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Abstract

Recently, Iwata, Kawasaki and Shigesada proposed a dynamical model for the
growth and size distribution of multiple metastatic tumors [J. theor. Biol., 203, 177—
186 (2000)]. The model is based on von Foerster’s equation for the colony size dis-
tribution p(t,z) together with appropriate initial and boundary conditions. The pa-
rameters of the growth and colonization rates are fitted against clinical data obtained
from X-Ray CT images and the model shows a very good agreement with these data.

In the present work we use the method of characteristics to derive solutions for
the colony size distribution p(t,z). We show that the boundary condition can be
transformed into a linear Volterra integral equation of second kind, such that an
existence result follows from the standard theory of integral equations and quasilinear
first order PDE’s. In particular we show that the solutions are in general discontinuous
along a particular characteristic ground curve.

For a simple expression of the tumor growth rate we show how to derive explicit
solutions using the method of characteristics and the resolvent kernel method for
Volterra equations. The asymptotic behaviour of the discontinuity when using Gom-
pertzian’s growth rate is investigated and we propose a modified boundary conditions
which ensures the existence of continuous solutions.

1 Introduction

The mathematical modeling of tumor growth has a long history in life sciences and applied
mathematics. The most simple approach is to describe the growth of a single tumor by
models from population dynamics. If the number of cells in the tumor is small, one may
introduce statistical or stochastic models and more complicated models are necessary to
include metastatic processes.

The present work deals with a mathematical investigation of a model to describe the
growth and size distribution of multiple metastatic tumors recently proposed by Iwata,
Kawasaki and Shigesda in [1]. The model is based on von Foerster’s equation [2, 3], a first
order partial differential equation, which models the dynamic behaviour of the colony size
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distribution p(¢,z) of metastatic tumors with cell number z > 1 at time ¢. The model
is closed by the homogeneous initial condition p(0,z) = 0, which means that initially
no metastatic tumors exists and an integral boundary conditions, which relates the value
p(t, 1) to the values p(t, z) with 1 < z < oo. The parameters of the growth and colonization
rates are fitted against clinical obtained from X-Ray CT images and the authors obtained
representation formulas of solutions of the model using Laplace’s transformation in the
time variable . In particular, when assuming the Gompertzian growth rate, see 2.5 in
Section 2, the solution can be expressed in terms of an infinite series and the solution
shows a good agreement with clinical data.

The aim of the present work is give a global existence result, which is obtained using the
method of characteristic for quasilinear first order PDE’s. The assumptions on the growth
and colonization rates need in the theorem are in particular satisfied by the expressions
used in [1]. Because the boundary condition p(t,1) is not given explicitly in the model,
one should ensure that nevertheless the condition defines the solution at the boundary in
a unique manner. Here, we show that the boundary condition can rewritten as a linear
Volterra equation of second kind, which can be treated by standard methods from linear
integral equations.

The paper is organized as follows. Following reference [1] we formulate in Section
2 the mathematical model proposed by the authors and indicate how explicit solutions
are derived applying Laplace’s transformations. In Section 3 we interpret von Foerster’s
equation as a quasilinear first order PDE and use the method of characteristics to derive
representation formulas for solutions of the model. Using these formulas we show that the
boundary condition given in [1] can be rewritten as a linear Volterra integral equation of
second kind, which has a unique continuous solution under appropriate assumptions on
the integral kernel.

Combining this result with the method of characteristics we formulate an existence
result, which states that in general solutions will be only piecewise continuous with a dis-
continuity along a characteristic curve, which describes the number of cells in the primary
tumor. This is due to some incompatibility of the initial and boundary conditions used in
[1]. We show how explicit solutions are obtained from the method of characteristics and
the kernel resolvent method for the Volterra integral equation. Moreover, we study the
asymptotic behaviour of the discontinuity and propose a modified boundary condition,
which yields a continuous solution. Section 4 contains the conclusions of the paper.

2 The Model of Iwata, Kawasaki and Shigesada

The model proposed by the authors in [1], which will be called for simplicity in the
remainder of the paper the IKS-model, is the following. Let p(t,z) be the colony size
distribution of metastatic tumors with cell number z at time ¢, i.e. p(t,z)dz denotes the
number of metastatic tumors at time ¢ with size in the interval [z, z + dz]. Assuming that
tumors are not eliminated by some therapeutical treatment or natural death and that the
nuclei of the colonization are located far enough from each other, the dynamical behavior
is given by the so—called von Foerster’s equation [2, 3]

op(t,z) 0 B
(2.1) 51 T 5 Wl@)p(t,z)) =0
with initial condition
(2.2) p(0,2) = 0



and boundary condition
(2.3) 9()p(t,1) = [ Bla)ot, o) do + Hlay(0)
1

The functions g(z) and S(z) appearing in (2.1) and (2.3) are the growth and colonization
rates, respectively. Moreover, z,(t) denotes the number of cells in the primary tumor at
time ¢ and is given by the solution of the ordinary differential equation

(2.4 Do~ glay), wp(0) =1

In [1] the authors mainly focus on the so—called Gompertzian growth rate g(z), where

b
(2.5) g(z) =azln (—) ,

x
and a and b denote the constant growth rate and the tumor size at the saturated level,
respectively. Several other expressions can be found in the literature, see, e.g., the refer-
ences given in [1]; two of them are studied in more detail by Iwata et al. The linear growth
rate, i.e.

(2.6) g(z) = ax

which yields an exponential growth of z,(¢) in time, as well as the power-law growth rate
given by

(2.7) g(r) =az'™ for0<y<1
The colonization rate () is given by the expression
(2.8) B(xz) = mx®

where m is the colonization coefficient and « the fractal dimension of blood vessels infil-
trating the tumor, see the literature given in [1].

Using Laplace’s transformation with respect to ¢ in (2.1) together with the initial con-
dition (2.2) the authors obtained the parameter—dependent ordinary differential equation

. 0 .
(2.9) sp(z,8) + 5 -(9()p(z,5)) =0
Substituting the general solution of (2.9) into the boundary condition (2.3), they derived
explicit solutions or infinite series expansion of the solution, depending on the complexity
of the growth rate g(z). E.g., for the linear growth rate defined in (2.6), the explicit
solution given in [1] reads

(2.10) p(t,z) = M y—a=(m/a)—1 (aatm)t

’ a
One should be a bit careful, because the expression given in (2.10) is only valid for points
(t,z) witht > 0 and 1 < z < z,(t). Due to initial condition (2.2), the solution vanishes
for (t,z) with > z,(t), see Section 3.



In particular, solutions of the IKS—model are discontinuous along the curve defined
by zp(t), because the boundary condition given by (2.3) is incompatible with the initial
condition (2.2): in the limit ¢t — 0, Eq. (2.3) reads

g(1)p(1,0) = / B()pl, 0) di + Bz (0))
0

and from (2.2) and z,(0) = 1 we obtain the condition
A1) =0

which obviously yields a contradiction with the prescribed form of S(z) as given by (2.8)
as long as m # 0.

3 The IKS—model revisited
Eq. (2.1), which we rewrite for convenience in the form

Op(t, z) 9p(t, z)

(3.1) —r T9@) =5 — = —4 @)p(z,1),

is a hyperbolic quasilinear equation and the solution theory is based on the method of
characteristics, see [4].
The characteristic system of (2.1) reads

(3-2) &t = g(z), z(s) =m0
P = —g'(x)w, w(s)=wo

where the trajectories given by (3.2) are the so—called characteristic ground curves. A
particular ground curve is defined by (2.4), which describes the number of cells in the
primary tumor and separates the (¢, z)-plane into two different regions, like shown in Fig.
1.

Above the curve defined by z,(t) the solution of (2.1) only depends on the initial
condition prescribed along the points (0,z) with z > 1, below the curve the solution is
generated by the boundary condition given at the points (¢,1) with ¢ > 0. Hence, denoting
the solutions of (3.2) and (3.3) by X s(zo) and W s(zo, wo), respectively, one can derive
the solution p(z,t) in the form

(3.4 plt, ) = Wio(T7 (@), p(0, T, (@)
if z > xp(t) and
(3.5) pt,z) = Wis(1,p(5,1)), s=1T, '(2)
if < ,(t), where the function T; in (3.4) is defined by

Ti(z0) = Xt,0(0)

whereas in (3.5) one has
Ti(s) = Xi,5(1)
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Figure 1: Characteristic curve z,(t) separates the (¢, z)-plane into two regions.

The boundary value p(s,1) in (3.5) is not given explicitly in the IKS-model, but
defined by the boundary condition (2.3). To obtain the boundary value p(7,1) for some
fixed 7 > 0, one has to integrate the expression B(x)p(7, z) along the vertical line starting
from (7,1) up to the point (7,z,(7)), see Fig. 1. Hence, we should investigate in the
following in more detail the integral expression in (2.3).

Let the point (7,X) with 1 < X < z,(7) be fixed. If we assume that there exists a
characteristic ground starting at some 0 < s < 7 at the point g = 1, which is running
through (7, X'), we have from (3.5) the expression

p(T,X) = W‘r,s(la p(s, 1))

Then the integral in (2.3) can be transformed to an integral along the line (s,1) with
0<s<t,ie.

t
(3.6) 0)p(t.1) = [ BTN Wea (1,000 ) | T | s+ a0
0
Integrating (3.3) yields
t
(3.7) Wis(1, p(5,1)) = p(s, 1) exp —/yaﬁu»m

and substituting (3.7) into (3.6) one has

th (S)
ds

t t
(3.8) gﬂwtnz/Mﬂ@hm —/ﬂﬂ@mh‘ o5, 1) ds + Bz ()
0 s




Assuming g(1) # 0, Eq. (3.8) represents a linear Volterra integral equation of second kind,
which we write in the more compact form

t
(3.9) o) — / K(t, s)v(s)ds = f(2)
0

with ¢ =1/¢(1) and

f) = pBlzy(t))

th(S)

t
K(t,s) = B(Ty(s))exp | - / g/ (L7 (=) dr ‘ Tds

S

3.1 An existence result for the IKS—model and explicit solutions

Using the standard theory of linear integral equations, like given in the textbook [5], one
has the following existence result for Eq. (3.9).

Theorem 1 Let A = {(t,s) € [0,00)%: z € [0,00),t € [0,z]} and assume that K : A - R
is a continuous functions, i.e. K € C(A). Then Eq. (3.9) has for all X\ # 0 and every
f €C([0,00)) a unique solution v € C([0,00)).

The theorem above ensures, that the boundary condition (2.3) yields a continuous
function v(t) = p(t, 1) for ¢ € (0, 00), which we need to extend the method of characteristics
to the region below the curve z,(t), as shown in Fig. 1. Using Theorem 1 we can formulate
the following existence result for Eq. (2.1) together with initial and boundary condition
(2.2) and (2.3), respectively.

Theorem 2 Let g € C?([1,00)) be a positive function with g(1) # 0 and B € C([1,00)).
Then, if B(1) = 0, Eq. (2.1) together with the initial and boundary conditions (2.2) and
(2.3), respectively, has a solution u € C([0,00) x [1,00)).

If (1) # 0, the system has a solution, which is piecewise continuous and has a jump
along the curve defined by x,(t) with jump height h(t) given by

t
(3.10) h(t) = B(1)exp | — / §' (zy(r)) dr
0

Proof The assumption g € C? ensures that the characteristic system defined by (3.2)
and (3.3) has global unique solutions in time. Moreover, the trajectory X; ;(zo) as defined
above is continuously differentiable with respect to all arguments ¢, s and xg.

Because g is positive, the trajectories X; ;(zo) are monotonically increasing in ¢ for all
s > 0 and zg > 1, will not interact due to uniqueness and cover the whole region ¢ > 0
and z > 1 of the (¢,z)-plane. Hence the method of characteristics will work globally in
time.

From g¢(1) # 0, we know that the boundary condition (2.3) defines a linear Volterra
integral equation of second kind and because 8 € C([1,o0)) and

8Xt,s (.T())

= 20 € (0, 00)? x [1,0)



Theorem 1 ensures that there exists a function v(t) = p(¢,1) € C([0, 00), which defines the
necessary boundary condition for (2.1).
Finally, due to (2.3) we have

limv(t) = B(1)

t—0

and therefore the solution is continuous along the curve defined by z,(t) as long as §(1) =
0. If 5(1) # 0, Eq. (3.10) directly follows from (3.7), which completes the proof.

It remains to show how to derive explicit solutions using the method of characteris-
tics and analytical techniques for linear Volterra integral equations of second kind. For
simplicity we will restrict ourselves in the following to the case of a linear growth rate
and assume o = 1 in (2.8), i.e. blood vessels are homogeneously distributed in the whole
tumor.

Assuming g(z) = az the characteristic system reads
T = azx, z(s)=mxg
= —aw, w(s)=wo

and therefore

(3.11) X, 4(z0) = zoe™t>)
(3.12) Wis(wo) = woe® (%)
Then .
Tt(s) = Xt,s(]-) = ea(t_s)’ (;(S) = —aea‘(t_s)
s
and with 8(z) = mz, we obtain the integral equation
¢
’U(t) _ m/ea(t—S),U(s) ds = %eat’
0

i.e. the kernel K (¢, s) of the integral equation is given by
(3.13) K(t,s) = ext=9)

From the theory of Volterra equations of second kind it is known that the solution of
(3.9) can be represented in terms of the resolvent kernel method, i.e. one has

t
(3.14) ot) = £+ u [ Rit,sf(s)ds
0
where R(t,s; 1) denotes the resolvent kernel given by
o
(3.15) R(t,s;m) = ) u* KB (t,9)
k=1

and the K*)’s are obtained from the successive approximation method by

KW, s) = K(t,s)
t
K(k+1)(t,s) = /K(t,T)K(k)(T,S)dT

7



Using (3.13) in the successive approximation method one obtains

K®) (¢, 5) = ( (t — )k — 1)e®t=)

1
kE—1)!
and the resolvent kernel in (3.8) is given by

o0

R(t,s;m) = Z mb1

k=1

Gy (9 e o)

From (3.14) we finally get the explicit boundary values p(¢,1) in the form

1
2
(3.16) p(t,1) =v(t) = Mot ¢ T /e(a+m)(t_s)e“5 ds = Zelatm)t
a a a
0

Using (3.5) in combination with (3.12) we get the solution for 1 < z < z,(t) in the
form

(3.17) plt,2) = pls, 1)et)

and using (3.11) yields
(3.18) =t- = In
.
s T

such that from (3.17) with (3.16) and (3.18) one has for 1 < z < z,(t) the solution

pt,z) = %w_Q_m/“e(“er)t

and the complete solution of the IKS-model is

0 D t>0, x> e
1 t,x) =
(3.19) it ) M p—2-mlaglatmt . 4 0,1<z<e®
a
which coincides with the result given in [1].

If we assume that the characteristic system is explicitly solvable, but no analytical
solution can be obtained from the resolvent kernel method, the new formulation of the
boundary condition (2.3) as Volterra integral equation is anyway helpful, because one may
combine numerical methods for the Volterra equation with the method of characteristics.

3.2 Asymptotic behaviour of the discontinuity in the IKS—model

The IKS—model shows an interesting asymptotic behaviour when applying the Gom-
pertzian growth rate and the parameter set given in [1]. In the following we study in
more detail the behaviour of the discontinuity along the curve z,(t), given by (3.10) in
Theorem 2.

Assuming (2.5) for the growth rate, the trajectory z,(t) is given by

(3.20) p(t) = be~¢ I
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Figure 2: Trajectory z,(t) reaches for Figure 3: Dynamic behaviour of the
t — oo the saturated level b = 7.3 - 1010, jump height A(t). Shown is log,(h(?))
The values for a are a = 0.0143 (left for two different saturated levels, namely

curve) and a = 0.00286 (right curve). b=17.3-10 (lower curve) and b = 3.65-
100 (upper curve) with a = 0.00286.

In the limit ¢ — oo the curve z,(t) reaches the value b, which defines the tumor size at
the saturated level, see Fig. 2 for two different values of a.
Substituting (3.20) into (3.10) and using (1) = m, we get

—at_]_

(3.21) h(t) = me®b¢

The behaviour of h(t) is driven by two competing terms, namely an exponential growth
with rate a as well as an exponentially fast decay to 1/b, expressed by the last term on
the right hand side of (3.21). The exponential growth dominates the large time behaviour,
the exponential decay describes the jump height for small times.

Fig. 3 shows the behaviour of h(t) with a = 0.00286 and two different values for the
saturated tumor size, namely b = 7.3 - 10!? and b = 3.65 - 10'9, like used in [1]. Because
h(t) varies by several orders of magnitude along the time interval [0,4000], the quantity
given in the figure is h(t) = log;y(h(t)). The influence of the parameter b with respect to
the global behaviour of h(t) is obviously quite small.

Changing the parameter a = 0.00286 to a = 0.0143 yields the result shown in Fig. 4.
Again the influence of the saturated tumor size b is small, but the exponential decay to a
minimal value of h(t) runs much more faster then in the previous case and therefore the
exponential growth starts much more early. The graph of Figs. 3 and 4 looks quite similar
but the length of the time interval in Fig. 4 is only one fourth of the one in Fig. 4. A
comparison for the two different values of a and fixed b = 7.3-10'° on the interval [0, 4000]

is given in Fig. 5.
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Figure 4: Dynamic behaviour of the
jump height A(t). Same values as in
Fig. 3, but now with ¢ = 0.0143 and time
interval [0, 1000].
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Figure 5: Dynamic behaviour of the
jump height h(t). Comparison between
a = 0.00286 and a = 0.0146 with b =
7.3-10%.

The Gompertzian growth rate always attends its maximal value at z = e~ 'b, in-
dependent of the parameter a. The particular curve z,(t) reaches this value at time
t = —In(In(d))/a. Like can be seen in Figs. 3 and 4, this is approximately the time, when
the behaviour of the jump height turns from the exponential decay to the exponential
growth. This coincides with the behaviour of the right hand side of (3.3), which changes
its sign exactly at z = e~ 'b.

Due to the asymptotic behaviour of h(t), like discussed above, one may expect that
the IKS—model contains different time scales or regions, where methods from asymptotic
analysis will help to obtain more treatable solution formulas, even for complicated ex-
pression of the growth and colonization rates. An asymptotic analysis should come along
with a dimensionless form of the model in order to detect the characteristic scalings of the
system.

3.3 A compatible boundary condition for the IKS—model

As formulated in Theorem 2, the solution of the IKS-model will be continuous, if 3(1) = 0.
Another possibility to overcome the incompatibility between (2.3) and (2.2), is to use a
modified boundary condition, like, e.g.,

o0

o(V)p(t, z) = / B(@)p(t, ) dz + Bz (1)) — Blap(0))

1

(3.22)
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This condition has the same structure as (2.3), but now in the limit ¢ — 0 one has

a(1)p(0,1) = / B(@)p(0, z) de
1

which is satisfied by (2.2).

—3
5
—4
54 0-
—6-
5
—71
—8- -10+
-9+
-15
-10
20 40 60 80 100 120 140 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10
X X
Figure 6: Profiles of the two solutions Figure 7: Profiles of the two solutions
(3.19) and (3.23), respectively, at time (3.19) and (3.23), respectively, at time
t = 500. Shown is log,(p(t,z) with a = t = 2500. Shown is log,,(p(t,z) witha =
0.01 and m = 5.3-108. The continuous 0.01 and m = 5.3-1078. The continuous
solution runs to zero as x — e%. solution runs to zero as x — e®.

Performing the same steps as above, one obtains for the solution of the Volterra integral
equation the expression
fu(t) — m (e(a‘i‘m)t _ 1)

a-+m

and the solution of (2.1) with initial and boundary conditions (2.2) and (3.22) now reads

0 >0,z > e

2 =
(3 3) p(t’-’ﬂ) m l (x_l—m/ae(a-l-m)t _ 1) <t > O, 1 <z < eat
at+mzx

which satisfies the condition p(t, z,(t)) = 0.
Assuming a linear growth rate g(z) = ax it is trivial to obtain for the discontinuous
solution given by (3.19) the asymptotic limit of h(t) as t — oo,

h(t) = (1)e™ ",

11



i.e. the discontinuity will vanish exponentially fast with parameter a. On the other hand,
from (3.16), we know that the function v(t) grows exponentially fast in time. Hence, for
large t we can expect again some characteristic regions in the solution profiles of (3.19)
and (3.23).

Figs. 6 and 7 show the profile of the solutions given by (3.19) and (3.23) at two
different times, namely ¢ = 500 and ¢ = 2500. The parameter o and m are a = 0.01 and
m=5.3-108.

The continuous solution vanishes for z — z,(t), whereas the discontinuous solution
reaches the limit h(t), which itself vanishes as ¢ — oco. The scales at the vertical axis in
Fig. 7 indicates that the value of log; 0(p(2500, z)) is about 5 for z close to 1. This repre-
sents the exponential growth of v(¢), but the values drop down within a small boundary
layer at = 1. This behaviour again suggests to perform an asymptotic expansion method
for a dimensionless form of the IKS—-model.

4 Conclusion

In the present work we gave a mathematical investigation of a model to describe the growth
and size distribution of multiple metastatic tumors recently proposed by Iwata, Kawasaki
and Shigesada. Using the method of characteristics and an appropriate transformation
of the integral boundary conditions we gave an existence result, which states that the
solutions of the model in general will be discontinuous along a particular characteristic
curve, which describes the number of cells in the primary tumor. This discontinuity is due
to an incompatibility between the initial and boundary conditions used in the model. We
proposed a modified boundary conditions which yields a continuous solution and shows a
similar global behaviour like the original one.

The existence theorem relies on an appropriate transformation of the integral boundary
condition using the method of characteristics, which yields a linear Volterra integral equa-
tion of second kind. This reformulation of the original boundary condition is even useful
when no analytical solutions of the characteristic system or the Volterra integral equa-
tion are available, such that one should compute discrete approximations using numerical
methods.

An investigation on the asymptotic behaviour of the discontinuity shows some inter-
esting phenomena of the model, namely the existence of different time scales or regions
as well as a boundary layer around z = 1. Hence, it seems to be worthwhile to use an
asymptotic expansion technique for a dimensionless form of the model, in order to to derive
more explicit representation formulas of solutions, even for more complicated expressions
for the growth and colonization rates. Theses formulas might be useful when applying the
model to some clinical data from individual patients. Moreover, a dimensionless form will
give a better understanding on the characteristics scales of the model. Some work in this
direction is currently under investigation.
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