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A FINITE–VOLUME PARTICLE METHOD FOR CONSERVATION

LAWS ON MOVING DOMAINS

DELIA TELEAGA∗ AND JENS STRUCKMEIER†

Abstract. The paper deals with the Finite-Volume particle method (FVPM), a relatively new
method for solving hyperbolic systems of conservation laws. A general formulation of the method
for bounded and moving domains is presented. Furthermore, an approximation property of the
reconstruction formula is proved. Then, based on a two-dimensional test problem posed on a moving
domain, a special Ansatz for the movement of the particles is proposed. The numerical results
obtained indicate that this method is well-suited for such problems and thus a first step to apply the
FVPM to real industrial problems involving free boundaries or fluid-structure interaction is taken.
Finally, we perform a numerical convergence study for a shock tube problem and a simple linear
advection equation.
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1. Introduction. The Finite-Volume Particle method (FVPM) is a relatively
new meshless method for solving hyperbolic systems of conservation laws, firstly de-
veloped in 1998 by Hietel, Steiner and Struckmeier in [6]. There the FVPM is formu-
lated for a system of conservation laws in the spatial domain Ω = R

d and shown to be
conservative. Later on Junk and Struckmeier [9] proposed a more stable discretiza-
tion and proved a Lax-Wendroff-type consistency result for scalar conservation laws
in Ω = R. The motivation to develop this new scheme was to unify the advantages of
Finite-Volume methods and particle methods in one scheme. The FVPM combines
the generic features of a Finite-Volume scheme and a particle method, namely the
concept of a numerical flux function and the flow description using moving particles.

This method was the subject of concern also in [8, 10, 11, 12, 15, 17, 18, 19].
The extension of the projection technique for incompressible flows to the FVPM is
done in [10, 11]. Isotropic and anisotropic adaptive strategies are investigated in
[15]. Moreover, a coupling approach between the classical FVM and the FVPM is
proposed in [19]. In [12] an application of the FVPM to a problem with moving
boundary in one space dimension is given. Thus the scheme was mainly tested on
one- and two-dimensional problems posed on fixed domains, problems where also the
mesh-based methods work. But, being a mesh-free method, the FVPM is intented
for problems where a mesh-based method may fail, like e.g. problems with moving or
free boundaries or fluid-structure interaction problems.

Here we want to take a step forward in applying the FVPM to real industrial
problems involving free boundaries or fluid-structure interaction. Therefore, after de-
riving the FVPM on fixed and bounded domains, we formulate it on moving domains
and apply it to a two-dimensional test problem with moving boundary. With this ex-
ample we want also to exploit an advantage of the FVPM over SPH methods, namely
the fact that in FVPM the particles may move in a non-Lagrangian way.

We end up with a numerical convergence study of the FVPM for a shock tube
problem and a simple linear advection equation. The convergence results show one
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2 D. TELEAGA AND J. STRUCKMEIER

restriction of the method, namely only first order convergence.

1.1. Derivation of FVPM on fixed domains. We follow here the derivation
made in [9], but for a system of conservation laws on a bounded domain Ω ⊂ Rd.

We consider conservation laws written in the form

∂tu + ∇·F(u) = 0, ∀x ∈ Ω ⊂ Rd, t > 0 (1.1)

with initial conditions u(x, 0) = u0(x), ∀x ∈ Ω, and with suitable boundary condi-
tions, where Ω ⊂ Rd is a bounded domain, u(x, t) ∈ Rm, m > 0 denotes the vector of
conservative quantities, and F(u(x, t)) denotes the flux function of the conservation
law.

A natural approach to discretize conservation laws is to evaluate the weak for-
mulation of (1.1) with a discrete set of test functions ψi, i = 1, ..., N . In classical
Finite-Volume methods (FVM) [13], the test functions are taken as the characteristic
functions IΩi

(x) of the control volumes Ωi. The discrete quantities are obtained from
cell averages. Note that the characteristic functions form a partition of unity, i.e.
∑N

i=1 IΩi
(x) = 1, ∀x ∈ Ω.

A similar approach is used in the following, but we introduce a different set of test
functions. Since we want to derive a mesh-free method, we should not make use of a
mesh. Therefore the conservative variables are approximated at each time step by a
finite set of particles located in the spatial domain Ω. From this point of view, the
FVPM is a particle method with particle positions xi(t), which may be irregularly
spaced and moving in time. To each position xi(t) we associate a function ψi(x, t),
what we call a particle. As in the Finite-Volume approach, let {ψi : i = 1, ..., N} be a
partition of unity, but the supports of the functions should overlap. More exactly, we
assume that the particles are smooth functions localized around the particle positions
xi(t) and satisfy

N∑

i=1

ψi(x, t) = 1, ∀x ∈ Ω, t ≥ 0. (1.2)

We construct this partition of unity as follows:
Taking a Lipschitz-continuous function W : R → R+ with compact support

(otherwise one has to consider long-range interactions between particles), we define

ψi(x, t) =
Wi(x, t)

σ(x, t)
, (1.3)

where σ(x, t) =
∑N

i=1 Wi(x, t), Wi(x, t) = W (x−xi(t)), i = 1, ..., N. Such a partition
of unity used in FVPM is shown in Fig. 1.1.

Now, we test the conservation law (1.1) against the new set of test functions
ψi(x, t), i.e. we consider the weak form given by

∫

Ω

(

∂tu + ∇·F(u)
)

ψi(x, t)dx = 0, i = 1, ..., N, (1.4)

which yields the equations

d

dt

∫

Ω

uψidx =

∫

Ω

(F(u)·∇ψi + u∂tψi) dx −
∫

∂Ω

ψiF(u)·n dσ. (1.5)



FVPM ON MOVING DOMAINS 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.1. A partition of unity used in FVPM

Note that the boundary term appears only for particles i which are close to the
boundary, i.e. supp ψi ∩ ∂Ω 6= 0.

Similarly to Finite-Volume methods, one associates to each particle a local average
ui(t) through the relation

ui(t) =
1

Vi(t)

∫

Ω

u(x, t)ψi(x, t)dx, (1.6)

where Vi(t) is the time-dependent volume of a particle i given by

Vi(t) =

∫

Ω

ψi(x, t)dx. (1.7)

Using definition (1.3), one may obtain [6, 9] from (1.5) the following equations:

d

dt

(
Viui

)
=

N∑

j=1

∫

Ω

((
F(u) − uẋi

)
Γji −

(
F(u) − uẋj

)
Γij

)

dx − Bi, (1.8)

where Γij is a function localized on the intersection of the supports of particle i and
particle j given by

Γij(x, t) =
ψi(x, t)

σ(x, t)
∇Wj(x, t), ∀ i, j = 1, ..., N, (1.9)

and Bi =
∫

∂ΩψiF(u) ·n dσ denotes the boundary term. The discretization of the
boundary term Bi is explained in [18].

For abbreviation, we introduce the modified flux

G(t, ẋ,u) = F(u) − u·ẋ, (1.10)

where the particle movement ẋ is given by ẋ(t) = a(x, t), a(x, t) ∈ C0(R+, C
1(Rd))

being a given velocity field. The modified flux G consists of the flux of the given
conservation law, as well of a contribution u ·a due to the particle movement with
velocity a.

Remark: The velocity a of the particles should be in such a way that during the
movement of the particles their supports always cover the domain completely.
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Now, assuming that u varies only slightly around ū on the intersection of the
supports of ψi and ψj , and that ẋi ≈ ẋj := ¯̇x, with, e.g., ¯̇x =

ẋi+ẋj

2 , we have

d

dt

(
Viui

)
≈ −

N∑

j=1

(
F(ū) − ū¯̇x

)
∫

Ω

(
Γij − Γji

)
dx − Bi

= −
N∑

j=1

∣
∣βij

∣
∣
(
F(ū) − ū¯̇x

)
·nij − Bi,

where

βij(t) = γij(t) − γji(t) and nij =
βij

|βij |
, (1.11)

with γij(t) =
∫

Ω Γij(x, t)dx.
The flux is approximated in terms of the discrete values with the help of a numer-

ical flux function gij = g(t,xi,ui,xj ,uj ,nij) of the modified flux function G(t, ẋ,u),
i.e. we use the approximation

(
F(ū) − ū¯̇x

)
·nij ≈ gij .

Remark: The numerical flux function g can be any numerical flux function used
in FVM, but it has to be consistent with the modified flux function G, not with
F . In the case considered above, if ẋ(t) = a(x, t), i.e. ẋ(t) 6= a(x, t,u), one can
easily modify a numerical flux function consistent with F to generate a flux function
consistent with G(t, ẋ,u) = F(u) − u·ẋ.

One ends up with the following system of ODEs

d

dt

(
Viui

)
= −

N∑

j=1

|βij |gij − Bi, (1.12)

with the initial condition

ui(0) =
1

Vi(0)

∫

Ω

u0(x)ψi(x, 0)dx. (1.13)

Using an explicit Euler discretization of the time derivative, the resulting scheme
has a similar structure to a FVM scheme, namely

V n+1
i un+1

i = V n
i un

i − ∆t
∑

j∈N(i)

|βn
ij |gn

ij − Bi, (1.14)

with u0
i = 1

V 0
i

∫

Ω u0(x)ψi(x, 0)dx. The set N(i) denotes the neighbours of a particle

i, i.e. the particles j with the property that suppψj ∩ suppψi 6= ∅.
A natural reconstruction of a function from the discrete values is given by

ũ(x, t) =

N∑

i=1

un
i ψi(x, t)I[tn,tn+1)(t), x ∈ Ω, t ∈ [0, T ]. (1.15)

Finally one should notice that (1.14) contains two unknowns at the time level
n+ 1, namely un+1

i and V n+1
i . Thus we need an additional equation for the volumes
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of particles. There are two approaches to find V n+1
i . One may apply numerical

integration to compute V n+1
i from definition (1.7), or one may obtain the aditional

equation for V n+1
i by differentiating equation (1.7) with respect to t, namely

V̇i(t) =
∑

j∈N(i)

(γij ẋj − γjiẋi). (1.16)

.

1.2. Some properties of the FVPM. As one can notice from the previous
derivation of the FVPM, this scheme is defined by the following factors: the position
of the particles xi, the smoothing kernel W , the smoothing length h, the velocity of
the particles a and the numerical flux function g. Geometrical information about the
particles and about their relative position is carried by the coefficients βij . Therefore
they are also called geometrical coefficients. Only from formula (1.14), one would
say that they play an important role in the scheme. Indeed, they have a significant
influence on the properties of the method. Their heuristic interpretation (see e.g.
[10]) shows the similarity of the FVPM with the classical Finite-Volume approach.

Therefore, before presenting the properties of the scheme (1.12), we remember
some important properties of the geometrical coefficients βij .

Proposition 1.1. The coefficients βij satisfy

βij = − βji, ∀ i, j = 1, . . . , N (1.17)

βij = 0, if supp ψi ∩ supp ψj = ∅ (1.18)

βii = 0, ∀ i = 1, . . . , N (1.19)

and

∑

j

βij =

{

0, if supp ψi ∩ ∂Ω = ∅
−
∫

∂Ω ψin dσ, if supp ψi ∩ ∂Ω 6= ∅. (1.20)

Corollary 1.2. In the non-moving case, i.e. when ẋ = 0, property (1.20) is
sufficient to preserve constant states.

Proofs of the above properties may be found in [18].
The properties of the scheme (1.12) are mainly proved for the one-dimensional

case and a scalar conservation law, like a Lax-Wendroff-type consistency result in [9].
Monotonicity of the scheme, under a CFL-like condition, and a L∞-stability for finite
times of the approximate solution ũ was obtained in [17], also for one-dimensional,
scalar conservation laws. Only the conservativity of the method is proved in the
general case.

Provided that the coefficients βij satisfy the skew symmetry condition (1.17) and
that the numerical flux function g is conservative, scheme (1.12) is conservative in the
sense of a classical Finite-Volume method, i.e.

d

dt

(
N∑

i=1

Viui

)

= −
∫

∂Ω

F(u)·n dσ. (1.21)

Here we want to give an approximation property of the reconstruction formula
(1.15) for a scalar conservation law on a two-dimensional domain Ω ⊂ R2. One may
study in which sense, for example, u0 is approximated by ũ(x, 0) =

∑

i ui(0)ψi(x, 0),
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where ui(0) are the local averages 1
Vi(0)

∫
u0(x)ψi(x, 0)dx. A similar approximation

result is also given in [9], but for another norm, x ∈ R and for u ∈ C1
0 (R×R+). Here

we apply the convergence results obtained by I. Babuska and J.M. Melenk in [1] for
the Partition of unity method (PUM).

Theorem 1.3. (Approximation property) Let Ω ⊂ R2 be an open set, {Ωi} be an
open cover of Ω satisfying a pointwise overlap condition

∃M ∈ N : ∀x ∈ Ω, #{i|x ∈ Ωi} ≤M, (1.22)

and {ψi} be a partition of unity subordinate to the cover {Ωi}, i.e. suppψi ⊂ Ω̄i, ∀i,
satisfying

‖ψi‖L∞ ≤ C∞, (1.23)

where C∞ is a constant. Let u ∈ H1(Ω) be the function to be approximated and
ui := 1

Vi

∫

Ωi
u(x)ψi(x)dx be the local averages, where Vi =

∫

Ωi
ψi(x)dx. Then ũ(x) :=

∑

i uiψi(x) satisfies

‖u− ũ‖L2(Ω) ≤MC2
∞
C h ‖∇u‖L2(Ω), (1.24)

where h = maxi{diam(Ωi)} is a typical space scale called smoothing length and C is
a constant independent of h.

Proof. The proof of this theorem follows very closely reference [1]. First we state
the following lemma.

Lemma 1.4. [1] Let Ω be an open set, {Ωi} be an open cover of Ω satisfying the
pointwise overlap condition (1.22). Let u, ui ∈ H1(Ω) be such that supp ui ⊂ Ωi ∪ Ω.
Then

∑

i

‖u‖2
L2(Ωi)

≤M‖u‖2
L2(Ω), (1.25)

‖
∑

i

ui‖2
L2(Ω) ≤M

∑

i

‖ui‖2
L2(Ωi)

. (1.26)

Using the fact that
∑

i ψi ≡ 1 and formulas (1.23) and (1.26), we can write

‖u− ũ‖2
L2(Ω) = ‖

∑

i

ψi(u− ui)‖2
L2(Ω) ≤M

∑

i

‖ψi(u− ui)‖2
L2(Ωi)

≤MC2
∞

∑

i

‖u− ui‖2
L2(Ωi)

. (1.27)

Now we need to estimate ‖u − ui‖L2(Ωi). For this we use the following two lemmas
which are similar to the Lemmas 7.12 and 7.16 in [5].

Lemma 1.5. With the notations and under the assumptions from Theorem 1.3,
we have

|u(x) − ui| ≤
C∞h

2

2Vi

∫

Ωi

1

|x− y| |∇u(y)| dy a.e. on Ωi. (1.28)

Proof. The proof of this lemma is very similar to that of Lemma 7.16 from [5],
where ψi ≡ 1.
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Lemma 1.6. [5] Let µ ∈ (0, 1) and Vµ be an operator on L1(Ω) defined by

(Vµf)(x) =

∫

Ω

|x− y|2(µ−1)
f(y)dy. (1.29)

The operator Vµ maps Lp(Ω) continuously into Lq(Ω) for any q, 1 ≤ q ≤ ∞ satisfying
0 ≤ δ = δ(p, q) = p−1 − q−1 < µ. Furthermore, for any f ∈ Lp(Ω),

‖Vµf‖q ≤
(

1 − δ

µ− δ

)1−δ

(2π)1−µ |Ω|µ−δ ‖f‖p. (1.30)

Now, applying Lemma 1.6 with f = |∇u| ∈ L2(Ωi), since u ∈ H1(Ωi), p = 2,
µ = 1

2 ∈ (0, 1), q = 2 and, hence, δ = 0, we obtain

‖
∫

Ωi

1

|y − x| |∇u(y)| dy‖L2(Ωi) ≤ 2
√

2π |Ωi|1/2 ‖∇u‖L2(Ωi). (1.31)

Using (1.28) and (1.31), we obtain

‖u− ui‖L2(Ωi) ≤
C∞h

2

Vi

√
2πh‖∇u‖L2(Ωi). (1.32)

Moreover, from (1.27) we get

‖u− ũ‖2
L2(Ω) ≤MC2

∞

∑

i

C2
∞

(
h2

Vi

)2

2πh2‖∇u‖2
L2(Ωi)

≤MC4
∞
C2h2

∑

i

‖∇u‖2
L2(Ωi)

≤M2C4
∞
C2h2‖∇u‖2

L2(Ω),

where we used (1.25) and the fact that Vi = O(h2). Thus, estimate (1.24) is obtained,
which completes the proof of Theorem 1.3.

2. FVPM with moving boundaries. In the following we will formulate the
method in the general case when the domain Ω depends on time, i.e. Ω = Ω(t) ⊂
Rd. Then a general discussion about how the particles may move in FVPM will
be used further on in §3.1. Here will be also explained why a correction procedure
for the computation of the geometrical coefficients is needed and a simple correction
procedure is proposed.

2.1. A modified FVPM on moving domains. When the domain Ω is mov-
ing, i.e. its shape is changing with time and thus Ω depends on time, i.e. Ω = Ω(t),
we have to take into account a contribution due to the moving boundary.

Let us assume that the boundary Γ(t) of the domain Ω(t) is moving with a velocity
b(x, t), i.e. we can write

Γ(t) =






x(t) |x(t) = x0 +

t∫

0

b(x(τ), τ)dτ, x0 ∈ Γ0






, (2.1)
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where Γ0 is the initial boundary. Then, since the integration volume Ω(t) changes in
time, in formula (1.5) appears a new term:

d

dt

∫

Ω(t)

uψidx =

∫

Ω(t)

d

dt
(uψi)dx +

∫

∂Ω(t)

ψiu·b·n dσ

︸ ︷︷ ︸

the new term

=

=

∫

Ω(t)

(F(u)·∇ψi + u ∂tψi) dx −
∫

∂Ω(t)

ψi

(

F(u)−u·b
︸ ︷︷ ︸

)

·n dσ.

The derivation of the system of ODE’s for ui can be continued exactly like in §1.1
such that we obtain the following system

d

dt
(Viui) = −

∑

j∈N(i)

∣
∣βij

∣
∣ gij −

∫

∂Ω(t)

ψi (F(u) − u·b)·n dσ, (2.2)

which differs from (1.12) only in the boundary term. Even equation (1.16) for the
volume Vi(t) changes in this case to

V̇i(t) =
∑

j∈N(i)

(γij ẋj − γjiẋi) +

∫

∂Ω(t)

ψib·n dσ. (2.3)

However, one may still use equation (1.7) for Vi(t).

2.2. How particles should move. In formula (2.2) there are incorporated two
movements: a, the movement of the particles (through the numerical flux function
g), and b, the movement of the boundary. Now we have to answer the question: let
the velocity field b be given, how should the particles move?

In contrast to Lagrangian methods, as e.g. the Smoothed Particle Hydrodynamics
(SPH) method [14], where particles are moved with the velocity of the fluid, in FVPM
the particles are allowed to move along an almost arbitrary velocity field. Here we
want to exploit this advantage of FVPM, since there are cases when pure Lagrangian
particles lead to severe difficulties, as e.g. when solving problems where shocks are
developed [15, 18]. Recognizing that shock waves are generic solutions of conservation
laws, we are looking for non-Lagrangian particle motions.

As noted previously, in FVPM the particles should be moved in such a way that
they always cover the domain. One may also imagine that the particles should be
quite homogeneously distributed in the domain. Otherwise, when at the same time
there are regions with very high and very low density of particles, the smoothing
length h is either too small (and then holes are developed), or too large (and then
some particles will have a high number of neighbours). In [15], where an adaptive
smoothing length is used, it is shown that large variations in the smoothing length
may lead to instabilities. Hence, beginning with homogeneously distributed particles,
we want to have a smoothly varying particle distribution.

Based on a two-dimensional test problem posed on a moving domain, a special
Ansatz for the movement of the particles will be proposed.

2.3. A new correction procedure. Since the coefficients βij are given by in-
tegral quantities, see (1.11), one needs to introduce a numerical integration technique
to compute the geometrical coefficients and this leads to additional errors, such that
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conditions (1.17) - (1.20) may not be satisfied exactly. But the properties of the
FVPM heavily rely on the conditions (1.17) - (1.20) of the βij ’s. Furthermore, if
(1.20) is not exactly satisfied, then constant states will be no longer preserved (see
Corollary 1.2).

Hence, applying a numerical quadrature to compute the geometrical coefficients
requires in the sequel a correction procedure to ensure that the conditions (1.17) -
(1.20) are satisfied exactly. See §3.2 or [10, 17, 18] for comparing numerical results
obtained with and without correction procedures. First of all one should notice that
if one uses formula (1.11), then some properties of βij ’s still hold, like βii = 0,
βij = −βji and βij = 0 for non-overlapping particles.

Let us discuss in the following how to ensure condition (1.20). The basic idea
consists in firstly computing the coefficients β̃ij by rough numerical integration in
order to keep the computation costs as low as possible, and then to modify them by
an appropriate correction term β̄ij .

A correction procedure given in [17], based on solving an undetermined linear
system, works in general only for one-dimensional problems, since in multidimensional
computations it is too expensive. A second approach, proposed by Keck [10], consists
of a fast pairwise correction, where the error is successively shifted from the first to
the last particle.

Here we will use the following approach. Instead of correcting the coefficients β̃ij

obtained by a numerical quadrature, we add for all interior particles i the following
term to the right hand side of scheme (1.14):

−∆tG(un
i )·β̃n

ii , (2.4)

where β̃
n

ii := −∑j β̃
n

ij is the defect for the particle i and G is the modified flux (1.10).
Then scheme (1.14) becomes

V n+1
i un+1

i = V n
i un

i − ∆t
∑

j∈N(i)

|β̃n

ij |gn
ij − ∆tG(un

i )·β̃n

ii. (2.5)

Remember that g is a numerical flux function consistent with G, i.e. g(t,x,u,x,u,
n) = G(u)·n. In this way, using the scheme (2.5), the constant states are preserved
in the non-moving case, even if

∑

j β̃ij 6= 0.
A disadvantage of this approach is that the conservativity of the scheme is lost

by adding this correction term. Indeed, in general one has

N∑

i=1

V n+1
i un+1

i =

N∑

i=1

V n
i un

i − ∆t

N∑

i=1

G(un
i )·β̃n

ii 6=
N∑

i=1

V n
i un

i .

Because the defect β̃
n

ii is of the order of the integration error, i.e.

|β̃n

ii| = O(hs+d−1), (2.6)

where s ≥ 1 is the order of the numerical quadrature used to compute β̃
n

ij , we may
write

N∑

i=1

V n+1
i un+1

i =

N∑

i=1

V n
i un

i + O(hs),

assuming ∆t = O(h), which follows from a typical CFL-type condition, as well as
N = O( 1

hd ). Despite the fact that scheme (2.5) is only approximately conservative,
we will use this modified FVPM scheme in the numerical computations from §3.
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3. Numerical experiments. In this section we apply the FVPM scheme (2.5)
to different test problems in order to validate the method.

To implement a FVPM scheme, one has to start by defining a set of particles in the
domain. We are using uniform or non-uniform distributed, and non-moving or moving
particles. More precisely, the domain Ω is divided firstly into N = nx·ny rectangular
cells of size ∆x×∆y, where nx = 1

∆x , ny = 1
∆y are the number of cells in the x-

direction and y-direction, respectively. Then, if we want to use uniform distributed
particles, we take a particle i in the middle of the cell, otherwise we let it be randomly
distributed within the cell and we call it a quasi-random particle distribution. Since
we choose ∆y = ∆x, further on only ∆x will appear. If and how particles are moved,
will be specified later in the example.

A next step is to compute the geometrical coefficients βij using (1.11). In the
particular case of uniform distributed, non-moving particles and h = ∆x, coefficients
βij can be computed exactly [17, 18] and no correction procedure is needed. When
using quasi-random particles, firstly we compute the intersection of the supports of
pairwise interacting particles, then a Gauss quadrature rule with 4×4 points is applied
to compute βij . When particles are moving in time, volumes Vi are computed in each
time step from (1.7) by the same quadrature rule as used for computing βij .

We use the numerical flux function of Roe [13] for computing the term gij . The
solution is reconstructed on a uniform grid of size ∆x×∆x using formula (1.15).

3.1. A test problem with moving boundaries. We concentrate now on sim-
ulating a flow around an oscillating circle in a spatial two-dimensional geometry.

Γ
R

cy

xc

Γ0

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

x

 1

0 1

y

R

outflow b.c.

outflow b.c.

outflow b.c.

inflow b.c.

solid wall b.c.

(t)

(t)

(t)

Ω(t)

Fig. 3.1. The computational domain of the test problem

The computational domain is given by Ω(t) = [0, 1]× [0, 1]\BR(t), where BR(t) =
{(x, y) ∈ R

2 : ‖x− xc(t), y− yc(t)‖ ≤ R} is the ball of center (xc(t), yc(t)) and radius
R. Let us denote the domain’s boundary by ∂Ω(t) := Γ0 ∪ ΓR(t), where Γ0 is the
exterior boundary and ΓR(t) is the boundary of the moving ball (see Fig. 3.1).

We consider a simple, rigid movement of the ball, although one may consider
another types of movements. In our example the ball is oscillating up and down, for
example with respect to the following equations:

ẋc(t) = 0, xc(0) = x0
c (3.1)

ẏc(t) = Aω cos(ωt), yc(0) = y0
c , (3.2)
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where A is the amplitude of the motion and ω is the frequency.
For the fluid-structure interaction problem which is considered here the effects

due to viscosity can be neglected. Hence, the fluid is modeled by Euler’s equations
for compressible inviscid flow [13] given by

∂tu(x, t) + ∇·F(u(x, t)) = 0, x ∈ Ω(t), (3.3)

where

u =







ρ
ρu
ρv
ρE






, f1 =







ρu
ρu2 + p
ρuv

u(ρE + p)






, f2 =







ρv
ρuv

ρv2 + p
v(ρE + p)






, F = (f1,f2),

ρ, u, v, E and p denote the density, velocity in the x and y direction, total energy and
pressure, respectively. Equation (3.3) is closed by the equation of state for a perfect

gas: p = (γ − 1)ρ
(

E − u2+v2

2

)

, with γ = 1.4.

Equation (3.3) is completed by the initial condition

u(x, 0) = u0(x), x ∈ Ω(t),

as well as the following boundary conditions:
• inflow boundary conditions on the left part of Γ0,
• outflow boundary conditions on the rest of Γ0,
• solid wall boundary conditions on the moving boundary ΓR(t).

Following the discussion from §2.2, we assume that the movement of the particles
a is given by the solution of a Laplace equation with the following boundary condi-
tions: namely zero velocity at the fixed boundary Γ0 and the boundary velocity at
the moving boundary ΓR(t):







∆a(x, t) = 0, Ω(t)
a(x, t) = 0, Γ0

a(x, t) = b, ΓR(t)
. (3.4)

The boundary velocity b is given by the motion of the ball, i.e. b = (ẋc(t), ẏc(t)),
where ẋc(t), ẏc(t) are given by (3.1) and (3.2), respectively.

In this way the velocity field a will be smooth and the particles will follow the
time-dependent computational domain, since particles near the boundary move with
the boundary and do not get out of the domain, because the solution a satisfies a
maximum principle.

Our approach is very similar with the Arbitrary Lagrange Euler method (ALE-
method [4]) and with the spring analogy method [2] used in mesh-based computations
on a moving fluid domain. As in FVPM, in the ALE method the coordinates are
neither fixed (Eulerian) nor moving with the fluid (Lagrangian), but they can move
in an arbitrary way. When the boundary is displaced the mesh is deformed and mesh
cells are squeezed and stretched or maybe even inverted. The spring analogy is then
used in [3] to restore the mesh to a more regular state. In our example, we may
also imagine that the particles are linked between the boundaries through fictitious
springs.

Remark: In our example, since the movement of the boundary is restricted to a
rigid body movement of an isolated object, the whole distribution of particles could
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be moved with the boundary. In this way the particles remain rigid, i.e. there is no
relative motion between the particles. The advantage of this rigid movement is clear,
we do not have to recompute every time the coefficients βij for example. However,
the rigid movement approach is less general than the one proposed here.

In [18] we have also investigated under which conditions on the motion of the circle
and the smoothing length of the particles no ’holes’ are developed in the domain. By
a ’hole’ we understand a space which is not covered by the support of any particle.

Now we present some numerical results concerning this test problem.

If the circle moves periodically up and down, like specified in (3.1), (3.2), there
exists a periodic solution, i.e. after a few oscillations up and down the flow becomes
periodic, with the same period as the circle’s movement. To see this, we compute the
difference between the solution every time when the circle attains its initial position,
moving upwards, i.e. exactly after a complete period:

ek =
∑

i∈N

∣
∣ρk

i V
k
i − ρk+1

i V k+1
i

∣
∣ , k = 0, 1, . . . , kmax,

where kmax = [T/P ], P = 2π/ω is the period of the movement, T is the final time, t0
is the time when the circle starts to move, ρk

i = ρi(t0 + kP ) and V k
i = Vi(t0 + kP ).

For this computation we choose N = 50×50 uniform distributed particles, t0 = 0,
ω = 10π, A = 0.1, P = 2π/ω = 0.2, and T = 4.05. Hence, kmax = 20. As can be seen
in Fig. 3.2, after around 10 complete oscillations, the differences ek are so small that
the flow can be considered to be periodic.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18 19 20

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

e
k

Fig. 3.2. Differences ek versus k

Now we choose N = 100×100 quasi-random distributed and moving particles.
The movement of the circle is as before, i.e. A = 0.1 and ω = 10π. The solution
at time T = 0.55 is presented in Fig. 3.3 and 3.4. In Fig. 3.3(left) one may see the
irregular particle positions together with their corresponding density. The solution
reconstructed on a uniform grid is shown in Fig. 3.3(right) (isolines of the density) and
Fig. 3.4 (isolines of the velocity components). These results show that the method
works also in the case of a time-dependent domain and using irregular distributed and
moving particles.

3.2. A shock tube problem. Here we apply the FVPM to the two-dimensional
shock tube problem from inviscid gas dynamics governed by the Euler equations (3.3)
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Fig. 3.3. N = 100×100 quasi-random distributed particles and their corresponding density
(left) and isolines of the density (right)

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3.4. Isolines of u - (left) and v - velocity component (right) in the same case as in Fig. 3.3

with the following initial conditions

ρ(x, y) =

{

ρL, x ≤ 0.5

ρR, x > 0.5
, p(x, y) =

{

pL, x ≤ 0.5

pR, x > 0.5
,

v(x, y) = 0,

for (x, y) ∈ [0, 1]×[0, 1] ⊂ R
2, with parameters suggested by Sod [16]

ρL = 1, ρR = 0.125, pL = 1, pR = 0.1.

This problem can be realized experimentally by the sudden breakdown of a di-
aphragm in a long one-dimensional tube separating two initial gas states at different
pressures and densities. If viscous effects can be neglected along the tube walls and if
an infinitely long tube is considered, the exact solution to the 1D Euler equations can
be obtained on the basis of simple waves separating regions of uniform conditions [7].

We perform a 2D computation for, in fact, a 1D problem. We expect to obtain
a quasi-1D solution for the two-dimensional Euler’s equation (3.3), i.e. the solution
should vary only in x-direction.

The computations are done using N = 100×100 or N = 50×50 uniformly or
quasi-random distributed particles. The solution is computed at time T = 0.15. The
coefficients βij are computed either exactly or approximately. In the first case, when
βij are computed exactly, we are using also a layer of ghost cells such that no boundary
approximations are made, since on the top and bottom we apply periodic boundary
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conditions, and on the left and right part we supply the constant states from the
initial condition. This can be made as long as the shock or rarefaction wave does
not reach the boundary, and this is not the case at T = 0.15. In the case when βij

can not be computed exactly, we apply the boundary treatment and the correction
procedure explained before. On the top and bottom part of the domain we apply the
solid wall boundary condition and on the left and right part of the boundary we apply
outlet boundary condition. No particular measures are taken to keep the flow inside
the tube one-dimensional.
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Fig. 3.5. N = 100×100 quasi-random particles and their corresponding density (left), with
h = 1.5∆x, and isolines of the density reconstructed on a uniform grid (right), for the shock tube
problem
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Fig. 3.6. Isolines of the density reconstructed on a uniform grid, without correcting the geo-
metrical coefficients (left), and with Keck’s correction procedure (right)

In Fig. 3.5(left) are shown the positions of 100×100 quasi-random distributed
particles together with their corresponding density. Then the solution is reconstructed
on a 100×100 uniform grid, and isolines of the density are shown in Fig. 3.5(right).

As mentioned in §1.2, if the coefficients βij are not corrected such that condition
(1.20) is satisfied, the constant states are not preserved, as can be seen in Fig. 3.6(left)
and 3.7. Furthermore, we have also implemented the correction procedure proposed
by Keck in [10], and isolines of the density are shown in Fig. 3.6(right). After a
rough comparison between the density obtained using our and Keck’s correction, see
Figure 3.7, we conclude that the results are similar and therefore we will restrict in
the following to our correction procedure.

In Fig. 3.8, we compare the density obtained with exact and computed coefficients
βij , for a uniform distribution of particles with h = ∆x. For a better visualization,
we used only N = 50×50 particles. As expected, the results are almost the same.
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The influence of the smoothing length h on the solution is shown in Fig. 3.9,
where cuts through the density profile obtained for different h are shown. Again only
N = 50×50, but quasi-random distributed, particles were used. As pointed out in [6]
for Burgers’ equation, the FVPM is quite robust when changing the smoothing length
h. Decreasing the smoothing length yields a better resolution of the waves, without
producing oscillations.
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Fig. 3.7. Cut in x−direction at the middle of the domain, through the density profiles obtained
in Fig. 3.5(right), 3.6(left) and (right)
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Fig. 3.8. The density obtained with exact and with computed coefficients βij

Finally, we compute numerical convergence rates in the discrete L1− and L2−norm
for this problem. The error between the exact solution and the approximate solution
is computed for a sequence of N = 20×20, 40×40, . . . , 320×320 quasi-random dis-
tributed particles, with different smoothing lengths h. In Table 3.1 the errors for the
density, together with the experimental order of convergence (EOC) computed from
two meshes of size N1 = n1×n1 and N2 = n2×n2 as:

EOCk = log
|ρN1

− ρ̃N1
|k

|ρN2
− ρ̃N2

|k
/ log

(
n2

n1

)

, k = 1, 2 (3.5)
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Fig. 3.9. Influence of the smoothing length h on the density

Table 3.1

Discrete L1− and L2−errors of the density for the shock tube problem, for different h

N h = ∆x |ρ− ρ̃|1 EOC1 |ρ− ρ̃|2 EOC2

20×20 5.000000e-02 3.553001e-02 5.088527e-02
40×40 2.500000e-02 2.603677e-02 0.4485 4.052730e-02 0.3284
80×80 1.250000e-02 1.723002e-02 0.5956 2.910075e-02 0.4778

160×160 6.250000e-03 1.120914e-02 0.6202 2.104956e-02 0.4673
320×320 3.125000e-03 7.298787e-03 0.6189 1.571074e-02 0.4220

N h = 1.5∆x |ρ− ρ̃|1 EOC1 |ρ− ρ̃|2 EOC2

20×20 7.500000e-02 4.427848e-02 5.966602e-02
40×40 3.750000e-02 3.029744e-02 0.5474 4.500231e-02 0.4069
80×80 1.875000e-02 2.056287e-02 0.5592 3.276041e-02 0.4580

160×160 9.375000e-03 1.368476e-02 0.5875 2.404254e-02 0.4464
320×320 4.687500e-03 9.053464e-03 0.5960 1.813783e-02 0.4066

N h = 2∆x |ρ− ρ̃|1 EOC1 |ρ− ρ̃|2 EOC2

20×20 1.000000e-01 4.924631e-02 6.400495e-02
40×40 5.000000e-02 3.534180e-02 0.4786 5.035410e-02 0.3461
80×80 2.500000e-02 2.460084e-02 0.5227 3.740869e-02 0.4287

160×160 1.250000e-02 1.666850e-02 0.5616 2.770045e-02 0.4335
320×320 6.250000e-03 1.110999e-02 0.5853 2.084552e-02 0.4102

are given. In Fig. 3.10 we show the errors versus the number of points in one direction,
in order to synthesize the results from the Table 3.1 and for a better comparison. As
expected, the numerical convergence rate does not depend on h. Furthermore, we
remark that the error slightly increases with h. This is in agreement with the results
obtained in Fig. 3.9. But, in this case, the convergence rate does not approach the
theoretical order one of convergence. A similar convergence study, obtaining a similar
convergence rate, is done in [6], also for the shock tube problem considered here, but
the computations are 1D.
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Fig. 3.10. Discrete L1−error (left) and L2−error (right) of the density for the shock tube
problem, at time T = 0.15, using N = n2 quasi-random particles, for different h

3.3. A linear advection equation. Let us consider a simple linear equation in
order to study further the numerical convergence of the FVPM, namely the following
linear advection equation

∂tu+ ∂xu = 0, on [0, 1]× [0, 1] (3.6)

with a discontinuous initial condition

u0(x, y) =

{

1, x ≤ 0.5

0, x > 0.5
, (3.7)

or with a smooth initial condition

u0(x, y) = exp {−100
(
(x− 0.25)2 + (y − 0.25)2

)
}. (3.8)

The exact solution of the equation (3.6) is simply given by u(x, y, t) = u0(x−t, y).
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Fig. 3.11. Solution of the linear advection equation with the discontinuous initial condition
(3.7), projected onto the u-x−plane

The approximate solution is computed at T = 0.25, using N = 80×80 quasi-
random distributed and non-moving particles with h = 1.5∆x. Outflow boundary
conditions are used on all boundaries. In Fig. 3.11, the solution of the linear advection
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Fig. 3.12. Isolines of the approximate solution (left) and of the exact solution (right) at T =
0.25, for the linear advection equation (3.6) with the smooth initial condition (3.8)

equation (3.6) with the discontinuous initial condition (3.7), projected onto the u-
x−plane, is shown. Then, in Fig. 3.12, isolines of the exact solution and of the
approximate solution of (3.6) with the smooth initial condition (3.8) can be found.

Finally, we compute numerical convergence rates in the discrete L1− and L2−norm
for this linear problem, to see if we obtain better rates than in the nonlinear case.
The error between the exact solution and the approximate solution is computed for
a sequence of N = 20×20, 40×40, . . . , 320×320 quasi-random distributed particles,
with different smoothing lengths h. In Tables 3.2 and 3.3 the errors in the case of the
jump solution and of the smooth solution, together with the experimental order of
convergence (EOC) computed from (3.5), are given. In Fig. 3.13 we show the errors
versus the number of points in one direction, in order to synthesize the results from
the Tables 3.2 and 3.3, and for a better comparison. As expected, the numerical con-
vergence rate does not depend on h. Also we obtain almost the expected convergence
order of one in the case of the smooth solution.
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Fig. 3.13. Discrete L1−error (left) and L2−error (right) for the linear advection equation with
smooth and discontinuous initial condition at time T = 0.25, using N = n

2 quasi-random particles,
for different h
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Table 3.2

Discrete L1− and L2−errors for the linear advection equation with a discontinuous initial
condition, for different h

N h = ∆x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 5.000000e-02 5.333467e-02 1.310182e-01
40×40 2.500000e-02 3.603141e-02 0.5658 1.070453e-01 0.2915
80×80 1.250000e-02 2.419657e-02 0.5745 8.434356e-02 0.3439

160×160 6.250000e-03 1.738028e-02 0.4774 7.278524e-02 0.2126
320×320 3.125000e-03 1.227533e-02 0.5017 6.159035e-02 0.2409

N h = 1.5∆x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 7.500000e-02 7.515702e-02 1.524758e-01
40×40 3.750000e-02 4.959395e-02 0.5997 1.208166e-01 0.3358
80×80 1.875000e-02 3.397842e-02 0.5455 9.962925e-02 0.2782

160×160 9.375000e-03 2.457986e-02 0.4671 8.771474e-02 0.1838
320×320 4.687500e-03 1.746742e-02 0.4928 7.491543e-02 0.2276

N h = 2∆x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 1.000000e-01 9.600310e-02 1.735468e-01
40×40 5.000000e-02 6.332254e-02 0.6004 1.362808e-01 0.3487
80×80 2.500000e-02 4.349752e-02 0.5418 1.129455e-01 0.2710

160×160 1.250000e-02 3.128702e-02 0.4754 9.843819e-02 0.1983
320×320 6.250000e-03 2.221442e-02 0.4941 8.400084e-02 0.2288

Table 3.3

Discrete L1− and L2−errors for the linear advection equation with a smooth initial condition,
for different h

N h = ∆x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 5.000000e-02 1.747204e-02 5.529881e-02
40×40 2.500000e-02 9.979376e-03 0.8080 3.382673e-02 0.7091
80×80 1.250000e-02 5.163706e-03 0.9505 1.808657e-02 0.9032

160×160 6.250000e-03 2.772294e-03 0.8973 1.011878e-02 0.8379
320×320 3.125000e-03 1.594091e-03 0.7983 5.705053e-03 0.8267

N h = 1.5∆x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 7.500000e-02 2.287496e-02 6.967677e-02
40×40 3.750000e-02 1.353946e-02 0.7566 4.515581e-02 0.6258
80×80 1.875000e-02 7.793727e-03 0.7968 2.727371e-02 0.7274

160×160 9.375000e-03 4.302940e-03 0.8570 1.544056e-02 0.8208
320×320 4.687500e-03 2.610491e-03 0.7210 9.359223e-03 0.7223

N h = 2∆x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 1.000000e-01 2.834719e-02 8.127777e-02
40×40 5.000000e-02 1.769121e-02 0.6802 5.676342e-02 0.5179
80×80 2.500000e-02 1.043911e-02 0.7610 3.569118e-02 0.6694

160×160 1.250000e-02 5.926685e-03 0.8167 2.104068e-02 0.7624
320×320 6.250000e-03 3.485152e-03 0.7660 1.262132e-02 0.7373

4. Conclusions. In this paper we have further investigated the FVPM from
a numerical and theoretical point of view. We derived the FVPM for a system of
conservation laws in a bounded and time-dependent domain Ω(t) ⊂ R

d. Then we
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proved an approximation property of the reconstruction formula used in the FVPM,
namely the fact that the reconstruction formula is only of order one. Also a new
correction procedure, although only approximately conservative, was proposed.

Furthermore, we presented here an application of the FVPM to a spatial two-
dimensional problem posed on a moving domain, where the meshless character of
the method is exploited. The particles are irregularly distributed in the domain and
they are moving in a non-Lagrangian way such that they smoothly follow the time-
dependent computational domain. Numerical results indicate that the method is well-
suited for such problems. Also the discretization of the boundary conditions works
very satisfactory. Thus, a first step to applying the FVPM to real fluid-structure
interaction problems, which in general limit the use of grid-based methods, is done.

Finally, a convergence study for a shock tube problem and a simple linear advec-
tion equation was done.
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