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Hamburger Beiträge zur Angewandten Mathematik

Reihe A Preprints
Reihe B Berichte
Reihe C Mathematische Modelle und Simulation
Reihe D Elektrische Netzwerke und Bauelemente
Reihe E Scientific Computing
Reihe F Computational Fluid Dynamics and Data Analysis



Linear equations in quaternions
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Summary. The aim is to solve a linear equation in quaternions namely, the equation
j=ν
∑

j=1

a
(j)
xb

(j) = e, where a(j), b(j) and e are given quaternions, the quaternion x stands

for the unknown solution. We give an algorithm based on a fixed point formulation.

1 Basic properties and definitions for quaternions

We start with some information on the algebra of quaternions. There are more
details in our previous papers [4], [8]. General information is contained in books,
like [3], [7]. Results concerning matrices with quaternion elements are surveyed
in [10]. Applications to quantum mechanics are treated in [1], [2], and applica-
tions in chemistry are given in [9].

We denote by H = R4 the skew field of quaternions. Let a = (a1, a2, a3, a4),
b = (b1, b2, b3, b4) ∈ H. Then, addition is defined elementwise and multiplication
is governed by the following rule:

ab := (a1b1 − a2b2 − a3b3 − a4b4, a1b2 + a2b1 + a3b4 − a4b3, (1)

a1b3 − a2b4 + a3b1 + a4b2, a1b4 + a2b3 − a3b2 + a4b1).

The first component a1 of a = (a1, a2, a3, a4) ∈ H is called the real part of a
and denoted by <a. The second component a2 is called the imaginary part of a
and denoted by =a. A quaternion a = (a1, 0, 0, 0) will be identified with a1 ∈ R
and a = (a1, a2, 0, 0) will be identified with a1 + ia2 ∈ C. The zero element
(0, 0, 0, 0) ∈ H and the unit element (1, 0, 0, 0) ∈ H will be abbreviated by 0, 1,
respectively. Let a = (a1, a2, a3, a4) ∈ H. The conjugate of a, denoted by a, will
be defined by
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a := (a1,−a2,−a3,−a4).

The absolute value of a, denoted by |a|, will be defined by

|a| :=
√

a2
1 + a2

2 + a2
3 + a2

4.

There are the following important rules:
<(ab) = <(ba),

|ab| = |ba| = |a||b|,

|a|2 = a a = a a,

a b = b a,

a−1 =
a

|a|2
, a 6= 0,

(a b)−1 = b−1 a−1, a, b 6= 0.

We denote by Hn the normed vector space of n-vectors formed by quaternions,
where the norm of x := (x1, x2, . . . , xn) ∈ Hn will be defined by

||x|| :=
√

|x1|2 + |x2|2 + · · ·+ |xn|2.

Let Hm×n be the set of all (m × n)-matrices with elements from H. We note
here, that these matrices act as linear mappings ` : Hn → Hm only in the
following sense:

`(x + y) = `(x) + `(y), x, y ∈ Hn,

`(xα) = `(x)α, x ∈ Hn, α ∈ H.

The converse is also true: A linear mapping ` defined by the above two proper-
ties is always represented by a matrix. This follows from standard arguments.

Let A ∈ Hm×n. By AT ∈ Hn×m we understand the transposed matrix of A
where the rows and columns are exchanged. By A ∈ Hm×n we understand the
matrix which is formed by conjugation of all its elements. Finally,

A∗ := (A)T = AT.

In case A∗ = A, we call A Hermitean. The zero element of Hn and of Hm×n

will be denoted by 0. From the context it will become clear which zero element
is meant. A matrix A ∈ Hn×n will be called unitary if A∗A = AA∗ = I, where
I is the identity matrix. Unitary matrices A are characterized by ||Ax|| = ||x||
for all x ∈ Hn.

Eigenvalue problems for A ∈ Hn×n have to be posed in the form

Ax = xλ (2)

and similar matrices have the same set of eigenvalues. The set of eigenvalues is
in general not finite. If λ is an eigenvalue, the whole equivalence class
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[λ] :=
{

σ ∈ H : σ = hλh−1 for all h ∈ H\{0}
}

consists of eigenvalues. The number of different equivalence classes is, however,
at most n.

Lemma 1. Two quaternions λ1 and λ2 are members of the same equivalence
class if and only if |λ1| = |λ2| and <λ1 = <λ2. As a consequence, two different
complex numbers are equivalent if and only if they are conjugate two each other.
Two real numbers are equivalent if and only if they coincide.

Proof: See [4]. ¤

This lemma implies that in any equivalence class [q] of quaternions there
is exactly one complex quaternion q̃ with <q̃ ≥ 0. This will be called the complex

representative of [q]. If q = (q1, q2, q3, q4) ∈ [q], then q̃ = (q1,
√

q2
2 + q2

3 + q2
4 , 0, 0)

is the complex representative of [q].
We should note here, that Hermitean matrices have only real eigenvalues

and that all eigenvalues λ of unitary matrices obey |λ| = 1.

2 Linear equations in quaternions

With the intention to obtain some insight for a forthcoming study of the mul-
tidimensional case, we study here first the simplest case with a linear equation
in one variable.

At first, let us recall the following general matrix theorem.

Theorem 1. Let A be a real, square matrix with the property

A + AT = 2cI,

where I is the identity matrix of the same size as A and c ∈ R. Then,

<λ(A) = c

for all eigenvalues λ of A.

Corollary 1. Under the assumptions of the previous theorem let c 6= 0. Then,
A is nonsingular.



4 Drahoslava Janovská and Gerhard Opfer

In the following equation, the two vectors a := (a(1), a(2), . . . , a(ν)),
b := (b(1), b(2), . . . , b(ν)) ∈ Hν , ν ∈ N, and the right hand side e ∈ H are
given and x ∈ H stands for the unknown solution:

L(v)(x) :=

ν
∑

j=1

a(j)xb(j) = e, e, x ∈ H, a(j), b(j) ∈ H\{0}, j = 1, . . . , ν. (3)

The mapping L(ν) : H → H is additive, i. e. L(ν)(x + y) = L(ν)(x) + L(ν)(y),
but not homogeneous in general, i. e. L(ν)(αx) 6= αL(ν)(x) and L(ν)(xα) 6=
L(ν)(x)α, x ∈ H, α ∈ H. To call equation (3) a linear equation (for a fixed
ν > 1) is thus true only in a restricted sense. Without loss of generality, we
assume that a(1) = b(ν) = 1. So we have for ν = 1, 2, 3 (simplifying the notation
slightly)

L(1)(x) := x; L(2)(x) := ax+ xb; L(3)(x) := ax+ cxd+ xb. (4)

Since the unknown x resides in the middle between c and d, we will call
all terms of the type cxd middle terms. The problem L(2)(x) = e was treated,
probably for the first time by Johnson in [6]. It is easy to find an explicit
solution formula for L(2)(x) := ax + xb = e. We assume that neither a nor b
is real (including zero). We multiply ax + xb = e from the left by a and from
the right by b and divide by |a|2 (|b|2 would be possible, too). Then we add
this equation to the original equation and obtain after some simple algebraic
operations

(

2<b+ a+
|b|2

|a|2
a

)

x = e+
aeb

|a|2
.

Lemma 2. Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4). Equation L(2)(x) = e
(cf. (4)) has a unique solution for all choices of e if and only if a1 + b1 6= 0 or
∑4

j=2(a
2
j − b2j ) 6= 0.

Proof: For simplicity in the sequel we put

s = a+ b, d = a− b. (5)

Let the j-th component of s, d be denoted by sj , dj , respectively, j = 1, 2, 3, 4.
If we use the multiplication rule (1), then ax+ xb = e is equivalent to the real
4× 4 system

Ax = e, A :=







s1 −s2 −s3 −s4
s2 s1 −d4 d3

s3 d4 s1 −d2

s4 −d3 d2 s1






, (6)
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where x, e ∈ R4 have to be identified with x, e ∈ H, respectively. We compute
the determinant of A and find

det(A) = s21(s
2
1 + s22 + s23 + s24 + d2

2 + d2
3 + d2

4) + (s2d2 + s3d3 + s4d4)
2. (7)

The determinant vanishes if and only if s1 := a1 + b1 = 0 and s2d2 + s3d3 +
s4d4 := a2

2 + a2
3 + a2

4 − (b22 + b23 + b24) = 0. ¤

For solving the system (6), we compute the determinants of the j-th minors
Aj := A(1:j,1:j), j = 1, 2, 3: det(A1) = s1, det(A2) = s21 + s22, det(A3) =

s1
(

s21 + s22 + s23 + d2
4

)

. We see that s1 6= 0 implies that all four determinants
(including that of A) do not vanish, which implies that Gauss’ elimination
process can be carried out without pivoting. If however, s1 = 0, the first and
third minor have a vanishing determinant. In this case pivoting is necessary.

Corollary 2. In the previous lemma let (i) a = b. The equation L(2)(x) = e
(see (4)) has a unique solution if and only if a1 = <a 6= 0. If a1 = 0 but a 6= 0
the kernel of A is a two dimensional subspace of R4. (ii) Let |a| = |b| 6= 0. In
this case A, defined in (6) is singular if and only if s1 = a1 + b1 = 0. If s1 = 0
the kernel of A is a two dimensional subspace of R4, provided a, b 6∈ R.

Proof: We use formula (7). (i) In this case d := a− b = 0 implies det(A) =
16a2

1|a|
2, where A is defined in (6). If a1 = 0, then

A = 2







0 −a2 −a3 −a4

a2 0 0 0
a3 0 0 0
a4 0 0 0






. (8)

(ii) In this case we have det(A) = 4|a|2(a1 + b1)
2 and s1 = 0 implies

A =







0 −s2 −s3 −s4
s2 0 −d4 d3

s3 d4 0 −d2

s4 −d3 d2 0






. (9)

Since A + AT = 0, Theorem 1 implies that all four eigenvalues of A have
vanishing real part. Since the eigenvalues appear pairwise conjugate, the rank
of A is either 0, 2 or 4. If rank(A) = 0, then, aj = bj = 0, j = 2, 3, 4 and
a, b ∈ R. The case rank(A) = 4 was already excluded. A formula for the two
dimensional kernel was given in [4]. ¤

The matrix A of (6) has the property that A + AT = 2(a1 + b1)I, where
I is the (4 × 4) identity matrix. Theorem 1 implies that all eigenvalues of A
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have the same real part a1 + b1 and it implies (Corollary 1) that a1 + b1 6= 0 is
a sufficient condition for A being non singular.

We will develop a simple iterative algorithm for solving L(2)(x) := ax+xb =
e in the original form under the assumption that both a 6= 0, b 6= 0. If a = 0 or
b = 0, then finding the solution is trivial. We form two fixed point equations
by multiplying L(2)(x) := ax+xb = e from the left by a−1 and another one by
multiplying from the right by b−1. This yields

T1(x) := a−1(e− xb) = x, T2(x) := (e− ax)b−1 = x. (10)

Lemma 3. Let L(2)(x) := ax + xb = e have a unique solution x̂, regardless
of the choice of e. Let a 6= 0, b 6= 0. If (i) |a| > |b|, let q := |b|/|a| < 1. The
fixed point equation T1(x) = x is contractive and the sequence {xj} defined by
xj+1 := T1(xj), j = 0, 1, . . . converges with geometric speed to the solution x̂
regardless of the choice of the initial guess x0. There is the error estimate

|x̂− xj | ≤ min

{

qj

1− q
|x1 − x0|,

q

1− q
|xj − xj−1|

}

, j ≥ 1.

If (ii) |a| < |b|, let q := |a|/|b|. Then, the same is true for T2.

Proof: We treat the case (i). Then, |T1(x) − T1(y)| = |a−1(y − x)b| =
|a−1| |b| |x−y| = q|x−y|. The remaining part follows from standard arguments.
Case (ii) is analogue. ¤

Example 1. Take a := (−2,−4, 7,−10), b := (5, 9, 10, 6), e := (−1, 0,−6, 3).
Then, q := |a|/|b| = 0.8357, x̂ = (−0.02825 79443 1218, 0.52768 86450 6780,
−0.04595 79753 6487, 0.23548 28692 6819). Iteration with T2 yields |x̂−x100| ≈
9.3 · 10−9 with error estimate |x̂− x100| ≤ 4.2 · 10−8.

If |a| = |b| and a1 + b1 6= 0 the above iterations will in general not converge.
If |a|, |b| are different but close together, the convergence will be very slow.

We turn now to the case L(3)(x) = e where L(3) is defined in (4). Put
c = (c1, c2, c3, c4), d = (d1, d2, d3, d4), x = (x1, x2, x3, x4) and identify the
column vector x with x. Then, the middle term cxd can be expressed as

cxd = Mx, where

M :=









c1d1 − c2d2 − c3d3 − c4d4 −c1d2 − c2d1 + c3d4 − c4d3

c1d2 + c2d1 + c3d4 − c4d3 c1d1 − c2d2 + c3d3 + c4d4

c1d3 − c2d4 + c3d1 + c4d2 −c1d4 − c2d3 − c3d2 + c4d1

c1d4 + c2d3 − c3d2 + c4d1 c1d3 − c2d4 − c3d1 − c4d2
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−c1d3 − c2d4 − c3d1 + c4d2 −c1d4 + c2d3 − c3d2 − c4d1

c1d4 − c2d3 − c3d2 − c4d1 −c1d3 − c2d4 + c3d1 − c4d2

c1d1 + c2d2 − c3d3 + c4d4 c1d2 − c2d1 − c3d4 − c4d3

−c1d2 + c2d1 − c3d4 − c4d3 c1d1 + c2d2 + c3d3 − c4d4









∈ R4×4.

Let us remark that detM = |c|2|d|2 6= 0 if both c 6= 0 and d 6= 0. If c = 0 or
d = 0, we come back to L(2)(x) = e.

With A from (5), (6), the final (4× 4) system has the form

(A + M)x = e.

Under the assumption that all a, b, c and d are nonzero quaternions, the matrix
A + M is regular (we proved it by making use of Maple).

Similarly as in the previous case, we form this time three fixed point equa-
tions: we multiply L(3)(x) := ax+cxd+xb = e from the left by a−1 or multiply
L3(x) from the right by b−1. The last equation we obtain by multiplying the
equation cxd = e − ax − xb from the left by c−1 and from the right by d−1.
This yields

T1(x) := a−1(e− cxd− xb) = x, T2(x) := (e− cxd− ax)b−1 = x, (11)

T3(x) := c−1(e− ax− xb)d−1 = x. (12)

Lemma 4. Let L(3)(x) := ax+cxd+xb = e have a unique solution x̂, regardless
of the choice of e. Let a 6= 0, b 6= 0, c 6= 0, d 6= 0. If (i) |a| > |b| and |c||d| < |a|−

|b| , let q :=
|c||d|+ |b|

|a|
< 1. The fixed point equation T1(x) = x is contractive

and the sequence {xj} defined by xj+1 := T1(xj), j = 0, 1, . . . converges with
geometric speed to the solution x̂ regardless of the choice of the initial guess

x0. If (ii) |a| < |b| and |c||d| < |b| − |a|, let q :=
|c||d|+ |b|

|a|
< 1. Then, the

same is true for T2. If (iii) |a| + |b| < |c||d|, let q :=
|a|+ |b|

|c||d|
< 1. Then the

fixed point equation T3(x) = x is contractive and the sequence {xj} defined by
xj+1 := T3(xj), j = 0, 1, . . . converges to the solution x̂ regardless of the choice
of the initial guess x0.

In all three cases, the error estimate is

|x̂− xj | ≤ min

{

qj

1− q
|x1 − x0|,

q

1− q
|xj − xj−1|

}

, j ≥ 1.



8 Drahoslava Janovská and Gerhard Opfer

Proof: We treat the case (iii). Then,

|T3(x)− T3(y)| = |c
−1(a(y − x) + (y − x)b)d−1| = |c|−1|a(y − x) + (y − x)b| ≤

≤ |c|−1|d|−1(|a(y − x)|+ |(y − x)b|) = |c|−1|d|−1(|a||y − x|+ |b||y − x|) =

= |c|−1|d|−1(|a|+ |b|)|y − x| = q|x− y|.

The remaining part follows from standard arguments. Case (i) and (ii) is ana-
logue to the proof of Lemma 3. ¤

Let us remark that the equation ax+ cxd+xb = e can be also transformed
into the system of two equations for two unknown quaternions by introducing
a new variable u = cxd:

ax+ u+ xb = e
c−1u− xd = 0.

(13)

For the general case of L(ν)(x) = e introduced in (3) all middle terms define
a matrix Mj of exactly the form of M so that the general case expressed as
real equivalent is of the form

(A +
ν−1
∑

j=2

Mj)x = e. (14)

The general case can also be transformed into a system of ν − 1 equations
in ν − 1 unknowns by putting uj := a(j)xb(j), j = 2, 3, . . . , ν − 1. The system
has then, the following form (assuming a(1) = b(ν) = 1):

xb(1) + u2 + u3 + · · ·+ uν−1 + a(ν)x = e,

(a(2))−1u2 − xb(2) = 0,

(a(3))−1u3 − xb(3) = 0, (15)

...

(a(ν−1))−1uν−1 − xb(ν−1) = 0.

We have multiplications from the left and from the right, but there are no mid-
dle terms with multiplication from the left and from the right, simultaneously.

Let us remark that the situation is more complicated in the general case of
linear systems in quaternions. For example we have to define multiplication of
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the matrix by a quaternion from the left, to introduce left and right eigenvalues,
etc. The aim of our future work will be to develop an algorithm (similar to the
elimination procedure) for solving these systems.
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