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The conjugate gradient algorithm applied
to quaternion-valued matrices

Gerhard Opfer, Hamburg

Abstract. The well known conjugate gradient algorithm
(cg-algorithm), introduced by Hestenes & Stiefel, [1952]
intended for real, symmetric, positive definite matrices works
as well for complex matrices and has the same typical conver-
gence behavior. It will also work, not generally, but in many
cases for hermitean, but not necessarily positive definite ma-
trices. We shall show, that the same behavior is still valid if
we apply the cg-algorithm to matrices with quaternion entries.
We particularly investigate the early stop of the cg-algorithm
in this case and we develop error estimates. We have to present
some basic facts about quaternions and about matrices with
quaternion entries, in particular, about eigenvalues of such ma-
trices. We also present some numerical examples of quaternion
systems solved by the cg-algorithm.

Keywords. Quaternion-valued matrices, conjugate gradient
algorithm, cg-algorithm, linear systems of equation with
quaternion coefficients.
2000 MSC. 15A33, 65F10, 65F25.

1. Introduction

Let A be an ordinary square matrix and b,x ordinary vectors where the
lengths of b,x are supposed to be the same as the order of the matrix A,
and where all entries of A, b, x may be complex. By B∗, applied to an
arbitrary complex matrix B we understand the transpose of the complex
conjugate (applied elementwise) of the matrix B. The transpose of a matrix
B will be denoted by BT. A matrix B will be called hermitean if B = B∗.
Necessarily, a hermitean matrix is a square matrix. If a hermitean matrix
B has the property that x∗Ax > 0 for all x ∈ C

n\{0}, then, B will be
called positive definite. If it has the property that x∗Ax ≥ 0 for all x ∈ C

n,
then, B will be called positive semi definite. The notations �,� will be
used for real, imaginary part , respectively, of what follows. If f is any real
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valued function (on an arbitrary non empty domain D) then, f(x) = min
is an abbreviation for the problem of finding all (global) minima of f on D.
One of the essential features of the classical conjugate gradient method is
contained in the following theorem.

Theorem 1. For A ∈ C
n×n,b,x ∈ C

n where n ∈ N let

f(x) : =
1
2
x∗Ax −�(b∗x),(1)

g(x) : = Ax − b.(2)

Assume that A is hermitean and positive definite. Then, each of the two
problems

(3) (a) : f(x) = min, (b) : g(x) = 0

has a unique solution and these solutions coincide.

Proof: Problem (a) has a unique solution because of the strict convexity
of f . Problem (b) has a unique solution since A is not singular. By simple
computation for arbitrary h,x ∈ C

n we have

(4) f(x + h) = f(x) + f(h) + �(h∗Ax).

(i) Let g(x̂) = 0. Then f(x̂ + h) = f(x̂) + 1
2h

∗Ah or f(x̂) = f(x̂ + h) −
1
2h

∗Ah < f(x̂+h) for all h �= 0. Thus, x̂ is the unique minimizer of f and x̂
solves problem (a). (ii) Let x̂ be a minimizer of f . Then, f(x̂) ≤ f(x̂+h) =
f(x̂)+f(h)+�(h∗Ax̂) for all h and therefore f(h)+�(h∗Ax̂) = 1

2h
∗Ah−

�(b∗h)+�(h∗Ax̂) = �(h∗g(x̂))+ 1
2h

∗Ah ≥ 0. Let y := g(x̂) �= 0 and put

h := − y∗y

y∗Ay
y. Then �(h∗g(x̂))+ 1

2h
∗Ah = − 1

2

(y∗y)2

y∗Ay
< 0, a contradiction.

Thus, g(x̂) = 0 and x̂ solves problem (b). �
The idea introduced by Hestenes & Stiefel, [1952] was, to solve (a) of
(3) instead (b) by solving minα∈R f(x + αd) repeatedly for varying and
cleverly chosen directions d. Since this story is well known, we present the
final algorithm in the classical form. We start with a vector xj , its residual
rj , a direction dj and show how to compute the next vector xj+1, the next
residual rj+1, and the next direction dj+1, j = 0, 1, . . .
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Program 2. cg-Algorithm: given A,b,x0

initial step===================
d0 = b − Ax0;1

r0 = d0;2

r0 = r∗0r0; j = 0;3

loop starts: while rj �= 0 do=========
Ad = Adj ;4

αj = rj/(d∗
jAd);5

xj+1 = xj + αjdj ;6

rj+1 = rj − αjAd;7

rj+1 = r∗j+1rj+1;8

βj = rj+1/rj ;9

dj+1 = rj+1 + βjdj ; j = j + 1;10

loop ends====================

The well known stopping behavior is given in the next theorem.

Theorem 3. Let A ∈ C
n×n be hermitean and positive definite. (a) The

above algorithm stops (at the latest) after n steps with the joint solution of
the problems mentioned in (3). (b) It already stops after (at most) m ≤ n
steps with the solution if m is the number of different eigenvalues of A.

Proof: Kelley, [1995, p. 14–15]. �
We want to show, that Theorem 1 and Theorem 3 remain true if the com-
plex entries of the above A,b are replaced with quaternions. We should also
mention that part (b) of Theorem 3 does not originate from the Hestenes

& Stiefel paper. It was first observed by Reid, [1971]. It seems appro-
priate and necessary to repeat some essential features of quaternions.

2. Excursion to quaternions

In the beginning of this section we repeat some elementary properties of
quaternions. In the end we will mention some papers important in the
development of quaternions. Let H := R

4 be equipped with the ordi-
nary vector space structure and with an additional multiplicative structure

3



H×H → H which most easily can be defined by a multiplication table (see
Table 4) for the four basis elements

(5) h := (1, 0, 0, 0), i := (0, 1, 0, 0), j := (0, 0, 1, 0), k := (0, 0, 0, 1).

Table 4. Multiplication
table for quaternions

· h i j k
h h i j k
i i −h k −j
j j −k −h i
k k j −i −h

The letter H is chosen in honor of Hamilton1),
who invented quaternions on Monday, October
16, 1843, cf. v. d . Waerden, [1973, p. 1]. It
avoids the letter Q which is ordinarily used for
the rationals. An element h = (a, b, c, d) ∈ H

has then, the representation
(6) h := (a, b, c, d) = ah + bi + cj + dk.

Given h according to (6), the element denoted
by h and defined by

(7) h := (a,−b,−c,−d)

will be called the conjugate of h. The real number a will be called the
real part of h and will be denoted by �h. The real number b will be called
the i- or imaginary part and also denoted by �h, the number c will be
called the j-part, the number d will be called the k-part of h. We define
vec(h) := (0, b, c, d) and call it the vector part of h. A quaternion h with
vanishing vector part will be identified with the real number �h and if the
j- and k-part are vanishing, h will be identified with the complex number
�h + i�h. By

(8) |h| :=
√

a2 + b2 + c2 + d2

we define the absolute value of h. With the multiplication as defined by
Table 4 H becomes a non commutative field and it is known, that there is
no multiplication in R

4 which makes R
4 a commutative field obeying the

law of moduli (expression used by Hamilton, according to v. d. Waerden,
[1973]) as expressed in the middle of (9), v. d. Waerden, [1955, p. 205].
It is easily checked that for two quaternions h1, h2 the product h1h2 is

1) Sir (1835) William Rowan Hamilton, 1805–1865, Irish mathematician,
Professor of astronomy in Dublin.
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commutative if one of the factors is real. This will be used frequently
without further mentioning. To compute the product h1h2 of two arbitrary
quaternions h1, h2 16 multiplications and 12 additions of real numbers are
necessary or in short: 28 flops are required. Thus, the computation of a
scalar product of two quaternion-valued vectors with n components requires
32n (real) flops. We have

(9) |h|2 = hh = hh, |h1h2| = |h2h1| = |h1||h2|, h1h2 = h2 h1

where we have applied the identification of hh with the real and non negative
number |h|2. The middle part of (9) makes H a normed vector space over H

where the norm is introduced in (8). The space H
n becomes also a normed

vector space. To see this, let x ∈ H
n with x := (x1, x2, . . . , xn)T and define

(10) ||x|| :=

√√√√ n∑
j=1

|xj |2.

By means of (9) it is easily verified, that H
n becomes a normed space over

H. Now, let B ∈ H
m×n be a matrix with quaternion entries. Then, it is a

representation of a linear mapping only in a restricted sense. The additivity
B(x + y) = Bx + By is still true. But in general B(hx) = hBx is not true
since

(
B(hx)

)
j

=
∑

k bjkhxk �= h
∑

k bjkxk. But it is clear that B(xh) =
(Bx)h. Thus, B represents a linear mapping with respect to multiplication
from the right. With the definition (7) it is clear how to define B∗, namely
by forming the conjugates elementwise and then, transposing the resulting
matrix. In case B = B∗, which can happen only for square matrices, B is
called hermitean. A hermitean matrix is called positive definite if x∗Bx > 0
for all x ∈ H

n\{0}.
Since eigenvalues are involved in Theorem 3 we also introduce eigenvalues
of square matrices B with quaternion entries.

Definition 5. Let B ∈ H
n×n. If there is a vector x ∈ H

n\{0} and a
quaternion λ ∈ H such that

(11) Bx = xλ,

we call λ an eigenvalue of B, and x an eigenvector corresponding to λ.
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Let us point out that in the above definition we have put λ as a right factor
of x. This is in coincidence with the fact that B represents a linear mapping
with respect to multiplication from the right. In the literature, e. g. Zhang,
[1997] one finds the definition of left and right eigenvalues, where the left
eigenvalues play a sort of exotic role. If we multiply the defining equation
(11) from the right by any h ∈ H\{0} and replace x by xhh−1 we obtain
B(xh)h−1h = (xh)(h−1λh). Thus, h−1λh is an eigenvalue corresponding
to xh. Therefore, with λ the whole equivalence class

(12) [λ] :=
{
s : s := h−1λh, h ∈ H\{0}}

consists of eigenvalues. The number of eigenvalues is therefore not finite in
general. However, the number of equivalence classes is at most n. This will
be shown immediately. Two eigenvalues λ1, λ2 will be called equivalent ,
in signs λ1 ∼ λ2, if they are residing in the same equivalence class. Two
eigenvalues λ1, λ2 are equivalent if and only if �λ1 = �λ2 and |λ1| = |λ2|.
Thus, if λ = (a, b, c, d) is an eigenvalue, there is an equivalent eigenvalue
λ̃ ∼ λ with λ̃ = (a,+

√
b2 + c2 + d2, 0, 0). Hence, if λ is not real then, in [λ]

there is exactly one complex eigenvalue with positive imaginary part. In
particular, λ and λ are equivalent. That the number of equivalence classes
is at most n will be shown in the next lemma.
Lemma 6. Let B ∈ H

n×n. Then, the number of equivalence classes of
eigenvalues of B is at most n.
Proof: Let λ1, λ2 be two non equivalent eigenvalues and u1,u2 correspond-
ing eigenvectors. We shall show that u1,u2 are (right) linearly independent.
Assume the contrary. I. e. there are quaternion constants α1 �= 0, α2 �= 0
with u1α1+u2α2 = 0 or equivalently u1 = u2α where α := −α2(α1)−1 �= 0.
Then, by multiplying with B from the left, we obtain Bu1 = Bu2α or
u1λ1 = u2λ2α = u2αλ1 or αλ1 = λ2α. Thus, λ1, λ2 are equivalent, a con-
tradiction. Therefore, the number of equivalence classes is restricted by the
maximal number of right independent vectors of H

n, which is n. �
We should remark that the classical proof employing the characteristic poly-
nomial is not working, since the underlying theory of determinants does not
carry over to quaternion-valued matrices. In addition, polynomials in H[x]
do not have finitely many zeros, as well.
Thus, we can summarize: An arbitrary square matrix B ∈ H

n×n possesses
at most n different eigenvalues with the following properties: The eigenval-
ues are either real or complex. If they are complex, then, the imaginary part
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is positive. There is the following consequence: If a matrix (with quaternion
entries) has only real eigenvalues, then, the number of different eigenvalues
is at most n. Therefore, the following theorem is very useful.

Theorem 7. Let A ∈ H
n×n be hermitean. Then, A has only real eigen-

values and the number of different eigenvalues is at most n. If in addition,
A is positive definite, then, all eigenvalues are positive.

Proof: For x �= 0 let Ax = xλ. Multiplying from the left by x∗ yields
x∗Ax = ||x||2λ. Going to the quaternion conjugate gives ||x||2λ = ||x||2λ
since A = A∗. Therefore, λ is real and in case A is positive definite, λ is
positive. �
Matrices with quaternion entries were investigated by Wolf, [1936], Lee,
[1949], Brenner, [1951], Wiegmann, [1955]. In particular, various canon-
ical forms known for real or complex matrices were also discovered for ma-
trices with quaternion entries. In a newer paper, Zhang, [1997] gave a
summary on those and newer results. In a recent paper Zhang & Wei,
[2001] discussed the Jordan canonical form for quaternion matrices again
and pointed out an error in Wiegmann’s proof. The only paper related to
numerical linear algebra is (apparently) due to Bunse-Gerstner, Byers,

& Mehrmann, [1989]. They treat the qr-algorithm, present programs, but
no examples. It is easy to see that also in the case of quaternion entries
similar matrices have the same set of eigenvalues and upper triangular ma-
trices have eigenvalues which can be read from the diagonal. This will be
used in the sequel. In particular, the existence of the Schur canonical form
allows us to write the eigenvalues of an arbitrary matrix in H

n×n in the
form λ1, λ2, . . . , λn where λj ∈ R or λj ∈ C with �λj > 0, j = 1, 2, . . . , n.
Quaternions with zero real part play an important role in the description
of the movement of rigid bodies in R

3, see Kuipers, [1999]. Applications
also to other fields of physics can be found in Freguglia & Turchetti

[2002] and in Dongarra, Gabriel, Koelling, & Wilkinson, [1984].

3. The conjugate gradient algorithm for quaternion-valued ma-
trices

First we observe without difficulties that Theorem 1 remains true, if A,b
have quaternion entries and if A is hermitean and positive definite. The
definition of f in (1) yields again a strictly convex function since in the
proof only multiplications with real numbers are involved. It is known,
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that also in the quaternion case a hermitean, positive definite matrix is
non singular (Zhang, [1997]), so the function g defined in (2) has a unique
zero. The remaining part of the given proof can be repeated directly for
the quaternion case, since all occurring scalar multiplications again involve
only real numbers. We introduce a scalar product in H

n which is of the
form
(13)

< x,y >:=
n∑

j=1

yjxj , x := (x1, x2, . . . , xn)T, y := (y1, y2, . . . , yn)T ∈ H
n.

It has the following properties:

< x1 + x2,y > =< x1,y > + < x2,y >, x1,x2,y ∈ H
n,(14a)

< xλ,y > =< x,y > λ, λ ∈ H, x,y ∈ H
n,(14b)

< y,x > = < x,y >, x,y ∈ H
n,(14c)

< x,x > =: ||x||2 > 0 for all x ∈ H
n\{0}.(14d)

These rules imply < x,yλ >= λ < x,y >. They also imply additivity in
the second component, i. e. < x,y1 + y2 >=< x,y1 > + < x,y2 >. In
matrix terms the above scalar product can be written as

< x,y >= y∗x ⇒ ||x||2 =< x,x >= x∗x.

Let B be a hermitean, positive definite matrix. Then, we can also introduce

(15) < x,y >B:= y∗Bx ⇒ ||x||2B :=< x,x >B= x∗Bx.

This product < x,y >B obeys the same rules (14a)–(14d) as the above
introduced scalar product < x,y >. Conversely, any form H

n × H
n → H

which obeys the rules (14a)–(14d) is a scalar product of type (15). See,
Horn & Johnson, [1992, p. 410] for the analog complex case. It should
be noticed, that in (15) in general ||x||B �= ||x||B. However, that is not
due to the quaternion character of the vector- and matrix entries. This will
already happen for complex entries.

Example 8. Define

B :=
(

39 12 + 16i
12 − 16i 95

)
, z :=

(
3 − i
5 + 7i

)
.
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Then, ||z||2B = z∗Bz = 6780 and ||z||2B = zTBz = 8444.

Now it is clear, that two non zero quaternion-valued vectors x,y are called
conjugate (with respect to B) if < x,y >B= 0. Because of (14c) two
conjugate vectors x,y also obey < y,x >B= 0. So the definition is sym-
metric. Since the derivation of the conjugate gradient method is based on
the consecutive minimization of the real function ϕ : R → R defined by
ϕ(α) := f(x + αd) the non commutativity of H is at no place crucial.

Theorem 9. Let A ∈ H
n×n,b ∈ H

n be given and let A be hermitean and
positive definite. Then, the given cg-algorithm (Program 2) is still applica-
ble and it will stop with the solution after (at most) n steps independent
of the initial choice x0.

Proof: After n steps the constructed directions d1,d2, . . . ,dn span H
n

since they are mutually conjugate (to be shown with standard techniques)
and we shall therefore arrive at the solution after n steps. The essential
point is that the non commutativity of H is at no point crucial, since all
scalar multiplications in the algorithm are by real numbers which commute
with quaternions. �
It is nevertheless not straightforward to apply Program 2 to quaternion-
valued matrices, since almost all given operations are not generally found in
programming languages. The following detailed example shows in addition
to the final result the intermediate results and can be used for comparisons.
Examples with higher numbers of variables will be presented in the end of
this paper in order to show the speed of the descent of the residual vectors
measured in the Euclidean norm.

Example 10. Let A = (ajk), j, k = 1, 2, 3, 4 as follows:

A :=

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 a14 a22 a23 a24 a33 a34 a44

128 −20 −44 −17 140 −8 7 128 81 112
0 −15 −48 −58 0 −8 −12 0 31 0
0 10 26 −3 0 −22 −25 0 19 0
0 −4 −8 −20 0 1 22 0 27 0

⎞
⎟⎟⎟⎟⎠ .

For the six missing elements akj we have akj = ajk, 1 ≤ j < k ≤ 4.
The matrix is positive definite and it has four different positive eigen-
values: 11.1266, 68.5920, 147.0928, 281.1886. The right hand side b =
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(b1, b2, b3, b4)T is chosen in such a way that all four components of the solu-
tion are identical to (2, 3, 4, 5). Explicitly, b1 = (485, 192, 763,−412), b2 =
(346,−46, 468, 800), b3 = (−177, 584, 325, 1156), b4 = (358, 788, 468, 986).
The start vector is x0 := (h,h,h,h)T, where h is defined in (5).

Step 1: α = 3.9324 · 10−3, β = 6.5864 · 10−2, ||r|| = 5.9856 · 102,

x =

⎛
⎜⎜⎜⎜⎝

x1 x2 x3 x4

2.7224 1.8927 −0.31343 1.6882
1.2308 −0.16123 1.9544 2.9454
2.8707 2.0645 1.2190 1.8050

−1.4943 3.0398 4.4122 3.9914

⎞
⎟⎟⎟⎟⎠ ,

d =

⎛
⎜⎜⎜⎜⎝

d1 d2 d3 d4

−124.44 89.181 86.252 68.912
111.92 204.74 −129.22 172.27
148.55 153.32 169.86 7.8767
350.39 214.51 45.091 −10.478

⎞
⎟⎟⎟⎟⎠ .

Step 2: α = 1.0326 · 10−2, β = 1.5312 · 10−1, ||r|| = 2.3422 · 102,

x =

⎛
⎜⎜⎜⎜⎝

x1 x2 x3 x4

1.4374 2.8136 0.57726 2.3998
2.3866 1.9530 0.62006 4.7243
4.4047 3.6478 2.9731 1.8863
2.1240 5.2549 4.8778 3.8832

⎞
⎟⎟⎟⎟⎠ ,

d =

⎛
⎜⎜⎜⎜⎝

d1 d2 d3 d4

41.777 −101.34 48.474 43.484
15.588 31.125 5.2703 45.196

−9.0829 −1.3378 90.199 49.794
147.70 −82.911 57.618 39.562

⎞
⎟⎟⎟⎟⎠ .

Step 3: α = 9.2111 · 10−3, β = 4.5285 · 10−2, ||r|| = 4.9842 · 10,

x =

⎛
⎜⎜⎜⎜⎝

x1 x2 x3 x4

1.8222 1.8801 1.0238 2.8003
2.5301 2.2397 0.66861 5.1406
4.3210 3.6355 3.8039 2.3450
3.4844 4.4912 5.4085 4.2476

⎞
⎟⎟⎟⎟⎠ ,
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d =

⎛
⎜⎜⎜⎜⎝

d1 d2 d3 d4

2.0996 1.4156 11.527 −9.4496
5.5477 8.9768 27.527 −25.275

−3.7904 4.3037 2.3148 19.541
17.894 6.0072 −4.8235 8.8837

⎞
⎟⎟⎟⎟⎠ .

Step 4: α = 8.4694 · 10−2, β = 1.0557 · 10−26, ||r|| = 5.1211 · 10−12,

x =

⎛
⎜⎜⎜⎜⎝

x1 x2 x3 x4

2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

⎞
⎟⎟⎟⎟⎠ ,

d =

⎛
⎜⎜⎜⎜⎝

d1 d2 d3 d4

−1.7666 · 10−12 7.3541 · 10−13 −3.0198 · 10−14 −2.7534 · 10−13

1.1680 · 10−12 −3.3751 · 10−13 −1.9824 · 10−12 −1.5312 · 10−12

−8.6109 · 10−13 1.2967 · 10−13 2.1736 · 10−12 2.2702 · 10−12

−1.3003 · 10−12 −1.2292 · 10−12 5.2669 · 10−13 −7.8693 · 10−13

⎞
⎟⎟⎟⎟⎠ .

4. The early stopping of the cg-algorithm

The only remaining part is (b) of Theorem 3, asserting an earlier stop in case
the number m of different eigenvalues is less than n. In the classical case
the cg-algorithm is identified as a polynomial based iteration (Fischer,
[1996, p. 161]) and the conclusion is drawn from a minimal property of
the polynomials considered. As we have already seen, matrices may have
infinitely many eigenvalues. However, hermitean matrices which are the
only type of matrix we are considering have n real eigenvalues. Let us
shortly consider polynomials. Take as an example

(16) p(x) := x2 + h, x ∈ H and h is defined in (5).

As we easily see from the multiplication table, Table 4 there are at least
the six zeros ±i,±j,±k. But the general situation is worse. Let

(17) p(x) :=
n∑

j=0

ajx
j , aj ∈ R, x ∈ H
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be a polynomial with real coefficients defined for quaternions x. Then, for
an arbitrary h ∈ H\{0} we have

p(h−1xh) =
n∑

j=0

aj(h−1xh)j =
n∑

j=0

aj (h−1xh)(h−1xh) · · · (h−1xh)︸ ︷︷ ︸
j times

=
n∑

j=0

ajh
−1xjh = h−1p(x)h

since aj and h−1 commute because all aj are real. Thus, if x is a zero of
p defined in (17), then, the whole equivalence class [x] (defined in (12))
consists of zeros. The only case where [x] consists only of the element x
alone is where x is real.
In order to determine the early stopping rule, we have to introduce some
more notation. Let us assume that the given cg-algorithm, Program 2
produces vectors xj , rj ,dj , and real numbers αj , βj , j = 0, 1, . . .
We define the spaces (where all spans 〈· · ·〉 are real spans)

Dj+1 := 〈d0,d1, . . . ,dj〉,
Rj+1 := 〈r0, r1, . . . , rj〉,

and for an arbitrary matrix B ∈ H
n×n, and an arbitrary vector h ∈ H

n the
so called Krylov space

K(B,h, j + 1) := 〈h,Bh, . . . ,Bjh〉.

Because of lines 10 and 2 of Program 2 we have

(18) Dj+1 = Rj+1, j = 0, 1, . . . , n − 1.

By an inductive argument, using line 7 of Program 2 and (18) one can show,
that

(19) Rj+1 = K(A,d0, j + 1).

This is particularly important. It says, that the stopping of the cg-algorithm
with rm = 0 will happen if dimK(A,d0, j + 1) = m for all j ≥ m. Let
x̂ be the solution of Ax = b. We define ej = x̂ − xj , the error of the
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j-th approximation. Then, from line 6 of Program 2 we obtain x̂− xj+1 =
x̂ − xj − αjdj or

ej+1 = ej − αjdj = e0 −
j∑

k=0

αkdk

or using (18) and (19)

ej+1 − e0 ∈ Dj+1 = K(A,d0, j + 1).

Since d0 = r0 = b − Ax0 = Ae0 we have

(20) ej+1 − e0 ∈ 〈Ae0,A2e0, . . . ,Aj+1e0〉.

We introduce the following notation:

(21) Πj := {p ∈ Πj : p(0) = 1, p has real coefficients}, j = 0, 1, . . .

In other words, Πj is the set of all polynomials of degree at most j with
real coefficients and with constant term one. With this notation relation
(20) means, that there is a certain matrix polynomial p such that

(22) ej = p(A)e0, p ∈ Πj , j = 0, 1, . . .

If we multiply this equation from the left by A and use that the coefficients
of p are real we obtain the almost identical equation

(23) rj = p(A)r0, p ∈ Πj , j = 0, 1, . . .

For our theoretical purposes, we can slightly reformulate the function f
to be minimized (introduced in (1)) by introducing the (unknown) error
e := x̂ − x, where x̂ is the solution of Ax = b. We have

f(x) =
1
2
e∗Ae +

1
2
x̂∗b.

Since 1
2 x̂

∗b is constant, we can as well minimize the function

(24) f̃(x) := e∗Ae = ||e||2A, e := x̂ − x

13



rather than the function f . Since A is positive definite, f̃ is uniquely
minimized by e = 0 and the minimal value is f̃(x̂) = 0. The minimization
of f̃ in step j is in view of (22), (24) equivalent to the problem

(25) min
p∈Πj

||p(A)e0||A, j = 1, 2, . . .

With this interpretation, it is now easy to show that the cg-algorithm will
stop after at most m steps, if the spectrum of A consists of m different
eigenvalues, where 1 ≤ m ≤ n. We have to repeat some information on
normal matrices. A matrix B ∈ H

n×n is defined to be normal if B∗B =
BB∗. Like in the real or complex case B is normal (Zhang, [1997, p. 41])
if and only if it is orthogonally diagonalizable. In this case there is an
orthogonal matrix U ∈ H

n×n in the sense U∗U = UU∗ = I, such that
Δ := U∗BU is a diagonal matrix where the diagonal entries are the complex
eigenvalues of B, all having non negative imaginary parts and the columns
of U are corresponding eigenvectors. In case B is hermitean, the diagonal
elements of Δ are all real.

Theorem 11. Let A ∈ H
n×n be a hermitean and positive definite matrix,

σ(A) its spectrum and m := #σ(A). Then, the given cg-algorithm (Pro-
gram 2) will stop with the solution after (at most) m steps independent of
the initial choice x0.

Proof: The matrix A is normal, thus, possesses an orthogonal matrix U
of eigenvectors. Denote the columns by uk, k = 1, 2, . . . , n. Then, there
is a unique expansion of e0 in the form e0 =

∑n
k=1 ukβk with uniquely

defined quaternions βk. Then, p(A)e0 =
∑n

k=1 p(λk)ukβk where λk is an
eigenvalue corresponding to uk. Let σ(A) = {0 < λ1 < λ2 < · · · < λm}.
Then, the polynomial p defined by p(x) := ((−1m)/c)

∏m
k=1(x − λk) with

c :=
∏m

k=1 λk is in Πm and with this p we have p(A)e0 = 0 and therefore
||p(A)e0||A = 0 and thus, f̃ is minimal. �

5. The cg-algorithm as an iterative process

The cg-algorithm is ordinarily applied to large but sparse matrices. There-
fore, one is not interested in carrying out all iteration steps. One is inter-
ested instead in an estimation of the magnitude of the error or the residual
vector measured in some norm. The principal error estimations can be

14



taken from (22) and (23) by applying || ||A and using the definition (36)
and (44) of Theorem 23 of the Appendix. We obtain

(26) ||ej ||A ≤ ej ||e0||A, ||rj ||A ≤ ej ||r0||A, ej := min
p∈Πj

max
λ∈σ(A)

|p(λ)|,

where Πj is defined in (21). In order to obtain an estimate for ej any
polynomial p ∈ Πj can be used. Let I := [a, b] be a given interval with
0 < a < b. Put p(x) := ((−1)j/cj)

∏j
k=1(x − xk) with Chebyshev knots

xk := 1
2

{
a + b + (b − a) cos

( 2(j−k+1)−1
2j π

)}
, k = 1, 2, . . . , j in [a, b] and

cj :=
∏j

k=1 xk. Then, p ∈ Πj and maxx∈[a,b] |p(x)| = p(a). Now, p(a) =
(x1−a)(x2−a)···(xj−a)

x1x2···xj
=

∏j
k=1

(
1 − a

xk

) ≤ (
1 − a

b

)j . If we put a := λmin :=
minλ∈σ(A) λ and b := λmax := maxλ∈σ(A) λ we obtain

(27) ej ≤ (
1 − d

)j
, d :=

λmin

λmax

which is sufficient to guarantee convergence since 0 < d ≤ 1. However,
this bound is the known bound for the steepest descent method and thus,
not reflecting the true behavior of the cg-algorithm. According to Daniel,
[1971, p. 121] we have

p(a) =
2(1 − d)j

(1 +
√

d)2j + (1 −√
d)2j

< 2
(1 −√

d

1 +
√

d

)j

, d :=
λmin

λmax
.

Therefore, we obtain

(28) ej ≤ p(a) < 2
(1 −√

d

1 +
√

d

)j

, d :=
λmin

λmax
.

We can also obtain estimates for ||e||, ||r|| (rather than for ||e||A, ||r||A)
since there are positive constants μ ≤ M with

(29) μ||x|| ≤ ||x||A ≤ M ||x|| for all x.

If we introduce an eigenvektor x of A into (29) we obtain μ||x|| ≤ √
λ||x|| ≤

M ||x|| and therefore, μ =
√

λmin, M =
√

λmax and from (26) we deduce

(30) ||ej || ≤ ej√
d
||e0||, ||rj || ≤ ej√

d
||r0||, d :=

λmin

λmax
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where an estimation for ej can be taken from (28). The derivations of
this section could also be applied to generalizations of other offsprings of
the cg-algorithm, like the Fletcher-Reeves algorithm [1964]. A Hilbert
space approach can be found in (Luenberger, [1969, Ch. 10.6]) where
non commutativity is however not considered. The setting here would be
as follows. As ground space take any Hilbert space H over the quaternions
H where the scalar product must obey the formal rules given in (14). The
matrix A has to be replaced by a linear, bounded, selfadjoint, positive
definite operator A where linearity means here only A(x + y) = Ax + Ay
and A(xc) = (Ax)c for all x, y ∈ H and for all c ∈ H. But this would lead
to another topic.

6. An alternative approach via double sized complex matrices

There is a well known isomorphism between H and C
2 (v. d. Waerden,

[1960, p. 55]), where the multiplication C
2×C

2 → C
2 is arranged as follows:

Let (αj , βj) ∈ C
2, define the two matrices

(31) Aj :=
(

αj βj

−βj αj

)
, j = 1, 2

and form the product C := A1A2. Then, the two entries of the first row of
C define the product of the two given complex pairs. The correspondence
between H and C

2 is as follows. If h := (a1, a2, a3, a4) ∈ H then, (α, β) :=
(a1 + ia2, a3 + ia4) ∈ C

2 and vice versa. We call a complex (2 × 2) matrix
of the form given in (31) a complex (2 × 2) quaternion matrix . A general
complex (2m×2n) matrix A will be called a complex quaternion matrix if all

(2×2) submatrices
(

a2j−1,2k−1 a2j−1,2k

a2j,2k−1 a2j,2k

)
, j = 1, 2, . . .m, k = 1, 2, . . . , n

are complex (2× 2) quaternion matrices, where ajk are the complex entries
of A. The following theorem is of importance here.

Theorem 12. Let A ∈ H
n×n be arbitrary and Ã ∈ C

2n×2n the corre-
sponding complex quaternion matrix. Then, the 2n eigenvalues of Ã form
n pairs of complex conjugate numbers. In particular, all real eigenvalues
are double. Hence, the number of non equivalent eigenvalues of A is at
most n.

Proof: Lee, [1949]. �
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Let A be an arbitrary matrix with quaternion entries. In order to dis-
tinguish between the four components of a specific entry ajk we use the
notation ajk� where � = 1, 2, 3, 4. Thus,

ajk = ajk1h + ajk2i + ajk3j + ajk4k.

Similarly, the four entries of the components xj of a quaternion-valued
vector x are identified by xj1,xj2,xj3,xj4. Let Ax = b be a linear square
system with quaternion entries, A ∈ H

n×n,x,b ∈ H
n×1. We write the

isomorphic system in complex quaternion matrices as Ãx̃ = b̃ where Ã ∈
C

2n×2n, x̃, b̃ ∈ C
2n×2. Then, x̃, b̃ have the form

(32a) x̃ =: ( ξ η ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 + ix12 x13 + ix14

−x13 + ix14 x11 − ix12

x21 + ix22 x23 + ix24

−x23 + ix24 x21 − ix22
...

...
xn1 + ixn2 xn3 + ixn4

−xn3 + ixn4 xn1 − ixn2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(32b) b̃ =: (β γ ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 + ib12 b13 + ib14

−b13 + ib14 b11 − ib12

b21 + ib22 b23 + ib24

−b23 + ib24 b21 − ib22
...

...
bn1 + ibn2 bn3 + ibn4

−bn3 + ibn4 bn1 − ibn2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We see, that the second columns of x̃ and of b̃ are redundant. We delete
these columns and treat the complex problem

(33) Ãξ = β

with ξ,β defined in (32). In order to obtain the final solution we have to
replace ξ2j with −ξ2j , j = 1, 2, . . . , n where ξ =: (ξ1, ξ2, . . . , ξ2n)T. In terms
of quaternions the final solution x = (x1, x2, . . . , xn)T is

(34) xj = �ξ2j−1h + �ξ2j−1i −�ξ2jj + �ξ2jk, j = 1, 2, . . . , n.
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If we compare the direct method using quaternions with the method de-
scribed here using double sized complex matrices then, the operation count
is the same. The essential work of the algorithm is in line 4. In either
case it is 32n2 (real) flops. Though the algebraic work is the same, the for-
mulation via complex matrices may suffer from severe instabilities. There
is a very simple example in Janovská & Opfer [2004] and also in the
already mentioned paper by Dongarra et alii, [1984] there is a remark
that quaternion algebra should be preferred.

7. The cg-algorithm for hermitean, indefinite matrices

For the real and complex case a thorough investigation of the case men-
tioned in the title was made by Modersitzki, [1995] where even more gen-
eral matrices were considered. One of the main ingredients was a theorem
by Faber & Manteuffel, [1984], which characterizes those matrices for
which the cg-algorithm is possible. One of the results was that the spectrum
of those matrices must be in a segment of C. Since quaternion-valued ma-
trices may have eigenvalues which are quaternions, it is not straightforward
to generalize the theorem by Faber & Manteuffel. The only possibility
for a break down of the cg-algorithm when positive definiteness is missing
is in program line 5 where a division by zero cannot be excluded. However,
if we look at indefinite, hermitean examples, we see the same behavior as in
the real or complex case, namely that the cg-algorithm nevertheless works.
A theoretical investigation of this case would need a thorough check of all
results given and mentioned by Modersitzki. We leave this problem to
another investigation.

8. Numerical Examples

We shall present three examples to show how the cg-algorithm applied to
quaternion-valued matrices behaves. All matrices employed are hermitean,
but not necessarily positive definite. The positive definite matrices A were
constructed according to A = B∗B, the hermitean matrices A were con-
structed according to A = B∗+B. The quaternion-valued matrices B were
filled at all positions with uniformly distributed random integers in [−5, 5].
Thus, the employed matrices A also have integer entries and are therefore,
exact hermitean matrices. For the demonstration we always sketched the
development of the residual and the true error in dependence of the iter-
ation number. In order to know the true error, the right hand side was
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always maneuvered in such a way that the solution was known a priori. In
the first two examples, the matrices are full (200 × 200) quaternion-valued
matrices. In the first case all 200 eigenvalues are positive, where in the
second case the number of negative and positive eigenvalues is about the
same. In the third example, A is a (200 × 200) diagonal matrix with 100
double eigenvalues −9h,−7h,−5h, . . . , 189h where h is defined in (5). An
analog matrix, however with single (real) eigenvalues was used by Paige,

Parlett, & van der Vorst, [1995].
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Figure13. Residuum (solid) and true error (dashed) of cg-algorithm
applied to a (200 × 200) hermitean, positive definite matrix
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Figure14. Residuum (solid) and true error (dashed) of cg-algorithm
applied to a (200 × 200) hermitean, but indefinite matrix
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Figure15. Residuum (solid) and true error (dashed) of cg-algorithm
applied to a (200 × 200) hermitean, but indefinite diagonal matrix with all
eigenvalues double

We see in the indefinite case that the residuum is more likely to oscillate
and that in that case the cg-algorithm needs more steps than in the corre-
sponding definite case. In the last case (Figure 15) we can very well see the
influence of the 5 (double) negative eigenvalues. See the comments in the
real case by Fischer, [1996, pp. 167–170].
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A closer look at Program 2 reveals the following flop counts per iteration:

Line 4. Matrix∗Vector: 32n2,
Line 5. Scalar product, Real division: 32n + 1,
Line 6. Real∗Vector, Vector+Vector: 8n,
Line 7. Real∗Vector, Vector+Vector: 8n,
Line 8. Scalar product: 32n,
Line 9. Real Division: 1,
Line 10. Real∗Vector, Vector+Vector: 8n.

——————————————————-
The sum of it is

(35) cplcg := 32n2 + 88n + 2.

That means, that the creation of the matrix A := B∗B is roughly of the
same magnitude as finding the solution of Ax = b by the cg-algorithm
when magnitude is measured by flop counts.

9. Appendix: The determination of ||p(A)||A
The results of this section have been used to derive error estimates in Sec-
tion 5. Let A be hermitean and positive definite. If B ∈ H

n×n is arbitrary,
then, we can define the operator norm

(36) ||B||A := sup
x�=0

||Bx||A
||x||A ,

also for quaternion-valued matrices with the consequence, that

(37) ||Bx||A ≤ ||B||A||x||A for all x ∈ H
n.

We shall need a lemma which says that under a certain condition even
several matrices can be diagonalized by the same orthogonal matrix.

Lemma 16. Let F be a family of normal matrices of the same order with
quaternion entries. Then, there is a single orthogonal matrix U such that
U∗FU is a diagonal matrix for each F ∈ F if and only if all pairs in F
commute.

Proof: Wiegmann, [1955].
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Another reminder seems to be necessary. An arbitrary matrix B ∈ H
m×n

is said to have rank r if r is the right column rank of B, i. e. the maximum
number of right independent columns.

Lemma 17. Let B ∈ H
n×n. Then, B is non singular, if and only if the

rank of B is n.

Proof: Zhang, [1997, p. 43].

It is possible that a matrix of rank r has a different left column rank. Thus,
it is possible, that an invertible matrix B has a non invertible transpose
BT. A very simple example is (Zhang, [1997, p. 45]),

(38) B :=
(

h i
j k

)
, B−1 =

1
2

(
h −j
−i −k

)
.

The left column rank of this matrix B is only one, thus, BT is not invertible.
We will need the following simple lemma.
Lemma 18. Let A,B ∈ H

n×n be two upper triangular matrices with
quaternion entries. (a) Then, the product C := AB is again an upper
triangular matrix and the diagonal entries cjj of C are cjj = ajjbjj where
ajj , bjj are the corresponding diagonal elements of A,B, respectively. (b)
Let p be any polynomial, possibly with quaternion coefficients. Then, p(A)
is an upper triangular matrix with diagonal entries p(ajj).

Proof: Let us denote the entries of A,B,C by ajk, bjk, cjk, respectively.
By assumption, ajk = bjk = 0 for j > k. Hence, (a) cjj =

∑n
k=1 ajkbkj =

ajjbjj . For j > k we have cjk =
∑n

�=1 aj�b�k =
∑

j≤�≤k aj�b�k = 0.
(b) From (a) we know that A2 is an upper triangular matrix with
diag(A2) = diag(a2

11, a
2
22, . . . , a

2
nn). By induction it follows that Aj is upper

triangular and diag(Aj) = diag(aj
11, a

j
22, . . . , a

j
nn) for all j ≥ 1. Thus, p(A)

is also upper triangular and diag(p(A)) = p(diag(A)) =
diag(p(a11), p(a22), . . . , p(ann)). �

Lemma 19. Let B ∈ H
n×n be an arbitrary matrix with spectrum σ(B).

Let p be an arbitrary polynomial with real coefficients. Then

(39) σ(p(B)) = p(σ(B)) := {p(λ) : λ ∈ σ(B)}.
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Proof: Let λ ∈ σ(B). I. e. there is a vector x �= 0 with Bx = xλ. There-
fore, Bj+1x = BjBx = Bjxλ = xλj+1. Let p(z) :=

∑m
j=0 αjz

j . Then,
p(B)x :=

∑m
j αjBjx =

∑m
j=0 αjxλj = xp(λ), since the αj are real, hence,

p(σ(B)) ⊂ σ(p(B)). We have to show, that p(B) has no other eigenvalues
than those in p(σ(B)). In order to show that, we use that there exists a
Schur canonical form (Zhang, [1997], Wiegmann, [1955]) for B. I. e. there
exists an orthogonal matrix U such that Δ := U∗BU is an upper triangular
matrix where the diagonal elements are either real or complex with positive
imaginary part. If we apply the polynomial p we obtain p(Δ) = p(U∗BU) =∑m

j=0 αj(U∗BU)j =
∑m

j=0 αj U∗BUU∗BU · · ·U∗BU︸ ︷︷ ︸
j times

=
∑m

j=0 αjU∗BjU

= U∗p(B)U since the real coefficients αj commute with quaternions. Thus,
the matrices p(Δ) and p(B) are similar and have therefore the same spec-
trum. According to Lemma 18, part (b) the matrix p(Δ) is upper triangu-
lar with diagonal elements p(δjj) where δjj are the diagonal elements of Δ.
However, according to the theorem of Schur the diagonal elements of Δ are
the eigenvalues of B. �
It should be remarked here, that for the proof any other triangular canonical
form for B like the Jordan canonical would have worked. There exists such
a Jordan canonical form, too (Wiegmann, [1955]1)).

Example 20. Let B ∈ H
2×2 be the matrix defined in (38). Some compu-

tations reveal that (approximately) σ(B) = {−0.3660 + 1.3660i, 1.3660 +

0.3660i}. Let us define p(x) := ix, then, p(B) =
(

i −h
k −j

)
and σ(p(B)) =

{−0.7071+1.2247i, 0.7071+1.2247i}2). Now, it is easy to see, that p(σ(B))
�= σ(p(B)) since p(σ(B)) = iσ(B) = {−1.3660−0.3660i, −0.3660+1.3660i}.
Thus, equation (39) will not be true in general if we permit polynomials p
with non real coefficients.

Lemma 21. Let A,B ∈ H
n×n where A is hermitean and positive def-

inite and B is normal. Let the set of eigenvalues of A be denoted by

1) According to Zhang & Wei, [2001], Wiegmann’s proof is false, however,
the statement remains true.
2) The eigenvalues of B are λ1 = (−a + ib), λ2 = (b + ia) those of iB
are λ̃1 = (−ã + ib̃), λ̃2 = (ã + ib̃) with a = 0.5(

√
3 − 1), b = 0.5(

√
3 + 1),

ã =
√

0.5, b̃ =
√

1.5.
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σ(A) := {λ1, λ2, . . . , λn} and that of B by σ(B) := {μ1, μ2, . . . , μn}. If
A,B commute then

(40) ||B||A = max
μ∈σ(B)

|μ|.

Proof: Since A is also normal there is according to Lemma 16 (applied to
a family consisting of A and B) an orthogonal matrix U such that

(41a) AU = UDA, BU = UDB, where

(41b) DA := diag(λ1, λ2, . . . , λn), DB := diag(μ1, μ2, . . . , μn).

According to the definitions (15), (36) of ||B||A we have

(42) ||B||A := sup
x�=0

||Bx||A
||x||A = max

||x||A=1
||Bx||A = max

x∗Ax=1

√
x∗B∗ABx.

Now, x may be represented by x =
∑

j ujβj , where uj are the columns of
U and βj are uniquely determined quaternions. Multiplying x (from the
left) by A yields Ax =

∑
j Aujβj =

∑
j λjujβj , and multiplication by B

yields Bx =
∑

j Bujβj =
∑

j ujμjβj where (41) was used and the fact that
the λj are real. If we use the orthogonality of U we obtain from (42)

||B||A = max∑
j

λj |βj |2=1

√∑
j

λj |μj |2|βj |2.

Put cj := λj |βj |2, then, all cj ≥ 0 and because of λj �= 0 for all j we have
a 1-1 relation between the cj and the |βj |. Thus, we obtain

||B||A = max
cj≥0,

∑
j

cj=1

√∑
j

cj |μj |2 = max
j

|μj |,

since we are maximizing over all convex combinations of |μ1|2, |μ2|2, . . . ,
|μn|2 and the |μj | are real. �
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We can not do without the commutativity in Lemma 18. This will be shown
by the following example.

Example 22. Define the following two matrices

(43) A :=
(

3 a
a 3

)
, B :=

(
3 a
a −3

)
, a := (1, 1, 1, 1).

Both are hermitean and A is positive definite. They do not commute. We
have σ(A) = {1, 5}, σ(B) = {−√

13,
√

13}. The matrix A has correspond-
ing eigenvectors u1 := (2,−a)T, u2 := (2, a)T, and the matrix B has corre-
sponding eigenvectors v1 := (

√
13 + 3, a)T, v2 :=

(
√

13−3,−a)T. Formula (40) would yield ||B||A =
√

13. However, if we put

x := ((−1,−1,−1, 0.6), (1, 0.6,−0.6,−0.6))T, then,
√

x∗B∗ABx
x∗Ax =

√
154/3

which is larger than
√

13.

Theorem 23. Let A ∈ H
n×n be a hermitean, positive definite matrix,

σ(A) its spectrum and p any polynomial with real coefficients. Then

(44) ||p(A)||A = max
λ∈σ(A)

|p(λ)|,

where the operator norm || ||A is defined in (36).

Proof: Since p(A) is hermitean und thus, normal and since A and p(A)
commute for all polynomials p with real coefficients, we can apply formula
(40) of the above Lemma 21 which yields ||p(A)||A = maxμ∈σ(p(A)) |μ|. A
final application of formula (39) of Lemma 19 to the right hand side yields
the desired result (44). �
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