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1. Introduction. We will study various decompositions of quaternions where we
will employ the isomorphic matrix images of quaternions. The matrix decompositions
allow in many cases analogue decompositions of the underlying quaternion.

Let us denote the skew field of quaternions by H. It is well known that quaternions
have an isomorphic representation either by certain complex (2 × 2)-matrices or by
certain real (4×4)-matrices. Let a := (a1, a2, a3, a4) ∈ H. Then the two isomorphisms
 : H → C

2×2, ı1 : H → R
4×4 are defined as follows:

(a) :=
(

α β
−β α

)
∈ C

2×2, α := a1 + a2i, β := a3 + a4i,(1.1)

ı1(a) :=




a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1


 ∈ R

4×4.(1.2)

There is another very similar, but nevertheless different mapping, ı2 : H → R
4×4, the

meaning of which will be explained immediately:

ı2(a) :=




a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1


 ∈ R

4×4.(1.3)

In the first equation (1.1) the overlined quantities α, β denote the complex conjugates
of the non overlined quantities α, β, respectively. Let b ∈ H be another quaternion.
Then, the isomorphisms imply (ab) = (a)(b), ı1(ab) = ı1(a)ı1(b). The third map, ı2,
has the interesting property that it reverses the order of the multiplication:

ı2(ab) = ı2(b)ı2(a) for all a, b ∈ H, ı1(a)ı2(b) = ı2(b)ı1(a) for all a, b ∈ H.(1.4)
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The mapping ı2 plays a central role in the investigations of linear maps H → H.
There is a formal similarity to the Kronecker product of two arbitrary matrices. See
[9, Janovská & Opfer, 2007] for the mentioned linear maps and [4, Horn &
Johnson, 1991, Lemma 4.3.1] for the Kronecker product.

Definition 1.1. A complex (2×2)-matrix of the form introduced in (1.1) will be
called a complex q-matrix . A real (4 × 4)-matrix of the form introduced in (1.2) will
be called a real q-matrix . A real (4×4)-matrix of the form introduced in (1.3) will be
called a real pseudo q-matrix . The set of all complex q-matrices will be denoted by
HC. The set of all real q-matrices will be denoted by HR. The set of all real pseudo
q-matrices will be denoted by HP.

We introduce some common notation. Let C be a matrix of any size with real or
complex entries. By D := CT we denote the transposed matrix of C, where rows and
columns are interchanged. By E := C we denote the conjugate matrix of C where
all entries of C are changed to their complex conjugates. Finally, C∗ := (C)T. Let
a := (a1, a2, a3, a4) ∈ H. The first component, a1, is called the real part of a, denoted
by �a. The quaternion av := (0, a2, a3, a4) will be called vector part of a.

From the above representations it is clear how to recover a quaternion from the
corresponding matrix. Thus, it is also possible to introduce inverse mappings

−1 : HC → H, ı−1
1 : HR → H, ı−1

2 : HP → H,

where −1, ı−1
1 as well define isomorphisms. If we define a new algebra H̃ where a

new multiplication, denoted by � is introduced by a � b := ba, then ı2 is also an iso-
morphism between H̃ and HP. This particularly implies that ı2(ab) = ı2(b)ı2(a) ∈ HP

and ı2(a−1) = ı2(a)−1 = ı2(a)T/|a|2 ∈ HP for all a ∈ H\{0}. Because of these isomor-
phisms it is possible to associate notions known from matrix theory with quaternions.
Simple examples are:

det(a) := det((a)) = |a|2, det(ı1(a)) = det(ı2(a)) = |a|4,(1.5)
tr(a) := tr((a)) = 2a1, tr(ı1(a)) = tr(ı2(a) = 4a1,(1.6)

eig(a) := eig((a)) = [σ+, σ−],(1.7)
eig(ı1(a)) = eig(ı2(a)) = [σ+, σ+, σ−, σ−], where

σ+ = a1 +
√

a2
2 + a2

3 + a2
4 i = a1 + |av|i, σ− = σ+,(1.8)

|a| = ||(a)||2 = ||ı1(a)||2 = ||ı2(a)||2,(1.9)
cond(a) := cond((a)) = cond(ı1(a)) = cond(ı2(a)) = 1,(1.10)

(aa) = (a)(a)∗ = |a|2(1) = |a|2I2,(1.11)
ı1(aa) = ı1(a)ı1(a)T = ı2(aa) = ı2(a)Tı2(a) = |a|2I4,(1.12)

where det, tr, eig, cond refer to determinant, trace, collection of eigenvalues, condition,
respectively. By I2, I4 we denote the identity matrices of order 2 and 4, respectively.
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We note that a general theory for determinants of quaternion valued matrices is not
available. See [1, Fan, 2003]. We will review the classical matrix decompositions and
investigate the applicability to quaternions. For the classical theory we usually refer
to one of the books of Horn & Johnson, [3], [4].

In this connection it is useful to introduce another notion, namely that of equiva-
lence between two quaternions. Such an equivalence may already be regarded as one
of the important decompositions, namely the Schur decomposition, as we will see.

Definition 1.2. Two quaternions a, b ∈ H will be called equivalent , if there is
an h ∈ H\{0} such that

b = h−1ah.

Equivalent quaternions a, b will be denoted by a ∼ b. The set

[a] := {s : s := h−1ah, h ∈ H}
will be called equivalence class of a. It is the set of all quaternions which are equivalent
to a.

Lemma 1.3. The above defined notion of equivalence defines an equivalence rela-
tion. Two quaternions a, b are equivalent if and only if

�a = �b, |a| = |b|.(1.13)

Furthermore, a ∈ R ⇔ {a} = [a]. Let a ∈ C. Then {a, a} ⊂ [a]. Let a =
(a1, a2, a3, a4) ∈ H. Then

σ+ := a1 +
√

a2
2 + a2

3 + a2
4 i ∈ [a].

Proof: [6]. �
The complex number σ+ occurring in the last lemma will be called complex repre-

sentative of [a]. The equivalence a ∼ b can be expressed also in the form ah−hb = 0,
with an h �= 0. This is the homogeneous form of Sylvester’s equation. This equation
was investigated by Janovská & Opfer[9]. It should be noted that algebraists refer
to equivalent elements usually as conjugate elements. See [10, v. d. Waerden, 1960,
p. 35].

2. Decompositions of quaternions. A matrix decomposition of the form
(a) = (b)(c) or (a) = (b)(c)(d) with a, b, c, d ∈ H and the same with ı1 also
represents a direct decomposition of the involved quaternions, namely a = bc or
a = bcd because of the isomorphy of the involved mappings , ı1. The same applies to
ı2, only the multiplication order has to be reversed. We will study the possibility of
decomposing quaternions with respect to various well known matrix decompositions.
A survey paper on decompositions of quaternionic matrices was given by [11, Zhang,
1997].
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2.1. Schur decompositions. Let U be an arbitrary real or complex square
matrix. If UU∗ = I (identity matrix) then U will be called unitary . If U is real,
then, U∗ = UT. A real, unitary matrix will also be called orthogonal .

Theorem 2.1. (Schur 1) Let A be an arbitrary real or complex square matrix.
Then there exists a unitary matrix U of the same size as A such that

D := U∗AU(2.1)

is an upper triangular matrix and as such contains the eigenvalues of A on its diag-
onal.

Proof: See Horn & Johnson[3, p. 79]. �
Theorem 2.2. (Schur 2) Let A be an arbitrary real square matrix of order n.

Then there exists a real, orthogonal matrix V of order n such that

H := VTAV(2.2)

is an upper Hessenberg matrix with k ≤ n block entries in the diagonal which are
either real (1 × 1) matrices or real (2 × 2) matrices which have a pair of non real
complex conjugate eigenvalues which are also eigenvalues of A.

Proof: See Horn & Johnson[3, p. 82]. �
The representation A = UDU∗ implied by (2.1) is usually referred to as complex

Schur decomposition of A, whereas A = VHVT implied by (2.2) is usually referred to
as real Schur decomposition of A. Let a be a quaternion, then we might ask whether
there is a Schur decomposition of the matrices (a), ı1(a), ı2(a) in terms of quaternions.
The (affirmative) answer was already given by Janovská & Opfer[8, 2007].

Theorem 2.3. Let a ∈ H\R and σ+ be the complex representative of [a]. There
exists h ∈ H with |h| = 1 such that σ+ = h−1ah and

(a) = (h)(σ+)(h−1), ı1(a) = ı1(h)ı1(σ+)ı1(h−1), ı2(a) = ı2(h−1)ı2(σ+)ı2(h)(2.3)

are the Schur decompositions of (a), ı1(a), ı2(a), respectively, which includes that (h),
ı1(h), ı2(h) are unitary and (h−1) = (h)∗, ı1(h−1) = ı1(h)T, ı2(h−1) = ı2(h)T. The
first decomposition is complex, the other two are real.

Proof: The first two decompositions given in (2.3) follow immediately from
Lemma 1.3 and the fact that , ı1 are isomorphisms. See [8]. The last equation can be
written as ı2(h)ı2(a) = ı2(σ+)ı2(h). Applying (1.4) one obtains ah = hσ+ which coin-
cides with the equation for σ+ given in the beginning of the theorem. Matrix (σ+) is
complex and diagonal: (σ+) = diag(σ+, σ−). The other matrices ı1(σ+), ı2(σ+) are
upper Hessenberg with two real (2 × 2) blocks each:

ı1(σ+) =




a1 −|av| 0 0
|av| a1 0 0
0 0 a1 −|av|
0 0 |av| a1


 , ı2(σ+) =




a1 −|av| 0 0
|av| a1 0 0
0 0 a1 |av|
0 0 −|av| a1


 . �
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If we have a look at the forms of ı1 and ı2, defined in (1.2), (1.3), respectively, we
see that an upper (and lower) triangular matrix reduces immediately to a multiple of
the identity matrix. This corresponds to the case where a is a real quaternion. Or in
other words, it is not possible to find a complex Schur decomposition of ı1(a), ı2(a) in
HR, HP, respectively, if a /∈ R. In the mentioned paper [8, Section 8] we can also find,
how to construct h which occurs in Theorem 2.3. One possibility is to put h := h̃/|h̃|,
where

h̃ :=




(|av| + a2, |av| + a2, a3 − a4, a3 + a4) if |a3| + |a4| > 0,
(1, 0, 0, 0) if a3 = a4 = 0 and a2 > 0,
(0, 1, 0, 0) if a3 = a4 = 0 and a2 < 0.

(2.4)

Let σ+ ∼ a and multiply the defining equation σ+ = h−1ah from the left by
h, then hσ+ − ah = 0 is the homogeneous form of Sylvester’s equation and it was
shown ([9]) that under the condition stated in (1.13) the homogeneous equation has
a solution space (null space) which is a two dimensional subspace of H over R.

2.2. The polar decomposition. The aim is to generalize the polar representa-
tion of a complex number. Let z ∈ C\{0} be a complex number. Then, z = |z|(z/|z|),
and this representation of z is unique in the class of all two factor representations
z = pu, where the first factor p is positive and the second, u, has modulus one. For
matrices A one could correspondingly ask for a representation of the form A = PU,
where the first factor P is positive semidefinite and the second, U, is unitary. This
is indeed possible, even for non square matrices A ∈ C

m×n, m ≤ n. Matrix P is al-
ways uniquely defined as P = (AA∗)1/2 and U is uniquely defined if A has maximal
rank m. If A is square and non singular, then U = P−1A. See Horn & Johnson[3,
Theorem 7.3.2 and Corollary 7.3.3, pp. 412/413].

Let a ∈ H\{0} be a non vanishing quaternion a := (a1, a2, a3, a4). The quantity
av := (0, a2, a3, a4) was called vector part of a as previously explained. The matrices
(a), ı1(a), ı2(a) are non singular square matrices where the columns are orthogonal
to each other. See (1.11), (1.12) and its representation (in terms of quaternions) is
obviously

a = |a| a

|a| .(2.5)

The corresponding matrix representation in HC, HR, HP, can be easily deduced by
using (1.1) to (1.3) and the properties listed in (1.11), (1.12). We obtain

(a) = diag(|a|, |a|) (
a

|a| ),(2.6)

ı1(a) = diag(|a|, |a|, |a|, |a|) ı1(
a

|a| ),(2.7)

ı2(a) = diag(|a|, |a|, |a|, |a|) ı2(
a

|a| ).(2.8)
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In all cases the first factor is positive definite and the second is unitary, orthogonal,
respectively.

From a purely algebraic standpoint this representation of a is complete. However,
already the name polar representation means more. In the complex case we have

z

|z| = exp(αi), z �= 0

where α := arg z is the angle between the x-axis and an arrow representing z em-
anating from the origin of the z-plane. As formula: α = arctan(	z/�z). In the
quaternionic case one finds (cf. [2, Girard, 2007, p. 11]

a

|a| = exp(αu), a �= 0,

with u := av/|av|, α := arctan(|av|/a1), and exp is defined by its Taylor series using
u2 = −1.

2.3. The singular value decomposition (SVD). We start with the following
well known theorem on a singular value decomposition of a given matrix A. We
restrict ourselves here to square matrices. The singular values of A are the square
roots of the (non negative) eigenvalues of the positive semidefinite matrix AA∗.

Theorem 2.4. Let A be an arbitrary square matrix with real or complex entries.
Then there are two unitary matrices U,V of the same size as A such that

D := UAV∗

is a diagonal matrix with the singular values of A in decreasing order on the diagonal.
And the number of positive diagonal entries is the rank of A.

Proof: See Horn & Johnson[3, 1991, p. 414]. �
Let a be a quaternion. The eigenvalues of (a) are σ+, σ−, defined in (1.8) and

(a)(a)∗ =
( |a|2 0

0 |a|2
)

.

Thus, the singular values of (a) are |a|, |a|. The wanted decomposition must be of
the form ( |a| 0

0 |a|
)

= U
(

α β
−β α

)
V∗

and the main question is whether U,V ∈ HC. In order to solve this problem, we write
it directly in terms of quaternions, namely

|a| = uav, |u| = |v| = 1.(2.9)
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Theorem 2.5. Let a ∈ H\R. Choose u ∈ H with |u| = 1 and define v := ua/|a|
or, equivalently, choose v with |v| = 1 and define u := va/|a|. Then (2.9) defines a
singular value decomposition of a and

(|a|) = (u)(a)(v)∗

defines a corresponding SVD in HC. A SVD with u = v is impossible. The corre-
sponding SVDs in HR and in HP are

ı1(|a|) = ı1(u)ı1(a)ı1(v)T, ı2(|a|) = ı2(v)Tı2(a)ı2(u).

Proof: It is easy to see that (2.9) is valid if we choose u, v according to the given
rules. If u = v then a = |a| ∈ R follows, which was excluded. �

One very easy realization of (2.9) is to choose u := 1 and v := a/|a| or to choose
v := 1 and u := a/|a|.

Example 2.6. Let a := (1, 2, 2, 4). Then the three SVDs are:(
5 0
0 5

)
=

(
1 0
0 1

)(
1 + 2i 2 + 4i

−2 + 4i 1 − 2i

)(
1 − 2i −2 − 4i
2 − 4i 1 + 2i

)
/5.




5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 −2 −2 −4
2 1 −4 2
2 4 1 −2
4 −2 2 1







1 2 2 4
−2 1 4 −2
−2 −4 1 2
−4 2 −2 1


 /5.




5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5


 =




1 2 2 4
−2 1 −4 2
−2 4 1 −2
−4 −2 2 1


 /5




1 −2 −2 −4
2 1 4 −2
2 −4 1 2
4 2 −2 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

2.4. The Jordan decomposition. Let a := (a1, a2, a3, a4) ∈ H\R. Since the
two eigenvalues σ± of (a), defined in (1.8), are different there will be an s ∈ H\{0}
such that a = s−1σ+s which implies

(a) = (s−1)(σ+)(s).

And this representation is the Jordan decomposition of (a) and J := (σ+) =(
σ+ 0
0 σ−

)
is the Jordan canonical form of (a) ([3, Horn & Johnson, p. 126]). In

this context this representation is almost the same as the Schur decomposition, only
we do not require that |s| = 1. For the computation of s, we could use formula (2.4).
In HC, HP this decomposition reads

ı1(a) = ı1(s−1)ı1(σ+)ı1(s), ı2(a) = ı2(s)ı2(σ+)ı2(s−1),

where the explicit forms of ı1(σ+), ı2(σ+) are given in the proof of Theorem 2.3.
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2.5. The QR decomposition. Let A be an arbitrary complex square matrix.
Then there is a unitary matrix U and an upper triangular matrix R of the same size
as A such that

A = UR.

This well known theorem can be found in ([3, Horn & Johnson, p. 112]). And this
decomposition is referred to as QR-decomposition of A. All triangular matrices in
HC, in HR, and in HP reduce to diagonal matrices. Therefore, the QR-decompositions
of a quaternion a �= 0 have the trivial form

a =
a

|a| |a| ⇔ (a) = 
( a

|a|
)
(|a|), ı1(a) = ı1

( a

|a|
)
ı1(|a|), ı2(a) = ı2

( a

|a|
)
ı2(|a|),

which is identical with the polar decomposition (2.5).

2.6. The LU decomposition. Let A ∈ C
n×n be given with entries ajk, j, k =

1, 2, . . . , n. Define the n submatrices A� := (ajk), j, k = 1, 2, . . . , �, � = 1, 2, . . . , n.
Then, following Horn & Johnson[3, p. 160] there is a lower triangular matrix L and
an upper triangular matrix U such that

A = LU

if and only if all n submatrices A�, � = 1, 2, . . . , n are non singular. The above
representation is called LU-decomposition of A. Since triangular matrices in HC,
in HR, and in HP reduce to diagonal matrices and since a product of two diagonal
matrices is again diagonal an LU-decomposition of a quaternion a will in general not
exist since (a), ı1(a), ı2(a) are in general not diagonal. So we may ask for the ordinary
LU-decomposion of (a), ı1(a), ı2(a). In order that such a decomposition exist we must
require that the mentioned submatrices are not singular. Let a = (a1, a2, a3, a4). Then
the two mentioned submatrices of (a) are non singular if and only if the first (1× 1)
submatrix α := a1 +a2i �= 0, since this implies that also the second (2× 2) submatrix
which is (a) is non singular because its determinant is |a|2 = |α|2 + a2

3 + a2
4 > 0.

Theorem 2.7. Let a = (a1, a2, a3, a4) ∈ H. Put α := a1 + a2i and β := a3 + a4i.
An LU decomposition of (a) exists if and only if α �= 0. If this condition is valid,
then

(a) =
(

α β
−β α

)
=

(
1 0
l21 1

) (
α β
0 u22

)
,

where

l21 = −β

α
,

u22 =
|α|2 + |β|2

α
=

|a|2
α

.

Proof: The if and only part follows from the general theory. The above formula is
easy to check. �
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Theorem 2.8. Let a = (a1, a2, a3, a4) ∈ H. The four submatrices Al of ı1(a)
and of ı2(a) are non singular if and only if a1 �= 0. If this condition is valid, then

ı1(a) :=




a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1


 =




1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1







a1 −a2 −a3 −a4

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44


 ,

where [results for ı2(a) are in parentheses]

lj1 := aj/a1, j = 2, 3, 4, (no change for i2(a)),
l32 := (a1a4 + a2a3)/(a2

1 + a2
2), (l32 := (−a1a4 + a2a3)/(a2

1 + a2
2) for ı2(a)),

l42 := (a2a4 − a1a3)/(a2
1 + a2

2), (l42 := (a2a4 + a1a3)/(a2
1 + a2

2) for ı2(a)),
u22 := (a2

1 + a2
2)/a1, (no change for ı2(a)),

u23 := (−a1a4 + a2a3)/a1, (u23 := (a1a4 + a2a3)/a1 for ı2(a)),
u24 := (a1a3 + a2a4)/a1, (u24 := (−a1a3 + a2a4)/a1 for ı2(a)),
u33 := a1 + l31a3 − l32u23, (no change for ı2(a)),
l43 := (a2 + l41a3 − l42u23)/u33, (l43 := (−a2 + l41a3 − l42u23)/u33 for ı2(a)),
u34 := −a2 + l31a4 − l32u24, (u34 := a2 + l31a4 − l32u24 for ı2(a)),
u44 := a1 + l41a4 − l42u24 − l43u34, (no change for ı2(a)).

A Cholesky decomposition cannot be achieved since all three matrices (a), ı1(a), ı2(a)
are missing symmetry.
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