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On the number 50

Gerhard Opfer

Dedicated to Marie Luise and Reiner Lauterbach
on the occasion of their 50th birthday

Abstract. We make some observations concerning the number 50.
We conjecture that this number shares a special property only with
one other number. In another context it appears to be unique. We
mention also a special property of the number 50 with respect to the
current calendar. It turns out that in a certain context Pell’s equation
plays a fundamental role. We will treat it from an algebraic point of
view (quadratic forms) and from an analytic point of view (continued
fractions for algebraic numbers of degree two).

Keywords. Pell’s equation, Padé approximations, consecutive inte-

gers, sandwiched integers, calendar periods.

2000 MSC. 01, 11Axx, 11D09, 41A21.

§1. A significant property of the number 50

If someone reaches the age of 50, then one year long he or she was 49 years of
age. This is a trivial observation. In mathematical terms the natural number
50 is the successor of 49 and 49 is the predecessor of 50. And now, the important
observation, 49 is a square and 50 is twice a square. If we set 50 = 2m2, where
m = 5 and 49 = n2, where n = 7 the two numbers m,n satisfy the equation

(1) f(m,n) := 2m2 − n2 = 1.

We are of course interested in whether this equation has some other solutions
in the set of pairs of natural numbers (m,n) ∈ N

2, where N := {1, 2, . . .}. At
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a first glance we see, that m = n = 1 is a solution. Then we also see, that
solutions must be located in a certain cone of the (m,n)-plane.

Lemma 1. Let (m,n) ∈ N
2. Then (m,n) can solve (1) only if

1

2

√
2n < m ≤ n.

Proof: Let 1
2

√
2n ≥ m. Then, 2m2 ≤ n2 and thus, f(m,n) = 2m2 − n2 ≤ 0,

and (m,n) cannot solve (1). Now, assume that m > n. Then f(m,n) =
2m2−n2 > 2n2−n2 = n2 ≥ 1 and again, (m,n) cannot be a solution to (1). ¤

If we generalize the above f to any quadratic form in two integer variables
m,n with integer coefficients, then, it is clear that the equation f(m,n) = d,
where d is any fixed integer has no or at most finitely many solutions (m,n)
∈ Z

2 if f is a definite form. Since the above f is indefinite there is a chance
that infinitely many solutions exist. We introduce a new notion, called an
observation. It has the character of a theorem but the proof is by inspection,
either in the literal sense, or by application of a simple computer program. The
word simple should indicate that the program is easy and quick to write and
that the running time is not important. As such, an observation should not be
followed by a formal proof.

Observation 2. The following natural pairs (m,n) given in Table 3 solve
equation (1) and there are no other solutions for n ≤ 107 − 1.

Table 3. First ten solutions of equation (1) and difference m
n −s where s = 1

2

√
2

No. m n
m

n
− s

1 1 1 2.9·10−1

2 5 7 7.2·10−3

3 29 41 2.1·10−4

4 169 239 6.2·10−6

5 985 1 393 1.8·10−7

No. m n
m

n
− s

6 5 741 8 119 5.4·10−9

7 33 461 47 321 1.6·10−10

8 195 025 275 807 4.6·10−12

9 1 136 689 1 607 521 1.4·10−13

10 6 625 109 9 369 319 4.0·10−15

If we plot these solutions in an (m,n) plane we see that they are located,
optically, on a straight line with slope approximately

√
2. Because such a line

is not interesting, we do not present it here. However, a glance at Lemma 1,
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reveals that the given solutions are not exactly located on that line. We also
see from Table 3 that the quotients m

n provide a sequence of approximations

for 1
2

√
2 with increasing precision.

Now we have to find a means to compute these pairs. From equation (1)
we deduce

(2) m =

√

1

2
(n2 + 1) =

1

2

√
2n

√

1 +
1

n2
.

Let us for a while neglect the restriction, that n is a natural number and assume
only that 1/n2 < 1 which is true for all n > 1. Then we can employ Taylor’s
theorem for the square root on the right hand side of (2) and obtain

(3) m =
1

2

√
2n
(

1 +
1

2n2
+R2(n

2)
)

,

where

(4) R2(n
2) =

−1

8n4
(

1 +
θ

n2

)3/2
, 0 ≤ θ ≤ 1.

Theorem 4. Put s := 1
2

√
2 and assume that m

n , m, n ∈ N is any approximation
of s with s = m

n + ε. Then (m,n) solves (1) if and only if

(5) ε = −s
( 1

2n2
+R2(n

2)
)

.

Proof: (i) Let (m,n) be a solution of (1). Then the formulae (2), (3) follow
and therefore, we obtain

m

n
= s

(

1 +
1

2n2
+R2(n

2)
)

= s+ s
( 1

2n2
+R2(n

2)
)

= s− ε

and (5) is valid. (ii) Let (m,n) be an approximation of s such that (5) is

valid. Then by using (5) we have m = n(s − ε) = ns
(

1 + 1
2n2 + R2(n

2)
)

and

2m2 = n2
(

1 + 1
2n2 +R2(n

2)
)2

. Now, using R2(n
2) =

√

1 + 1
n2 −

(

1 + 1
2n2

)

, it

takes few algebraic steps to show that 2m2 = n2 + 1. ¤
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If we evaluate the right hand side of (5) we obtain an ε for every n. It is
sort of a miracle that for some of these ε we can find an integer m such that m

n
is an approximation for s with just this ε as approximation error.

Example 5. In the special case of solution No. 2 of Table 3, namely m =
5, n = 7 we have s = 5

7 + ε = 5
7 − 7.1789 · 10−3. The remainder term is

R2(7
2) = −5.1537 · 10−5. And equation (5) (using exact representations of

ε, and of R2(7
2)) is valid. Let us take (m,n) = (12, 17). Here we have s =

12
17−1.2244·10−3 andR2(17

2) = −1.4940·10−6. However, a numerical inspection
already shows that (5) is not valid.

Instead of solving (1) for m we can solve (1) for n as well and obtain

n =
√

2m2 + 1 =
√
2m

√

1 +
1

2m2
.

Taylor’s theorem is applicable for m ≥ 1 and we have

n =
√
2m

(

1 +
1

4m2
+R2(2m

2)
)

,

where R2 is already defined in (4). The following theorem is not surprising.

Theorem 6. Let σ :=
√
2 and assume that n

m , m, n ∈ N is an approximation
of σ with σ = n

m + ϑ. Then (m,n) solves (1) if and only if

ϑ = −σ
( 1

4m2
+R2(2m

2)
)

.

Proof: Essentially repeat the proof of Theorem 4. ¤

Let us assume that (m,n) solves (1) and that s = m
n + ε and σ = n

m + ϑ.
Then 1 = sσ = (m

n + ε)( n
m + ϑ) = 1 + m

n ϑ+ ε n
m + εϑ or

m

n
ϑ+ ε

n

m
+ εϑ = 0.

We assume that (m,n) is large enough so we can neglect the term εϑ and obtain

ϑ ≈ −2ε,
where we have also replaced n2

m2 by two. Let us take solution No. 5, (m,n) =
(985, 1393) as an example. Then s− m

n = ε = −1.82201 82285 · 10−7, σ − n
m =

ϑ = 3.64403 55200 · 10−7 and −2ε = 3.64403 64570 · 10−7 which agrees with ϑ
for 7 digits.

What we have learned here is that not all approximations m
n of 1

2

√
2 are

solutions of equation (1).
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§2. Quadratic forms in two variables and Pell’s equation

Number theorists are very much interested in integer solutions and the prop-
erties of algebraic equations with integer coefficients. One such problem is the
solution of f(x) = d where f represents a quadratic form in n variables x with
integer coefficients and d is any fixed integer. We will give a short exposé for
the case of two variables. To some extent we follow Scholz & Schoeneberg
[1961, p. 122–126]. Let

A :=

(

2a b
b 2c

)

∈ Z
2×2

be a symmetric matrix with integer entries and x := (x1, x2)
T. Then the

quadratic form reads

f(x) :=
1

2
xTAx = ax2

1 + bx1x2 + cx2
2 =: (a, b, c),

where (a, b, c) is another (inconsistent but common) abbreviation for the quad-
ratic form with coefficients a, b, c. Since A is symmetric, the two eigenvalues
λ1, λ2 of A are real. According to Vieta’s theorem, the product λ1λ2 of these
eigenvalues is the constant term of the characteristic polynomial of A which
coincides with the determinant of A. Therefore, we have

D := λ1λ2 = det(A) = 4ac− b2.

So we have the following classification, already known from school mathematics,
see Schülke [1959, p. 41]:

D

{

> 0 : A is definite, elliptic case,
< 0 : A is indefinite, hyperbolic case,
= 0 : A is semi definite, parabolic case.

The elliptic case is the least interesting case. In this case, the solution set
of f(x) = d for a fixed, real d regarded as an equation in R

2 is either the
circumference of an ellipse, one point, or empty. Therefore, the corresponding
integer case has either no solution or only finitely many solutions.

It is reasonable to study only so-called primitive forms (a, b, c) which means
that a, b, c do not have a factor (different from 1) in common since (ta, tb, tc) =
t(a, b, c) for all integers t.
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We want to study the solutions of f(x) = d for a fixed d and we will see
that a whole equivalence class of quadratic forms will have exactly the same
solution behavior. An integer matrix T will be called unimodular if detT = ±1.
This implies that the inverse T−1 exists and has also integer entries. Let

(6) T :=

(

r v
s w

)

∈ Z
2×2

be a unimodular matrix and

(7) U :=

(

w −v
−s r

)

, then, T−1 =

{

U if det(T) = 1,
−U if det(T) = −1.

If we put

(8) u :=

(

u1

u2

)

:= Tx,

then,

f(x) = f(T−1u) =: ϕ(u) :=
1

2
(T−1u)TAT−1u

(9)

=
1

2
uT
{

(T−1)TAT−1
}

u =: Au2
1 +Bu1u2 + Cu2

2,

where

(10)





A
B
C



 = M





a
b
c



 , with M :=





r2 rs s2

2rv rw + sv 2sw
v2 vw w2



 .

The matrixM has the same determinant as T and is therefore also unimodular:
the inverse exists and has integer entries. If we find the solutions of ϕ(u) = d
we also have the solutions of f(x) = d and vice versa. In particular, the
determinant

D1 := 4AC −B2 = (4ac− b2)(rw − sv)2 = D

remains unchanged. The connection between u and x is via T in (8). The
two quadratic forms f(x) = (a, b, c) and ϕ(u) = (A,B,C) are called equivalent
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which defines an equivalence relation in the ordinary sense. We will mention
only in passing that D or D + 1 is always divisible by 4 and that all integers
with this property can occur as determinants. We will see that those values of
determinants D for which −D is a square: 0,−1,−4,−9,−16,−25, . . . do not
yield a solution.

Let f be a given quadratic form and d ∈ Z a given integer. A theorem
which gives precise information on the question whether f(x) = d has an integer
solution x is apparently lacking. However, there is a theorem of the following
type: Let D be the determinant of a quadratic form and d ∈ Z. Then one can
find a quadratic form f with determinant D such that f(x) = d has a solution if
and only if certain conditions (depending only on D, d) are fulfilled, cf. Scholz
& Schoeneberg [1961, p. 105]. Thus, if these conditions are not met, then
all equations f(x) = d where the determinant of f is D have no solutions.

Now, we try to find those transformationsT which keep the given quadratic
form fixed. The idea is to choose a unimodular matrix T such that

(11) A = TTAT

which yields (see (9))

ϕ(u) = f(u).

A comparison of the matrix elements in (11) yields three equations (the two off
diagonal elements yield the same equation) which can be put into the form

P





a
b
c



 = 0, where P :=





r2 − 1 rs s2

2rv rw + sv − 1 2sw
v2 vw w2 − 1



 = M− I,

where M is defined in (10). In other words, we have to look for unimodular T
such that all eigenvalues of M are one. Rather than comparing the two sides
of (11) we can also compare the elements of either side of

AT−1 = TTA

which is a little easier and implies (T−1 is given in (7))

(12) sb = (w − r)a; −vb = (w − r)c; sc = −va for detT = 1,
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(13) r = −w; br = av − cs for detT = −1.

Since all numbers in (12) are integers, the equations (12) imply that s is a
multiple of a and v is a multiple of c (using that the form (a, b, c) is primitive
and ac 6= 0). So if we set

(14) au1 = s, u2 = r + w

we obtain from (12)

(15) r =
1

2
(u2 − bu1), s = au1, v = −cu1, w =

1

2
(u2 + bu1).

Any integer pair u1, u2 would solve the problem of finding a matrix T with
property (11) and detT = 1. Now, only a little computation is necessary to
finding the decisive equation

(16) 4(rw − sv) = u2
2 +Du2

1 = 4.

In number theory an equation of type u2
2 +Du2

1 = 4 is called Pell’s equation.1)

If we put u1 = 2v1, u2 = 2v2, then Pell’s equation would read v2
2 + Dv2

1 = 1.
The equations (13) are treated by Scholz & Schoenberg [1961, p. 123/124].
Another questions leads to another type of Pell’s equation. If we require that
(a, b, c) and (−a,−b,−c) are equivalent we have to find a unimodular T with
detT = −1 with TTA = (−A)T−1 or equivalently, −A = TTAT. With the
same reasoning as in the case of equations (12) we obtain by using (14) the
same equations as (15) but

(17) 4(rw − sv) = u2
2 +Du2

1 = −4.

This is another type of Pell’s equation. We find (Scholz & Schoeneberg,
[1961, p. 123, 126]) the following information: Pell’s equation (16) has solutions
for all D < 0 if −D is not a square. Pell’s equation (17) has solutions if
−D = p and p is a prime number such that p − 1 is a multiple of four (p =
5, 13, 17, 29, 37, 41, ...). There is no solution if −D has a prime factor p such
that p− 3 is a multiple of four (p = 3, 7, 11, . . .).

1) John Pell, 1611 (Southwick) – 1685 (London). The name Pell’s equation

is probably based on an error of L. Euler, see Gottwald et alii [1990,
p. 363/364] for more details. Henrici [1977, p. 499] writes: “... among
the mathematicians who contributed to the theory of Pell’s equation we find
Archimedes, Fermat, Euler (but no Pell).”
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Example 7. Let A :=

(

2 4
4 4

)

. Then D := detA = −8. Pell’s equa-

tion (16) has a solution u1 = 12, u2 = 34. And by means of (6), (15) we

find T =

(

−7 −24
12 41

)

which indeed solves (11) and has determinant one.

Pell’s equation (17) has a solution u1 = 29, u2 = 82 which implies T =
(

−17 −58
29 99

)

, detT = −1, and TTAT = −A.

Since with T also any power Tj is unimodular with detTj = (detT)j , j =
0, 1, . . . we have a very convenient tool to compute all solutions of Pell’s equation
if we only know one solution, because from any T we can recover the solution
of Pell’s equation by applying (14). In particular, if detT = −1 the powers Tj

solve the two types (16), (17) of Pell’s equation alternatively. Let T be a given
unimodular matrix which satisfies detT = −1 and −A = TTAT. Then, we
have −A = (TT)jATj for odd j and A = (TT)jATj for even j. Let

T0 :=

(

r0 v0

s0 w0

)

:=

(

1 0
0 1

)

, T :=

(

r1 v1

s1 w1

)

, Tj :=

(

rj vj

sj wj

)

, j ≥ 1.

For any unimodular matrix we deduce from (7) that T+det TT−1 = (r+w)I
which implies here

Tj+1 −Tj−1 = (T−T−1)Tj = (r1 + w1)T
j .

By (14) we put

u
(0)
1 := 0, u

(0)
2 := 2; au

(j)
1 := sj , u

(j)
2 := rj + wj , j ≥ 0

and obtain finally

(18) u
(j+1)
1 := u

(1)
2 u

(j)
1 + u

(j−1)
1 , u

(j+1)
2 := u

(1)
2 u

(j)
2 + u

(j−1)
2 , j = 1, 2, . . .

The pairs (u
(2j)
1 , u

(2j)
2 ), j = 1, 2, . . . solve Pell’s equation (16) and the pairs

(u
(2j+1)
1 , u

(2j+1)
2 ), j = 0, 1, 2, . . . solve Pell’s equation (17). For D = −8 we

obtain as solutions of equation (16) the pairs (0, 2), (2, 6), (12, 34), . . ., and (1, 2),
(5, 14), (29, 82), . . . for (17).

The following lemma is implied by the recursion (18).
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Lemma 8. Let there exist a positive solution (u1 > 0, u2 > 0) of Pell’s equa-
tion (17). Then both Pell’s equations (16), (17) have infinitely many positive

solutions. If D < 0, then, limj→∞
u

(j)
2

u
(j)
1

=
√
−D.

Proof: The recursion (18) implies that both sequences {u1}, {u2} are

strictly increasing. Therefore u
(j)
1 → ∞, u

(j)
2 → ∞ and the final result fol-

lows from dividing (16), (17) by (u
(j)
1 )2. ¤

We return to our original equation (1). If we multiply it by −4 we obtain
4n2 − 8m2 = −4. If we put 2n := ñ we obtain Pell’s equation of the form (17),
namely

(19) ñ2 − 8m2 = −4.
It is clear that all solutions (m, ñ) of (19) must have the property that ñ is even,
so that a solution (m, ñ) of (19) implies a solution (m, ñ/2) = (m,n) of (1).

Theorem 9. Equation (1) has infinitely many solutions (m,n) ∈ N
2 and

m
n → 1

2

√
2.

Proof: Apply Lemma 8 using that (m,n) := (1, 2) is a positive solution of
(17). ¤

A connection between Pell’s equation and the approximation of a square
root is furnished by the theory of rational approximations by Padé approxima-
tions and continued fractions. This topic will be treated in the next chapter.

So far we have not yet exploited all the properties of the magic number
50. It is not only the double of a square, but the square is a square of a prime
number. And the predecessor, the number 49 is the square of a prime number
as well.

So we have to pose our problem again: Are there integer solutions (m,n)
∈ N

2 of equation (1) where both m,n are primes.

Observation 10. For all 664 579 primes n ≤ 107 (the last is 9 999 991) equa-
tion (1) has only two solutions (m,n) = (5, 7), (m,n) = (29, 41) where m is
also prime. There are two additional solutions where only n is prime, but not
m, namely the solutions No. 4 and No. 10 of Table 3.

Only as aperçu we mention, that the second solution (m,n) = (29, 41),
leading to an age of 1682 years would never have been the starting point of a
paper dedicated to some person’s birthday.
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Conjecture 11. Equation (1) has only two pairs of solutions for which both
components are prime. These solutions are given in Observation 10.

The problem, to compare and investigate two neighbors in the set of natu-
ral numbers with respect to a certain property also contains the famous Cata-
lan problem (Catalan [1844]) which was only solved recently, Mihăilescu
[2004]. The proof by Mihăilescu even gave rise to an article by Bethge [2002]
in the German political magazine Der Spiegel. An overview can be found in
Metsänkylä [2004]. Catalan’s problem was, to prove that the two neighbors
eight and nine were the only neighbors in the set of natural numbers which
were powers: 8 = 23, 9 = 32. Also in a recent paper, Opfer & Ripken [1998]
have shown that Catalan’s problem has an extension to the complex integers
(Gaussian numbers) and an example is 12167i = (−23i)3, 12168i = (78+78i)2.

It is also common to investigate three consecutive integers n−1, n, n+1 for
certain properties. One says that n is sandwiched2) by n− 1 and by n+ 1. See
Singh [1997, p. 63], [1998, p. 84] for many interesting problems and a historical
context. A famous problem belonging to this class is Fermat’s problem of the
number 26 which is the only number sandwiched by a square 25 = 52 and a
cube 27 = 33. In this case, the number 26 itself is characterized by its neighbors
alone without using any properties of 26. Problems of similar type are treated
in a book by Mordell [1969, Ch.26]. Some history of the 26-Problem by
Fermat can be found in Mahoney [1973].

So we may also take the number 50 as being sandwiched by 49 and by
51. One property of 51 is that is has only two prime factors. But this does
not lead to an interesting problem. Therefore, we introduce another problem,
where also the middle number - the number to be sandwiched - has to obey
certain rules.

Definition 12. Let N1, N2 be any two non empty subsets of N. The problem
of finding (n1, n2) ∈ N1 × N2 such that n2 = n1 + 2 will be called sandwich

problem. If in the sandwich problem we require, in addition, that n = n1 + 1
belongs to another third subset N ⊂ N, then this problem will be called strong

sandwich problem.

Let p be an integer not divisible by three. Then, it is an easy exercise to

2) J. Montagu, 4th Earl of Sandwich, 1718–1792 introduced sandwiches for
himself in order not to interrupt his passion for gambling.
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show that p2 + 2 is always divisible by three. Now, with n = 50 there is the
following strong sandwich problem:

Problem 13. Find all integers n ≥ 2 which are sandwiched by a square and
a product of three and a prime and where n itself is the double of a square.

Some preliminary computer tests indicate that besides the solution n = 50
there is either no solution or a solution with a very large n. Therefore we dare
the following conjecture.

Conjecture 14. The above Problem 13 has only the solution n = 50. This is
at least true for all n ≤ 108.

§3. Rational approximations for square roots,

Padé approximations, and continued fractions

Rational functions have an important link to continued fractions and to Padé
approximations. Let r0, r1 be arbitrary polynomials and r1 not the zero poly-
nomial. Then all functions of the type

r :=
r0

r1

are called rational functions. We assume that r0, r1 do not have common non-
constant polynomial factors. The representation of the rational function r by
the two polynomials r0, r1 is not unique because we can multiply r0, r1 by any
non zero constant without changing r. This will be used for some normaliza-
tion and simplification. Any rational function can be written in the form of a
continued fraction. We first take an example from Opfer, [2002, p. 29]:

r(x) =
4x2 + 3x− 2

2x2 − 4x+ 5

= 2 +
11x− 12

2x2 − 4x+ 5

= 2 +
11

2x2 − 4x+ 5

x− 12

11
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= 2 +
11

2x− 20

11
+

365

112

x− 12

11

= 2 +

11

2

x− 10

11
+

365

2 · 112

x− 12

11

= q0 +
c1

q1 +
c2

q2

.

The multiplications have been carried out in such a way that all occurring
polynomials q1, q2, . . . have leading coefficient one. The evaluation of the given
continued fraction requires 2 divisions, whereas the original rational function
(using the Horner scheme) requires 4 multiplications and one division.

Now we describe the general case. Let the degree of any polynomial p be
denoted by ∂p. If p is a constant6= 0, then we write ∂p = 0. Let r := r0

r1
with

∂r0 ≥ ∂r1 and apply Euclid’s division algorithm

r0 = q0r1 + r2, ∂r2 < ∂r1,

r1 = q1r2 + r3, ∂r3 < ∂r2,

r2 = q2r3 + r4, ∂r4 < ∂r3,(20)

...

rk−1 = qk−1rk + rk+1, 0 = ∂rk+1 < ∂rk,

rk = qkrk+1, rk+2 = 0.

Since the polynomial degrees ∂rk are strictly decreasing, this algorithm must
terminate. If ∂r0 < ∂r1, then we write r in the form

r =
r0

r1
=

c

cr1

r0

,
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where c is chosen in such a way, that cr1 an r0 have the same leading coefficient
and we apply the division algorithm to cr1/r0. In general, the continued fraction
derived from Euclid’s division algorithm has the form

r =
r0

r1
= q0+

r2

r1
= q0+

1

r1

r2

= q0+
1

q1 +
r3

r2

= q0+
1

q1 +
1

r2

r3

= q0+
1

q1 +
1

q2 +
r4

r3

= · · ·

which can be written as

(21) r =
r0

r1
= q0 +

1

q1 +
1

q2 +
1

. . .
qk−2 +

1

qk−1 +
1

qk

.

In our example we have applied one additional multiplication in each step of
Euclid’s division algorithm in order to obtain polynomials

q̃j := αjqj , j = 1, 2, . . . , k,

with leading coefficient one. In this case, the evaluation of a rational func-
tion r := r0/r1 with numerator degree ∂r0 and denominator degree ∂r1 at a
specific value x requires max(∂r0, ∂r1) multiplications or divisions when using
the representation (22) as continued fraction (Opfer, [2002, p. 31]). If r is
evaluted by evaluating r0, r1 separately by Horner’s scheme, then, ∂r0+∂r1+1
multiplications/divisions are needed. Then (21) takes the more general form

(22) r =
r0

r1
= q0 +

c1

q̃1 +
c2

q̃2 +
c3

. . .
q̃k−2 +

ck−1

q̃k−1 +
ck

q̃k

.
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Since the form (22) is space consuming and akward to write it is common to
use the simpler notation,

(23) r = q0 +
c1
q̃1+

c2
q̃2+

c3
q̃3+

· · · ck−1

q̃k−1+

ck

q̃k
.

Such a continued fraction is determined by two vectors c := (c1, c2, . . . , ck), q :=
(q0, q̃1, . . . , q̃k). Besides the backwards evaluation formula, there is also a for-
ward evaluation formula in matrix form named after Euler and Wallis. It
computes all subfractions

(24)
Aj

Bj
:= q0 +

c1
q̃1+

c2
q̃2+

c3
q̃3+

· · · cj−1

q̃j−1+

cj

q̃j
, j = 0, 1, . . . , k,

of (23). The forward evaluation formula reads as follows:

(

Aj Aj−1

Bj Bj−1

)

=

(

Aj−1 Aj−2

Bj−1 Bj−2

)(

q̃j 1
cj 0

)

, j = 1, 2, . . . , k,

(25)
(

A0 A−1

B0 B−1

)

=

(

q0 1
1 0

)

, r =
Ak

Bk
.

This form has the advantage that it can be applied to continued fractions
of infinite length and that it can be terminated at all intermediate positions.
However, it has the disadvantage that it needs roughly 4.5 times more flops than
the backwards evaluation. This formula has another simple, but important
consequence, namely
(26)

AjBj−1 −Aj−1Bj = det

(

Aj Aj−1

Bj Bj−1

)

= (−1)j+1c1c2 · · · cj , j = 0, 1, . . . , k.

So far we have associated a continued fraction to a rational function. How-
ever, this concept carries over to general functions f which are sufficiently
smooth. Ordinarily one assumes that f is even analytic in a given interval.
Then, a rational function r = r0/r1 with prescribed numerator and denomina-
tor degree ∂r0, ∂r1, respectively, is associated to f by requiring that the Taylor
expansions of f and of r agree as far as possible. Let us denote

(27) ∂r := ∂r0 + ∂r1 + 1
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and call it the degree of r. Then the above requirement can be written as

(28) f(x)− r(x) = O(x∂r).

The set of all rational functions r = r0/r1 with given numerator and denomi-
nator degree at most ∂r0, ∂r1, respectively, will be denoted by

[∂r0/∂r1].

A function r ∈ [∂r0/∂r1] in this way associated to f is called Padé approximation

of f . Such a Padé approximation may not exist, but there are never two
different Padé approximations. In many cases the Padé approximation has a
much better convergence behavior than the Taylor series of f . Details and
examples can be found in books on Padé approximation, like the book by
Baker [1975] or Baker & Graves-Morris [1981]. A very detailed history
on Padé approximations is given by Brezinski [1991]. One example from
Baker [1975, p. 3/4] is

f(x) =

√

1 + 2x

1 + x
= 1 +

1

2
x− 5

8
x2 +

13

16
x3 − 141

128
x4 + · · ·

where the Taylor series is not converging for x > 1
2 , though limx→∞ f(x) =

√
2.

In this case the Padé approximation r ∈ [1/1] has the form

r(x) =
1 + 7

4x

1 + 5
4x

= 1 +
1

2
x− 5

8
x2 +O(x3)

and limx→∞ r(x) = 7
5 which agrees with

√
2 already for two digits. Let

r ∈ [∂r0/∂r1] with prescribed ∂r0, ∂r1 and let f be given with

f(x) = t(x) +O(x∂r)

where t is the Taylor polynomial

t(x) :=
∂r−1
∑

k=0

fk

k!
xk
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of f . It may be regarded as a one point Hermite-Lagrange polynomial and the
condition (28) is equivalent to the rational one point interpolation problem

r(k)(0) = fk, k = 0, 1, . . . , ∂r − 1, r ∈ [∂p/∂q],

where ∂r is defined in (27). Let r have the form

r(x) :=
p(x)

q(x)
:=

∑∂p
j=0 pjx

j

∑∂q
k=0 qkxk

.

If we multiply equation (28) by q and neglect all terms of order ∂r and higher
we obtain a system of linear equations for the ∂r + 1 unknown coefficients
pj , j = 0, 1, . . . , ∂p, qk, k = 0, 1, . . . , ∂q. Since p/q does not change if we
multiply numerator and denominator by any non vanishing constant, we may
assume that q0 = 1. However, tacitly by this setting we assume that q0 6= 0. If
we follow Baker & Graves-Morris [1981, p. 2/3] we obtain a linear (∂r×∂r)
system which splits into a (∂q× ∂q) system for the denominator coefficients qk

alone and one (∂p+1× ∂p+1) system for all coefficients. These systems have
a special structure which allows a simplified solution technique.

Let us end this part with a well known example (Abramowitz & Stegun
[1964, p. 81]), namely

arctanx =

∞
∑

j=0

(−1)j z2j+1

2j + 1
=

z

1+

z2

3+

4z2

5+

9z2

7+
· · · j2z2

(2j + 1)+
· · · (j ≥ 1).

The Taylor series is valid for |z| ≤ 1, z 6= ±i, the continued fraction is valid for
all complex z with the exception of z = ±is and s ≥ 1. For x = 1023/1024 ≈
0.9990 we have arctan(x) ≈ 0.78491. The Taylor expansion with six terms and
using 26 flops gives 0.74401 (error= 0.04) and the continued fraction with six
terms using 11 flops gives 0.78510 (error= 0.0002, which is 200 times smaller).

We will treat the same problem as before, but applied to numbers. For
rational numbers r = r0/r1 Euclid’s division algorithm (20) just mentioned will
work for this case as well. The numbers ∂rj have to be replaced by rj directly.
Let r0 > r1 > 0. The last number is then rk+1 = gcd(r0, r1), the greatest
common divisor of r0, r1. A simple example with r0 = 75, r1 = 21 is

75 = 3 · 21 + 12,

21 = 1 · 12 + 9,

12 = 1 · 9 + 3,

9 = 3 · 3+ 0.
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So we have gcd(75, 21) = 3. In the same manner as in (21) we can write

r =
75

21
= 3 +

1

1+

1

1+

1

3

and we notice that the parts 3, 3 + 1
1 = 4, 3 + 1

1+
1
1 = 7

2 are approximations of
75/21 with strictly decreasing error.

The remaining question is how to approximate an irrational number. As
a starting point we again look at Euclid’s division algorithm (20) for integers,
define

ρj :=
rj

rj+1
, j = 0, 1, . . . , k

and observe that

(29) ρj := qj +
1

ρj+1
, j = 0, 1, . . . , k − 1, ρk := qk

which results in the same form as (21) with qk > 1. Now, we may write the
foregoing sequence (29) and (20) equivalently by

(30) qj := bρjc,
1

ρj+1
= ρj − bρjc, j = 0, 1, . . . ,

where bξc for any real ξ defines the greatest integer not exceeding ξ (b c is also
called floor). This is the key for finding a continued fraction for an irrational
number ξ. Let ξ > 0 and define according to (30)

ρ0 := ξ,

(31)

qj := bρjc, ρj+1 :=
1

ρj − qj
, j = 0, 1, . . .

This process will not terminate and produce infinitely many integers qj , j ≥ 0
and defines the infinite continued fraction

ξ = q0 +
1

q1+

1

q2+
· · · 1

qj+
· · ·

And one can indeed show that the sequence of finite subfractions converges to ξ,
Henrici [1977, p. 492]. The algorithm (31) is easy to implement. However,
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there are some numerical difficulties, in particular, in forming qj := bρjc when
the computed ρj is a little less than an integer. In this case, qj may differ
by one from the correct value. We have already seen, that such a continued
fraction should be evaluated with the Euler-Wallis formula (25) which gives the

subfractions
Aj

Bj
defined in (24), but the algorithm (31) also gives the tail of the

continued fraction, namely

(32) ρj := qj +
1

qj+1+

1

qj+2+
· · · , j = 0, 1, . . .

There is the following formula (Henrici [1977, p. 491]) which relates the sub-

fractions
Aj

Bj
and the tails ρj in the form

(33) ξ =
Aj−1 +Ajρj+1

Bj−1 +Bjρj+1
, j = 1, 2, . . .

The following theorem is straightforward.

Theorem 15. A real number is rational if and only if the corresponding con-
tinued fraction terminates.

It turns out that the square roots have surprising continued fractions. Any
real zero of a quadratic polynomial with integer coefficients will be called an
algebraic number of degree two. For the proof (not so easy) of the following
theorem we refer to Henrici [1977, p. 495/496].

Theorem 16. (Lagrange) An irrational number is an algebraic number of
degree two if and only if its continued fraction is periodic.

Example 17.

1 +
√
5

2
= 1 +

1

1+

1

1+
· · · ,

√
2 = 1 +

1

2+

1

2+
· · · ,

√
3 = 1 +

1

1+

1

2+

1

1+

1

2+

1

1+
· · · ,

2 +
√
7 = 4 +

1

1+

1

1+

1

1+

1

4+

1

1+

1

1+

1

1+
· · ·
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If we look at the examples, we see little differences. In the first and last ex-
ample the period starts immediately in the beginning of the expansion, whereas
in the other two examples the period starts at a later stage. We call a periodic
infinite continued fraction purely periodic if the period starts already with the
first term q0 > 0. Let p be a quadratic polynomial with integer coefficients. If
the two zeros ξ, ξ′ of p are real then they are called algebraically conjugate to
each other. The following characterization of irrationals with purely periodic
continued fractions is far from being trivial.

Theorem 18. Let ξ be an irrational, algebraic number of degree two. The
continued fraction of ξ is purely periodic if and only if ξ > 1 and the algebraic
conjugate satisfies −1 < ξ′ < 0. Let ξ be purely periodic and η be defined by
the purely periodic continued fraction where the period of ξ is reversed. Then,
η = −1/ξ′.
Example 19. Let ξ := 2 +

√
7 whose continued fraction is given in the last

example. Its period is 4, 1, 1, 1, . . . Then ξ′ = 2 −
√
7 ≈ −0.65 and the above

Theorem 18 implies

η = −1/ξ′ = 1√
7− 2

=
2 +

√
7

3
= 1 +

1

1+

1

1+

1

4+

1

1+

1

1+

1

1+

1

4+
· · ·

§4. The solutions of Pell’s equation by continued fractions

The only book giving a connection between Pell’s equation and continued frac-
tions is (apparently3)) the book by Henrici [1977]. We start with a simpler
equation, namely the linear equation

(34) lx−my = 1, l,m ∈ N

to be solved in integers x, y ∈ Z by means of continued fractions. We assume
that gcd(l,m) = 1. Let

(35)
l

m
= q0 +

1

q1+

1

q2+
· · · 1

qk
.

3) see the Addendum in the end
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Assume, we know two distinct solutions (x0, y0), (x1, y1) of (34), then
l(x1 − x0)−m(y1 − y0) = 0, and

l

m
=

y1 − y0

x1 − x0
.

Since gcd(l,m) = 1, we have for some integer j

y1 = y0 + jl; x1 = x0 + jm.

Conversely, any such (x1, y1) is a solution and hence the general solution is

(x, y) := (x0, y0) + j(m, l), j ∈ Z.

The remaining question is, how to find an initial solution (x0, y0). Let us denote
by

q0

1
=:

A0

B0
,
A1

B1
, . . . ,

Ak

Bk
:=

l

m

the sequence of fractions defined by (35) and to be computed by (25). From (26)
we have AjBj−1 − Aj−1Bj = (−1)j+1, j = 0, 1, . . . , k since all cj = 1. If k
happens to be odd, then Ak = l, Bk = m and lBk−1 −Ak−1m = 1 and

(x0, y0) := (Bk−1, Ak−1)

is a solution. If k is even, then one defines

(x0, y0) := (m−Bk−1, l −Ak−1).

Since lx0−my0 = l(m−Bk−1)−m(l−Ak−1) = −lBk−1+mAk−1 = 1, (x0, y0)
is again a solution.

Example 20. Let us treat

75x− 58y = 1.

The corresponding continued fraction is

75

58
= 1 +

1

3+

1

2+

1

2+

1

3
and the subfractions are

j 0 1 2 3 4
Aj 1 4 9 22 75
Bj 1 3 7 17 58

Since k = 4 is even, the general solution is

(x, y) = (41, 53) + j(58, 75), j ∈ Z,

where 41 = 58− 17, 53 = 75− 22.
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Let us finally turn to Pell’s equation. If we assume that D in (16), (17) is
negative and a multiple of four, then the two types of Pell’s equation can be
written as

(36) (a) y2 − lx2 = 1, (b) y2 − lx2 = −1, l ∈ N,
√
l /∈ N.

The irrational number ξ :=
√
l will not have a purely periodic continued frac-

tion, since ξ′ := −
√
l < −1 does not satisfy the conditions mentioned in Theo-

rem 18. However,
ξ := b

√
lc+

√
l > 1

has a purely periodic continued fraction for all natural l which are not squares
since −1 < b

√
lc −

√
l < 0. Now let l > 1 be an integer, but not a square and

let

(37) ξ̃ := b
√
lc+

√
l = 2q0 +

1

q1+

1

q2+
· · · 1

qk+

1

2q0+

1

q1+
· · · 1

qk+

1

2q0+
· · ·

The integer part of ξ̃ is always even, therefore, the continued fraction of ξ̃ starts
with 2q0. Since q0 = b

√
lc, we obtain an expansion for ξ :=

√
l by subtracting

q0 from both sides of (37):

(38) ξ :=
√
l = q0 +

1

q1+

1

q2+
· · · 1

qk+

1

2q0+

1

q1+
· · · 1

qk+

1

2q0+
· · ·

The period of ξ =
√
l is q1, q2, . . . , qk, 2q0. Its length is k + 1. Now let the

subfractions of the expansion for ξ =
√
l ending with qk be

Ak

Bk
,
A2k+1

B2k+1
,
A3k+2

B3k+2
, · · ·

For all tails of ξ starting with 2q0 we have

ρs(k+1) = b
√
lc+

√
l, s = 1, 2, . . . .

If we apply the formula (33) for j = sk + s− 1, s = 1, 2 . . . we obtain

ξ =
√
l =

Aj−1 +Aj(b
√
lc+

√
l)

Bj−1 +Bj(b
√
lc+

√
l)
, j = sk + s− 1, s = 1, 2 . . .
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If we multiply this equation with the denominator we obtain after some rear-
rangement

(39)
√
l{Bj−1+Bjq0−Aj} = {Aj−1+Ajq0−lBj}, j = sk+s−1, s = 1, 2 . . .

Since the numbers enclosed in { } are integers, both sides of this equation
must be zero. Hence, Aj−1 = lBj −Ajq0, Bj−1 = Aj −Bjq0. Now, we use the
former result (26) related to the Euler-Wallis formula and obtain
(40)
(−1)j+1 = AjBj−1 −BjAj−1 = Aj(Aj −Bjq0)−Bj(lBj −Ajq0) = A2

j − lB2
j .

Since j is subjected to (39) we obtain finally the following theorem.

Theorem 21. Let Pell’s equation (36) be given and let
√
l have the continued

fraction given in (38). (a) Let k be even. Then (x, y) := (Bj , Aj) solves
y2 − lx2 = −1 for j = sk + s − 1, s = 1, 3, 5, . . . and it solves y2 − lx2 = 1 for
j = sk + s − 1, s = 2, 4, 6, . . . (b) Let k be odd. Then y2 − lx2 = −1 has no
solution and (Bj , Aj) solves y2 − lx2 = 1 for j = sk + s− 1, s = 1, 2, 3, . . .

Proof: Subject to j = sk+s−1, s = 1, 2 . . . one has to distinguish between
even and odd j in equation (40). If k is odd, then all possible j are odd and
(−1)j+1 = 1. ¤

Example 22. 1. Let l := 2 in Pell’s equation. According to Example 17 we
have √

2 = q0 +
1

2q0+

1

2q0+
· · · , q0 = 1.

Thus, the relevant k = 0 is even and according to (a) of Theorem 21 (x, y) :=
(B2j , A2j) solve y2−lx2 = −1 and (B2j+1, A2j+1) solve y2−lx2 = 1, j = 0, 1, . . .
The first subfractions of

√
2 are given in Table 23.

Table 23. Solutions of Pell’s equation y2− 2x2 = −1, marked in boldface and
of y2 − 2x2 = 1

j Aj Bj

0 1 1

1 3 2
2 7 5

3 17 12
4 41 29

5 99 70

j Aj Bj

6 239 169

7 577 408
8 1393 985

9 3 363 2 378
10 8119 5741

11 19 601 13 860
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2. Let l := 11 in Pell’s equation. We find by applying algorithm (31)

√
11 = q0 +

1

q1+

1

2q0+

1

q1+
· · · , q0 = q1 = 3.

Thus, the relevant k = 1 is odd and according to (b) of Theorem 21 (x, y) :=
(B2j+1, A2j+1), j = 0, 1, . . . solve y2 − lx2 = 1 and y2 − lx2 = −1 has no
solution. The first subfractions of

√
11 are given in Table 24.

Table 24. Solutions of Pell’s equation y2 − 11x2 = 1, marked in boldface

j Aj Bj

0 3 1
1 10 3

2 63 19
3 199 60

4 1 257 379

j Aj Bj

5 3970 1197

6 25 077 7 561
7 79201 23880

8 500 283 150 841
9 1580050 476403

Both types (36), (a) and (b) of Pell’s equation can be solved by means of
continued fractions only if the length k + 1 of the period is odd. This happens
for

√
2,
√
5,
√
10,
√
13,
√
17, . . . For the cases

√
3,
√
6,
√
7,
√
8,
√
11,
√
12,
√
14,√

15, . . . we can only solve type (a) of Pell’s equation (36) by means of continued
fractions. Type (b) has no solution. In particular, the starting equation (1)
with l = 2 is included in this list given in Table 23. The algebraic Lemma 8 is
void, if y2−lx2 = −1 has no positive solutions. In this case the algebraic theory
does not furnish solutions for y2 − lx2 = 1, whereas the continued fraction of√
l also finds the solutions in this case.

It should be pointed out, that Henrici [1977, p. 499] only looks for one
solution of y2 − lx2 = 1. The equation y2 − lx2 = −1 is not treated.

§5. A calendarian peculiarity of the number 50

The length of the year is based on the length of the so-called tropical year which
has the length of 365.2422 days. Years which are divisible by 100 are called secu-

lar years. In order to make the years having almost the right length Pope Gregor
XIII introduced in 1582 the new rule (Gregorian calendar) that the leap years
introduced already by Julius Cäsar (46 B.C.) (Julian calendar) were abandoned
in the secular years with the exception of those secular years which are divisible
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by 400. This gives the year an average length of 365.2425 days. In addition, in
order to make up for the errors in the Julian calendar the 10 days from the 5th
to the 14th of October 1582 were skipped when introducing the Gregorian cal-
endar. Many more details can be found in encyclopedias, e. g. in dtv-Lexikon
[1999, vol. 9] or in http://www.salesianer.de/util/kalender.html where
the latter web page also allows calculations.

The above rules make it difficult to find the exact length of a longer period,
whose endpoints are given by calendar dates. For this reason the astronomers
have developed a program where all days of a rather long period are just num-
bered by natural numbers.

In many cases a person who turns 50, observes that the weekday of his/her
50th birthday is the same as the weekday of his/her birth. Thus, we compute
the length of 50 years in days in order to see how probable the above observation
is. If we make only a rough calculation, 50 years consist of 50 · 365 days plus a
number l of leap days in the period from the birth to the 50th birthday.

Definition 25. By the period of one year we understand a time period starting
with any calendar date and ending with the date one day prior to the same
date the next year. Correspondingly, a period of n ∈ N years is defined.

Some examples: If a one year period starts with March 1, then it ends
either with February 28 or February 29 the next year if this day exists. If the
one year period starts with February 29, it ends with February 28 the next
year. If it starts with January 1 it ends with December 31 the same year.

Lemma 26. The number l of leap days in any period of 50 years is l = 11, l =
12, or l = 13.

Proof: There are two cases:

(a) The period of 50 years covers no year divisible by 4 which is not a leap
year,

(b) The period of 50 years covers exactly one year divisible by 4 which is not
a leap year (e. g. 1900).

We partition the period of 50 years into 12 groups of four consecutive years
and in one group of the last two years. In case (a) we have l = 12 or l = 13.
The case l = 13 occurs only if in the group of the last two years there is one
additional leap day. In case (b) there is one leap year less, so we have l = 11
or l = 12. ¤
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From the lemma it follows that the number of days in any period of 50
years varies from 18261 to 18263 and the remainder modulo seven is 5, 6, 0,
respectively. So, in the case of l = 13, the weekdays at the birth and at the
50th birthday are the same. In the case of l = 12 the weekday of the birth is
one day later than the weekday on the 50th birthday.

Example 27. Let us compute the number of leap days of a period of 50 years
which starts at October 22, 1954 and ends at October 21, 2004. According to
the above lemma (and its proof) this period belongs to case (a) since the year
2000 is a leap year. Therefore, the first 48 years cover 12 leap days and in the
period of October 22, 2002 to October 21, 2004 there is one additional leap
day, namely February 29, 2004. Thus, the total number of leap days is l = 13
and October 22, 1954 and October 22, 2004 have the same weekday (Friday).
If we start the 50 year period with February 28, 1954, then the number of leap
days is l = 12, since in the period of the last two years, February 28, 2002 to
February 27, 2004, we miss the leap day in 2004. And the weekday on February
28, 1954 is one day later than that on February 28, 2004 (Saturday).

The remaining question is, what is the probability for the three numbers
11, 12, 13 occurring in Lemma 26. The answer depends on the time period
in which one puts the 50 year periods. For two time periods, we have made a
simple count. If we count over long periods (the 50 year period starts in year
1 to year 10000 on January 1) then our count results in the three probabilities
0.180, 0.515, 0.305, for l = 11, l = 12, or l = 13 leap days, respectiveley. This
is also the asymptotic value for longer periods4). For 50 year periods starting
in the 200 years 1910 to 2109 the corresponding probabilities for l = 11 , l =
12 , l = 13 are 0.12, 0.51, 0.37.
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Mitteilungen der Mathematischen Gesellschaft in Hamburg for his TEXnical
support. The author also thanks Professor Ron Guenther, Oregon State Uni-
versity, Corvallis, Oregon, USA, for reading this text resulting in many im-
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4) In all cases we have assumed the validity of the Gregorian calendar. How-
ever, for very long astronomical periods this is still not good enough. The
tropical year and the year set by the Gregorian calendar will differ by one day
in 1/(365.2425−365.2422) = 3333 years. A remedy would be to cancel the leap
days in the years 4916, 8248, etc.
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Addendum

In the beginning of §4 we wrote that the quoted book by Henrici is (appar-
ently) the only one solving Pell’s equation with continued fractions. This is of
course not true. Henrici himself mentioned two sources: Hardy & Wright
[3rd ed. 1954] and Davenport [1st ed. 1952]. The book by Davenport is in
print now for over 50 years. It exists in its 7th edition, 1999, and it provides
numerical examples to almost all topics treated. It also contains a very readable
overview on Pell’ equation and even contains a list of all continued fractions
for
√
l with l ≤ 50. It is not so difficult to recompute these fractions with mat-

lab. However, one will run into difficulties if one uses matlab for larger l, say
l > 100. Problems arise if the length of the period of the continued fraction for√
l is long, say 15 or larger. The longest period for all l ≤ 99 appears for l = 94

where the length of the period is 16. For l = 166 the period has length 22 which
is the longest for all l ≤ 200. Solutions of type (a) of Pell’s equation for l ≤ 102
can be found in Weisstein [1999]. Sources for tables for continued fractions
and for solutions of Pell’s equations are given by Perron [1954, p. 90 & 95].
In Perron [1954, p. 91] one also finds a table with all continued fractions for√
l for 2 ≤ l ≤ 99. In Legendre [1893, p. 430], there is a table for all smallest

solutions of the two equations y2 − lx2 = ±1 for 2 ≤ l ≤ 1003.

Pell’s equation is related to the so-called cattle problem which is described
in a poem by Archimedes (ca. 285 – ca. 212 BC). More information and an
English translation (by Ivor Thomas, Cambridge, MA, 1941) can be found un-
der https://www.cs.drexel.edu/~crorres/Archimedes/Cattle/Statement.html.
More details in the quoted web page. The English version reads:

If thou art diligent and wise, O stranger, compute the number of cattle
of the Sun, who once upon a time grazed on the fields of the Thrinacian isle
of Sicily, divided into four herds of different colours, one milk white, another
a glossy black, a third yellow and the last dappled. In each herd were bulls,
mighty in number according to these proportions: Understand, stranger, that
the white bulls were equal to a half and a third of the black together with the
whole of the yellow, while the black were equal to the fourth part of the dappled
and a fifth, together with, once more, the whole of the yellow. Observe further
that the remaining bulls, the dappled, were equal to a sixth part of the white
and a seventh, together with all of the yellow. These were the proportions of
the cows: The white were precisely equal to the third part and a fourth of the
whole herd of the black; while the black were equal to the fourth part once
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more of the dappled and with it a fifth part, when all, including the bulls, went
to pasture together. Now the dappled in four parts were equal in number to
a fifth part and a sixth of the yellow herd. Finally the yellow were in number
equal to a sixth part and a seventh of the white herd. If thou canst accurately
tell, O stranger, the number of cattle of the Sun, giving separately the number
of well-fed bulls and again the number of females according to each colour, thou
wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou
be numbered among the wise.

But come, understand also all these conditions regarding the cattle of the
Sun. When the white bulls mingled their number with the black, they stood
firm, equal in depth and breadth, and the plains of Thrinacia, stretching far
in all ways, were filled with their multitude. Again, when the yellow and
the dappled bulls were gathered into one herd they stood in such a manner
that their number, beginning from one, grew slowly greater till it completed a
triangular figure, there being no bulls of other colours in their midst nor none
of them lacking. If thou art able, O stranger, to find out all these things and
gather them together in your mind, giving all the relations, thou shalt depart
crowned with glory and knowing that thou hast been adjudged perfect in this
species of wisdom.

In these pages, quoted above, one finds the solution of step 1, the linear
part, very detailed. The total number T of all cattle is T := t · k for any k ∈ N,
where t := 50 389 082. However, the second part lacks some details. It stops
with the mathematical description of the line in the second part starting with
Again, when the yellow and the dappled bulls ... till it completed a triangular
figure,... which is mathematically modelled as

(41) ar2 =
m(m+ 1)

2

where the reported value of 2a is 2a := 4 729 494 · 4 6572. The final problem
is to find r,m which satisfy (41). No indication is given on that web page on
how to do that. However, only school mathematics is necessary, to see that this
equation is equivalent to Pell’s equation of the form

(42) y2 − 2aX2 = 1,

where y := 2m + 1 and X := 2r. Of interest for the solution is eventually
the number k := τ · r2 where τ := 4 456 749 since all wanted eight numbers
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(of white bulls, white cows, etc.) are known multiples of k. From this number
we deduce the total number of cattle as T = t · τ · r2 = t · τ · (X

2 )
2, where X

solves (42).

We will make a short excursion to the question on how to reduce Pell’s
equation with a large L to Pell’s equation with a smaller l. This will always work
if the large L contains a square factor, λ2, λ ∈ N. Hence, assume that L = λ2l
for some λ, l ∈ N, λ, l ≥ 2. In this case we write y2 − LX2 = y2 − λ2lX2 =
y2 − lx2, where x := λX. So we have two problems: The original one:
(i) y2−LX2 = 1, and the new one (ii) y2− lx2 = 1. Both have infinitely many
solutions. If {(X, y)} denotes the set of all solutions of (i), then {(λX, y)} will
be contained in the set of all solutions {(x, y)} of (ii). If, on the other hand,
(x, y) is any solution of (ii) such that x is a multiple of λ, then (X, y) := (x/λ, y)
is a solution of (i). Thus, solving (ii), is sufficient to solve (i). Let us treat a
little example with L := 50 = 52l and l = 2. Solutions (x, y) of y2 − 2x2 = 1
are listed in Table 23. The first solution of (ii) where x is a multiple of λ = 5 is
(x, y) = (70, 99), thus, (X, y) = (14, 99) is a solution of equation (i). The second
such solution of (ii) where x is a multiple of λ = 5 is (x, y) = (13860, 19601)
implying that (X, y) := (x/5, y) = (2772, y) is another solution of (i). Since
this can be done with any l and any λ the following lemma must be true.

Lemma 28. Let l, λ be positive integers, where l is not a square and λ ≥ 2.
Denote by {(xj , yj)}, j = 0, 1, . . . the sequence of all solutions of y2 − lx2 = 1.
Then, there is a first j0 such that xj0 is a multiple of λ and (Xj0 , yj0) solves
y2 − LX2 = 1, where L = λ2l and Xj0 := xj0/λ.

According to the previous investigation applied to the cattle problem, it is
sufficient to solve

(43) y2 − 4 729 494x2 = 1,

where this equation is mentioned by Davenport [1992, p. 107]. Even with a
conventional home computer of nowadays problems of this size can be solved
in a few seconds. The smallest solution of (43) is (x, y) := (5.055...340 · 1040,
1.099...049 · 1044) and the length of the period of the continued fraction of√
4 729 494 is 92. In order to solve the original problem one has to find a

solution (x, y) of (43) such that X := x/4 657 ∈ N. This is also within the
scope of home computers though the computing time for this search may take
several hours. Solution no. 2329 is the smallest solution (x, y) of (43) such that
x is divisible by 4 657. And we find x = 1731 . . . 5860 where x has altogether
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103 270 decimal places and X := x/4657 = 3717 . . . 6980 which has 103 266
decimal places. The resulting k is k = 1540 . . . 4900 with altogether 206 538
decimal places. And the total number T of cattle is T = 7760 . . . 1800 which
has 206 545 decimal places. We recomputed this solution with a bc (basic
computer) program, which is available for free at all unix and linux stations
including macs with operating system OS X.

According to the given web page, the Greek text of Archimedes was edited
for the first time in modern times by Gotthold Ephraim Lessing (1773). It
can be found on the quoted web page. A complete German translation seems
to be lacking. This was confirmed independently by Dr. Helmut Berthold,
Wolfenbüttel, and Dr. Christos Fakas, Hamburg.
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New York, 1975, 306 p.

G. A. Baker, Jr., P. Graves-Morris, Padé Approximants, Vol. I:
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