (see Theorem 3). Hence the subgroup Gα has at most one
rough end. The rest of the conditions in Definition 8 follow from Theorem 12.

Assume now that the group G is accessible. Let T be a tree that G acts on such that the conditions
in Definition 8 are satisfied. By Theorem 11 we can view

−→
T as a structure tree of some rough Cayley

graph X of G with respect to some tree set E (we may assume that
−→
T has been pruned, see Remark

(ii) following the proof of Theorem 11) since the pruning process does not affect the properties listed in
Definition 8. If the graph X is not accessible then there is a vertex α of

−→
T such that the graph Xα has

more than one end. The compactly generated subgroup Gα acts on Xα with only finitely many orbits. By
Theorem 3 any rough Cayley graph of Gα is quasi-isometric to Xα . The rough Cayley graphs for Gα will
consequently have more than one end contradicting the assumptions on the action of G on

−→
T . Hence X is

accessible. Accessibility of locally finite transitive graphs is invariant under quasi-isometries. It follows
that all rough Cayley graphs of G are accessible. �

3.4. Co-compact free subgroups. Let G be a finitely generated group and X a Cayley graph of G with
respect to some finite generating set. It is a well known result, often attributed to Gromov but also found
in a slightly different form in Woess’ paper [58], that X is quasi-isometric to a tree if and only if G has a
finitely generated free subgroup with finite index. For graphs of groups the reader is referred to Serre’s
book [50].

Theorem 16. Let G be a compactly generated totally disconnected group with a co-compact finitely
generated free subgroup.

(i) Some (hence, every) rough Cayley graph of G is quasi-isometric to some tree if and only if G
has an expression as a fundamental group of a finite graph of groups such that all the vertex and
edge groups are compact open subgroups of G.

(ii) Assume also that the group G is unimodular. Then some (hence, every) rough Cayley graph of
G is quasi-isometric to some tree if and only if G has a finitely generated free subgroup that is
cocompact and discrete.

Proof. (i) Assume first that X is a rough Cayley graph of G and that X is quasi-isometric to some tree
T . It follows from [58, Proposition 2] or from [30, Theorem 6] that a locally finite graph that is quasi-
isometric to a tree has no thick ends. From [37] it is known that an inaccessible graph has uncountably
many thick ends. Thus our graph X is accessible and there is a tree set En ⊆ BnX which generates BX .
¿From [53, Theorem 7.3] and [34, Lemma 4] one concludes that the structure tree

−→
T =

−→
T (E) is locally

finite. Suppose that e is an edge in X that is contained δ f for some cut f in X and assume that α is
an end vertex of the corresponding edge ~f in

−→
T . The orbit of e under Gα is contained in the union of

the coboundaries of the edges in
−→
T that have α as an end vertex. By assumption, there are only finitely

many such edges in
−→
T and we conclude that the orbit Gα e is finite. Thus Gα is relatively compact. The

stabilizer in G of a vertex v in
−→
T is a closed and open subgroup by Theorem 12. Hence Gα is a compact

open subgroup of G. The action of G on the structure tree
−→
T gives an expression of G as a fundamental

group of a graph of groups such that both the edge and vertex groups in this graph of groups are compact
open subgroups of G.
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Conversely, assume that G has an expression as a fundamental group of a graph of groups where all
the vertex and edge groups are compact open subgroups of G. This gives us an action of G on a locally
finite tree such that all the stabilizers of vertices are compact open subgroups of G and G has only finitely
many orbits on the vertex set of the tree. By Theorem 3 the graph T is quasi-isometric to some rough
Cayley graph of G.

(ii) Suppose first that G is unimodular with a rough Cayley graph that is quasi-isometric to some tree.
By the above we get an action of G on a locally finite tree

−→
T such that G has only finitely many orbits

on the vertices of
−→
T and the stabilizers of vertices are compact open subgroups of G. It follows from [2,

Section 4] that G contains a discrete finitely generated free subgroup F acting with finitely many orbits
on

−→
T . Hence F is cocompact in G.
Now suppose that G has a cocompact discrete finitely generated free subgroup F . The free group F

has a (rough) Cayley graph Y that is a tree. Since F is cocompact we can refer to Theorem 3 and conclude
that if X is a rough Cayley graph of G then X is quasi-isometric to the tree Y . �

Corollary 6. Let G be a compactly generated totally disconnected locally compact group. If G has a
cocompact finitely generated free discrete subgroup then G splits over some compact open subgroup and
G can be written as G = A∗C B or G = A∗C x where A,B and C are compact open subgroup of G.

Proof. The free subgroup has a tree as a Cayley graph and, by Corollary 2(ii), a rough Cayley graph for G
will be quasi-isometric to this tree. The group G is unimodular since it has a discrete cocompact subgroup
and now the result follows from the latter half of Theorem 16. �

Example 2. Before it was mentioned that SL2(Qp) is a free product with amalgamation of two copies of
SL2(Zp) which are compact open subgroups. Hence the rough Cayley graphs of SL2(Qp) are all quasi-
isometric to trees and, because SL2(Qp) is unimodular, then SL2(Qp) has a cocompact discrete finitely
generated free subgroup.

3.5. Types of automorphisms of graphs. The automorphisms of a connected graph can be split up
into three classes: elliptic, parabolic and hyperbolic (see Section 3.1.2). In this section we explore this
classification further, considering the case of a compactly generated totally disconnected locally compact
group acting on a rough Cayley graph.

Theorem 17. Let G be a compactly generated totally disconnected locally compact group. Whether an
element g ∈ G acts on a rough Cayley graph X as an elliptic, parabolic or hyperbolic element does not
depend on the choice of the rough Cayley graph X.

Proof. Lemma 1 says that g acts on a rough Cayley graph as an elliptic automorphism if and only if g is a
periodic element of the topological group G, i.e. the cyclic subgroup generated by g is relatively compact
in G.

Suppose that X1 and X2 are two rough Cayley graphs for G. By Theorem 10 above, there is a homeo-
morphism Ψ : ΩX1 →ΩX2 that is covariant with the action of G. If g acts like a parabolic automorphism
on X1 then g is not periodic and g fixes precisely one end of X1. Since the homeomorphism Ψ is co-
variant with the action of G on ΩX we see that g fixes precisely one end of X2 and acts as a parabolic
automorphism on X2.

That g acts like a hyperbolic automorphism on X2 if g acts like a hyperbolic automorphism on X1 is
proved in the same way. �

This theorem allows us to speak of the elements of G as elliptic, parabolic or hyperbolic without
any reference to the action of G on a particular rough Cayley graph. It is also possible to describe the
properties of being elliptic, parabolic or hyperbolic in more group theoretic terms.

Theorem 18. Let G be a compactly generated totally disconnected locally compact group with infinitely
many ends.

(i) An element g in G is elliptic if and only if g is a periodic element of G.
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(ii) An element in g in G is parabolic if and only if g is not elliptic and whenever G acts on a tree
such that the stabilizers of the edges in T are compact open subgroups of G then g fixes a vertex.

(iii) An element g in G is hyperbolic if and only if G has an action on a tree such that G acts tran-
sitively on the set of neighbours of any vertex, the edge stabilizers are compact open subgroups
and g acts as a hyperbolic element.

This can also be phrased in terms of graphs of groups and splittings of groups. The second item says
that when G is written as a graph of groups with compact open edge groups then a parabolic element will
always belong to a conjugate of a vertex group. The third item says that G splits over a compact open
subgroup C such that G = A∗C B or G = A∗C x and g is not contained in a conjugate of A or B.

of Theorem 18. Item (i) follows immediately from Lemma 1.
We will first look at item (iii). Suppose g is hyperbolic. Let X be some rough Cayley graph of G.

Then g fixes two ends of X . Let e be a Dunwoody-cut of X that separates these two ends. Note that the
stabilizer of e is a compact open subgroup C of G. Let E denote the tree set E = Ge∪Ge∗. The action of
G on

−→
T =

−→
T (E) gives us the desired action on a tree (see Lemma 3).

Suppose now that G acts on a tree T as described in (iii). We may clearly assume that T has no vertices
of degree 2. Let C denote the stabilizer in G of some edge in T . The condition that the stabilizer in G of a
vertex acts transitively on all adjacent vertices implies that G acts transitively on the edges of T . Suppose
~e is an edge in

−→
T that separates the two ends of T fixed by g. The edge~e corresponds to a Dunwoody-cut

f of some rough Cayley graph X and the related structure tree
−→
T (G f ∪G f ∗) is isomorphic to

−→
T (the

conditions on T imply that there is no need for pruning as described in Remark (ii) following the proof
of Theorem 11). Hence g acts like a hyperbolic automorphism on X and g is hyperbolic.

Part (ii) follows directly from (iii) and Theorem 11. �

These ideas about types of automorphisms can also be linked to the concept of accessibility.

Corollary 7. Let G be a compactly generated totally disconnected locally compact group. Then G is
accessible if and only if G has an action on a tree such that the stabilizers of edges are compact open
subgroups of G and all the hyperbolic elements in G act as hyperbolic automorphisms on T .

Proof. Let X be a rough Cayley graph of G. If G is accessible then the graph X is accessible. Thus there is
a number n and a tree set En of Dunwoody-cuts of X that generates the Boolean ring BX and BX = BnX .
Let

−→
T =

−→
T (E) be the structure tree. By Theorem 12, the stabilizers of edges in

−→
T are compact open

subgroups of G and stabilizers of vertices are compactly generated. If g ∈ G is a hyperbolic element
then there is a cut in E that separates the two ends that g fixes and we see that g acts like a hyperbolic
automorphism on

−→
T (see the proof of [34, Corollary 1 (iii)]).

Conversely, suppose we have an action of G on a tree T satisfying the conditions above. We may
assume that the tree has been “pruned” (see the remark following the proof of Theorem 11), because
if the conditions in the corollary were satisfied before “pruning” then they will also be satisfied after
pruning. ¿From the action of G on T we can get a tree set of cuts of some rough Cayley graph X (see
Theorem 11). If α is a vertex in T then Gα acts on the graph Xα with only finitely many orbits. The
graph Xα is quasi-isometric to a rough Cayley graph of Gα . If Xα had more than one end then it would
follow from Theorem 4 (see also [53, Lemma 8.3]) that Gα would contain an element that acted like a
hyperbolic automorphism on Xα and this element would also act like a hyperbolic element on X . The
assumed absence of hyperbolic elements from Gα ensures thus that Xα has only one end. Hence X is
accessible. �

Corollary 8. Let G be a compactly generated totally disconnected locally compact group. Then G is
accessible if and only if G can be expressed as a fundamental group of a finite graph of groups such
that all the edge groups are compact open, all vertex groups are compactly generated and no hyperbolic
element of G is contained in a vertex group.

Proof. This Corollary is a translation of Corollary 7 into terms involving graphs of groups. �
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In Section 3.1.2 the direction of a parabolic or hyperbolic automorphism of a graph X is defined. The
set of directions of the graph X , denoted D(X), is the set

{D(g) | g ∈ Aut(X) acts as a parabolic or hyperbolic automorphism on X}.

Suppose that X1 and X2 are two rough Cayley graphs for some compactly generated totally disconnected
locally compact group G. If ω is the direction of g when g acts on X1 then Ψ(ω) (for the definition of
Ψ see Theorem 10) is the direction of g when g acts on X2. Hence, the restriction of Ψ to D(X1) is a
homeomorphism D(X1) → D(X2) (see Theorem 10). Also note that if g and h have the same direction
when acting on X1 they will also have the same direction when acting on X2. Thus we are justified in
talking about the directions of an element in G without referring to a particular action of G on a rough
Cayley graph.

Remark 7. The case of a finitely generated group acting on a Cayley graph is a special case of the results
above.

Theorem 19. Let G be a compactly generated totally disconnected locally compact group with more than
one rough end. Suppose g and h are hyperbolic elements of G. Then {D(g),D(g−1)}= {D(h),D(h−1)}
if and only if the closure of the group 〈g,h〉 in G has precisely two rough ends.

Proof. Define H as the closure in G of the group 〈g,h〉. Assume {D(g),D(g−1)} = {D(h),D(h−1)}.
We may assume that D(g) = D(h) and D(g−1) = D(h−1). Let X be some rough Cayley graph of G.
Let e be a Dunwoody cut separating the two ends that g fixes. The group G acts on the structure tree−→
T =

−→
T (Ge∪Ge∗) and g and h act hyperbolically on

−→
T . Since g and h have the same fixed ends in X ,

they also have the same fixed ends in
−→
T . Hence there is a line L in

−→
T such that both g and h act like

translations on L, fixing both ends of L. The stabilizer in H of a vertex α on L must be open and compact
in H since the stabilizer of a vertex must fix the whole line and stabilizers of edges are open and compact
in H. Thus the line L is a rough Cayley graph of H and H has only two rough ends.

Now suppose that H has exactly two rough ends. Let X = RCay(G,U,S) be a rough Cayley graph of
G and assume that g and h are contained in S. Let v denote the vertex U in X . The subgraph Y of X that
is spanned by the orbit Hv is connected (because {v,gv} and {v,hv} are edges in X). The graph Y is a
rough Cayley graph of H and thus, by assumption, has two ends. These ends are the directions of g and
g−1 as well as the directions of h and h−1, and therefore {D(g),D(g−1)}= {D(h),D(h−1)}. �

Example 3. Looking at the above theorem one is led to ask about the relationship between the number of
ends of the finitely generated subgroup 〈g,h〉 of G and the number of rough ends of the closure of 〈g,h〉
in G. The following example shows that 〈g,h〉 can have just one end whilst its closure can have more than
one rough end.

Define a graph X such that X consists of two disjoint lines . . . ,x−1,x0,x1, . . . and . . . ,y−1,y0,y1, . . .
with additional edges {xi,yi+1} and {yi,xi+1} for all i. The graph X has two ends. The automorphism
group of X has a subgroup G of index 2 that fixes both the ends of X . Let g be an automorphism of X
such that g(xi) = xi+1 and g(yi) = yi+1 for all i and let f be an automorphism that transposes x0 and y0 but
fixes all other vertices. Set h = g f . The group 〈g,h〉 can translate along the lines and also interchange xi
and yi for finitely many values of i (the group 〈g,h〉 is the restricted wreath product of Z2 with Z and has
appeared in the literature recently as the lamplighter group) and it has only one end. The closure of 〈g,h〉
in G is equal to G (it is the unrestricted wreath product of Z2 with Z) where one can translate, and also
interchange xi and yi on any set of values for i. The closure of 〈g,h〉 is G and is a compactly generated
locally compact group with two rough ends.

Corollary 9. Let G be a finitely generated group with more than one end. Suppose g and h are hyperbolic
elements of G. Then {D(g),D(g−1)}= {D(h),D(h−1)} if and only if the group 〈g,h〉 has precisely two
ends.

Proof. The same argument as in the proof of Theorem 19 can be used here, indeed if we view G as a
having the discrete topology this is just a special case of Theorem 19. �
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Suppose now that X is an infinite connected locally finite graph. Jung and Watkins [26, Lemma 5.2
and Theorem 5.13] prove that if there is some automorphism of X that has only finitely many orbits then
X has precisely two ends. For the following corollary, recall that if a totally disconnected locally compact
group G acts on a set Ω with open and compact point stabilizers then a subgroup H of G is cocompact if
and only if H has only finitely many orbits on Ω , see the remarks before Corollary 2.

Corollary 10. Let G be a compactly generated totally disconnected locally compact group with more than
one rough end. Suppose g and h are hyperbolic elements of G. Then {D(g),D(g−1)}= {D(h),D(h−1)}
if and only if 〈h〉 is cocompact in the closure of 〈g,h〉 in G.

The following is well know, e. g., see a more general result in the same vein in [25, Theorem 2.5].

Corollary 11. Let G be a compactly generated totally disconnected locally compact group with infinitely
many ends. Let X be a rough Cayley graph of G. Suppose g and h are hyperbolic elements of G such that
there is no end of X fixed by both g and h. Then there are integers n and m such that 〈gn,hm〉 is a free
group.

Let us now look at the special case of a finitely generated group acting on its Cayley graph. The next
result answers a question of Pavone, [46, p. 69].

Theorem 20. Let G be a finitely generated group and S a finite generating set. Define X as the Cayley
graph of G with respect to the generating set S. Suppose g and h are elements of G that act on X as
hyperbolic automorphisms. If D(g) = D(h) then D(g−1) = D(h−1).

Proof. Suppose D(g) = D(h), but D(g−1) 6= D(h−1). We may assume that both g and h belong to
the generating set S, because adding them to S will not change the assumptions that D(g) = D(h) and
D(g−1) 6= D(h−1). Set H = 〈g,h〉. The end D(g) is fixed by H.

Let X ′ be the Cayley graph of H with respect to the generating set S′ = {g,h}. The graph X ′ can be re-
garded as a subgraph of X . Let F be a finite set of vertices of X such that the distinct ends D(g), D(g−1)
and D(h−1) belong to distinct components of V X \F . Each of these components will contain infinitely
many vertices from X ′. There are integers n1,n2,n3 such that all the elements gn1 ,gn1+1, . . . are contained
in the component containing D(g), all the elements gn2 ,gn2−1, . . . are contained in the component contain-
ing D(g−1) and all the elements hn3 ,hn3−1, . . . are contained in the component containing D(h−1). Hence
V X ′ \F has at least three infinite components in X ′. Thus the group H has infinitely many ends. But a
group with infinitely many ends acting on its Cayley graph can not fix an end (see, [51, Proposition 2 and
Corollary 5]).

The assumption that D(g−1) 6= D(h−1) leads to contradiction and we conclude that D(g−1) = D(h−1).
�

In his paper Pavone proves a similar result when G is a finitely generated word hyperbolic group with
infinite boundary, see [46, Theorem 3]. The following corollary is an analogue to [46, Corollary 4].

Corollary 12. Let G be a finitely generated group with infinitely many ends. Set D(G) = {D(g) | g ∈
G, g is not elliptic.}. The map f : D(G) → D(G) such that f (D(g)) = D(g−1) is well defined and
discontinuous at every point of D(g).

Proof. That f is well defined follows from Theorem 20. We have to show that f is discontinuous in every
point. Let X be a finitely generated Cayley graph of G. A basis for the topology of ΩX (the end space of
G) consists of all sets of the form ΩC where C is a cut of X . Sets of the type ΩC∩D(G) form a basis of
the subspace topology on D(G). Because X has infinitely many ends, there are disjoint base elements U ,
V and W such that ω ∈U and f (ω) ∈V . By the bilateral denseness of the directions of G (see discussion
at the end of Section 3.1.2), there is a hyperbolic element h in G such that D(h) ∈U and D(h−1) ∈W .
Then f (D(h)) = D(h−1) ∈W and f (D(h)) 6∈ V . Whence f is discontinuous at ω . �

Example 4. Theorem 20 does not generalize to compactly generated totally disconnected locally compact
groups. Let T denote the regular tree of degree 3. Set G = Aut(T ). Then G with the permutation group
topology is a compactly generated totally disconnected locally compact group and T is a rough Cayley
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graph of G. Let Gω be the subgroup of G that fixes a given end ω of T . This subgroup is closed in
G and is thus a totally disconnected locally compact group and T is also a rough Cayley graph of Gω .
Since Gω acts transitively on T and the stabilizers of vertices are compact open subgroups of Gω , we see
from the latter part of Theorem 1 that Gω is compactly generated. Suppose now that g is an hyperbolic
element in Gω . The only ends fixed by g are D(g) and D(g−1) so ω must be equal to either D(g) or
D(g−1). Say ω = D(g−1). The group Gω fixes only the end ω . So Gω contains an element f such that
f (D(g)) 6= D(g). Thus if h = f g f−1 then D(h−1) = D(g−1) but D(h) 6= D(g).

Remark 8. Pavone mentions that his [46, Theorem 3] could also be deduced from the theory of conver-
gence groups originating from [15]. Bowditch [3] has shown that if G acts on a locally finite connected
graph X with infinitely many ends and the stabilizers of edges in X are all finite then the action on the ends
of X is a convergence action. Theorem 20 now follows from [15, Corollary 6.9]. The situation concerning
general group actions on infinite end spaces of graphs is different as can be seen from Example 4.

3.6. Specker compactifications. Stalling’s Ends Theorem says that whether or not a finitely generated
group splits over a finite subgroup depends on the number of ends of a Cayley graph with respect to some
finite set of generators. Much work has been done on extending and generalizing Stalling’s theorem. In
this section and the next one, we will look at some of this work and how the concepts introduced relate
to the present work. First we look at Abels’ construction of Specker compactifications of compactly
generated locally compact groups, see Sections 2, 3 and 5 in [1]. Below, Abels’ construction is described
in graph theoretic terms. We will show that if G is a compactly generated totally disconnected locally
compact group then the ideal points in his compactification can be identified with the rough ends of G.
Abels uses his construction to derive an analogue of Stallings’ Ends Theorem which is roughly the same
as our Theorem 13.

Definition 10. A Specker compactification of a topological group G is a compact space Ĝ containing G
such that

(i) G is dense in Ĝ,
(ii) Ω = Ĝ\G is totally disconnected,

(iii) the right regular action of G on itself extends to a trivial action on Ω (i.e. extends to the identity
on Ω ).

(iv) the left regular action of G on itself extends to an action by homeomorphisms on Ω .

Note that G is open and therefore Ω is closed in the compact space Ĝ. Hence the “boundary” Ω is
compact. Abels defines a topological graph as a connected graph X with the additional structure that
the vertex set is a locally compact topological space and with the property that if K is a compact set of
vertices then the vertex boundary ∂K is relatively compact (i.e. has compact closure). Consider connected
components when a relatively compact set of vertices is removed from X . The “boundary” Ω of X can
now be constructed by using inverse limits in much the same way as in the construction of the ordinary
ends of a graph described in Section 3.1.1. The only difference is that the word “finite” is replaced with
“relatively compact”.

The definition of Ω could also be described by considering equivalence classes of rays. Define a ray
R in X to be properly non-compact if the intersection of R with any compact subset is finite. If R is a
properly non-compact ray and K is a relatively compact set of vertices in X , then we see that only one
component of V X \K contains infinitely many vertices of R. Define two properly non-compact rays R1
and R2 to be equivalent if whenever K is a relatively compact set of vertices then the same component
of V X \K contains infinitely many vertices from both R1 and R2. The points in the boundary Ω can
now be defined as the equivalence classes of properly non-compact rays. If C is a set of vertices in X
which has a relatively compact vertex boundary then we say that an equivalence class of rays belongs
to C if C contains infinitely many vertices from some (equivalently, any) ray in the equivalence class.
If ∂C is relatively compact then define C as the union of C with all the equivalence classes of properly
non-compact rays that belong to C. A basis for the open neighbourhoods of a point ξ in the boundary
consists of all sets C where C is an open set of vertices with relatively compact vertex boundary such that
ξ is an element of C \C.
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Let G be a compactly generated totally disconnected locally compact group with infinitely many rough
ends. Suppose U is a compact open subgroup of G and that U together with a finite set T forms a good
generating set. Let X be the ordinary (undirected) Cayley graph of G with respect to the generating set
U ∪T . The graph X is an example of a topological graph as described above. The subgraphs of X induced
by the left cosets of U are all complete graphs. The rough Cayley graph X ′ = RCay(G,U,T ) is a quotient
graph of X where we contract each left coset of U to a single vertex. Let π : X → X ′ be the quotient map.
The image under π of a properly non-compact ray R in X is not necessarily a ray, but since R is properly
non-compact this image will be infinite and since X ′ is locally finite it will contain some ray R′. Two
rays in the image of R will clearly belong to the same end of X ′. We can also conclude that two properly
non-compact rays R1 and R2 in X are in the same equivalence class if and only if the rays R′

1 and R′
2 in

X ′ belong to the same rough end. If we start with a ray in X ′ then one can find a properly non-compact
ray in X that projects onto our given ray in X ′. Hence there is a one-to-one correspondence between the
rough ends of G and the ideal points in the Specker compactification that Abels defines. Abels deduces an
analogue of Stalling’s Ends Theorem (see [1, Struktursatz 5.7 and Korollar 5.8]) using methods derived
directly from Stalling’s proof. Abels result on splittings of groups where the Specker-compactification
has infinitely many ideal points is roughly equivalent to Theorem 13.

A priori it seems that Abels’ treatment of groups whose Specker-compactification has infinitely many
ideal points is more general in scope than our treatment of groups with infinitely many rough ends. But
Abels proves that if a compactly generated locally compact group has a Specker-compactification with
more than two points then the group must contain a compact open subgroup (see [1, Section 5]). The
results in this paper are stated for compactly generated totally disconnected locally compact groups, but
it is clear that instead of assuming that the group is totally disconnected it is enough to assume that the
group contains a compact open subgroup.

Remark 9. In [27] the first author discusses metric ends of graphs. A metric ray is a ray whose infinite
subsets are all unbounded. Two metric rays are equivalent if they cannot be separated by a bounded set
of vertices. That is, two metric rays are equivalent if whenever we remove a bounded set of vertices
then all but finitely many vertices of the two metric rays will always lie in the same component. Metric
ends (or proper metric ends in [27]) are the corresponding equivalence classes of metric ends. For locally
finite graphs the metric ends are just the same as the ordinary ends. Abels proves, [1, Item 2.3], that in
a topological graph a set of vertices is relatively compact if and only if it has finite diameter. From this
it follows that the ideal points in Abels’ compactification can be identified with the metric ends of the
topological graph. The quotient map π : X → X ′ discussed above is a quasi-isometry and extends to a
homeomorphism between the spaces of metric ends of X and X ′, see [27, Theorem 6].

3.7. Ends of pairs of groups. The number of ends of a finitely generated group determines whether
or not the group splits over a finite subgroup. Suppose a subgroup C of G is given. We seek a way to
define the number of ends of G “relative” to the subgroup C. The aim would then be to show that if this
number of ends is greater than 1 then G splits over C or over some subgroup closely related to C. Before
discussing two different definitions of the number of ends of G “relative” to C and how these concepts
relate to our rough ends, we need some preliminary discussion.

Let G be a finitely generated group and X some Cayley graph of G with respect to some finite gener-
ating set. The number of ends of G can be defined as the supremum of the number of infinite connected
components when a finite set of vertices is removed from the graph.

Definition 11. Let X be a Cayley graph of a (finitely generated) group G with respect to some (finite)
generating set S. Suppose C is a subgroup of G.

(i) Define CX as the quotient graph of X with respect to the right cosets of C (the quotient with
respect to the left regular action of C on the vertex set of X). Let Cπ denote the quotient map
Cπ : X → CX.

(ii) Define XC as the quotient graph of X with respect to the left cosets of C (the quotient with respect
to the right regular action of C on the vertex set of X). Let πC denote the quotient map πC : X →
XC.
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Remark 10. Note that that XC is equal to RCay(G,C,S\C).

The two graphs CX and XC can be very different. The group G will act transitively on XC by left
multiplication as a group of automorphisms, but the graph CX does not necessarily have a transitive
group of automorphisms (see Example 5).

Definition 12. Let G be a group and C a subgroup of G. A subset of G is called right-C-finite if it can
be covered with finitely many right cosets of C. A set which is not right-C-finite is called right-C-infinite.
Left-C-finite and left-C-infinite sets are defined in the same way using left cosets of C.

Below there are two definitions of the number of ends of G relative to a subgroup C that have been
discussed in the literature. The notion of ends of pairs of groups appeared first in papers by Houghton
[23] and Scott [48]. A variant of the idea of ends relative to a subgroup was introduced by Kropholler and
Roller in [31]. Here we use the name coends for Krophollers and Rollers concept and use the following
reformulation, due to Bowditch [4], as a definition.

Definition 13. Let G be a finitely generated group and C a subgroup of G. Define X as a Cayley graph
of G with respect to some finite generating set.

(i) (Cf. [48, Lemma 1.1]) The number of ends of the pair G and C, denoted by e(G,C), is defined as
the number of ends of the graph CX.

(ii) The number of coends, denoted ẽ(G,C), of C is defined as the maximum number of right-C-infinite
components of X when a right-C-finite set of vertices in X is removed.

It is simple to show that e(G,C) and ẽ(G,C) do not depend on the choice of generators used to construct
X . In this section we will consider these concepts from a graph theoretical viewpoint and describe how
these concepts relate to the work of the present paper. For a broader discussion and a comparison of these
concepts the reader is referred to the survey paper by Wall [57].

Theorem 21. Let G be a compactly generated totally disconnected locally compact group and U a
compact open subgroup of G. Define X as the ordinary Cayley graph of G with respect to some compact
generating set. The graphs U X and XU are both connected and locally finite.

Proof. It is obvious that the graphs U X and XU are both connected. Let K denote the compact generating
set used to construct X . Suppose that A is a set of vertices in X . The vertex boundary of A in X is
contained in the set AK. If A is relatively compact then the set AK is also relatively compact and can be
covered with finitely many left (right) cosets of U . Thus we see that if A is a left (right) coset of U then
the set of neighbours of A in U X (xU ) is finite. When we form the quotient of X by the right (left) cosets
of U we get a locally finite graph. �

Instead of using the topology on G we can impose a group theoretic condition on G and C that allows
us to get the same result.

Definition 14. Two subgroups H and K in G are said to be commensurable if H ∩K has finite index in
both H and K. The commensurator of H is the subgroup of those elements g ∈ G for which gHg−1 is
commensurable with H.

When U is a compact open subgroup of a topological group G then every conjugate of U is commen-
surable with U .

Theorem 22. Let G be a finitely generated group and X = Cay(G,S) a Cayley graph of G with respect
to some finite generating set S. Suppose C is a subgroup of G.

(i) The graph CX is locally finite.
(ii) The commensurator of C is G if and only if each left coset of C is contained in a union of finitely

many right cosets and vice versa.
(iii) The commensurator of C is G if and only if XC is locally finite.
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Proof. (i) The vertices of CX are the orbits of C when C acts on the Cayley graph X from the left. Each
element g in the vertex set of X has neighbours in only finitely many orbits Ch1, . . . ,Chk of C. The
neighbours of all the vertices in the orbit Cg will be contained in the union of Ch1, . . . ,Chk. Hence the
degree of a vertex Cg in CX is at most equal to the degree of the vertex g in X . Therefore the graph CX is
locally finite.

(ii) Assume the commensurator of C is G. Let us consider a left coset gC of C. The group C∩gCg−1

has finite index in gCg−1. Thus gCg−1 can be covered with finitely many right cosets of C, i.e. gCg−1 ⊆
Ch1∪·· ·∪Chn. Multiplying on the right with g we get gC ⊆Ch1g∪·· ·∪Chng. The prove that each right
coset can be covered with finitely many left cosets is similar.

Assume now that each left coset of C is contained in a union of finitely many right cosets and vice
versa. Let g be an element in G. Find elements h1, . . . ,hn in G such that g−1C ⊆Cg−1h1 ∪ ·· ·∪Cg−1hn.
Then C ⊆ (gCg−1)h1 ∪ ·· · ∪ (gCg−1)hn implying that the group C∩ gCg−1 has finite index in C. The
proof that C∩gCg−1 has finite index in gCg−1 is similar.

(iii) Suppose the commensurator of C is G. Let S = {s1, . . . ,sn} denote the set of generators used
to construct X . Since the graph XC is transitive we only need to consider the degree of the vertex in
XC represented by the left coset C. All the vertices in X which are adjacent to some element in C are
contained in the right cosets Cs1, . . . ,Csn. Since each right coset can be covered with finitely many left
cosets, we see that the degree of the vertex in XC representing the right coset C is finite. Hence XC is
locally finite.

Suppose now that XC is locally finite. The size of the orbit of the vertex in XC representing the coset
gC under C is equal to the index |C : C∩ gCg−1|. But the subgroup C fixes the vertex representing C in
XC and the vertices in the orbit of gC all have the same distance from C. Since the graph XC is locally
finite, there are only finitely many vertices in any given distance from C and thus the orbit of gC is finite.
Therefore the index |C : C∩gCg−1| is finite. Letting the vertices C and gC in XC and the subgroups C and
gCg−1 change roles, one shows that the index |gCg−1 : C∩gCg−1| is also finite. Hence C and gCg−1 are
commensurable and we conclude that the commensurator of C is the whole group G. �

¿From Theorem 2+ and Corollary 3 we can piece together the following:

Theorem 23. Let G be a finitely generated group. Suppose that C is a subgroup of G such that the
commensurator of C is the whole of G. If X and X ′ are Cayley graphs of G for some finite generating
sets then the graphs XC and X ′

C are quasi-isometric. If X is a Cayley graph with respect to some finite
generating set and XC has more than one end then G splits over a subgroup commensurable with C.

One of the things that makes the concept of ends of pairs of groups more difficult than ordinary ends,
or the rough ends, is that the group G does not have a natural action on CX . For instance, because of the
transitive action of G, the Cayley graph X has either 0, 1, 2 or infinitely many ends, but e(G,C) can take
any given integer value, see [48, p. 186].

Example 5. Let G be the infinite dihedral group and C some two element subgroup of G. Let X be some
Cayley graph of G with respect to some finite set of generators. The graph CX has only one end and thus
e(G,C) = 1. The graph XC has two ends. The subsets of G which are right-C-finite are just the finite sets.
The number of coends is thus just the same as the number of ordinary ends, i.e. ẽ(G,C) = 2.

The example above sets the tone for the comparison between the number of ends of CX and XC and
the number of coends of C. First we will have a look at the case when G is a compactly generated totally
disconnected group, U a compact open subgroup of G and X a rough Cayley graph of G. The analogue
of coends of U would be defined by looking at right-U-infinite components of X when a right-U-finite
set of vertices in X is removed from X . But the right-U-finite sets are just the relatively compact subsets
of G, and the right-U-infinite sets are just the sets that are not relatively compact. We are thus back to the
concepts discussed in the previous section on Specker compactifications.

Theorem 24. Let G be a compactly generated totally disconnected locally compact group and U a
compact open subgroup of G. Define X as the ordinary Cayley graph of G with respect to a compact
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generating set S that includes a generating set for U. Then the graphs XU and U X are both locally finite
and the graph XU has at least as many ends as the graph U X.

Proof. The graph X is an example of a topological graph as defined in Section 3.6. Let N be the set of
vertices in V X which are adjacent to a given right coset of U . The set N is relatively compact, because
right cosets of U are compact and X is a topological graph. Hence N can be covered with finitely many
right cosets of U . This implies that CX is locally finite. The proof that XC is locally finite is identical.

The number of ends of a locally finite graph can be defined as the supremum of the number of infinite
components when a finite set of vertices is removed. Suppose that we get n infinite components when
we remove a finite set F of vertices from U X . The pre-image U F under U π of F is a finite union of
right cosets of U and therefore a compact subset. Note that because U π maps a connected set of X to a
connected set of XU , we see that the graph V X \U F has at least n non-compact connected components.

Now consider the graph XU . Let FU be a union of finitely many left cosets of U (vertices of XU ) that
includes U F . Because U F ⊆ FU , we see that V X \FU has at least as many non-compact components as
V X \U F . The map πU maps the set FU to a finite set F ′ of vertices of XU . When regarded as an induced
subgraph of X , each left coset of U is a connected graph. Each left coset of U not contained in FU thus
intersects only one component of V X \FU . Thus πU maps V X \FU to V XU \F ′ and the number of infinite
components of V XU \F ′ is equal to the number of components of V X \FU . Therefore V XU \F ′ has at
least as many infinite components as VU X \U F , i.e. at least n components. Hence the graph XU has at
least as many ends as the graph U X . �

Theorem 25. Let G be a finitely generated group and C a subgroup of G.
(i) ([31, Lemma 2.5]) ẽ(G,C)≥ e(G,C).

(ii) Suppose that the commensurator of C is G and C is finitely generated. Let X denote some Cayley
graph of G with respect to a finite generating set that includes a generating set for C. Then the
graph XC has at least the same number of ends of the graph CX.

This result can be proved by using precisely the same methods as used to prove Theorem 24.
The following result was first noted and proved by Dunwoody and Roller [11, p. 30], but has also

emerged in papers by Niblo [43, cf. Theorem B] and Scott and Swarup [49, Theorem 3.12].

Theorem 26. Let G be a finitely generated group and C a finitely generated subgroup of G. If e(G,C) > 1
and the commensurator of C is the whole group G then G splits over a subgroup commensurable with C.

Proof. Let X be a Cayley graph of G with respect to some finite generating set S of G and choose S such
that it includes a generating set for C. We conclude from Theorem 22 and Theorem 25 that the graphs
CX and XC are connected and locally finite, and that the number of ends of XC is at least equal to the
number of ends of CX . Since e(G,C) > 1, we know that CX has more than one end and hence XC also has
more than one end. The group G acts transitively as a group of graph automorphisms on the locally finite
connected graph XC. The conclusion now follows from Corollary 3. �

4. POLYNOMIAL GROWTH

Let X be a connected graph. For a vertex v and an integer n ≥ 1, define B(v,n) = {u ∈V X | d(v,u)≤
n}. If there are constants c and d such that |B(v,n)| ≤ cnd for all positive integers n then we say that
the graph X has polynomial growth. This property does not depend on the choice of the vertex v. A
finitely generated group is said to have polynomial growth if it has a Cayley graph with polynomial
growth. Note that having a polynomial growth is invariant under quasi-isometries and thus the choice of
a finite generating set used to construct the Cayley graph is immaterial. Finitely generated groups with
polynomial growth were characterized in a famous theorem by Gromov.

Theorem 27. ([16]) Let G be a finitely generated group with polynomial growth. Then G has a nilpotent
subgroup N of finite index.

The converse, that a finitely generated nilpotent group has polynomial growth, had been shown earlier
by Wolf [61]. A group having a nilpotent subgroup of finite index is often said to be almost nilpotent.
Gromov’s theorem was applied to graphs by Trofimov.
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Theorem 28. ([55, Theorem 2]) Suppose X is a connected locally finite graph with polynomial growth
and G is a group that acts transitively on X. Then there is a G-invariant equivalence relation σ on the
vertex set of X such that the equivalence classes of σ are finite and if K denotes the kernel of the action of
G on the equivalence classes then G/K is a finitely generated almost nilpotent group and the stabilizers
in G/K of σ -classes are finite.

It should be noted that Trofimov proves an even stronger result [55, Theorem 1], since he shows that
it is possible to find an equivalence relation σ as described in Theorem 28 such that the stabilizer of a
vertex in Aut(X/σ) is finite.

The concept of polynomial growth can also be defined for topological groups.

Definition 15. Let G be a locally compact group generated by a compact neighbourhood V of the identity.
Set V n = {g1g2 · · ·gn | gi ∈ V}. Let µ denote a Haar measure on G. If there are constants c and d such
that µ(V n)≤ cnd for all positive integers n then we say that G has polynomial growth.

Gromov’s theorem has been applied to topological groups by Losert in [32] and [33]. Woess [60] used
Losert’s results from [32] to give a short proof of Theorem 28.

Theorem 29. Let G be a compactly generated totally disconnected locally compact group and X some
rough Cayley graph of G. Then X has polynomial growth if and only if G has polynomial growth (in the
sense of Definition 15).

We need the following reformulation of a Lemma from [60].

Lemma 4. ([60, Lemma 3]) Let G be a compactly generated totally disconnected locally compact group.
Suppose X is some rough Cayley graph of G. Fix a vertex v0 in X and define W = {g∈G | d(v0,gv0)≤ 1}.
Then W is a compact open neighbourhood of the identity and W generates G. Furthermore, g is in
W n = {g1g2 · · ·gn | gi ∈W} if and only if d(v0,gv0)≤ n.

Proof. Since X is connected it is easy to see that W generates G. ¿From the definition of W we see
that if g ∈ W then d(v0,gv0) ≤ 1. Assume that if g ∈ W n then d(v0,gv0) ≤ n. Note that W n ⊆ W n+1.
Suppose d(v0,gv0) = n + 1. Let u be some neighbour of gv0 such that d(v0,u) = n. Choose h ∈ G such
that hv0 = u. By the induction hypothesis, h is in W n. Now d(h−1gv0,v0) = d(gv0,hv0) = d(gv0,u) = 1.
Hence h−1g ∈W and g ∈ hW ⊆W n+1. Conversely, it is clear that if g ∈W n then d(v0,gv0)≤ n. �

of Theorem 29. Assume that the group G has polynomial growth. Define X as a rough Cayley graph with
respect to some compact open subgroup U and some finite set T . Let µ be a left invariant Haar measure
normalized such that µ(U) = 1. Set v0 as the vertex in X such that Gv0 = U . Define W as above. By
assumption, there are constants C and d such that µ(W n)≤Cnd . By Lemma 4,

W n =
⋃

gi(v0)∈B(v0,n)

giGv0 , (4.1)

and we see that µ(W n) = |B(v0,n)|. Whence |B(v0,n)| ≤Cnd .
The second half of the proof follows the proof of [60, Theorem 1]. Suppose the graph X has polynomial

growth. Fix a vertex v0 and suppose that C and d are constants such that |B(v0,n)| ≤Cnd . Let µ be some
left invariant Haar measure normalized such that µ(Gv0) = 1. Let W be as in the Lemma above. Hence,
by equation (1) above,

µ(W n) = |B(v0,n)|µ(Gv0) = |B(v0,n)| ≤Cnd .

�

Combining the above result with Trofimov’s theorem we get the following analogue of Gromov’s
theorem.

Theorem 30. Let G be a compactly generated totally disconnected locally compact group. Then G has
polynomial growth if and only if G has a normal compact open subgroup K such that G/K is a finitely
generated almost nilpotent group.
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Proof. Let X be some rough Cayley graph of G.
If the group G has polynomial growth then, by Theorem 29, the graph X has also polynomial growth.

The result now follows directly from Theorem 28 stated above.
Suppose now that G has a normal compact open subgroup K such that G/K is a finitely generated

almost nilpotent group. Let S be a finite set of group elements such that K ∪ S is a good generating set
for G. The rough Cayley graph RCay(G,K,S) is isomorphic to the Cayley graph Cay(G/K,S). Since
G/K is almost nilpotent, this graph has polynomial growth. Therefore G has polynomial growth and the
statement follows from Theorem 27. �

5. COMMENTARY

1. Using rough Cayley graphs one can define a compactly generated totally disconnected locally
compact group to be hyperbolic if its rough Cayley graphs are hyperbolic in the sense of Gromov. (Note
that being hyperbolic is a quasi-isometry invariant.) The results on quasi-isometries between rough Cay-
ley graphs allow us to define the hyperbolic boundary and the group G has a natural action on the bound-
ary.

2. The assumption on our groups being totally disconnected can be relaxed: everywhere in the paper
the condition of being totally disconnected can be replaced by the condition that the group contains a
compact open subgroup.

One could also put the results in a different setting by starting with a group G and a subgroup U such
that the commensurator of U is the whole group G and G can be generated by the union of finitely many
cosets of U .

3. A finitely generated group with the discrete topology is an example of a compactly generated totally
disconnected locally compact group. Thus our results also hold for finitely generated groups and their
Cayley graphs.

4. Instead of considering the rough Cayley graph Y = RCay(G,U,T ) we could study the normal
Cayley graph X = Cay(G,U ∪ T ) which is then non-locally finite. Let u and v be vertices of Y . That
is, u and v are left cosets of U . Let x ∈ u and y ∈ v be vertices of X . Then dY (u,v) ≤ dX (x,y). Let
u = w0,w1, . . . ,v = wn be a path in Y of length n. Then there is a sequence x = r0,s0,r1,s1, . . . ,rn,y = sn
of vertices in X (i.e., elements of G) such that ri and si are elements of the left coset wi and such that
s−1

i ri+1 is in T . This sequence spans a path in X whose length is less or equal 2n + 1. It follows that
dY (u,v) ≤ dX (x,y) ≤ 2dY (u,v)+ 1. This implies that a set of vertices in X is bounded if and only if its
projection to Y is bounded. In other words, since Y is locally finite, a set of vertices in X is bounded if
and only if its projection to Y is finite. This implies that the metric end space of X (see the remark at the
end of Section 3.6) is isomorphic to the end space of Y . It can happen that two left cosets of U can be
connected with infinitely many edges in X . Hence the vertex ends and the edge ends of X do in general
not correspond to the ends of Y .

For rough Cayley graphs, the property of the group being compactly generated is crucial in order to
obtain an end space of the group as an end space of a locally finite graph. One aim of further research
could be to drop the condition of being compactly generated and then apply the theory of metric ends in
this context.
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[22] Hopf, H.: Enden offener Räume und unendliche diskontinuierlich Gruppen, Comment. Math. Helv. 16, 81–100 (1944)
[23] Houghton, C.H.: Ends of locally compact groups and their coset spaces, J. Austral. Math. Soc. 17, 274–284 (1974)
[24] Jung, H.A.: A note on fragments of infinite graphs, Combinatorica 1, 285–288 (1981)
[25] Jung, H.A.: On finite fixed sets in infinite graphs, Discrete Math. 131, 115–125 (1994)
[26] Jung, H.A., Watkins, M.E.: Fragments and automorphisms of infinite graphs, Europ. J. Combinatorics 5, 149–162 (1984)
[27] Krön, B.: End compactifications in non-locally-finite graphs, Math. Proc. Camb. Phil. Soc. 131, 427–443 (2001)
[28] Krön, B.: Quasi-isometries between non-locally-finite graphs and structure trees, Abh. Math. Sem. Univ. Hamburg 71,

161–180 (2001)
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[30] Krön, B., Möller, R.G.: Quasi-isometries between graphs and trees. Preprint, 2005.
[31] Kropholler, P.H., Roller, M.A.: Relative ends and duality groups, J. Pure Appl. Algebra 61, 197–210 (1989)
[32] Losert, V.: On the structure of groups with polynomial growth, Math. Z. 195, 109–117 (1987)
[33] Losert, V.: On the structure of groups with polynomial growth. II, J. London Math. Soc. (2) 63, 640–654 (2001)
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