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SHIFT GENERATED HAAR SPACES ON TRACK FIELDS

GERHARD OPFER∗

Dedicated to the memory of Walter Hengartner1

Abstract. The general aim is to show that G(z) := 1/z2 is never a universal Haar
space generator for all compact sets K in C. For many cases that was already shown in
papers by Hengartner & Opfer [5, 2002], [6, 2005]. The remaining cases are those for
which K is convex (different from ellipses) and K = K◦, where K◦ is the interior of K
and K◦ is the closure of K◦ and where the boundary of K is smooth. We show for several
cases of compact, convex sets that G is not a 2-dimensional Haar space generator for K
implying that it is not a universal Haar space generator for K. We will be guided by a
model of a track field: a rectangle with two half disks attached on two opposite sides of
the rectangle. We also show, that the above G is not a 3-dimensional Haar space generator
for all regular polygons (with smoothed vertices). The definition of Haar spaces and Haar
space generators will be given in the main text. The paper contains as a byproduct an
overview of the joint work of Walter Hengartner and the present author.Am�o�um: Hodva�i �ndhanur npatakn � apauel, or G(z) := 1/z2 funkian �ikaro� handisanal universal Haari tara�u�yan �ni� bolor kompakt K bazmu�yunnerihamar C-um: 
at depqerum da arden uy �r trva� Hengartneri  ��feri [5, 2002℄,[6, 2005℄ hodva�nerum: Ba en mnael het yal depqer�, erb K-n �lipsi tarber u�uikbazmu�yun �, kam �l, erb K-n o�ork ezrov, K = K◦ paymanin bavararo� bazmu�yun �,orte� K◦-n K-i nerqin keteri bazmu�yan �akumn �: U�uik kompakt bazmu�yunnerimi qani depqeri hamar uy enq talis, or G-n K-i Haari erku �a�ani,  het abarna , universal tara�u�yan �ni� ��: A�ajnordvel enq marzada�ti �rinakov` u��ankyun,ori erku handipaka ko�merin kva� en kisa�rjanner: Menq uy enq talis na , or ver�n�va� G-n Haari ereq �a�ani tara�u�yan �ni� �� bolor kanonaor bazmanisteri hamar(o�orkava� ankyunnerov): Haari tara�u�yunneri  nran �ni�neri sahmanumner�trva� en himnakan teqstum: Hodva�� parunakum e he�inaki  Val�er Hengartnerihamate� a�xatanqi hakir� �ardranq�:
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spaces on convex sets, universal Haar space generators, admissible convex sets, Haar spaces
on polygons
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1. Introduction. We will start by explaining what a Haar space is and
shall mention some of its properties. Let C denote the field of all complex
numbers and let K ⊂ C be a non empty, compact subset of C and X :=
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1An obituary including a photograph has been published by Bshouty & Fournier [1].
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2 Gerhard Opfer

C(K) the space of all continuous, complex valued functions equipped with
the uniform norm ||f || := maxz∈K |f(z)|.
Definition 1.1. With the above terminology let n ∈ N := {1, 2, . . .} be fixed
and

tj , tk ∈ K, tj 6= tk, j 6= k and ηj ∈ C, j, k = 1, 2, . . . , n.(1.1)

Any n-dimensional linear subspace V of C(K) will be called a Haar2 space
for K if the interpolation problem

h(tj) = ηj , j = 1, 2, . . . , n

has a unique solution h ∈ V .

Let W ⊂ X be a non empty but otherwise arbitrary set and f ∈ X . An
approximation problem consists in finding all ŵ ∈ W with ŵ ∈ PW (f) where

PW (f) := {ŵ : ||f − ŵ|| = inf
w∈W

||f − w||}.(1.2)

The set PW (f) may be empty or contain several elements. All elements
ŵ ∈ PW (f) will be called best (uniform) approximations of f with respect to
W . We are mainly interested in the case where PW (f) contains exactly one
element for all f , which means that the approximation problem is uniquely
solvable for all f ∈ X . In this case PW : X → W is a mapping, called a
projection or a projection map. The approximation problem will be called
linear if W is a linear subspace of X with finite dimension. The importance
of Haar spaces is expressed in the following theorem.

Theorem 1.2. Let V ⊂ X := C(K) be an n-dimensional linear subspace of
X. Then the following statements are equivalent.

1. V is a Haar space for K.
2. Let h1, h2, . . . , hn be a basis for V . Then the matrix

M := (hj(tk)), j, k = 1, 2, . . . , n

is non singular for all choices of tk ∈ K, k = 1, 2, . . . , n which
obey (1.1).

3. All elements v ∈ V \{0} have at most n − 1 zeros in K.
4. Each element f ∈ X has a unique best (uniform) approximation in V .

2Alfred Haar, Hungarian mathematician, 1885–1933.
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Proof: Meinardus[7, 1967, p. 1–19], Haar[4, 1918]. �

Example 1.3. (a) Let K ⊂ C and let Πn−1 be the n-dimensional linear
space of all polynomials of degree at most n − 1 with complex coefficients.
Then, Πn−1 is a Haar space of dimension n for all K with sufficiently many
points.
(b) Let K ⊂ C and 0 ∈ K. Then

V := 〈z, z3, . . . , z2n−1〉

is an n-dimensional linear space which is not a Haar space for K. By 〈. . .〉 we
understand the linear hull (also called the span) of the elements . . . between
the brackets.

2. Shift generated Haar spaces. Let K ⊂ C be non empty and com-
pact and tj ∈ C, j = 1, 2, . . . , n be mutually distinct.

Example 2.1. In this example we define two shift generated linear spaces of
dimension n:

V := 〈 1

z − t1
,

1

z − t2
, . . . ,

1

z − tn
〉, z ∈ K,

W := 〈exp(−(z − t1)
2), exp(−(z − t2)

2), . . . , exp(−(z − tn)2)〉, z ∈ K.

It is easy to see that V is a Haar space if we choose all tj /∈ K, regardless of
the definition of K. The only restriction on K is that it contains sufficiently
many points. The second space W is a Haar space in case K ⊂ R and it
is in general not a Haar space if K ⊂ C. This is implied by the periodicity
exp(z) = exp(z + 2kπ i ) for all z ∈ C and all k ∈ Z. Both spaces, V, W are
shift generated, V by G(z) := 1

z and W by G(z) := exp(−z2) in the sense
that they coincide with

Vn := 〈G(z − t1), G(z − t2), . . . , G(z − tn)〉, z ∈ K,(2.1)

where in the case of W the multipliers of the span have to be restricted to R.

The question which functions G generate (real) Haar spaces by applying (2.1)
was posed by Cheney & Light[2, 2000, p. 76].

Definition 2.2. Let K ⊂ C be non empty and compact and let G : C\{0} →
C be a function defined on C\{0} with values in C.

1. Let n ∈ N be fixed. The function G will be called an n-dimensional
Haar space generator for K if for each set of n pairwise distinct points
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t1, t2, . . . , tn ∈ C\K (i. e. outside of K) the functions hj defined by
hj(z) := G(z − tj), j = 1, 2, . . . , n span an n-dimensional Haar space
for K.

2. The function G is called a universal Haar space generator for K if G
is an n-dimensional Haar space generator for K for all n ∈ N.

The set of universal Haar space generators is not empty. Take G(z) := 1

z and
refer to V of Example 2.1. Slightly more general is the following example of
a universal Haar space generator G:

G(z) :=
exp(az + b)

z
, a, b ∈ C.(2.2)

It is easy to show, that the space defined in (2.1) for this G is a Haar space
for all n and all K (non empty, compact, sufficiently many points).

3. Shift generated Haar spaces on disks. In our first paper Hen-

gartner and the present author[5, 2002] investigated the case where K :=
{z ∈ C : |z| ≤ 1} is the closed unit disk and G ∈ H(C\{0}), which means
that G is holomorphic on C with the possible exception of the origin. We
also say that G is an analytic Haar space generator , tacitly assuming that G
is defined on C with the exception of the origin. We obtained the following
main result.

Theorem 3.1. Let K be the unit disk and G ∈ H(C\{0}). Then, G is a
universal Haar space generator if and only if G is of the form (2.2).

For the proof we proceeded stepwise. First we assumed that G is a one
dimensional Haar space generator which is equivalent to the fact that G(z−t)
has no zeros in K for all t /∈ K. Then we assumed that G is a one and two
dimensional Haar space generator, etc. In this way we found the following
surprising result.

Theorem 3.2. Let G ∈ H(C\{0}) be an n-dimensional Haar space generator
for the unit disk for n = 1, 2, 3, 4. Then G is a universal Haar space generator.
This result is best possible in the sense that 4 cannot be replaced by a smaller
number.

We have always assumed that G is holomorphic on C\{0}. If we would admit
entire functions for G (i. e. holomorphic on the whole of C), then our proofs
show that we would not find any universal Haar space generator. Thus, the
hole in the domain of definition for G is essential.
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4. Shift generated Haar spaces on general compact sets. In a
second paper Hengartner and the present author [6, 2005] investigated the
case of a general compact set K ∈ C. We found the following main result.

Theorem 4.1. An analytic universal Haar space generator G for an ar-
bitrary, non empty, compact set K (with sufficiently many points) must be
necessarily of one of the two forms:

G(z) :=
exp(az + b)

z
or(4.1)

G(z) :=
exp(az + b)

z2
, where a, b ∈ C.(4.2)

By K◦ we denote the interior of K, by K◦ we denote the closure of K◦. In
order to prove Theorem 4.1 we had to distinguish between the following two
cases:

(i) K\K◦ 6= ∅,
(ii) K = K◦.

The first case would apply if K◦ is empty. An example is a segment S in C:

S := [z1, z2] := {z : z = (1 − λ)z1 + λz2, λ ∈ [0, 1]}.

We have found an important additional information for the case (4.2) of
Theorem 4.1.

Theorem 4.2. An analytic universal Haar space generator G of the form (4.2)
in Theorem 4.1 is possible only under the following additional conditions
for K:

(i) K = K◦,
(ii) K is convex,
(iii) the boundary ∂K of K has no corner,
(iv) K is not an ellipse (including disks).

Actually, the authors conjectured that case (4.2) will never happen. It was
already shown by Hengartner and the present author [6, 2005, Lemma 1.6,
part 1.] that case (4.2) can be reduced to the simpler case

G(z) :=
1

z2
, z 6= 0.(4.3)

Conjecture 4.3. Let K have the properties mentioned in Theorem 4.2.
Then G defined by G(z) := 1

z2 is never a universal Haar space generator.
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It should be repeated that the conjecture is true in case K does not have the
properties mentioned in Theorem 4.2. In order to prove the conjecture it is
sufficient to prove, that G is not an n-dimensional Haar space generator for
one specific n > 1 since G is always a one dimensional Haar space generator
(G is non vanishing for all z 6= 0). So it might be of interest to study some
special cases, e. g. a track field.

5. Track fields. A track field is a sort of oval which in our model will
consist of a rectangle adjoined by two halfdisks. For two given positive reals
c, d ∈ R let

R(c, d) := {z ∈ C : |ℜz| ≤ c, |ℑz| ≤ d}

be a rectangle, where ℜ,ℑ stand for real part, imaginary part, respectively.
Now define two halfdisks

Dl := {z ∈ C : |z + c| ≤ d, ℜz ≤ −c}, Dr := {z ∈ C : |z − c| ≤ d, ℜz ≥ c}.

Then, a track field is defined by

T (c, d) := R(c, d) ∪ Dl ∪ Dr, c > 0, d > 0.(5.1)

Apparently, T (c, d) is the closure of its interior points, is convex, is not an
ellipse and the boundary has no corner. All conditions of Theorem 4.2 are
satisfied. One example of a track field is shown in Figure 5.1.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

Track field T(2,1)

Figure 5.1. Example of track field for c = 2, d = 1

Instead of putting the half disks on the left and right side of the rectangle
R(c, d) we could have put half disks on top and on the bottom of the rectan-
gle. However, n-dimensional Haar space generators G of the form (4.3) are
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invariant under transformations of K of the type αK + β where α ∈ C\{0}
and β ∈ C, [6, Lemma 1.6, part 2]. We want to show that G, defined in (4.3) is
not a universal Haar space generator for T := T (c, d). For this it is sufficient
to show that G is not a 2-dimensional Haar space generator. We repeat three
lemmata (Lemma 2.3, Lemma 2.4, Lemma 4.10) from [6] which are valid for
all compact sets K.

Lemma 5.2. Let G defined by G(z) :=
1

z2 , s, t 6∈ K, s 6= t and v1(z) :=

G(z − s), v2(z) := G(z − t). Then V := 〈v1, v2〉 is a Haar space of dimension
two if and only if

µ(z; s, t) :=
G(z − s)

G(z − t)
=

( z − t

z − s

)2

, z ∈ K, s, t ∈ C\K, s 6= t(5.2)

is injective on K which means µ(u; s, t) = µ(v; s, t) implies u = v.

Lemma 5.3. Let G(z) :=
1

z2 be a two dimensional Haar space generator for

any compact K. Then the function

F (t; u, v) :=
( t − u

t − v

)2

, t ∈ C\K u, v ∈ K, u 6= v(5.3)

is injective in C\K.

Lemma 5.4. Let K ⊂ C be a compact set containing the two distinct points
z1, z2 ∈ K. If both points u1,2 := 0.5(z1 + z2 ± i (z1 − z2)) do not belong to
K, then G(z) = 1/z2 is not a two dimensional Haar space generator for K.

This lemma is good enough to solve the track field problem.

Theorem 5.5. Let K := T (c, d) be a given track field, defined in(5.1). Then,
G(z) := 1/z2 is not a 2-dimensional Haar space generator for T (c, d).

Proof: Define z1,2 := ±(c + d). Then u1,2 := 0.5(z1 + z2 ± i (z1 − z2)) =
± i (c + d) and z1,2 ∈ K, u1,2 /∈ K. Lemma 5.4 proves the theorem. �

We see that in the limit case c = 0 the track field T (c, d) degenerates to a disk
with radius d and the above proof would not work. In this case, G(z) := 1/z2

is indeed a 2-dimensional Haar space generator for the disk. See [6, Lemma
4.12]. This is another proof for the fact that the dimension n is not continuous
with respect to the monotone convergence of compact sets ([6, Lemma 1.6,
part 5]). But we have also shown in [5, proof of Lemma 19], that G(z) := 1/z2

is not a 3-dimensional Haar space generator for any disk with positive radius.



8 Gerhard Opfer

6. Admissible convex sets. The proof for the above case (Theorem 5.5)
can be transferred to all convex sets for which Lemma 5.4 is applicable. In
that lemma two points u1,2 := 0.5(z1+z2± i (z1−z2)) are computed from two
given, distinct points z1, z2 ∈ K. Define the two segments S1 := [z1, z2], S2 :=
[u1, u2]. It is easy to see that u1−u2 = i (z1−z2) and (u1+u2)/2 = (z1+z2)/2.
For the segments that means that they are diagonals of a square. Let us de-
note this square by Q(z1, z2). It is that square whose one diagonal is the
segment S1 := [z1, z2]. Lemma 5.4 now says that G(z) = 1/z2 is not a 2-
dimensional Haar space generator for a compact, convex set K if there are
two distinct points z1, z2 ∈ K such that the other two corners of the square
Q(z1, z2) are outside of K.

Definition 6.1. Let K ⊂ C be a non empty convex set. We shall call K
admissible if there are two points z1, z2 ∈ K such that the square Q(z1, z2)
defined above has the property that the two other corners of Q(z1, z2) are
outside of K.

An example of an admissible set (an ellipse) is sketched in Figure 6.4. Let ∆
be the regular (equilateral) triangle with the corners (−1, 0), (1, 0), (0,

√
3).

Then, ∆ is admissible. To see this, choose z1 := 0 ∈ ∆, z2 =
√

3 i ∈ ∆.
Then, u1 = 0.5

√
3(−1 + i ), u2 = 0.5

√
3(1 + i ) are both outside of ∆.

Theorem 6.2. Let Pn be a regular polygon with n ≥ 3 vertices. (i) If n is
odd, then Pn is admissible. (ii) If n is even, then (a) Pn is admissible if n
is not divisible by four. (b) Otherwise (i. e. n is divisible by four) Pn is not
admissible.

Proof: Assume that the vertices of Pn are represented by vj := exp(2jπ i

n ), j =
0, 1, . . . , n − 1. Let n be odd and let n1 := (n − 1)/2, n2 := (n + 1)/2. Then
n2 − n1 = 1. Let z1 := v0, and z2 := 0.5(vn1

+ vn2
). Clearly, z1 ∈ Pn and

the convexity of Pn implies z2 ∈ Pn. The two other corners of Q(z1, z2) are
u1,2 := 0.5(z1 + z2 ± i (z1 − z2)) and they are outside of Pn. Let n be even.
We use mainly the same construction. Let z1 := v0, z2 := vn/2. Since z1, z2

are both vertices located on the x-axis, we have u1,2 = ± i . In case n is
divisible by four, u1 coincides with vertex vn/4 and u2 coincides with vertex
vn/4+n/2. In case n is not divisible by four, the two points u1, u2 are different
from vertices and are therefore necessarily outside of Pn. �

The general theory says that convex sets K with corners never have G(z) :=
1/z2 as universal Haar space generators. So polygons are actually not of
interest. However, we may think of slightly perturbed polygons where the
corners have been smoothed.
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The problem could be solved if one could prove the following conjecture.

Conjecture 6.3. Let K ⊂ C be a compact, convex set with the following
properties:

(i) K = K◦,
(ii) the boundary ∂K of K is smooth,
(iii) K is not admissible.

Then, G(z) := 1/z2 is not a 3-dimensional Haar space generator for K and
thus, not a universal Haar space generator for K.

z
1

z
2

u
1

u
2

Example of admissible convex set

Figure 6.4. Example of an admissible set (ellipse)

Examples different from a disk, satisfying (i) to (iii) are according to our
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Theorem 6.2 regular polygons with n = 4k, k = 1, 2, . . . vertices with (slightly)
rounded corners. We will show that G(z) := 1/z2 is not a 3-dimensional Haar
space generator for all such regular polygons. We start with the following
theorem.

Theorem 6.5. Let Q = {z : |ℜz| ≤ 1, |ℑz| ≤ 1} be a square and Q̃ the
same square with rounded corners (e. g. by using small circular arcs near the
corners). Then G(z) := 1/z2 is not a 3-dimensional Haar space generator
for Q̃ and thus, not a universal Haar space generator for Q̃.

Proof: We show that V3 := 〈G(z − t1), G(z − t2), G(z − t3)〉 is not a Haar
space for suitable shifts t1, t2, t3. We take t2 := exp(−2π i /3)t1 =: at1, t3 :=
exp(2π i /3)t1 =: bt1 and leave t1 as a real parameter, to be suitably adjusted.
One element in V3 is

v(z) :=
1

(z − t1)2
+

a2

(z − t2)2
+

b2

(z − t3)2
=

1

(z − t1)2
+

a2

(z − at1)2
+

b2

(z − bt1)2
.

Since ab = 1 we have

v(z) =
1

(z − t1)2
+

1

(bz − t1)2
+

1

(az − t1)2
.

Now, v(z) = 0 if and only if z ∈ {z1, z2, z3} where z3
j = −1/2t31, j = 1, 2, 3.

If we choose t1 = 1.2, then t2,3 = −0.6 ± 1.0392 i . Thus, t1,2,3 /∈ Q̃. For the

zeros we obtain z1 := −0.9524, z2,3 = 0.4762± 0.8248 i which are all in Q̃. �

It should be observed that the above proof will work also for values of t1
which are slightly different from the given value 1.2. For t1 ∈ [1.16, 1.26] the
proof still works, but for t1 ≤ 1.15 and t ≥ 1.27 the proof does not work.
Nevertheless, the idea of the proof is good enough to settle the problem for
all regular polygons. It should be noted that this proof is adapted from [5,
Proof of Lemma 19].

Theorem 6.6. Let Pn be a regular polygon with n ≥ 3 vertices and P̃n the
same polygon with slightly rounded vertices. Then, G defined by G(z) = 1/z2

is not a universal Haar space generator for P̃n.

Proof: We only need to show, that G(z) = 1/z2 is not a 3-dimensional
Haar space generator for P̃4k, k ≥ 2. The case P̃4 was already settled in
Theorem 6.5. All other cases are settled by Theorem 6.2. We use the same
proof as for Theorem 6.5 and assume that the vertices have the form vj :=√

2 exp
(

2jπ i

4k

)

exp
(

2π i

8

)

, j = 0, 1, . . . , 4k − 1. This form guarantees that
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the vertices of the square Q defined in Theorem 6.5 are included in that
definition of the vertices. Also note that all polygons are included in the
centered disk of radius

√
2. Now we refer to the proof of Theorem 6.5 and

put t1 := 3/2. Then t2,3 = 3/4(−1±
√

3 i ) and |t2,3| = 3/2. Hence, all shifts

t1,2,3 are outside the disk of radius
√

2 and thus, outside of all P̃n. The zeros

z1 = −3 · 2−4/3 = −1.1906, z2,3 = 0.5953 ± 1.0310 i are inside P̃8 and inside

P̃12. We have P4 ⊂ P12 ⊂ P20 · · · and P8 ⊂ P16 ⊂ P24 · · · and therefore, the
zeros are all inside of P4k, for all k ≥ 2. �

7. Extension to unbounded sets. It is interesting that even for non
compact sets in C some analogue results can be derived. However, the class of
continuous functions has to be restricted such that the uniform norm is still
(finitely) defined. The results of this section are by Maude Giasson, Walter
Hengartner and the present author, [3, 2003]. Let F ⊂ C be non empty and
closed. We will restrict the continuous functions to the cases where

||f ||F := sup
z∈F

|f(z)|

is still finite. For this purpose it is sufficient to require that

lim
z∈F,z→∞

f(z) = 0.(7.1)

We will denote the class of continuous functions for which (7.1) is valid by
C0(F ). There is the following basic theorem.

Theorem 7.1. Let F ⊂ C be non empty and closed and V an n-dimensional
linear subspace of C0(F ). The approximation problem has a unique solution
in V for all f ∈ C0(F ) if and only if V is a Haar space for F .

Proof: [3, Theorem 1.2]. �

It should be noted that the above theorem is not valid for the larger class of
continuous and bounded functions. There is a counterexample in [3, Exam-
ple 1.3].

Theorem 7.2. Let F ⊂ C be non empty and closed and

G(z) :=
eaz+b

z
and ||eaz ||F < ∞ a, b ∈ C, z 6= 0.

Then G ∈ H(C\{0}) and G is a universal Haar space generator for F .

Proof: [3, Example 1.5]. �
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The proof is actually straightforward, and depending on F there is a table
[3, Table 1] showing the actual restriction of a induced by ||eaz||F < ∞. To
mention two examples, let F := R+. Then ℜ(a) ≤ 0. In case F := {z : |z| ≥
R} for a positive R, we have a = 0.

There are several theorems in which universal Haar space generators are char-
acterized for closed, but unbounded sets. Let e. g. F contain {z : |z| ≥ R},
then under some additional conditions on F a universal analytic Haar space
generator must necessarily have the form G(z) = 1/z ([3, Theorem 4.5]).
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