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zur Angewandten Mathematik

A Mesh-Independence Result
for Semismooth Newton Methods

Michael Hintermüller and Michael Ulbrich

Reihe A

Preprint 172

April 2003
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A MESH-INDEPENDENCE RESULT FOR SEMISMOOTH NEWTON METHODS

MICHAEL HINTERMÜLLER∗ AND MICHAEL ULBRICH†

Abstract. For a class of semismooth operator equations a mesh independence result for generalized Newton
methods is established. The main result states that the continuous and the discrete Newton process, when initialized
properly, converge q-linearly with the same rate. The problem class considered in the paper includes MCP-function
based reformulations of first order conditions of a class of control constrained optimal control problems for partial
differential equations for which a numerical validation of the theoretical results is given.
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1. Introduction. This paper is devoted to the study of (local) convergence properties of
Newton type methods applied to discretizations of a class of nonsmooth operator equations

(1.1) G(y) = 0, G : L2(Ω) → L2(Ω) ,

where the operator G is related to an MCP-function based reformulation of the infinite-
dimensional box-constrained variational inequality problem (BVIP)

(1.2) y ∈ Yad, (F (y), v − y)L2 ≥ 0 ∀ v ∈ Yad,

where the feasible set is given by Yad =
{
y ∈ L2(Ω) : α ≤ y ≤ β a.e. on Ω

}
with α, β ∈ R,

α < β. Here Ω ⊂ Rn is measurable with finite Lebesgue measure |Ω| > 0, L2(Ω) is the
Hilbert space of square integrable functions, and F : L2(Ω) → L2(Ω) is a linear or nonlinear
operator.

It is well known that if G : Y → Z (Y,Z Banach spaces) is Fréchet differentiable, G′ is
locally Lipschitz and invertible at a solution ȳ of (1.1), then the Newton method

(1.3) yk+1 = yk −G′(yk)−1G(yk)

is locally quadratically convergent to ȳ; see, e.g., [16]. Moreover, for appropriate discretiza-
tions Gh(yh) = 0, with Gh : Yh → Zh and Yh, Zh suitable finite dimensional spaces, a local
solution ȳh exists and, when initialized properly, the discrete Newton process

(1.4) yk+1
h = yk

h −G′
h(yk

h)−1Gh(yk
h) ,

enjoys the property of mesh independence; see [1]. In [8] the Lipschitz uniformity property
of the discretization required in [1] is weakened resulting in an asymptotic version of the
mesh independence result. In [2] the concepts of [1] are carried over to the case of general-
ized equations G(y) ∈ T (y) with T : Y → Z a multi-valued mapping. Further, the abstract
results are applied to control constrained optimal control problems for ordinary differential
equations. In [24] the results of [1] are extended to an augmented Lagrangian-SQP method
for solving optimal control problems involving a possibly nonlinear partial differential state
equation. In contrast to [2] no constraints are considered. By utilizing Lipschitzian local-
izations, recently in [9] the mesh independence property of Newton’s method, when applied
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to discretized variational inequalities or generalized equations, was established under weaker
conditions then those in [2]. In [4, 5] asymptotic mesh independence is proved under reduced
requirements on the (Fréchet) derivative of the operator G. But still, like in all of the afore-
mentioned results, the operator G is assumed to be Fréchet differentiable with sufficiently
smooth derivative.

In many cases the requirement of G being Fréchet differentiable is not adequate. In
fact, returning to the BVIP (1.2), it is well known [20] that (1.2) is equivalent to the mixed
complementarity problem (MCP)

(1.5) α ≤ y ≤ β, (y − α)F (y) ≤ 0, (y − β)F (y) ≤ 0 a.e. in Ω.

Using the equivalence

α ≤ a ≤ β, (a− α)b ≤ 0, (a− β)b ≤ 0 ⇐⇒ a− P[α,β](a− σb) = 0,

where σ > 0 is arbitrary and

P[α,β] : R → [α, β], P[α,β](t) = max{α, min{t, β}}

denotes the projection onto [α, β], we can rewrite (1.5) (and thus (1.2)) in the form

(1.6) G(y) = y − P[α,β](y − σF (y)) = 0 a.e. in Ω.

Here, the projection is applied pointwise on Ω. The operator equation (1.6) is a special case
of (1.1) and obviously G is not Fréchet differentiable. By utilizing weaker types of deriva-
tives and approximations of classes of nondifferentiable operators, in, e.g., [6, 7, 12, 14, 15,
17, 18, 19, 20, 22] local convergence properties of the resulting nonsmooth version of New-
ton’s method are proved. Under a semismoothness assumption on G, the rate of convergence
is typically q-superlinear. Compared to finite dimensions, in infinite dimensions the gener-
alization of the derivative is a more delicate issue [7, 12, 20, 22]. In finite dimensions the
generalized differentiability concepts rely on Rademacher’s theorem, which has no analogue
in infinite dimensions. While the max- and min-operator, and thus also the projection P[α,β]

are strongly semismooth in finite dimensions [10], these operators are not semismooth as a
mapping Lp(Ω) → Lp(Ω), 1 ≤ p ≤ +∞. In [12, 22] it is shown that a two norm discrepancy,
i.e., max : Lp(Ω) → Lq(Ω) with 1 ≤ q < p ≤ +∞, is required for max to be semismooth,
and the same holds true for min and P[α,β]. In general, this fact necessitates a smoothing step
in the corresponding semismooth Newton method [22] in order to achieve locally superlinear
convergence. In [12] it was observed that for particular classes of constrained optimal control
problems smoothing steps can be skipped due to the properties of the resulting operator F
in (1.5). In this paper we exploit the latter fact in order to avoid the necessity of smoothing
steps. As a consequence we henceforth assume that F has the following particular form:

(1.7) F (y) = A(y) + λy,

with λ > 0 and a continuously Fréchet differentiable operator A : L2(Ω) → L2(Ω). Fur-
thermore, we assume that A maps L2(Ω) locally Lipschitz continuously to Lp(Ω) for some
p ∈ (2,∞). Thus, (1.6) becomes

(1.8) y − P[α,β](y − σ(A(y) + λy)) = 0 a.e. in Ω.

For the rest of the paper, we choose σ = 1/λ and multiply by λ to obtain the following
equivalent reformulation of (1.5)

(1.9) G(y) := λy − P[λα,λβ](−A(y)) = 0 a.e. in Ω.
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Clarke’s generalized differential of φ(t) = P[λα,λβ](t) is given by

∂φ(t) =


0 if t /∈ [λα,λβ],
[0, 1] if t ∈ {λα,λβ},
1 if t ∈ (λα,λβ).

Following [22], we define the generalized differential

∂G : L2(Ω) ⇒ L2(Ω), ∂G(y) = {λI + D(y) · A′(y) : D(y) satisfies (1.11)} ,(1.10)

D : L2(Ω) → L∞(Ω), D(y)(x)


= 0 if −A(y)(x) /∈ [λα,λβ],
∈ [0, 1] if −A(y)(x) ∈ {λα,λβ},
= 1 if −A(y)(x) ∈ (λα,λβ).

(1.11)

It has been shown in [20, 22], see also [12], that the operator G is semismooth in the following
sense:

(1.12) sup
M∈∂G(y+s)

‖G(y + s)−G(y)−Ms‖L2 = o(‖s‖L2) as ‖s‖L2 → 0.

This result can be used to prove the local q-superlinear convergence of the following nons-
mooth Newton’s method:

ALGORITHM 1.1.
0. Choose y0 ∈ L2(Ω).

For k = 0, 1, 2, . . .:

1. If G(yk) = 0, STOP with result yk.

2. Choose Mk ∈ ∂G(yk).

3. Compute the Newton step sk ∈ L2(Ω) by solving

Mksk = −G(yk)

and set yk+1 = yk + sk.
The local convergence analysis requires a regularity assumption, e.g., the uniformly

bounded invertibility of the operators Mk ∈ L(L2, L2).
One way to derive an MCP is related to MCP-function based reformulations of first order

optimality conditions of box constrained optimal control problems. In [13] certain mesh in-
dependence results for the gradient projection method applied to the latter problem class are
proved. From the numerical point of view, the gradient projection method has some draw-
backs like rather slow convergence compared to Newton-type methods and possible chatter-
ing of active resp. inactive sets close to the solution. Also, the results provided in [13] are
different from our mesh independence assertions.

The aim of this paper is to prove a mesh independence result for the discrete analogue of
Algorithm 1.1. Our main result states that for any given q-linear rate of convergence θ there
exists a sufficiently small mesh size h′ > 0 of discretization and a radius δ > 0 such that, for
all h ≤ h′, the continuous and the discrete Newton processes converge at least at the q-linear
rate θ when initialized by y0, y0

h satisfying max{‖y0
h − ȳh‖L2 , ‖y0 − ȳ‖L2} ≤ δ.

In section 2 we introduce appropriate discretizations of problem (1.8) and the discrete
version of Algorithm 1.1. The mesh independence result is presented in section 3. Sufficient
conditions ensuring regularity are in the focus of section 4. These conditions are motivated
by a class of control constrained optimal control problems for semilinear elliptic differential
equations. The latter problem class is addressed in section 5. It is shown that the assumptions
for the mesh independence result are satisfied. Finally, in section 6 numerical results are
presented.
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2. Discretization. We now approximate functions in L2(Ω) by a finite element dis-
cretization. To this end, let be given a (sufficiently regular) subdivision of Ω (e.g., a regular
triangulation) into subdomains T ∈ Th:

Ω =
⋃

T∈Th

T, T1, T2 ∈ Th, T1 6= T2 =⇒ T1 ∩ T2 ⊂ ∂T1 ∩ ∂T2.

Usually, in 2D, Th will consist of triangles in the interior and of deformed, boundary-fitted
triangles on the boundary. The subscript h is a measure for the maximum diameter of all
elements in Th. Now, we define

Yh = {yh : Ω 7→ R : yh|int T = constant ∀ T ∈ Th} .

The space Yh is equipped with the L2-norm, i.e., ‖·‖Yh
= ‖·‖L2 . The value of yh on ∂T ,

T ∈ Th is not important. Appropriate numerical discretization of (1.5) now yields the discrete
mixed complementarity problem

(2.1) α ≤ yh ≤ β, (yh − α)Fh(yh) ≤ 0, (yh − β)Fh(yh) ≤ 0 a.e. in Ω

with Fh : Yh → Yh, Fh(yh) = Ah(yh) + λyh, and continuously differentiable operator
Ah : Yh → Yh.

We reformulate (2.1) as in the infinite-dimensional case in the form

(2.2) Gh(yh) := λyh − P[λα,λβ](−Ah(yh)) = 0

with an operator Gh : Yh → Yh. Note that Gh is piecewise constant on the elements T ∈ Th,
and thus (2.2) is a finite-dimensional system of equations. Then we define the following
generalized differential of Gh:

∂Gh : Yh ⇒ Yh, ∂Gh(yh) = {λI + Dh(yh) · A′
h(yh) : Dh(yh) satisfies (2.4)} ,(2.3)

Dh(yh) ∈ Yh, Dh(yh)(x)


= 0 if − Ah(yh)(x) /∈ [λα,λβ],
∈ [0, 1] if − Ah(yh)(x) ∈ {λα,λβ},
= 1 if − Ah(yh)(x) ∈ (λα,λβ).

(2.4)

Again, Dh(yh) ∈ Yh is constant on each T ∈ Th. Furthermore, in analogy to the continuous
setting, a nonsmooth Newton’s method for the solution of (2.2) can be formulated:

ALGORITHM 2.1.
0. Choose y0

h ∈ Yh.

For k = 0, 1, 2, . . .:

1. If Gh(yk
h) = 0, STOP with result yk

h.

2. Choose Mhk ∈ ∂Gh(yk
h).

3. Compute the Newton step sk
h ∈ Yh by solving

Mhksk
h = −Gh(yk

h)

and set yk+1
h = yk

h + sk
h.
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3. Mesh-Independence. We prove that Algorithm 2.1 is mesh independent in the sense
that, for any linear rate of convergence θ, there exists a radius ρ > 0 such that, for all h
sufficiently small, the regions on which Algorithm 1.1 and Algorithm 2.1 converge with at
least linear q-rate θ contain the ρ-balls about the respective solutions.

For the proof we need a preparatory result on the mesh independence of

sup
Mh∈∂Gh(ȳh+sh)

‖Gh(ȳh + sh)−Gh(ȳh)−Mhsh‖Yh
,

which requires several assumptions.
Let ȳ ∈ L2(Ω) be a solution of (1.5) and assume that strict complementarity holds:
ASSUMPTION 3.1 (Strict complementarity).

(3.1) |{min{ȳ − α, β − ȳ}+ |F (ȳ)| = 0}| = 0.

Since |Ω| < ∞ and

{min{ȳ − α, β − ȳ}+ |F (ȳ)| < ε} ↓ {min{ȳ − α, β − ȳ}+ |F (ȳ)| = 0} as ε → 0+

we conclude that

(3.2) lim
ε→0+

|{min{ȳ − α, β − ȳ}+ |F (ȳ)| < ε}| = 0.

Furthermore, for any h, let be given a solution ȳh ∈ Yh of (2.1). We work under the following
ASSUMPTION 3.2.

1.

lim
h→0+

‖ȳh − ȳ‖L2 = 0,(3.3)

lim
h→0+

‖Ah(ȳh)− A(ȳ)‖Lp = 0.(3.4)

2. The discretization family is locally Lipschitz uniform, i.e., there exist h0 > 0, δ0 > 0, and
L > 0 such that∥∥A(y2)−A(y1)

∥∥
Lp ≤ L

∥∥y2 − y1
∥∥

L2 , ∀ yi ∈ L2(Ω),
∥∥yi − ȳ

∥∥
L2 ≤ δ0,∥∥Ah(y2

h)− Ah(y1
h)

∥∥
Lp ≤ L

∥∥y2
h − y1

h

∥∥
L2 ∀ yi

h ∈ Yh,
∥∥yi

h − ȳh

∥∥
Yh
≤ δ0, h ≤ h0.

3. The discretization family has the uniform linear approximation property, i.e., A and Ah,
h ≤ h0, are Fréchet differentiable in a neighborhood of ȳ and ȳh, respectively, and there
exists a function ρ : [0, δ0) → [0,∞) such that

lim
t→0+

ρ(t)
t

= 0,(3.5)

‖A(y)−A(ȳ)−A′(y)(y − ȳ)‖L2 ≤ ρ(‖y − ȳ‖L2)(3.6)

∀y ∈ L2(Ω), ‖y − ȳ‖L2 ≤ δ0,

‖Ah(yh)−Ah(ȳh)−A′
h(yh)(yh − ȳh)‖Yh

≤ ρ(‖yh − ȳh‖Yh
)(3.7)

∀yh ∈ Yh, ‖yh − ȳh‖Yh
≤ δ0, h ≤ h0.
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Now let γ ∈ (0, 1) be given. Then, due to the semismoothness of G, there exists δ′ ∈
(0, δ0] such that

sup
M∈∂G(ȳ+s)

‖G(ȳ + s)−G(ȳ)−Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(Ω), ‖s‖L2 ≤ δ′.

Our aim is to prove the following uniform semismoothness result, which will enable us to
show the mesh independence of the semismooth Newton’s method 2.1.

THEOREM 3.3. Under the Assumptions 3.1 and 3.2, for all γ ∈ (0, 1), there exist
δ′ ∈ (0, δ0] and h′ ∈ (0, h0] such that the following holds true:

sup
Mh∈∂Gh(ȳh+sh)

‖Gh(ȳh + sh)−Gh(ȳh)−Mhsh‖Yh
≤ γ ‖sh‖Yh

∀ sh ∈ Yh, ‖sh‖Yh
≤ δ′, h ≤ h′.

(3.8)

sup
M∈∂G(ȳ+s)

‖G(ȳ + s)−G(ȳ)−Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(Ω), ‖s‖L2 ≤ δ′.(3.9)

REMARK 3.4. The existence of a radius δ′ > 0 such that (3.9) holds follows from
the semismoothness (1.12) of G. Nevertheless, we enclose the proof of (3.9), without any
additional work, by defining Y0 = L2(Ω), G0 = G, ∂G0 = ∂G, and ȳ0 = ȳ. Then for h = 0
the Assumption 3.2 obviously holds. Therefore, we can use these assumptions for all h ≥ 0,
and thus can concentrate on proving (3.8) for all 0 ≤ h ≤ h′.

3.1. Proof of Theorem 3.3. We define

c(ȳ) = min{ȳ − α, β − ȳ}+ |F (ȳ)| ≥ 0,

ch(ȳh) = min{ȳh − α, β − ȳh}+ |Fh(ȳh)| ≥ 0,

Ω(ε) = {c(ȳ) < ε}, Ωh(ε) = {ch(ȳh) < ε}.

The strict complementarity assumption implies (3.2), and thus, for any µ > 0, there exists
ε = ε(µ) > 0 such that

|Ω(2ε)| ≤ µ

2
.

We now use that for all s, t ∈ [α, β] the following holds:

(3.10) |min{t− α, β − t} − min{s− α, β − s}| ≤ |t− s| ∀ s, t ∈ [α, β].

To prove this, we can, without restriction, assume that

mt := min{t− α, β − t} ≥ min{s− α, β − s} =: ms,

otherwise we simply would exchange the roles of ms and mt. If ms = s − α, we use
mt ≤ t− α to obtain

|mt −ms| = mt −ms ≤ (t− α) − (s− α) = t− s ≤ |t− s|.

Similarly, if ms = β − s, we can use mt ≤ β − t to derive

|mt −ms| = mt −ms ≤ (β − t)− (β − s) = s− t ≤ |t− s|.

Hence, by (3.10) and Assumption 3.2.1, we have

‖c(ȳ)− ch(ȳh)‖L2 ≤ ‖min{ȳ − α, β − ȳ} −min{ȳh − α, β − ȳh}‖L2 + ‖F (ȳ)− Fh(ȳh)‖L2

≤ (1 + λ) ‖ȳ − ȳh‖L2 + ‖A(ȳ)−Ah(ȳh)‖L2 → 0 as h → 0.
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Next, observe that

|Ωh(ε)| ≤ |Ω(2ε)|+ |{c(ȳ)− ch(ȳh) > ε}| .

In the sequel, we will repeatedly use the following estimate: For all η > 0, all q ∈ [1,∞) and
all v ∈ Lq

(3.11) |{|v| ≥ η}| = 1
ηq

∫
{|v|≥η}

ηq dx ≤ 1
ηq

∫
{|v|≥η}

|v(x)|q dx ≤ ‖v‖q
Lq

ηq
.

Applying this inequality, we obtain

|{c(ȳ)− ch(ȳh) > ε}| ≤ 1
ε2
‖c(ȳ)− ch(ȳh)‖2L2 → 0 as h → 0,

and from this we see that we can find h1 = h1(ε) ∈ (0, h0] such that

(3.12) |Ωh(ε)| ≤ µ ∀ h ≤ h1.

Next, we show that for η = η(ε) := min{1, λ}ε and

(3.13) Ω1
h(ε) := {|Ah(yh)−Ah(ȳh)| < η} \ Ωh(ε)

we have the inclusion

(3.14) Ω1
h(ε) ⊂ {|Ah(yh)−Ah(ȳh)| < η, |Ah(ȳh) + λα| ≥ η, |Ah(ȳh) + λβ| ≥ η}.

Since ȳh solves (2.1), for a.a. x /∈ Ωh(ε) one of the following cases occurs

ȳh(x) = α, Fh(ȳh)(x) = Ah(ȳh)(x) + λα ≥ ε,(3.15)
ȳh(x) = β, Fh(ȳh)(x) = Ah(ȳh)(x) + λβ ≤ −ε,(3.16)
ȳh(x) ∈ [α + ε, β − ε], Fh(ȳh)(x) = Ah(ȳh)(x) + λȳh(x) = 0.(3.17)

We have the implications

(3.15) =⇒ Ah(ȳh)(x) + λβ ≥ Ah(ȳh)(x) + λα ≥ ε,

(3.16) =⇒ Ah(ȳh)(x) + λα ≤ Ah(ȳh)(x) + λβ ≤ −ε,

(3.17) =⇒
{

Ah(ȳh)(x) + λα = λα− λȳh(x) ≤ −λε,

Ah(ȳh)(x) + λβ = λβ − λȳh(x) ≥ λε.

Taking all three cases together, we have shown that

x /∈ Ωh(ε) =⇒ x ∈ {|Ah(ȳh) + λα| ≥ η, |Ah(ȳh) + λβ| ≥ η}.

This implies (3.14).
For the estimation of the remainder term

Rh(yh) = Gh(yh)−Gh(ȳh)−Mh(yh − ȳh)

occurring in (3.8) with Mh ∈ ∂Gh(yh) we use the splitting (see (3.14)) Ω = Ω1
h(ε) ∪ Ω2

h(ε)
with Ω1

h(ε) defined in (3.13) and

Ω2
h(ε) = Ωh(ε) ∪ {|Ah(yh)− Ah(ȳh)| ≥ η}.
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1. Estimate on Ω1
h(ε):

Let x ∈ Ω1
h(ε) be arbitrary. Then we have |Ah(yh)(x)− Ah(ȳh)(x)| < η.

Case 1: −Ah(ȳh)(x) ≤ λα− η.
We then obtain −Ah(yh)(x) < λα and thus

Rh(yh)(x) = (λyh − λα− λȳh + λα− λ(yh − ȳh))(x) = 0

Case 2: −Ah(ȳh)(x) ≥ λβ + η.
We then obtain −Ah(yh)(x) > λβ and thus

Rh(yh)(x) = (λyh − λβ − λȳh + λβ − λ(yh − ȳh))(x) = 0

Case 3: x ∈ Ω1
h
′(ε) = {|Ah(yh)−Ah(ȳh)| < η, −Ah(ȳh) ∈ [λα + η, λβ − η]}.

Then Ah(yh)(x) ∈ (λα,λβ) and thus

Rh(yh)(x) = (λyh + Ah(yh)− λȳh −Ah(ȳh)− (λI + A′
h(yh))(yh − ȳh))(x)

= Ah(yh)−Ah(ȳh)− A′
h(yh)(yh − ȳh))(x).

This implies for all h ≤ h0 and all yh ∈ Yh, ‖yh − ȳh‖ ≤ δ0:

‖Rh(yh)‖L2(Ω1
h
′(ε)) = ‖Ah(yh)− Ah(ȳh)−A′

h(yh)(yh − ȳh)‖L2(Ω1
h
′(ε))

≤ ‖Ah(yh)− Ah(ȳh)−A′
h(yh)(yh − ȳh)‖Yh

≤ ρ(‖yh − ȳh‖Yh
),

where we have used (3.7). Now let δ2 = δ2(γ) > 0 be so small that

ρ(t) ≤ γ

2
t

for all t ≤ δ2, which is possible by (3.5). Then

‖Rh(yh)‖L2(Ω1
h(ε)) = ‖Rh(yh)‖L2(Ω1

h
′(ε)) ≤ ρ(‖yh − ȳh‖L2) ≤

γ

2
‖yh − ȳh‖L2

for all yh ∈ Yh, ‖yh − ȳh‖ ≤ δ2.

2. Estimate on Ω2
h(ε):

We already have shown the estimate (3.12) for the measure of Ωh(ε). To estimate the
measure of the second set, we use (3.11) and obtain that, for all h ≤ h0 and all yh ∈ Yh,
‖yh − ȳh‖L2 ≤ δ0,

|{|Ah(yh)−Ah(ȳh)| ≥ η}| ≤ η−p ‖Ah(yh)− Ah(ȳh)‖p
Lp ≤ η−pLp ‖yh − ȳh‖p

L2 .

Thus, choosing

δ3 = δ3(µ, ε) = min
{

δ0,
η

L
µ1/p

}
,

we obtain

|{|Ah(yh)−Ah(ȳh)| ≥ η}| ≤ µ
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for all yh ∈ Yh, ‖yh − ȳh‖L2 ≤ δ3 and all h ≤ h0. Therefore, we arrive at the estimate∣∣Ω2
h(ε)

∣∣ ≤ 2µ

for all yh ∈ Yh, ‖yh − ȳh‖L2 ≤ δ3 and all h ≤ h1.
From

Rh(yh) = −P[λα,λβ](−Ah(yh)) + P[λα,λβ](−Ah(ȳh))−Dh(yh)A′
h(yh)(yh − ȳh)

and |P[λα,λβ](t)− P[λα,λβ](s)| ≤ |t− s| it follows that

‖Rh(yh)‖Lp ≤ ‖Ah(yh)−Ah(ȳh)‖Lp + ‖A′
h(yh)(yh − ȳh)‖Lp ≤ 2L ‖yh − ȳh‖L2 .

Here, we have used that, for all t > 0,

dh(t) =
1
t
(Ah(yh + t(yh − ȳh))−Ah(yh))

converges to A′
h(yh)(yh − ȳh) as t → 0 and is uniformly bounded in Lp; in fact,

‖dh(t)‖Lp =
1
t
‖Ah(yh + t(yh − ȳh))− Ah(yh)‖Lp ≤ L ‖yh − ȳh‖L2 .

Therefore,

‖A′
h(yh)(yh − ȳh)‖Lp ≤ L ‖yh − ȳh‖L2 .

We now can estimate (see [23, Lemma 2.1])

‖Rh‖L2(Ω2
h(ε)) ≤

∣∣Ω2
h(ε)

∣∣ 1
2−

1
p ‖Rh‖Lp(Ω2

h(ε))

≤ (2µ)
p−2
2p 2L ‖yh − ȳh‖L2 .

Now we can proceed as follows:
Choose (in this order)

µ =
1
2

( γ

4L

) 2p
p−2

, ε = ε(µ), h1 = h1(ε), δ2 = δ2(γ), δ3 = δ3(µ, ε)

and set

δ′ = min{δ2, δ3}, h′ = h1.

Then we obtain for all h ≤ h1 and all yh ∈ Yh, ‖yh − ȳh‖L2 ≤ δ′:

‖Rh‖Yh
≤ ‖Rh‖L2(Ω1

h(ε)) + ‖Rh‖L2(Ω2
h(ε))

≤ γ

2
‖yh − ȳh‖L2 +

γ

2
‖yh − ȳh‖L2 = γ ‖yh − ȳh‖Yh

.

2

The mesh independence result is established next. For its formulation we introduce arbi-
trary, nonempty sets S(ȳ + s) ⊂ ∂G(ȳ + s) and Sh(ȳh + sh) ⊂ ∂Gh(ȳh + sh) for s and sh

with ‖s‖L2 ≤ δ2 and ‖sh‖L2 ≤ δ′2, respectively. Furthermore, we use the notation

B̄δ(ȳ) =
{
y ∈ L2(Ω) : ‖y − ȳ‖L2 ≤ δ

}
, δ > 0.
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In the proof of Theorem 3.6 we utilize the following attraction theorem for Newton’s method.
THEOREM 3.5. Assume that there exists ȳ ∈ L2(Ω) with G(ȳ) = 0 and δ2 > 0 such

that

sup
{
‖M−1‖L2,L2 : M ∈ S(ȳ + s), ‖s‖L2 ≤ δ2

}
≤ κ

for some constant κ > 0. Let θ ∈ (0, 1) be given, and let γ ∈ (0, 1) satisfy γκ ≤ θ. Further
let G satisfy

sup
M∈S(ȳ+s)

‖G(ȳ + s)−G(ȳ)−Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(Ω), ‖s‖L2 ≤ δ1

for some 0 < δ1 ≤ δ2. Then, for any y0 ∈ B̄δ1(ȳ), the generalized Newton’s method
converges in B̄δ1(ȳ), and the iterates satisfy

(3.18) ‖yk+1 − ȳ‖L2 ≤ θ‖yk − ȳ‖L2 for k = 0, 1, . . . .

Proof. For y ∈ B̄δ1(ȳ) and N (y) = y −M−1G(y), M ∈ S(y), we obtain

‖N (y)− ȳ‖L2 = ‖M−1(G(y)−G(ȳ)−M(y − ȳ))‖L2

≤ κ‖G(y)−G(ȳ)−M(y − ȳ)‖L2 ≤ θ‖y − ȳ‖L2

Since yk+1 = N (yk) and θ < 1, this proves the q-linear convergence with rate θ toward ȳ.
Note that Theorem 3.5 has an immediate analogue in the discretized setting of Algo-

rithm 2.1.
THEOREM 3.6. Let G : L2(Ω) → L2(Ω) be semismooth, and assume that there exist

ȳ ∈ L2(Ω) with G(ȳ) = 0 and ȳh ∈ Yh with Gh(ȳh) = 0 which satisfy Assumptions 3.1–3.2.
Further suppose that there exist δ2, δ

′
2 > 0, κ, κ′ > 0 and h′2 ≤ h0 such that

sup
{
‖M−1‖L2,L2 : M ∈ S(ȳ + s), ‖s‖L2 ≤ δ2

}
≤ κ,

sup
{
‖M−1

h ‖L2,L2 : Mh ∈ Sh(ȳh + sh), ‖sh‖L2 ≤ δ′2
}
≤ κ′

for all 0 < h ≤ h′2. Then, for arbitrarily fixed θ ∈ (0, 1), there exist δ̄ > 0 and h̄ > 0 such
that for all 0 < h ≤ h̄

‖yk+1 − ȳ‖L2 ≤ θ‖yk − ȳ‖L2 ,(3.19)
‖yk+1

h − ȳh‖L2 ≤ θ‖yk
h − ȳh‖L2(3.20)

whenever max{‖y0 − ȳ‖L2 , ‖y0
h − ȳh‖L2} ≤ δ̄.

Proof. Let θ ∈ (0, 1) be given. For γ ∈ (0, 1) with γκ ≤ θ < 1 there exists δ1 ∈ (0, δ2]
such that

sup
M∈S(ȳ+s)

‖G(ȳ + s)−G(ȳ)−Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(Ω), ‖s‖L2 ≤ δ1

by the semismoothness of G. Theorem 3.5 then yields that {yk}, the sequence of iterates
of Algorithm 1.1 initialized by y0 ∈ B̄δ1(ȳ), converges to ȳ q-linearly with rate θ. Now, if
necessary, reduce γ (and, thus, δ1) such that

γ max(κ, κ′) ≤ θ < 1.
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From (3.8) we obtain that there exists δ′1 ∈ (0, δ′2] and h′1 ∈ (0, h′2] such that

sup
Mh∈Sh(ȳh+sh)

‖Gh(ȳh + sh)−Gh(ȳh)−Mhsh‖L2 ≤ γ ‖sh‖L2

∀ sh ∈ Yh, ‖sh‖L2 ≤ δ′1, h ≤ h′1.

Like before, Theorem 3.5 yields that {yk
h}, the sequence of iterates of Algorithm 2.1 initial-

ized by y0
h ∈ B̄δ′1(ȳh), converges to ȳh q-linearly with rate θ.

Now define δ̄ = min(δ1, δ
′
1) and h̄ = h′1. Then the assertion follows.

4. Sufficient Conditions for Regularity. An important class of complementarity prob-
lems results from reformulations of control constrained optimal control problems of tracking
type for elliptic partial differential equations; see [12, 20, 21]. This problem class satisfies the
structural assumption on F . Frequently, in practice when computing the generalized deriva-
tive of G, a particular choice of D (see (1.11)) is used. The following result utilizes these two
properties to establish the regularity requirement for Theorem 3.6.

THEOREM 4.1. Assume that the Fréchet derivative F ′ of F : L2(Ω) → L2(Ω), F =
A + λI, is continuous at ȳ ∈ L2(Ω) and satisfies

(v, F ′(ȳ)v)L2 ≥ γ ‖v‖2L2 ∀ v ∈ L2(Ω).

for some γ > 0. Further, let S(y) ⊂ ∂G(y) satisfy

S(y) = {λI + D(y) · A′(y) : D(y) satisfies (1.11) with D(y)(x) ∈ {0, 1} if A(y)(x) ∈ {λα,λβ}} .

Then there exist δ > 0 and κ > 0 such that

M is invertible and
∥∥M−1

∥∥
L2 ≤ κ for all M ∈ S(y), y ∈ L2(Ω), ‖y − ȳ‖L2 ≤ δ.

Proof. In the sequel, for all measurable sets J ⊂ Ω let EJ denote the extension-by-zero
operator from J to Ω. Its adjoint E∗

J is a corresponding restriction operator. By zJ we
denote the restriction of z to J . Now let δ > 0 be so small that

(4.1) κA′ := sup
{
‖A′(y)‖L2,L2 : ‖y − ȳ‖L2 ≤ δ

}
is finite and, in addition,

(v, F ′(y)v)L2 ≥ γ

2
‖v‖2

L2 ∀ v, y ∈ L2(Ω), ‖y − ȳ‖L2 ≤ δ.

For any measurable set J ⊂ Ω, define F ′(y)JJ = E∗
JF ′(y)EJ and observe that

(vJ , F ′(y)JJ vJ )L2 = (EJ v, F ′(y)EJ v)L2 ≥ γ

2
‖vJ ‖2

L2

for all v, y ∈ L2(Ω), ‖y − ȳ‖L2 ≤ δ. Hence,

(4.2)
∥∥F ′(y)−1

JJ
∥∥

L2 ≤
2
γ

∀ y ∈ L2(Ω), ‖y − ȳ‖L2 ≤ δ,

holds for all measurable sets J ⊂ Ω with |J | > 0.
Now let w ∈ L2(Ω) be arbitrary and consider the linear equation

(4.3) Mv = w ⇐⇒ λv + D(y)A′(y)v = w.
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Introducing the sets A = {x : D(y)(x) = 0} and I = {x : D(y)(x) = 1}, we have

(4.4) λ(EIvI + EAvA) + D(y)A′(y)(EIvI + EAvA) = EIwI + EAwA.

Note that A ∪ I is a disjoint partition of Ω. Applying E∗
A and considering (E∗

AEI)vI = 0
and (E∗

AEA)vA = vA in (4.4) yields

vA =
1
λ

wA.

Here we also utilized the fact E∗
AD(y)v = 0. Applying E∗

I to (4.4) gives

(4.5) λvI + E∗
IA′(y)EIvI + E∗

IA′(y)EAvA = wI .

Define the operators

F ′(y)II := λE∗
IEI + E∗

IA′(y)EI = λI + E∗
IA′(y)EI ,

A′(y)IA := E∗
IA′(y)EA.

Then equation (4.5) can be rewritten as

F ′(y)IIvI + A′(y)IAvA = wI ,

If |I| = 0, we have

v = vA =
1
λ

wA =
1
λ

w

and thus
∥∥M−1

∥∥
L2 ≤ 1/λ.

Now consider the case |I| > 0. Then,

‖vA‖L2 =
1
λ
‖wA‖L2 ,

‖vI‖L2 ≤
∥∥F ′(y)−1

II
∥∥

L2 ‖wI − A′(y)IAvA‖L2 ≤
2
γ

(‖wI‖L2 + ‖A′(y)‖L2 ‖vA‖L2).

This shows

‖v‖L2 ≤ ‖vA‖L2 + ‖vI‖L2 ≤
1
λ
‖wA‖L2 +

2
γ
‖wI‖L2 +

2
γ
· κA′ ·

1
λ
‖wA‖L2

≤ max
{

2
γ

,
1
λ

+
2κA′

γλ

}
(‖wI‖L2 + ‖wA‖L2)

≤
√

2 max
{

2
γ

,
1
λ

+
2κA′

γλ

}
‖w‖L2 =: κ ‖w‖L2 .

2

In the same way, regularity of the discrete generalized differential ∂Gh can be proved.
Furthermore, if we can find γ > 0, h̄ > 0, and δ > 0 such that conditions of the form (4.1)
and (4.2) can be ensured for F , A′ and Fh, A′

h, 0 < h ≤ h̄ with constants independent of h,
then the bound κ for the norm of the inverses can be chosen independently of h.

Theorem 4.1 covers a wide range of practically relevant control constrained optimal con-
trol problems for partial differential equations; for more details we refer to section 5. In this
case the semismooth operator equation corresponding to an MCP-function based reformula-
tion of the first order optimality system involves a nonlinear, Fréchet differentiable operator
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A. However, in many applications A is a linear operator, which maps L2(Ω) to Lp(Ω) for
some p > 2, and which frequently is related to (inverses of) linear elliptic differential opera-
tors. Then the regularity result of Theorem 4.1 can be made more concrete. As an example
consider the simple control constrained optimal control problem

(4.6)


minimize

u∈H1
0 (Ω),y∈L2(Ω)

J(u, y) := 1
2‖u− ud‖2

L2 + λ
2 ‖y‖

2
L2

subject to −∆u = y in Ω,

α ≤ y ≤ β a.e. in Ω,

where ud ∈ L2(Ω), α, β ∈ R, α < β. This problem admits a unique solution. It is easy to
verify that F (y) for this model problem becomes

F (y) = B−1j∗(jB−1y − ud) + λy,

where B ∈ L(H1
0 (Ω),H−1(Ω)) represents −∆ with homogeneous Dirichlet boundary con-

ditions and j : H1
0 (Ω) → L2(Ω) is the linear embedding operator. Thus, we have A(y) =

B−1j∗(jB−1y−ud), which, by the Sobolev embedding theorem, for n = 1, 2, 3 maps L2(Ω)
to Lp(Ω) for appropriate p ∈ (2,∞).

More general, we relate B ∈ L(H1
0 (Ω),H−1(Ω)) to a linear elliptic second order dif-

ferential operator which is invertible. Moreover we assume that B is selfadjoint. Then F is
continuous at arbitrary y ∈ L2(Ω). Further, for v ∈ L2(Ω) we have

(v, F ′(y)v)L2 = (v,B−1j∗jB−1v)L2 + λ‖v‖2
L2 = (B−1v,B−1v)L2 + λ‖v‖2

L2 ≥ γ‖v‖2L2

for some γ ≥ λ > 0. As a consequence we obtain the following corollary to Theorem 4.1.
COROLLARY 4.2. Assume that F : L2(Ω) → L2(Ω), F = A + λI, with A =

B−1j∗jB−1, where B ∈ L(H1
0 (Ω),H−1(Ω)) is a linear elliptic second order differential

operator. Further, assume that D(y)(x) ∈ {0, 1} whenever (Ay)(x) ∈ {λα,λβ}. Then
there exists κ > 0 such that

M is invertible and
∥∥M−1

∥∥
L2 ≤ κ for all M ∈ ∂G(y), y ∈ L2(Ω).

In the discrete setting we obtain for vh ∈ Yh

(vh, F ′
h(yh)vh)L2 ≥ λ‖vh‖2L2 .

Thus, for γ = λ, which is independent of h, the L2-ellipticity of the bilinear forms associated
with F ′

h and F ′, respectively, follows. As a consequence (4.2) and its discrete analogue
are satisfied with γ = λ uniformly in h. The boundedness of A′ in (4.1) follows from the
boundedness of B−1. Note that these results are independent of δ since A does not depend
on y. Depending on the norms of appropriate injection operators (for details we refer to
Remark 5.6 below) essentially the same bound applies to the discrete operator A′

h. This
proves that (4.1) and its discrete analogue are satisfied with a common uniform bound κA′ .
Consequently, from the definition of κ in the proof of Theorem 4.1 we infer that κ can be
chosen independently of h and Corollary 4.2 also applies when L2(Ω), F , G, and M are
replaced by their discrete counterparts Yh, Fh, Gh, and Mh.

In the following Theorem 4.3 we restate the mesh independence result of Theorem 3.6
under the requirements of Theorem 4.1. This is interesting since it covers the semismooth
Newton methods in [12, 22] which utilize the particular choice of D(y). In section 6 the
mesh independent behavior of these algorithms is demonstrated.
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THEOREM 4.3. Let G : L2(Ω) → L2(Ω) be semismooth, and assume that there exist
ȳ ∈ L2(Ω) with G(ȳ) = 0 and ȳh ∈ Yh with Gh(ȳh) = 0 which satisfy Assumptions 3.1–3.2.
Further suppose that the assumptions of Theorem 4.1 are satisfied and there exist δ′2 > 0,
κ′ > 0 and h′2 ≤ h0 such that

sup
{
‖M−1

h ‖L2,L2 : Mh ∈ Sh(ȳh + sh), ‖sh‖L2 ≤ δ′2
}
≤ κ′ ∀ h ≤ h′2.

Then, for arbitrarily fixed θ ∈ (0, 1), there exist δ̄ > 0 and h̄ > 0 such that for all 0 < h ≤ h̄

‖yk+1 − ȳ‖L2 ≤ θ‖yk − ȳ‖L2 ,(4.7)
‖yk+1

h − ȳh‖L2 ≤ θ‖yk
h − ȳh‖L2(4.8)

with max{‖y0 − ȳ‖L2 , ‖y0
h − ȳh‖L2} ≤ δ̄.

Proof. The proof essentially follows the lines of the proof of Theorem 3.6 with possibly
smaller δ1 due to the result of Theorem 4.1. 2

Note that in the case of the linear-quadratic control problem (4.6) the boundedness as-
sumption on {‖M−1

h ‖L2,L2 : Mh ∈ Sh(ȳh + sh), ‖sh‖L2 ≤ δ′2} follows from Corollary 4.2
and the discussion thereafter.

5. Application to constrained optimal control problems. In this section we apply the
mesh independence result of Theorem 4.3 to control constrained semilinear elliptic optimal
control problems; see, e.g., [3]. We consider the following problem:

minimize J(u, y) = 1
2‖u− ud‖2

L2 + λ
2 ‖y‖

2
L2

subject to (u, y) ∈ H1(Ω)× L2(Ω),
Cu + f(u) = y in Ω, u = 0 on Γ = ∂Ω,

y ∈ Yad = {y ∈ L2(Ω) | α ≤ y(x) ≤ β for a.a. x in Ω},

(5.1)

where ud ∈ L4(Ω), λ > 0, α ∈ R, and C denotes a second-order elliptic operator of the form

Cu(x) = −
n∑

i,j=1

(aij(x)uxi
(x))xj

.

The coefficients are supposed to be Lipschitz continuous functions in Ω̄ satisfying the ellip-
ticity condition

n∑
i,j=2

aij(x)ξiξj ≥ γa‖ξ‖2 for all (ξ, x) ∈ Rn × Ω̄, γa > 0.

It is assumed throughout that Ω ⊂ Rn, with n = 2, 3, is convex and bounded with sufficiently
smooth boundary Γ. We point out that with respect to the objective functional more general
cases can be considered; see [3]. However, in order to avoid additional technicalities we
restrict ourselves to the class of tracking-type objective functionals as stated in problem (5.1).
The function f : R → R is assumed to be of class C3, and f ′ is nonnegative. This implies
the assumptions posed in [3]: For all κ > 0 there exists γκ > 0 such that

|f(u)|+ |f ′(u)|+ |f ′′(u)| ≤ γκ,

|f ′′(u2)− f ′′(u1)| ≤ γκ|u2 − u1|

for all (u, u1, u2) ∈ [−κ, κ]3. In addition, we require that there exist constants c1, c2 such
that

|f ′′′(u)| ≤ c1 + c2|u|
p−6
2 ∀ u ∈ R.
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Here, we fix p ∈ [6,∞) for n = 2 and p = 6 for n = 3. Then we have the continuous
embedding

H1
0 (Ω) ⊂ Lp(Ω).

REMARK 5.1. The function f could also be a Carathéodory function that depends on x
and u.

REMARK 5.2. Iterated application of Lemma A.1 shows that all the growth conditions
stated in Theorem A.2 are satisfied for q = 2. Therefore, we have all assertions of Theorem
A.2 available. In particular, the superposition operator u ∈ H1

0 (Ω) ⊂ Lp(Ω) 7→ f(u) ∈
L2(Ω) is twice continuously Fréchet differentiable.

It is known (see below) that under the above assumptions the semilinear elliptic PDE

(5.2) Cu + f(u) = y in Ω, u = 0 on Γ

admits a unique solution u(y) ∈ H1
0 (Ω) for every y ∈ L2(Ω) and that u(y) enjoys the

additional regularity u(y) ∈ H2(Ω); see the appendix in [3]. Further, by classical arguments,
one can show that (5.1) admits at least one solution.

To obtain a finite-dimensional approximation of (5.1), the discrete control space Yh ⊂
L2(Ω) is chosen as described in section 2. Yh is equipped with the inner product (·, ·)Yh

=
(·, ·)L2 and it is identified with its dual, i.e., Y ∗

h = Yh. The discrete state space Uh ⊂ H1
0 (Ω)

consists of piecewise linear finite elements and is equipped with the same norm as H1
0 (Ω),

namely ‖·‖H1 , see [3] for details. Using these spaces, we formulate the discrete control
problem

minimize J(uh, yh)
subject to (uh, yh) ∈ Yh × Uh,

〈Cuh + f(uh), φh〉H−1,H1
0

= (yh, φh)L2 ∀ φh ∈ Uh,

yh ∈ Yad ∩ Yh.

(5.3)

For any yh ∈ Yh, the discrete state equation possesses a unique solution uh(yh) ∈ Uh.
Furthermore, the problem (5.3) possesses at least one solution, see [3].

We now analyze the differential operator

(5.4) E : H1
0 (Ω) → H−1(Ω), E(u) = Cu + f(u)

and its discretization

(5.5) Eh : Uh → U∗
h , 〈Eh(uh), φh〉U∗h,Uh

= 〈Cuh + f(uh), φh〉H−1,H1
0

∀ φh ∈ Uh.

Defining the natural injection jh : uh ∈ Uh 7→ uh ∈ H1
0 (Ω), which is linear and continuous

with ‖jh‖Uh,H1
0

= 1, we can write

Eh = j∗h ◦ E ◦ jh.

Since the injection jh acts like the identity, we will omit it in the sequel. The adjoint operator
j∗h, which is the projection from the space H−1(Ω) of bounded linear forms on H1

0 (Ω) onto
the space U∗

h of bounded linear forms on Uh, however, is important.
By the Sobolev embedding theorem, there exists a constant kp > 0 such that

‖·‖L2 ≤ ‖·‖H1 , ‖·‖H−1 ≤ ‖·‖L2 , ‖·‖Lp ≤ kp ‖·‖H1 .
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We proceed by defining the linear injection operator ih ∈ L(Yh, L2(Ω)). The adjoint of ih is
the averaging operator i∗h : L2(Ω) → Yh given by the explicit formula i∗hv = Πhv with

(5.6) (Πhv)|T =
1
|T |

∫
T

v(x) dx ∀ T ∈ Th.

Furthermore, since ‖ih‖Yh,L2 = 1, we also have ‖i∗h‖L2,Yh
= 1. For the purpose of abbrevi-

ation, let us finally define eh ∈ L(Uh, Yh), eh = i∗hjjh. Then ‖eh‖Uh,Yh
= ‖e∗h‖Yh,U∗

h
≤ 1.

The state equation and the discrete state equation, respectively, can be written in the form

E(u) = y,(5.7)
Eh(uh) = e∗hyh.(5.8)

THEOREM 5.3. The operators E and Eh, h > 0, defined in (5.4) and (5.5), respectively
have the following properties:
a) E and Eh, h > 0, are twice continuously Fréchet differentiable with

E′(u)v = Cv + f ′(u)v, E′′(u)(v1, v2) = f ′′(u)v1v2,

E′
h(uh)vh = j∗h(Cvh + f ′(uh)vh), E′′

h(uh)(v1
h, v2

h) = j∗h(f ′′(uh)v1
hv2

h).

b) E and Eh, h > 0, are strongly monotone. More precisely, there exists ν > 0 such that

〈E(u2)−E(u1), u2 − u1〉H−1,H1
0
≥ ν

∥∥u2 − u1
∥∥2

H1 ∀ u1, u2 ∈ H1
0 (Ω),

〈Eh(u2
h)− E(u1

h), u2
h − u1

h〉U∗
h ,Uh

≥ ν
∥∥u2

h − u1
h

∥∥2

Uh
∀ u1

h, u2
h ∈ Uh.

c) E and Eh, h > 0, are invertible and their inverses are Lipschitz continuous, i.e., with ν
as in b), ∥∥E−1(v2)−E−1(v1)

∥∥
H1 ≤ ν−1

∥∥v2 − v1
∥∥

H−1 ∀ v1, v2 ∈ H−1(Ω),∥∥E−1
h (v2

h)−E−1
h (v1

h)
∥∥

Uh
≤ ν−1

∥∥v2
h − v1

h

∥∥
U∗

h

∀ v1
h, v2

h ∈ U∗
h .

d) For all u ∈ L2(Ω) and all uh ∈ Uh, h > 0, the linear operators E′(u) ∈ L(H1
0 (Ω),H−1(Ω))

and E′
h(uh) ∈ L(Uh, U∗

h) are continuously invertible with∥∥E′(u)−1
∥∥

H−1,H1
0
≤ ν−1,

∥∥E′
h(uh)−1

∥∥
U∗

h ,Uh
≤ ν−1.

Proof.
a)

By Lemma A.1 and Theorem A.2, under the stated assumptions on f the superposition
operator

Sf : u ∈ Lp(Ω) 7→ f(u) ∈ L2(Ω)

is twice continuously differentiable with derivatives

S′f (u)v = f ′(u)v, S′′f (u)(v1, v2) = f ′′(u)v1v2.

Now the assertions on E follow from the continuous embedding H1
0 (Ω) ⊂ Lp(Ω). Further-

more, by the continuity and linearity of jh, Eh is twice continuously differentiable as well
with

E′
h(uh)vh = j∗h(E′(jhuh)(jhvh)) = j∗h(E′(uh)vh) = j∗h(Cvh + f ′(uh)vh),

E′′
h(uh)(v1

h, v2
h) = j∗h(E′′(jhuh)(jhv1

h, jhv2
h)) = j∗h(f ′′(uh)v1

hv2
h).
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b)
For all u1, u2 ∈ L2(Ω) we obtain with δu = u2 − u1∫
Ω

(f(u2(x))− f(u1(x)))δu(x) dx =
∫

Ω

∫ 1

0

f ′(u1(x) + tδu(x))δu(x) dt δu(x) dx

=
∫

Ω

∫ 1

0

f ′(u1(x) + tδu(x)) dt δu(x)2 dx ≥ 0.

Hence, by the ellipticity of C, there exists ν > 0 with

〈E(u2)− E(u1), δu〉H−1,H1
0
≥ 〈Cδu, δu〉H−1,H1

0
≥ ν ‖δu‖2H1 .

Furthermore, with δuh = u2
h − u1

h,

〈Eh(u2
h)−Eh(u1

h), δuh〉U∗
h ,Uh

= 〈E(u2
h)−E(u1

h), δuh〉H−1,H1
0
≥ ν ‖δuh‖2

H1 = ν ‖δuh‖2
Uh

.

c)
From the Browder-Minty theorem on monotone operators we obtain that E and Eh are

surjective. Now let E(u1) = v1 and E(u2) = v2. Then by b)

ν
∥∥u2 − u1

∥∥2

H1 ≤ 〈E(u2)−E(u1), u2 − u1〉H−1,H1
0

= 〈v2 − v1, u2 − u1〉H−1,H1
0

≤
∥∥v2 − v1

∥∥
H−1

∥∥u2 − u1
∥∥

H1 .

This proves the injectivity of E, thus its invertibility, and the Lipschitz continuity of E−1.
The assertion on Eh can be proved in exactly the same way.

d)
For all v ∈ H1

0 (Ω), there holds

〈E′(u)v, v〉H−1,H1
0

= 〈Cv, v〉H−1,H1
0
+

∫
Ω

f ′(u(x))v(x)2 dx ≥ 〈Cv, v〉H−1,H1
0
≥ ν ‖v‖2H1 .

Therefore, the linear operator E′(u) is strongly monotone and thus, as in c), we obtain the
invertibility of E′(u) and the bound on its inverse. In the same way we obtain the assertion
on Eh, since

〈E′
h(uh)vh, vh〉U∗

h ,Uh
= 〈E′(uh)vh, vh〉H−1,H1

0
≥ ν ‖vh‖2

H1 = ν ‖vh‖2Uh
.

2

In the following we consider the reduced version of problem (5.1) given by

minimize Ĵ(y) = 1
2‖u(y)− ud‖2

L2 + λ
2 ‖y‖

2
L2

subject to y ∈ Yad,
(5.9)

where u(y) ∈ H1
0 (Ω) denotes the unique solution of (5.2) for given y ∈ L2(Ω). Doing the

same with the discrete problem (5.3), we obtain the discrete reduced problem

minimize Ĵh(yh) = 1
2‖uh(yh)− ud‖2L2 + λ

2 ‖yh‖2L2

subject to yh ∈ Yad ∩ Yh

(5.10)

with uh(yh) ∈ Uh denoting the unique solution of the discrete state equation.
To avoid redundant argumentations, we introduce U0 = H1

0 (Ω), Y0 = L2(Ω), i0 : y ∈
L2(Ω) 7→ y ∈ L2(Ω), j0 : u ∈ H1

0 (Ω) 7→ u ∈ H1
0 (Ω), and e0 : u ∈ H1

0 (Ω) 7→ u ∈ L2(Ω).
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Then the continuous control problem (5.1) equals the problem (5.3) with h = 0 and the state
equation (5.7) coincides with (5.8), h = 0. Furthermore, the reduced control problem (5.9) is
identical to (5.10) with h = 0.

THEOREM 5.4. The operators

y ∈ L2(Ω) 7→ u(y) ∈ H1
0 (Ω) and yh ∈ Yh 7→ uh(yh) ∈ Uh

as well as the reduced objective functions Ĵ and Ĵh are twice continuously Fréchet differen-
tiable.

Proof. Let h ≥ 0 (this includes the continuous case h = 0). Then we have uh(yh) =
E−1

h (ehyh) and, by Theorem 5.3, the inverse function theorem can be applied to Eh and
yields that E−1

h is twice continuously Fréchet differentiable. Since the quadratic functional
J is smooth, the function Ĵ(y) = J(uh(yh), yh) is twice continuously differentiable, too.

2

The first order optimality conditions for (5.9) are given by

(5.11) ȳ ∈ Yad, (∇Ĵ(ȳ), y − ȳ)L2 ≥ 0 for all y ∈ Yad.

This is a problem of the form (1.2). Let us characterize ∇Ĵ(ȳ). In fact, we have

(5.12) (∇Ĵ(ȳ), v)L2 = (ū(ȳ)− ud, u
′(ȳ)v)L2 + λ(ȳ, v)L2 ,

where u′ denotes the derivative of u(y) with respect to y. In order to derive a computable
expression for u′(ȳ) we use the adjoint method. For this purpose we define the adjoint state
w = w(y) ∈ H1

0 (Ω) as the solution of the adjoint equation

E′(u(y))∗w = ∇uJ(u(y), y),

which in detail reads

(5.13) C∗w + f ′(u(y))w = u(y)− ud in Ω, w = 0 on Γ.

By Theorem 5.3, (5.13) admits a unique solution w(y) ∈ H1
0 (Ω) and elliptic regularity results

imply w(y) ∈ H2(Ω) ∩ C0,1(Ω̄). The adjoint gradient representation is then given by

(5.14) ∇Ĵ(y) = w(y) + λy.

Alternatively, we may write

∇Ĵ(y) = A(y) + λy,

where A : L2(Ω) 7→ w(y) ∈ Lp(Ω) (note the embedding H1
0 ⊂ Lp) is realized for given y

by first solving (5.2) for u and then solving (5.13) for w. Therefore, F (y) := ∇Ĵ(y) meets
the structural requirement (1.7).

The same adjoint calculus can be carried out for the discrete problem and results in the
discrete adjoint equation

E′
h(uh(yh))∗wh = j∗h∇uJ(uh(yh), yh),

which uniquely specifies the adjoint state wh = wh(uh) ∈ Uh. In detail, the adjoint equation
reads

〈C∗wh + f ′(uh(yh))wh, φh〉H−1,H1
0

= (uh(yh)− ud, φh)L2 ∀ φh ∈ Uh.



MESH-INDEPENDENCE OF SEMISMOOTH NEWTON METHODS 19

We obtain the discrete adjoint gradient representation

∇Ĵ(yh) = ehwh + λyh = i∗hwh + λyh.

Setting Fh(yh) = ∇Ĵ(yh) = Ah(yh) + λyh with Ah(yh) = ehwh(yh), the discrete control
problem is equivalent to (2.1) and Fh has the required structure.

Next, we state error estimates. For the proofs we refer to the recent paper [3].
THEOREM 5.5. Denote by (ȳh)h>0 a sequence of solutions to (5.3) that converges to a

solution ȳ of (5.1). Then, for sufficiently small h > 0, we have

‖u(ȳ)− uh(ȳh)‖H1 + ‖w(ȳ)− wh(ȳh)‖H1 ≤ c(h + ‖ȳ − ȳh‖L2),(5.15)
‖u(ȳ)− uh(ȳh)‖L2 + ‖w(ȳ)− wh(ȳh)‖L2 ≤ c(h2 + ‖ȳ − ȳh‖L2),(5.16)
‖u(ȳ)− uh(ȳh)‖L∞ + ‖w(ȳ)− wh(ȳh)‖L∞ ≤ c(h2−n

2 + ‖ȳ − ȳh‖L2),(5.17)
‖ȳ − ȳh‖L2 ≤ ch.(5.18)

Now we can verify Assumption 3.2.1: The first requirement (3.3) follows immediately from
(5.18). For the second requirement we need the inequality

(5.19) ‖Πhv‖Lq ≤ ‖v‖Lq ∀ v ∈ Lq(Ω), q ∈ [2,∞],

where Πh is defined by (5.6). For q = ∞ this is obvious. To establish (5.19) for 2 ≤ q < ∞,
let v ∈ Lq(Ω) be arbitrary. Then

‖Πhv‖q
Lq =

∑
T∈Th

∥∥∥∥ 1
|T |

∫
T

v(x) dx

∥∥∥∥q

Lq(T )

=
∑

T∈Th

1
|T |q−1

∣∣∣∣∫
T

v(x) dx

∣∣∣∣q .

Now, by Hölder’s inequality,∣∣∣∣∫
T

v(x) dx

∣∣∣∣ ≤ ∫
T

|v(x)| dx ≤
(∫

T

dx

) q−1
q

(∫
T

|v(x)|q dx

) 1
q

= |T |
q−1

q ‖v|T ‖Lq(T ) .

Hence,

‖Πhv‖q
Lq =

∑
T∈Th

1
|T |q−1

∣∣∣∣∫
T

v(x) dx

∣∣∣∣q ≤ ∑
T∈Th

1
|T |q−1 |T |

q−1 ‖v|T ‖q
Lq(T ) = ‖v‖q

Lq .

Furthermore, for the regular triangulations under consideration, it can be shown that (see
[11])

(5.20) ‖w(ȳ)− Πhw(ȳ)‖L2 ≤ ch ‖w(ȳ)‖H1 .

Now we can prove (3.4) by invoking (5.15), (5.17), (5.18), (5.19), and (5.20):

‖A(ȳ)−Ah(ȳh)‖Lp ≤ ‖w(ȳ)− ehwh(ȳh)‖Lp = ‖w(ȳ)− i∗hwh(ȳh)‖Lp

≤ ‖Πh(w(ȳ)− wh(ȳh))‖Lp + ‖w(ȳ)−Πhw(ȳ)‖Lp

≤ ‖w(ȳ)− wh(ȳh)‖Lp + ‖w(ȳ)−Πhw(ȳ)‖
p−2

p

L∞ ‖w(ȳ)− Πhw(ȳ)‖
2
p

L2

≤ kpch + (2 ‖w(ȳ)‖L∞)
p−2

p (ch ‖w(ȳ)‖H1)
2
p → 0 as h → 0.

It remains to prove the Assumptions 3.2.2 and 3. The nonlinearity of the state equation makes
this task lengthy. For the reader who wants to see an immediate result, we first consider the
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linear quadratic case in the next remark, for which the remaining assumptions can be verified
very quickly.

REMARK 5.6. Consider the special case (4.6), i.e., f ≡ 0 and C = −∆. Then with the
notation introduced in the discussion of problem (4.6), we have E(u) = Bu and Eh(uh) =
Bhuh with Bh = j∗hBjh. Furthermore,

A(y) = B−1j∗(jB−1y − ud), Ah(yh) = ehB−1
h j∗hj∗(jjhB−1

h e∗hyh − j∗hud).

We obtain

‖A(y)− A(ȳ)‖Lp ≤ kp

∥∥B−1j∗jB−1(y − ȳ)
∥∥

H1 ≤ kpν
−1

∥∥B−1(y − ȳ)
∥∥

H−1

≤ kpν
−1

∥∥B−1(y − ȳ)
∥∥

H1 ≤ kpν
−2 ‖y − ȳ‖L2 ,

‖Ah(yh)−Ah(ȳh)‖Lp ≤ kp

∥∥ehB−1
h j∗hj∗jjhB−1

h e∗h(yh − ȳh)
∥∥

Uh
≤ kpν

−2 ‖yh − ȳh‖Yh
.

This implies Assumption 3.2.2 with L = kpν
−2.

The Assumption 3.2.3 is trivial, since

A(y)− A(ȳ)−A′(y)(y − ȳ) = 0, Ah(yh)− Ah(ȳh)−A′
h(yh)(yh − ȳh) = 0.

We now return to the control problem with semilinear state equation.
THEOREM 5.7.

a) The operators u(·) : L2(Ω) → H1
0 (Ω) and uh(·) : Yh → Uh, h > 0, are Lipschitz

continuous with modulus ν−1 and there holds

‖u(y)‖H1 ≤ ν−1 ‖y‖L2 , ‖uh(yh)‖Uh
≤ ν−1 ‖yh‖Yh

.

b) For any bounded set V ⊂ L2(Ω), there exists LV > 0 such that the Fréchet derivatives
u′(·) and u′h(·), h > 0, are Lipschitz continuous on V and V ∩ Yh, respectively, with
modulus LV . Furthermore, for all y ∈ L2(Ω) and yh ∈ Yh, we have the bounds

‖u′(y)‖L2,H1 ≤ ν−1, ‖u′h(yh)‖Yh,Uh
≤ ν−1.

Proof. Throughout the proof, let h ≥ 0 and yi
h ∈ Yh be arbitrary and set

ui
h = uh(yi

h), i = 1, 2, δyh = y2
h − y1

h, δuh = u2
h − u1

h.

a)

‖δuh‖Uh
=

∥∥E−1
h (e∗hy2

h)−E−1
h (e∗hy1)

∥∥
Uh

≤ ν−1 ‖e∗hδyh‖U∗
h
≤ ν−1 ‖δyh‖Yh

.

The growth estimate follows from u(0) = 0 and uh(0) = 0.

b)
Let r > 0 be such that ‖y‖L2 ≤ r for all y ∈ V and consider yi ∈ V , yi

h ∈ V ∩ Yh.
Then, since u(0) = 0 and uh(0) = 0, we have by a) that∥∥ui

∥∥
H1 ≤ ν−1r,

∥∥ui
h

∥∥
Uh

≤ ν−1r.

Since uh(·) is Lipschitz continuous with modulus ν−1, we conclude

‖u′h(yh)vh‖Uh
= lim

t→0

‖uh(yh + tvh)− uh(yh)‖Uh

t
≤ ν−1 ‖vh‖Yh

∀ yh, vh ∈ Yh.
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Differentiation of the (discrete) state equation (5.8) yields

E′
h(ui

h)u′h(yi
h)vh = j∗h(Cu′h(yi

h)vh + f ′(ui
h)u′h(yi

h)vh) = e∗hvh,

Hence,

E′
h(u2

h)(u′h(y2
h)− u′h(y1

h))vh =

= E′
h(u2

h)u′h(y2
h)vh − E′

h(u1
h)u′h(y1

h)vh + (E′
h(u1

h)−E′
h(u2

h))u′h(y1
h)vh

= j∗h
(
(f ′(u1

h)− f ′(u2
h))(u′h(y1

h)vh)
)
.

We use Hölder’s inequality to estimate∥∥j∗h
(
(f ′(u1

h)− f ′(u2
h))(u′h(y1

h)vh)
)∥∥

U∗
h

≤
∥∥(f ′(u1

h)− f ′(u2
h))(u′h(y1

h)vh)
∥∥

L2 ≤
∥∥f ′(u1

h)− f ′(u2
h)

∥∥
L

2p
p−2

∥∥u′h(y1
h)vh

∥∥
Lp

≤ kpν
−1

∥∥f ′(u1
h)− f ′(u2

h)
∥∥

L
2p

p−2
‖vh‖Uh

≤ kpν
−1

∥∥f ′(u1
h)− f ′(u2

h)
∥∥

L
2p

p−2
‖vh‖Yh

.

According to Theorem 5.7 a) with f , p and q replaced by f ′, p and 2p
p−2

, respectively,

we have that the operator u ∈ Lp(Ω) 7→ f ′(u) ∈ L
2p

p−2 (Ω) is Lipschitz continuous on{
‖u‖Lp ≤ ν−1r

}
with a constant Lr . Hence,∥∥(u′h(y2

h)− u′h(y1
h))vh

∥∥
Uh

≤
∥∥E′

h(u2
h)−1

∥∥
U∗

h ,Uh
kpν

−1Lr ‖δuh‖Lp ‖vh‖Yh

≤ k2
pν

−2Lr ‖δuh‖Uh
‖vh‖Yh

=: LV ‖δuh‖Uh
‖vh‖Yh

.

The uniform Lipschitz continuity of u′h(·), h ≥ 0, on V is proved. 2

THEOREM 5.8. For any bounded set V ⊂ L2(Ω), the following holds:
a) The operators w(·) : L2(Ω) → H1

0 (Ω) and wh(·) : Yh → Uh, h > 0, are Lipschitz
continuous and bounded on V and V ∩Yh, respectively, with Lipschitz constant and bound
independent of h.

b) The Fréchet derivatives w′(·) and w′
h(·), h > 0, exist, and these operators are Lipschitz

continuous on V and V ∩ Yh, respectively, with a Lipschitz constant independent of h.
Proof. Let V ⊂ L2(Ω) be bounded and choose r > 0 such that ‖y‖L2 ≤ r for all y ∈ V .

Now consider any h ≥ 0. As in the proof of Theorem 5.7 a), there holds

‖uh(yh)‖Uh
≤ ν−1r ∀ yh ∈ V ∩ Yh, h ≥ 0.

a)
Let yi

h ∈ V ∩ Yh, i = 1, 2, be arbitrary and set

ui
h = uh(yi

h), wi
h = wh(yi

h), δyh = y2
h − y1

h, δuh = u2
h − u1

h, δwh = w2
h − w1

h.

We have

E′
h(ui

h)∗wi
h = j∗h(C∗wi

h + f ′(ui
h)wi

h) = j∗h(ui
h − ud).

Furthermore, we obtain the uniform bound∥∥wi
h

∥∥
Uh

=
∥∥E′

h(ui
h)−1j∗h(ui

h − ud)
∥∥

Uh
≤ ν−1

∥∥ui
h − ud

∥∥
H−1 ≤ ν−1(ν−1r + ‖ud‖L2).

Next, we use the adjoint equation to derive

E′
h(u2

h)∗δwh = E′
h(u2

h)∗w2
h −E′

h(u1
h)∗w1

h + (E′
h(u1

h)∗ − E′
h(u2

h)∗)w1
h

= j∗h
(
δuh + (f ′(u1

h)− f ′(u2
h))w1

h

)
.
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Hence,

‖δwh‖Uh
≤

∥∥(E′
h(u2

h)∗)−1
∥∥

U∗
h

,Uh

∥∥j∗h(δuh + (f ′(u1
h)− f ′(u2

h))w1
h)

∥∥
U∗

h

≤ ν−1(‖δuh‖L2 +
∥∥f ′(u1

h)− f ′(u2
h)

∥∥
L

2p
p−2

∥∥w1
h

∥∥
Lp).

Since f ′(·) : Lp(Ω) → L
2p

p−2 (Ω) is Lipschitz continuous on the bounded set
{
‖u‖Lp ≤ ν−1r

}
with a constant Lr, we obtain

‖δwh‖Uh
≤ ν−1(1 + kpLrν

−1(ν−1r + ‖ud‖L2)) ‖δuh‖L2 =: LV ‖δuh‖L2 .

b)
We consider the adjoint equation

E′
h(uh(yh))∗wh − j∗h(uh(yh)− ud) = 0.

The operator on the left is continuously Fréchet differentiable and the partial derivative with
respect to wh is E′

h(uh(yh))∗. This operator is continuously invertible so that the implicit
function theorem can be applied to prove that yh 7→ wh(yh) is continuously Fréchet differ-
entiable.

Now let yh ∈ V ∩ Yh be arbitrary. With uh = uh(yh) and wh = wh(yh) we obtain by
differentiation

E′
h(uh)∗w′

h(yh) + f ′′(uh)wh · u′h(yh)− j∗hu′h(yh) = 0.

It was shown in Theorem 5.7 and in a) that the operators

uh(·), wh(·) : Yh 7→ Uh and u′h(·) : Yh 7→ L(Yh, Uh)

are Lipschitz continuous and bounded on V ∩ Yh with Lipschitz constant and bound inde-
pendent of h. Furthermore, by Theorem A.2 a), the operator f ′′(·) : Lp(Ω) → L

2p
p−4 (Ω) is

Lipschitz continuous on
{
‖u‖Lp ≤ ν−1r

}
. Since, by Hölder’s inequality,

‖f ′′(uh)wh(u′h(yh)vh)‖U∗
h
≤ ‖f ′′(uh)wh(u′h(yh)vh)‖L2

≤ ‖f ′′(uh)‖
L

2p
p−4

‖wh‖Lp ‖u′h(yh)vh‖Lp

≤ k2
p ‖f ′′(uh)‖

L
2p

p−4
‖wh‖Uh

‖u′h(yh)vh‖Uh
,

we conclude that for h ≥ 0 the operator

f ′′(uh(·))wh(·) · u′h(·)− j∗hu′h(·) : Yh 7→ L(Uh, U∗
h)

is Lipschitz continuous and bounded on V ∩ Yh with Lipschitz constant and bound indepen-
dent of h. It remains to show that the operator

yh ∈ Yh × U∗
h 7→ (E′

h(uh(yh))∗)−1 ∈ L(U∗
h , Uh)

is Lipschitz continuous and bounded on V ∩ Yh with Lipschitz constant and bound indepen-
dent of h ≥ 0. This, however, can be done exactly as in part a). 2

We are now in a position to verify the remaining Assumptions 3.2.2 and 3.
Since Assumptions 3.2.1 is already shown, we see that we can choose h0 > 0 and δ0 > 0

and a bounded set V ⊂ L2(Ω) such that y ∈ V holds for all y ∈ Y with ‖y − ȳ‖L2 ≤ δ0 and
yh ∈ V ∩ Yh holds for all yh ∈ Yh with ‖yh − ȳh‖Yh

≤ δ0, 0 < h < h0. From Theorem 5.8
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we then obtain a constant LV > 0 such that the following estimates hold: For all yi ∈ L2(Ω),∥∥yi − ȳ
∥∥

L2 ≤ δ0,∥∥A(y2)−A(y1)
∥∥

Lp ≤ kp

∥∥w(y2)− w(y1)
∥∥

H1 ≤ kpLV

∥∥y2 − y1
∥∥

L2 .

Further, for all 0 < h < h0 and all yi
h ∈ Yh,

∥∥yi
h − ȳh

∥∥
Yh
≤ δ0,∥∥Ah(y2

h)− Ah(y1
h)

∥∥
Lp =

∥∥i∗h(wh(y2
h)− wh(y1

h))
∥∥

Lp ≤ kp

∥∥wh(y2
h)− wh(y1

h)
∥∥

Uh

≤ kpLV

∥∥y2
h − y1

h

∥∥
Yh

.

This proves Assumptions 3.2.2.
We now proceed to Assumptions 3.2.3. By Theorem 5.8, the operators w′(·) and w′

h(·),
h > 0, are Lipschitz continuous on V and V ∩Yh, respectively, with a common modulus L′V .
Hence, for all y ∈ L2(Ω), ‖y − ȳ‖L2 ≤ δ0, we have with s = y − ȳ

‖A(y)−A(ȳ)−A′(y)(y − ȳ)‖L2 =
∥∥∥∥∫ 1

0

(w′(ȳ + ts)− w′(y))s dt

∥∥∥∥
L2

≤
∫ 1

0

‖(w′(ȳ + ts)− w′(y))s‖H1 dt ≤
∫ 1

0

L′V (1− t) ‖s‖2L2 dt =
L′V
2
‖s‖2L2 .

In the same way, for all 0 < h < h0 and all yh ∈ Yh, ‖yh − ȳh‖Yh
≤ δ0, we obtain with

sh = yh − ȳh

‖Ah(yh)−Ah(ȳh)− A′
h(yh)(yh − ȳh)‖Yh

=
∥∥∥∥∫ 1

0

i∗h(w′
h(ȳh + tsh)− w′

h(yh))sh dt

∥∥∥∥
Yh

≤
∫ 1

0

‖(w′
h(ȳh + tsh)− w′

h(yh))sh‖Uh
dt ≤

∫ 1

0

L′V (1− t) ‖sh‖2
Yh

dt =
L′V
2
‖sh‖2

Yh
.

Hence, (3.5), (3.6), and (3.7) are satisfied with ρ(t) = L′V t
2 .

6. Numerical validation. For the numerical validation of our mesh independence result
we consider the following optimal control problem with a semilinear governing equation.

minimize J(u, y) = 1
2‖u− ud‖2L2 + λ

2 ‖y‖
2
L2

subject to (u, y) ∈ H1(Ω)× L2(Ω),

−∆u + u3 + u = y in Ω, u = 0 on Γ = ∂Ω,

y ∈ Yad = {y ∈ L2(Ω) | − 4 ≤ y(x) ≤ 0 for a.a. x in Ω},

(6.1)

with Ω = (0, 1)2, ud = sin(2πx1) sin(2πx2) exp(2x1)/6, and λ = 0.001. For the discretiza-
tion of (6.1) we use the procedure described in section 2. We initialize Algorithm 2.1 with
y0

h = 0, i.e., the initial control is set to the upper bound. The generalized derivatives are
determined according to Corollary 4.2.

For the results reported on in Tables 6.1-6.3 we use the following notation:

resk
h = ‖λyk

h − P[−4λ,0](−Ah(yk
h))‖L2 ,

lkh = ‖yk
h − y∗h‖L2 ,

qk
h = ‖yk

h − y∗h‖L2/‖yk−1
h − y∗h‖L2 .

Here y∗h denotes a reference solution computed by a previous run of the algorithm with the
same initialization. In all test runs the algorithm terminates as soon as resk

h ≤ √
εM , with
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FIG. 6.1. Optimal control and state for h = 1/256.

εM the machine precision. Figure 6.1 shows the optimal control yh and the corresponding
optimal state uh for h = 1/256.

In Table 6.1 we provide the convergence behavior of the complementarity residual resk
h.

The changes in the residuals for decreasing h (consider the columns of Table 6.1) are mono-

TABLE 6.1
Convergence behavior of resk

h = ‖λyk
h − P[−4λ,0](−Ah(yk

h))‖L2 .

h resk
h

1 2 3 4
1/16 2.464 1.137 0.056 0
1/32 2.575 1.209 0.062 3.853E-5
1/64 2.604 1.237 0.062 4.677E-5

1/128 2.609 1.243 0.062 3.597E-5
1/256 2.611 1.244 0.062 5.045E-5

tonically decreasing. This stabilizing effect clearly indicates an asymptotically mesh inde-
pendent behavior.

In the following Table 6.2 we display the quantities lkh which are involved in the linear
rate of convergence assertions of our mesh independence results Theorem 3.6 resp. Theo-
rem 4.3. Like in the previous table we can observe a certain stabilizing behavior with respect
to decreasing mesh-size h. This clearly validates the assertion of Theorem 4.3.

Finally, in Table 6.3 we provide the quotients qk
h = ‖yk

h − y∗h‖L2/‖yk−1
h − y∗h‖L2 . With

respect to decreasing h we observe again the stabilizing behavior as before. Each row in
Table 6.3 corresponds to the convergence history of Algorithm 2.1 with fixed h. Obviously,
the algorithm converges superlinearly for fixed h. Combining the observations of this be-
havior with the behavior with respect to decreasing h, we infer that the superlinear rate of
convergence does not deteriorate with respect to decreasing h. Moreover, independently of
the mesh-size h Algorithm 2.1 requires 5 iterations until its successful termination. The latter
behavior is known as strong mesh independence (see [1]) which numerically augments our
theoretical results.

Appendix A. Appendix.
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TABLE 6.2
Convergence behavior of lkh = ‖yk

h − y∗h‖L2 .

h lkh
1 2 3 4

1/16 3.197 1.152 0.056 1.425E-5
1/32 3.318 1.223 0.062 6.112E-5
1/64 3.350 1.251 0.063 6.286E-5

1/128 3.353 1.257 0.063 5.780E-5
1/256 3.355 1.258 0.062 6.693E-5

TABLE 6.3
Convergence behavior of qk

h = ‖yk
h − y∗h‖L2/‖yk−1

h − y∗h‖L2 .

h qk
h

1 2 3 4
1/16 1.602 0.360 0.048 2.560E-4
1/32 1.628 0.368 0.051 9.794E-4
1/64 1.635 0.374 0.050 1.005E-3

1/128 1.636 0.375 0.050 9.180E-4
1/256 1.636 0.375 0.050 1.071E-3

LEMMA A.1. Let the continuously differentiable function f : R → R satisfy

|f ′(u)| ≤ c1 + c2|u|q

with c1, c2 ≥ 0 and q > 0. Then, for all u, d ∈ R,

|f(u)| ≤ c1|u|+
c2

q + 1
|u|q+1 ≤ c1 +

(
c1 +

c2

q + 1

)
|u|q+1.

Proof.

|f(u)| ≤
∫ 1

0

|f ′(tu)u| dt ≤ |u|
∫ 1

0

(c1 + c2|tu|q) dt ≤ c1|u|+ |u|q+1 c2

q + 1
tq+1|10

= c1|u|+
c2

q + 1
|u|q+1 ≤ c1 +

(
c1 +

c2ζ

q + 1

)
|u|q+1.

2

THEOREM A.2.
a) Let f : R → R be continuous and assume that there exist constants c1, c2 ≥ 0 with

|f(s)| ≤ c1 + c2|s|
p
q ∀ s ∈ R,

where p, q ∈ [1,∞). Then the superposition operator Sf : Lp(Ω) → Lq(Ω), Sf (u) =
f(u) is continuous with

‖f(u)‖Lq ≤ c1 |Ω|
1
q + c2 ‖u‖

p
q

Lp .

b) Let f : R → R be continuously differentiable and assume that there exist constants
c1, c2 ≥ 0 with

|f ′(s)| ≤ c1 + c2|s|
p−q

q ∀ s ∈ R,
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where p, q ∈ [1,∞), p > q. Then the superposition operator Sf : Lp(Ω) → Lq(Ω),
Sf (u) = f(u) is continuously Fréchet differentiable with derivative

S′f (u)v = f ′(u)v.

Furthermore, on any bounded subset V ⊂ Lp(Ω), Sf is Lipschitz continuous.

c) Let f : R → R be twice continuously differentiable and assume that there exist constants
c1, c2 ≥ 0 with

|f ′′(s)| ≤ c1 + c2|s|
p−2q

q ∀ s ∈ R,

where p, q ∈ [1,∞), p > 2q. Then the superposition operator Sf : Lp(Ω) → Lq(Ω),
Sf (u) = f(u) is twice continuously Fréchet differentiable with derivatives

S′f (u)v = f ′(u)v, S′′f (u)(v1, v2) = f ′′(u)v1v2.

a) For the continuity, see [25, Prop. 26.6]. We now prove the bound.

‖f(u)‖q
Lq ≤

∥∥∥c1 + c2|u|
p
q

∥∥∥
Lq
≤ c1 |Ω|

1
q + c2 ‖u‖

p
q

Lp .

b) The continuous differentiability of Sf is proved in, e.g., [20, Appendix].
Now consider V = {u : ‖u‖Lp ≤ r}, r > 0. Then, for u1, u2 ∈ V and d = u2 − u1, we

can use the bound in a) (applied to f ′) to derive

∥∥Sf (u2)− Sf (u1)
∥∥

Lq =
∥∥∥∥∫ 1

0

S′f (u1 + td)d dt

∥∥∥∥
Lq

≤
∫ 1

0

∥∥f ′(u1 + td)d
∥∥

Lp dt

≤
∫ 1

0

∥∥f ′(u1 + td)
∥∥

L
pq

p−q
‖d‖Lp dt

≤
∫ 1

0

(
c1 |Ω|

p−q
pq + c2 ‖u + td‖

p−q
q

Lp

)
dt ‖d‖Lp

≤
(
c1 |Ω|

p−q
pq + c2r

p−q
q

)
‖d‖Lp =: LV ‖d‖Lp .

The proofs of c) can be found in [20, Appendix]. 2
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