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Abstract

Recently, Burger and Capasso [M3AS 11 (2001) 1029–1053] derived a cou-
pled system of partial differential equations to describe non–isothermal crys-
tallization of polymers. The system is based on a spatial averaging of the
underlying stochastic birth–and–growth process describing the nucleation and
growth of single crystals. In the present work we reconsider the scaling proper-
ties of the dimensional system as well as some special one–dimensional models.
Moreover, using an appropriate scaling of the original system, we derive a sim-
plified model which only consists of a reaction–diffusion equation with memory
for the underlying temperature, such that the degree of crystallization can be
explicitly given by a time integration of the temperature–dependent growth
and nucleation rate. Numerical simulations indicate that the reduced model
shows at least qualitatively the same behavior like the original model.
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1 Introduction

The control and optimization of polymer crystallization in industrial applications re-
quires an appropriate understanding of the physical–chemical phenomena occurring
during the process. Hence, the mathematical modeling and simulation is an impor-
tant task and there exists a large variety of different approaches in this direction. A
recent overview on such models can be found in [2].

In the present work we are concerned with a pure deterministic model for non–
isothermal polymer crystallization recently proposed by Burger and Capasso in [1].
The model consists of a system of partial differential equations for the crystalline
volume fraction ξ = ξ(x̄, t̄), the mean free surface distributions v = v(x̄, t̄) and
w = w(x̄, t̄) of crystals as well as the underlying temperature field T = T (x̄, t̄).

The model is a mixed parabolic–hyperbolic system, in dimensional form given
by

∂T

∂t̄
= divx̄(D∇x̄T ) +

h

c

∂ξ

∂t̄
(1.1)

∂ξ

∂t̄
= (1− ξ)ā(T ) v̄(1.2)

∂v̄

∂t̄
= divx̄(āw̄) + 2πā(T ) b̄(T )(1.3)

∂w̄

∂t̄
= ∇x̄(āv̄)(1.4)

The system (1.1)–(1.4) is considered on the bounded domain Ω ⊂ R2 and it is closed
by the initial conditions

T (x̄, 0) = T0(x̄)(1.5)

ξ(x̄, 0) = 0(1.6)

v(x̄, 0) = 0(1.7)

w(x̄, 0) = 0(1.8)

as well as the boundary conditions

−D∂T

∂n
= γ0(T − Tout)(1.9)

v̄ = −w̄T · n(1.10)

on the boundary ∂Ω.
The parameters D, h, c and γ0 denote the diffusion coefficient, the latent heat,

the heat capacity and the heat transfer coefficient at the boundary, respectively.
The temperature–dependent functions ā and b̄ are the growth and birth rates of
a single crystal, respectively, and Tout is the cooling temperature at the boundary,
which can be used to control the crystallization process.

Let us shortly explain the main steps to derive Eqns. (1.1)–(1.10), a detailed
description can be found in [1]. The underlying model is a stochastic process for
the crystallization of polymers, where crystals are generated according to a certain
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density in space and time and afterward grow with a specific growth rate. Applying
a spatial averaging of the stochastic model on a mesoscopic scale lying between
a typical size of the crystals and a typical scale for the heat transfer, one finally
ends up with the deterministic system given above. The scaling property in space
is obtained assuming certain relations between the nucleation rate of crystals and
the diffusion of temperature. The Robin–type boundary condition (1.9) for the
temperature field describes the cooling with an external temperature and Eq. (1.10)
models the assumption that no nucleation of crystals occurs at the boundary.

In the present work we discuss the scaling properties of the deterministic model
and give a corrected solution for a simplified one–dimensional model considered in
[1]: assuming a constant (temperature–independent) growth rate one may reformu-
late the model on the fast time scale of the nucleation process as an inhomogeneous
wave equation on a bounded interval, which can be solved analytically using the
method of characteristics. Moreover, we derive a simplified model which yields a
single reaction–diffusion equation for the temperature field, which contains a mem-
ory term, i.e. the time history of the temperature field acts as a source term in
the diffusion equation. The reduced model is valid as long as the time scale for
the nucleation of crystals is (much) smaller than the time scale for the diffusion of
temperature. Numerical simulations show that the simplified model yields at least
qualitatively the same results as the original one given in [1].

The paper is organized as follows: in Section 2 we consider the dimensionless form
of the deterministic model given above based on typical values for the space and time
variables and reference values for the temperature, the mean surface distribution of
crystals as well as the nucleation and growth rates. Based on the derivation of
the model using an averaging procedures on three different space scales one may
introduce different time scales, namely the scale of nucleation of crystals and a scale
for the diffusion of temperature.

Assuming a constant growth rate and considering the fast time scale of nucleation
one may derive an inhomogeneous wave equation, which is straightforward to solve
analytically at least in the spatial one–dimensional case. This is done in Section 3
where we correct the analytic solution given in [1].

Section 4 deals with the derivation of a simplified model equation assuming that
time scale of nucleation of crystals is (much) faster than the time scale for the
diffusion of temperature. The relation between the different time scales is expressed
in terms of a small parameter ε ¿ 1. We give results obtained from a numerical
simulation of the reduced model which qualitatively coincide with the one given in
[1]. Finally we give some conclusions in Section 5.
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2 Scaling Properties

Introducing the scalings t̄ = t0 t, x̄ = x0 x, T = Tmin +∆T θ, ā = a0 a, b̄ = b0 b and
(v̄, w̄) = v0 (v, w) we obtain the following dimensionless form of (1.1)–(1.4)

θ̇ = κ∆θ + Lξ̇(2.1)

ξ̇ = γ (1− ξ) a(θ) v(2.2)

v̇ = λ divx(aw) + δ a(θ) b(θ)(2.3)

ẇ = λ∇x(av)(2.4)

with the dimensionless parameters

κ =
D t0
x2
0

(2.5)

L =
h

c∆T
(2.6)

γ = a0v0t0(2.7)

λ =
a0t0
x0

(2.8)

δ = 2π
a0b0t0
v0

(2.9)

The initial and boundary conditions for the temperature equation read as

θ(x, 0) = θ0(x)

−∂θ

∂n
= β (θ − θout)

where β = γ0x0/D.
Some typical values for the parameters appearing in (2.5)–(2.9) are [1]:

Parameter Symbol Typical Value

Diffusivity D 10−7m2 s−1

Length scale x0 10−2m
Growth rate a0 10−5ms−1

Nucleation density b0 1012m−2

Temperature difference ∆T 150K
Latent heat h/c 50K

Table 1: Typical values for isotactic Polypropylene

Inspecting the reference values given in Table 1 we find that κ/λ = O(1) indi-
cating that diffusion and the growth of a single crystal take place on the same time
scale. Furthermore one has L = O(1).

To obtain a reference value v0 for the surface density v̄, we consider a two–
dimensional sample of length x0, which is fully crystallized with nucleation density
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b0, such that the total number of crystals is given by N = b0 x
2
0. Assuming a

uniform crystallization with average radius r for each crystal, one has πr2N = x2
0,

i.e r = 1/
√
πb0. The total surface of these crystals is given by 2πrN and we choose

as a reference value for the surface density the value

v0 = 2πrN/x2
0 = 2

√

πb0

Inserting the typical values from Table 1 gives v0 = 2
√
π 106m−1.

One should remark that this reference value v0 for the surface density determines
the onset of impingement. As soon as v̄ ≈ v0, crystals start to touch each other and
the quantity v̄ looses its physical interpretation as surface density.

The reasoning given in [1] to obtain a value for v0 by balancing the time derivative
and the source term in (2.3) seems questionable, since then the scale for the surface
density depends on the chosen time scale.

Summarizing the results for the three non–dimensional parameters, we obtain

κ

δ
=

D√
πa0
√
b0x2

0

∼ 10−4√
π

= O(ε)(2.10)

γ

δ
=

a0v
2
0t0

2πa0b0t0
= 2(2.11)

Choosing in (2.1)–(2.4) the time scale of the nucleation process, i.e. δ = 1 or
t0 ∼ 0.05 s we obtain the system

θ̇ = ε∆θ + Lξ̇(2.12)

ξ̇ = γ (1− ξ) a(θ) v(2.13)

v̇ = ε div (a(θ)w) + a(θ) b(θ)(2.14)

ẇ = ε∇(a(θ)v)(2.15)

On the other hand, if we work on the time scale of the diffusion, which means κ =
1, we obtain t0 = 103 s and the system (2.12)–(2.15) can be easily rewritten on this
time scale.

However, in industrial and technological applications one is usually more inter-
ested in the effects related to the nucleation and increase of crystallinity rather than
in the mere diffusion process. Therefore we will focus in our subsequent discussion
on the nucleation time scale.

3 An One–Dimensional Model

Restricting the system (2.12)–(2.15) with its boundary conditions to one spatial
dimension x ∈ [0, 1] and assuming the coefficients a and b to be independent of the
underlying temperature field, Eqn. (2.12) decouples from the other three equations.
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Introducing u = − ln(1− ξ) we obtain the system

ut = γav(3.1)

vt = εawx + s̃(3.2)

wt = εavx(3.3)

u(x, 0) = 0(3.4)

v(x, 0) = 0(3.5)

w(x, 0) = 0(3.6)

v(x, t) = ±w + 2β for x ∈ {0, 1}(3.7)

where β models the influence of boundary nucleation as described in Eqn. (3.60)
of [1]. From (3.1) and (3.3) we obtain ux = γw/ε and finally the following wave
equation with source term for u

utt = ε2 uxx + s

u(0, x) = 0

ut(0, x) = 0

ut − εux = 2β at x = 0

ut + εux = 2β at x = 1

where we have replaced εa by ε̃ and dropped the tilde. Introducing p = ut + εux
and q = ut − εux and setting s = 1 we can diagonalize the system

(3.8)

(

p
q

)

t

=

(

ε 0
0 −ε

)(

p
q

)

x

+

(

1
1

)

The initial and boundary conditions for (3.8) are

p(x, 0) = q(x, 0) = 0

q(0, t) = p(1, t) = 2β

Using the method of characteristics we readily obtain the solution

(3.9) u(x, t) =



































t2

4
+

xt

2ε
− x2

4ε2
+ β

(

t− x

ε

)

for 0 ≤ x < εt

t2

2
for εt ≤ x ≤ 1− εt

t2

4
+

(1− x)t

2ε
− (1− x)2

4ε2
+ β

(

t− 1− x

ε

)

for 1− εt < x ≤ 1

which is valid up to time t = 1/(2ε).
Figure 1 shows the results of the 1–D model with boundary nucleation (left) and

without boundary nucleation (right). Note, that including the boundary nucleation
(here shown for β = 0.2) leads to an unphysical overshoot of the crystallinity close
to the boundary. Therefore it seems reasonable to exclude – at least in the 1–D
model – the influence of boundary nucleation proposed in [1].
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Figure 1: Solution of the 1–D model problem with boundary nucleation β = 0.2
(left) and without boundary nucleation β = 0 (right). In both cases we have chosen
ε = 0.1 and plotted the solution for t = 0.5, 1, 1.5.

4 Temperature Equation with Memory

According to the different time scales discussed in Section 2 we reconsider for ε¿ 1
the initial–boundary value problem

θ̇ = ε∆θ + Lξ̇(4.1)

ξ̇ = γ(1− ξ)av(4.2)

v̇ = ε div (a(θ)w) + a(θ)b(θ)(4.3)

ẇ = ε∇(a(θ)v)(4.4)

with initial conditions

θ(x, 0) = θ0(x)(4.5)

ξ(x, 0) = 0(4.6)

v(x, 0) = 0(4.7)

w(x, 0) = 0(4.8)

and boundary conditions

−∂θ

∂n
= β(θ − θout(x)) (β > 0)(4.9)

v = −wTn(4.10)

for x ∈ ∂Ω.
Introducing the function u(x, t) = − ln(1 − ξ(x, t)) the first two equations of the
system above may be written in the form

θ̇ = ε∆θ + γLe−ua(θ)v(4.11)

u̇ = γa(θ)v(4.12)
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Eq. (4.12) yields together u(x, 0) = 0 (cf. Eq. (4.6)) the expression

(4.13) u(x, t) = γ

t
∫

0

a(θ(x, t))v(x, t) ds

such that x simply acts as a parameter in (4.13).
If we define

Φ(x, t) = (v(x, t), w1(x, t), w2(x, t))
T

we may formulate (4.3) and (4.4) as a quasilinear first order system given by

(4.14) Φ̇ +
∑

i=1,2

Ai(θ; ε)Φxi
= B(Φ, θ,∇θ; ε)

with

A1 = −ε





0 a(θ) 0
a(θ) 0 0
0 0 0





A2 = −ε





0 0 a(θ)
0 0 0

a(θ) 0 0





and
B = (a(θ)b(θ) + εa′(θ)∇θ · w, εa′(θ)v∇θ)T

The system (4.14) is hyperbolic in time (strictly, as long as a(θ) 6= 0) and may be
solved using the method of characteristics.

Assuming a′(θ) = O(1) and ∇θ = O(1) we obtain for t = O(1) the relations

v(x, t) =

t
∫

0

a(θ)b(θ) ds+O(ε2)(4.15)

w(x, t) = O(ε)

Substituting (4.15) into (4.11) and (4.13) yields (up to higher order terms in ε) the
following temperature equation with memory

(4.16) θ̇ = ε∆θ + γLe−ua(θ)

t
∫

0

a(θ)b(θ) ds

where u = u(x, t) is now defined by

(4.17) u(x, t) = γ

t
∫

0

a(θ)





s
∫

0

a(θ)b(θ) dτ



 ds
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Hence, for ε ¿ 1, the initial–boundary value problem given by the system (4.1)–
(4.10) may be substituted by the single reaction–diffusion equation (4.16) with mem-
ory together with (4.17) and initial and boundary conditions (4.5) and (4.9), respec-
tively.

For the crystalline volume fraction ξ = ξ(x, t) one has – again up to higher order
terms in ε – the formula

ξ(x, t) = 1− exp



−γ
t
∫

0

a(θ)





s
∫

0

a(θ)b(θ) dτ



 ds





In the following we present some numerical results obtained from a finite–difference
approximation of (4.16) with (4.17), (4.5) and (4.9). As numerical scheme we use a
first order explicit time integration together with a standard 5–point stencil for the
Laplace operator. The boundary values at the time level n+ 1 are computed using
a first order difference approximation of the normal derivative at the boundary. To
ensure stability of the scheme and non–oscillating modes in the numerical approxi-
mates we should satisfy the condition ε2k/h2 < 1/8, where k and h denote the step
size in time and space, respectively. Because we apply a first order time integration
the time step is chosen much smaller than given by the condition above in order
to obtain a sufficiently accurate integration of the source term in the temperature
equation.

For the growth and nucleation rates we use

a(θ) = b(θ) = e−κ(θ−θref)

which describes the temperature dependence of the growth and nucleation rate ob-
served in experiments at least qualitatively, see [3].

We perform two different simulations on the rectangle [0, 1] × [0, 2]: in the first
one we use the constant cooling temperature θout = 0, in the second one the cooling
temperature is θout = 0 on the left and upper as well as θout = 1 on the right and
lower boundary of the rectangle. The initial temperature is homogeneous on the
rectangle, i.e. θ(x, 0) = 2, and we use the parameters L = 1/3, β = 10, κ = 3
and θref = 1/2. The step size in space is given by h = 1/40, the time step equal to
k = 0.16 and, finally, ε = 10−4.

Figures 2 and 3 show the temperature and crystalline volume fraction for the
two different profiles of the cooling temperature mentioned above. In both cases
one observes a sharp front in the crystalline volume fraction moving in time from
the boundary into the interior domain. Like in [1] we do not observe such a moving
front in the temperature fields, which indicates that the cooling at the boundary
dominates the effect of latent heat during the crystallization process and confirms
the validity of our asymptotic induced model reduction. We even observe that the
temperature is not monotonically decreasing although our results do not show a
significant temperature overshoot close to the boundary like given in Fig. 5 of [1].

The influence of a non–uniform cooling temperature along the boundary is clearly
indicated comparing the results shown in Fig. 2 and 3. Whereas the results in Fig. 2
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Figure 2: Temperature (up) and crystalline volume fraction (down) for t = 400, 800.

seem to be completely symmetric with respect to the line y = 1, the non–uniform
cooling temperature yields a shift of the higher crystalline volume fraction toward
the lower cooling temperature at two boundary segments.

In summary one can conclude that our reduced model equation yields qualita-
tively the same results like the full deterministic model proposed by Burger and
Capasso.

5 Conclusion

In the previous sections we discussed a deterministic model to describe the crystal-
lization process of polymers. Referring to a recent work of Burger and Capasso we
reconsidered the scaling properties of the model and gave a corrected solution for
the one–dimensional version assuming that the growth and nucleation rate of crys-
tals is independent of the temperature. In particular we showed that the boundary
nucleation proposed by Burger and Capassso yields an unphysical overshoot of the
crystalline volume fraction close to the boundary.

Our main result is the reduction of the original model to a single reaction–
diffusion equation with memory for the underlying temperature field. In the re-
duced model the crystalline volume fraction is obtained by integrating growth and
nucleation rate over the temperature history. Our numerical results showed that

10



0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

 0

 0.5

 1

 1.5

 2

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

 0

 0.5

 1

 1.5

 2

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

 0

 0.5

 1

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

 0

 0.5

 1

Figure 3: Temperature (up) and crystalline volume fraction (down) for t = 400, 800.

the reduced model shows at least qualitatively the same behavior like the original
model.

A major goal in the mathematical modeling of polymer crystallization is the
computation of an optimal control, in our case the cooling temperature along the
boundary of the spatial domain, such that the crystallization is as uniform as pos-
sible. Here one may use our simplified model which may reduce the theoretical as
well as numerical work when applying optimization strategies for partial differential
equations. Results on the optimal control problem are currently under investigation.

A problem from a mathematical point of view, which we did not discuss in the
present work, is to obtain an existence and uniqueness result for the reduced model
formulated in (4.16) and (4.17).
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