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Definition and examples

Let (N, +, -) be a (left) nearring. Define an equivalence relation
=_on N by

as_b®ax =bx forallx e N.
We say that (N, +, .) isplanarif IN/ =l 2 3, and for each triple
a, b, c e Nwith a #,b, the equation ax = bx +c has a unique

solution for x in N.

« All fields and finite nearfields are planar.



* The three examples [1].

Fora, b € C, define

:

a, -b ifa, #0,
ax b=

La2.b if a, =0;
ax,b=lal -Db;

[

2 b ifaso,
a*3b=+|a|

0 ifa =0.

Then (C, +, %), (C, +, %), and (C, +, ;) are planar

nearrings which are not rings.



Constructions
A. Planar nearrings ~~ Ferrero pairs [9]:

Let N be a planar nearring. For a € N with a #_ 0, define
¢, : N=>N;x »ax forallx eN.
Then

* o, € Aut(N, +),and o, #1 & a#,1
« o, (x)=xifandonlyif o, =10rx =0.

« -1+ ¢_Iissurjectiveif ¢, #1
Thus, @ = {p, | a € N, a #, 0} is a regular group of

automorphisms of (N, +) with the property that -1 + ¢ IS
surjective if ¢, # 1. We call (N, &) a Ferrero pair.



In general, if @ is a group acting on N as an automorphism
group, and for ¢ € @\ {1}, -1 + ¢ is bijective, then (N, @)

Is called a Ferrero pair.



B. Ferrero Pair ~~ Planar nearring:

Let (N, @) be a Ferrero pair. Let C be a complete set of
orbit representatives of @ in N. Let E ¢ C\{0} with |E| > 2.
Then

N=Uee®(@) | | U ccre @CF).

Define * on N by
:

o(y) eeE,ped,y eN,
p(e) *y =1
0 otherwise.

L
Then (N, +, *) is a planar nearring.

¢ The elements in E are exactly the left identities of N.

¢ N is an integral planar nearring if and only if E = C\ {0}, .



Examples.

(a) (C, +, *,); the corresponding Ferrero pair is (C, ﬁl@*),
where R* = {o, | r € R\ {0}}.

(b) (C, +, *,); the corresponding Ferrero pair is (C, ®y,
where R* = {p, | r >0}

(c) (C, +, =*;); the corresponding Ferrero pair is (C, O,
Where/C3={<pC | Ic| =1}.

(d) Let F be a field. Then F is a planar nearring. Take
@ <F*=F\{0}andput® = {p, | a € ®} < Aut(F, +)
where each ¢, : F - F is the left multiplication
by a. Then (F, &) is a Ferrero pair. Any nearring

constructed from (F, &) is said to be field generated.



Isomorphism problem.  Given a Ferrero pair (N, @), is
there a way to distinguish the planar nearrings constructed

from it?

Example. Consider the Ferrero pair (C, ©). Take as orbit
representatives the sets

E,={x+x% | x>0}andE,={x | x > 0}.
Then the planar nearrings (C, +, *z) and (C, +, *¢)
constructed using E, and E,, respectively, are not

Isomorphic:



Assume that o is an isomorphism between N, = (C, +, *¢ )
and N, = (C, +, *). Then o(E,) = o(E)) as they are
the sets of left identities of N, and N,, respectively. Take
3+56i € N,. Then

o(3+51)=0c((1+1)+(2+41))

=oc(1+1)+0(2+41).

- 3+51 ¢ E,=0(3+51) ¢E,.
«1+i and2+4i eE, 2 0(1+i), o(2+4i) €eE,.
« Since E, is closed under +, o(1+1) +o0(2+4i) € E,, a

contradiction.



Theorem 1. Let (M, ¥) and (N, @) be Ferrero pairs and
let E, and E, be sets of orbit representatives of ¥ and &
iIn Mand N, respectively, with |E,| 2 2. Let (M, +, ) and
(N, +, %) be the planar nearrings defined on Mand N using
E, and E,, respectively. Then an additive isomorphism o
from (M, +) to (N, +) is an isomorphism of the planar
nearrings (M, +, -) and (N, +, %) ifand only if o(E,) = E,
and c%Po’! = @.

In particular, if (M, ¥) = (N, &), then an automorphism
o € Aut(N, +) is an isomorphism of N, and N, if and only if

o(E,) = E, and o normalizes &.



Remark.  This theorem is valid for Ferrero nearring

constructions.
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Let G be a group and @ < AutG. Let A be a complete set

of orbit representatives of @ in G. Suppose that E ¢ A. If
E = @, then we have trivial multiplication on G. If E # &, we

want E to satisfy
p(e) +e forallpe ®d\ {1} ande € E.

Put A° = A\ E and G° = ®#A°. For x, y € G, define

:
0 ifx e G°:
X*y = 4

ch(y) if X =¢p(e) e PE.

Then (G, +, *) Is a Ferrero nearring which is planar if and

only if (G, @) is a Ferrero pair.
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Lemma 2. Let 0 : C - C be an automorphism of the
additive group (C, +). |If oiCo = C, then o is either
a rotation or a reflection about a line through the origin.
Consequently, o (C) =C.

Example. Let E, and E, be two complete sets of orbit
representatives of Cin C\ {0}. Let o € Aut(C, +). If o
IS an isomorphism of the planar nearrings, then o takes C
to C. Thus, according to the above lemma, we have that
(C, +, *¢) and (C, +, *¢ ) are isomorphic if and only if

E, =e'°E, or E, = €' °E, for some 6 € R.
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Questions . (1) Now that we are able to distinguish the

planar nearrings defined on (C, +) using C, what's next?

(2) Note that if E is a complete set of orbit representatives
of Cin C\ {0}. Then the planar nearring (C, +, *) is a
topological nearring if and only If E is a continuous curve in

C. Is there a way to characterize them?
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Characterizations of Planar Nearrings

Theorem 3 ([3]). Let N be a zero-symmetric 3-prime nearring.
Let L be an N-subgroup of N. Then there is an e = 2 € N such
that L = eN. Let @ = eNe \ {0}, then (L, @) is a Ferrero pair,

and L is a planar nearring.

Theorem 4 ([17]). Let P be a (right) planar nearring with
corresponding Ferrero pair (P, @). Let N = M,(P). Then P is
iIsomorphic to a subnearring P with right identity of N such that N

IS 2-primitive on P via the nearring multiplication, and P = P.
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Theorem 5 ([18]). Let P be a (right) nearring. The P is planar
if and only if P is isomorphic to a centralizer sandwich nearring
M(gp, id, X, N) ={f : X >N | f (a(x)) = a(f (x)) for all
a € Cand x € X}. Here C is a fixed point free automorphism

group of automorphisms of (N, +) with the following properties:

(1) (N, C) is a Ferrero pair;

(2) IX| 22and X =C(a) U {0} for some a € N;

(3) the function ¢ acts as the identity map on C(a) and

commutes with elements of C.
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Designs from Planar Nearrings

Definition. A set X with v elements together with a family S
of k-subsets of X is called a balanced incomplete block design
(BIBD) if

(i) each element belongs to exactly r subsets, and
(i) each pair of distinct elements belongs to exactly A subsets.

The k-subsets in S are called blocks, and the integers v, b =

ISI, r, k, xare referred to as the parameters of the BIBD.
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(A) B,B", B*
Let (N, &) be a finite Ferrero pair (i.e. N is finite). Denote
d°=pU {0} and & =d U (-P) U {0}. Let

B={®d%a+b | a, beN,as+0}where
DPa+b={P@) +b | ® e ®°};

B ={®a+b la, beN,a #0};
B*=Bg,={®a+b | a, beN,a+0}

Theorem 6 ([7]). Let (N, &) be a finite Ferrero pair. Then
(N, B*) a BIBD.
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(B) Conjecture (Modisett). The automorphism group of
(N, Bg) is the normalizer of @ in Aut(N, +).

(C) Actually, (N, +, B,) is a design group, i.e. N has a group
structure, and each of the mappings p, : N> N; x = x +a,
a € N, is an automorphisms of the design. In this case, a
mapping N = N is called an automorphism of the design
group if it is at the same time an automorphism of the groups

as well as of the design.

Theorem 7 ([10]). Let (N, @) be a finite Ferrero pair such
that N and & are abelian with |@| < [IN| - 1. Then
Aut(N, +, B,) Is the normalizer of @ in Aut(N, +).
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Theorem 8 ([5]). Let (M, ¥) and (N, &) be finite Ferrero
pair and let o be an isomorphism from (M, By, +) to
(N, By, #). Let |@] = k and set s = 2k?2 -6k +7. If
IN/ [N, N1| >s, then c¥Wo™! = @&. In particular, if (M, V) =

(N, &), then o is a normalizer of &.

Example. LetF = GF(73) andx : F - Aut(F) a coupling on
F suchthatF* := (F, +, o) isaproper nearfield withaeb :=
a-x,(b). Let ® < F* of index 2. Since & is characteristic,
@< .= (@, o) isasubgroup of (F<)*. Then &*is nonabelian,
and so @ and @~ are not isomorphic; therefore @ and @*

cannot be conjugate to each other. But (F, B,) = (F, Bgx).
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(D) ([8], [16]) Segments Let (N, &) be a Ferrero pair. For distinct
a, b € N, define
a, b=d%(b-a)+and®a-hb) +b,
and call it a segment with endpoints a and b. Let
S={a,bla beN,a#b}.

Note that if one put S = @°N (1 - @#°), then 1 -S = S and
a, b=(b-a)S+a.

Theorem 9 (H.-M. Sun 2002). If N is a nearfield or a ring,
thena, b=c, difandonlyif (a, b) = (c, d).
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» Field generated cases

Let F = GF(g) be a Galois field and S a subset of F with
|S| > 2. Consider

S={Sa+bla, beF,a#+0}.
Then (F, S) is always a BIBD.

Theorem 10 ([6]). If IS] = 3, then the (F, S) is a 2-
(q, 3, A) design with A € {1, 2, 3, 6}. LetU = {r |
{0, 1, r} € S} and K = (U, +, -) be the subfield of F
generated by U. Then under some mild condition, we have
that f € Aut(F, S) if and only if f (X) = A(a(x)) +b
(X € F) forsomeb e F, a € Aut, (F),and Ae Z(F, K) (=

linear transformations of the vector space F over K).
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* Ring generated cases

Let (R, +, -) be afinite ring with unity and denote by % (R)
the group of units of R. Suppose that @ is a subgroup of
% (R) with -1 € &. Let {s,, . . ., s} be a complete set
of orbit representatives of @ in R\ {0}. Foreach i, let A =
{{x, y}Ix-yeds }andsetr ={A | 1<i <m}h

Theorem 11 ([16]). (1) (R, ) is an associative scheme.
(2) For any proper subset S of Rwith |S| 2 2, denote S
{aS+b laed, beR} Then (R, S, &) is a PBIBD.
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Circularity and Graphs

 Definition
(N, +, -): planar nearring, N*={n € N | n #_0}.
a, c, b,deN,a#,0,c# 0
N*a+b #N*c+d = |N*a+bNN*c +d| < 2,

then we said that N is circular. If (N, @) is the corresponding
Ferrero pair, then N*a = @a = {¢p(a) | ¢ € @}. So N is circular
if | da+bNe&c+d| <2foralla, b, c, d e Nwitha £0,c #0
and ®da +b + &c +d. We say that the Ferrero pair (N, @) is

circular in this manner.
Example. (C, +, *,) is a circular planar nearring.
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« Characterization of circular Ferrero pairs

1. Abelian @
Example. Let F = GF(p?), p a prime, and let @, be the
subgroup of F*. Then the Ferrero pair (F, @&_,.) is circular.

p+1
Consequently, if k > 3 and p is a prime withk | (p+1), then

the Ferrero (F, &, ) is circular.

Theorem 12 ([13]). For each k > 3, there is a nonempty
finite subset &, of prime numbers with the following
property: Let g = p®, a power of some prime p, be such that
kK | (q-1). Then there is a subgroup @, of the multiplicative
group GF(qg)*, and the Ferrero pair (GF(q), @,) is circular
if and only if p € &, .
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Question. For practical applications, an upper bound of &7,

in terms of k will be useful. Can we do so?

let e = e?™/K € C. Foru, v, s,t withl1 s u<yv <
s<k-1,1<t csk-1,andv #t ands # t, define
O,y st = (BY-1)( -1)-(8¥-1)(&°-1) e Z[&].
Then ¢, , < Isnonzero and has integer norm. The set &,
consists of the prime factors of the norms Ny ¢y .o (@, v s 1)
ofallsuch ¢, , ¢ . Since ¢, , ¢, expands to 6 summands
of powers of £, we see that the norm is less than or equal
6°(K) where ¢ (k) is the Euler totient function giving the

number of automorphisms of the k-th cyclotomic field.
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Conjecture: Nycey,0(@y v s 1) S 83/ 3)¢00,

7, =12, 5},

P =15, 11},

Ps=1{2, 3, 7, 13, 19},

P, ={2, T, 29, 43},

P, =12, 3, 5, 17, 41},

P, =13, 19, 37, 73, 109, 127, 271},

Z,.,=12, 5, 11, 31, 41, 61, 71, 101},

2, ={11, 23, 67, 89, 199, 353, 397, 683},

Z,.,=42, 8, 5, 7, 13, 17, 19, 37, 61, 73, 97, 109, 157, 181, 193}.
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Question. What is the size of &, ?

Denote p, = | &, | and we have for 4 < k < 58 that
Pa=2,P5=2,Pg=5pP,=4,Pg=5,Pg=7,Pyp=8, Py; =8,
Pip = 15, Py = 14, Py, = 20, Py = 34, Py = 24, Py, = 34,
Pig = 31, Pyg = 54, Pyy = 88, Pyy = 93, Py, = 89, Pyg = 78,
Poq =89, Py =123, Py = 111, P,y = 185, Pyg = 149,

P,y = 182, py, = 134, pP,;, = 257, Py, = 273, Py3 = 384,
Psq = 331, Py = 498, Py = 308, py; = 471, pgg = 565,
Py = 663, p,, = 562, p,, = 674, p,, = 489, p,; = 840,
Du = 978, s = 1287, p,, = 866, p,, = 1184, p,, = 956,
P, = 1509, P, = 1299, p,, = 1766, P, = 15620, p., = 1750,
Do, = 1485, p.. = 2585, P, = 2163, p., = 2883, P, = 2218.
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2. Nonabelian @&
Theorem 13 ([2]). If (N, @) is a circular Ferrero pair with
@ finite, then all Sylow subgroups of @ are cyclic, i.e. @ Is

metacyclic.

The converse of the theorem is not true. There exists a
Ferrero pair (N, &) with metacyclic @ and (N, @) is not

circular.
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Theorem 14 ([2]). Let (N, @) be a circular Ferrero pair with
finite &. Then there is a nonempty finite subset &2, of prime
numbers with the following property: Let M be a finite group
such that (M, @) is a Ferrero pair. Then (M, @) is circular

if and only if p € 4, for all prime p | IMI.

Remark. The assumption that (N, &) is circular Ferrero

pair is used to guarantee the finiteness of .
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Thus, we said that a given group &

— is a group without fixed points if there is a group N such
that (N, @) is a Ferrero pair, and

— a circular group without fixed points if there is a group M

such that (M, @) is a circular Ferrero pair.

We have just seen that if @ is a finite group without fixed
points and @ is circular, then & is metacyclic. But not all

metacyclic groups are circular.

Question. Let @ be finite metacyclic group (then @ is a
group without fixed points). Under what conditions is @
circular?

30



(Zassenhaus 1936) Let @ be a metacyclic group. Then
& = (AB| A"=B"=1, B!'AB = A"), where m > 0,
gecd(m (r =1)n) =1andr" =1 (mod M. If d is the order
of r modulo m then all irreducible complex representation
of & are of degree d.

Theorem 15 ([4]). If d = 2 and if @ iIs embeddable as a
subgroup of the multiplicative group of some skew field K,
then @& is circular.

Conjecture. If @ is a metacyclic group embeddable as a
subgroup of the multiplicative group of some skew field K,

then @& is circular.
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« Graphs
Let (N, &) be a Ferrero pair with finite @. Forr, ¢ € N\ {0},
define
El ={&r +b | b € &c}.

Example. (1) Two E!’'sin (C, &,):T3VT3:

c'.
o-°’ . o
° ° e® e
.0‘..' . x ;'.... ®
[ X ° .® : :o
. °® . )
. o . JIRT 3C o X °
2. e® X ° e ., .-' .
D) . L] . . °
e*°°" % x Y . o, o
[ ] L]
.c . ® -. X o L c@
ey %o’ o0 . : ®° Q.
X ::.:. . . .. 4
..... d °® .
..o‘ .:. ‘o..‘ ®-.... ..“ o o % ®
.- M i X [ ] L ) -
-..o :
e x . (] X ®®
. ° . .
«  See, ° ..'..
o, ) o,
..... .. '00....
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(2) Tow El’sin (C, ®&,):

@®cccce ° o..... °
@cocece @cccee ° L x ©® @& x (4
®..0ee ° ®ccnee °
®cccee ) Reoooo ) 0. 0@ ®ooqe )
° o x ‘e ® x °
° Receoe ®cccce ® ‘° ®..v.c0 @.0se °
° ([ AP () ®. 0o )
®cecee o Recooo Q 'y x ©® ® x J
®.c.... [ ° ®cee.. o o..... °

Assign to each E! a graph G(E!) = (¥, &): the vertex set
¥ = @dc and the edge set & is
{c,c,lc,, c,edc, c, #Cc,, and (&dr +c,)N(PDr +c,) + T}
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An edge c,c,is evenif | (@r +c, ) N (Pr +c,)| =2, and is
odd if [ (&r +c,) N (dr +c,)| =1.

o'..
ot e, [ ] [ T Qeccece [ ]
: .o'...
:... X : [ ] R
..o.': .. : % e ... ----- [ ] Reocooo o
.... P ..... o o
X : : .:‘:. : : . %o
...- .:. -.... [ ) *oooo:...:oooo’ [ ]
¢ : : x ® e o
‘o () : [} oo
: x ... . .. ..... * * ..... .
; ...... o
.'o.. Qececeoe Qeccee [ )
A
271\
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- Every G(E!) is aregular graph, i.e. all the vertices have the

same number of edges connected to them.

« If G(E!) has nonnull edges, then it is a union even and/or

odd basic graphs.

\ e \
s I\ N ’ N
’I 1 \ \\ ’I \\
7\
Example. W/ \.%7 =\ /v
A /( ! ‘\ !

/

- aos a» a» -

\W;
\

\
.--+
/
/
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1. Counting of basic graphs
Suppose that N is a ring with unity and @& a finite cyclic
subgroup of the group of units of N such that (N, @) is a
Ferrero pair (elements of @ acts on N via left multiplication).
(Such Ferrero pairs are said to be ring generated.) Let
|D| =k.

Fix anr e N\ {0} and consider all G(E! ), where c € N,
such that G(E!) has some edges. Then each of such
graphs is either a basic graph or a “union” of basic graphs.
Let y; denote the total number of appearance the odd | -
th basic graphs in these nonnull graphs, and »r; the total

j
number of appearance of the even j -th basic graphs.
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Theorem 16 ([12]). If2 1k, theny; =1and x; =k/2-1for
any j e{1, 2, ..., k-1}.

Remark. The situation when @& is nonabelian is also
understood.
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2. An application to solutions of equations.

Let F = GF(q) be the Galois field of order q. Letk | (q -1)

be such that (F, @&,) is a circular Ferrero pair.

Putm= (q - 1)/ k.

Denote by n the number of solutions of the equation
XMeyM-zM=1

In F, and by n’ the number of solutions with xy z # 0.
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Theorem 17 ([11]).
(1) If k is even, then

-

3(k -1)m*+enm?+3m ifé|k;

N=143(k -1)M*+3m+3m ifp=3;

3(k -1)n? +3m otherwise;
L

and n’ =3(k - 1)n?.
(2) Ifk isodd, and if (GF(q), @,,) Is also circular, then
n=(2k -1)m*+2mand n’ = (2k - 1)n?.
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3. Number of graphs in the complex plane case. Overlap

problem.

When (N, &) is aring generated Ferrero pair with cyclic @,
we observe that some of the basic graphs always appear
together in some G(E! ). A complete understanding of such
behavior is the key to count the total number of graphs
G(E!). Using a theorem of vanishing sums [Conway and
Jones 1976, Theorem 6], we have a complete description of

this phenomenon in the case of (C, @,), ®, <C.
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4. Asymptotic behavior.

So, we have noticed that basic graphs occur in the ring
generated case are “fixed.” What makes finite field case and
the complex plane case different is the overlaps of the basic
graphs. Since the overlaps of the basic graphs are in one-
one correspondence with the solutions (u, v, s, t) of the

equations
§U-1=§W§S-1
ev-1 et -1
where £ is a primitive k-throotof unity, 1t csu<v <s < k-1,

1<t <sk-1,v#t,s#t,and1sw<s<k-1.
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Consider £ = e?™/k e C as before, and put the set 0%, the

prime factors of the norms of
(E'-1(E -1 -g"E -1 -1)

for all possible u, v, s, t, w. Then each %, is a finite
set, and when p is a prime larger than any of that in 6.2,
the overlaps of the graphs of the E!’s from (GF(p®), ®,)

and (C, &, ) are the same.

Questions. An E! is simply an equivalence class of a block
&, r +Db. Are there any other equivalence which will give use

interesting (and hopefully manageable) equivalence classes?
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What can we do with planar nearrings
A Group Discussion—10.07.2002 in JKU, Linz
An international research project

of Near-Linzers and Near-Tainaness

(1) The complex number field C.

v’ Howto distinguish the planar nearrings defined on (C, +)?
« What to study in each individual planar?
« Characterize all fixed point free automorphism groups @
on (C, +): & < (C*, .), others, C as a R?, C as a vector
space over ©. Note that the descriptions of finite &’s can

be found in Wolf’s book, “Spaces of constant curvature.”
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* |s being algebraically closed important for the study? How
continuity may come into play?
« Any other constructions similar to Jim Clay’s hyperbolas?
(2) The real number field R and Q.

 The same questions as for C.
« What else do we lose? Or do we really lose circles?

(3) v’ Find field generated constructions other than the ones we
have already known (B*, B™, B,, segments, lines, S ¢ &
[Buratti]). Do we get constructions which is different (and
better, maybe) from those that combinatorics people have

been using?
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(4) Make possible visualization of planar nearrings.

(5) What can one do more about the triangle constructions of Jim
Clay?

(6) Any connection of circles in circular planar nearrings with

ovals in finite geometry?
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(7) Make a dictionary among difference topics:

 Frobenius groups (1 affine complete; e.qg. if & = Z, on cyclic
group of odd order; what are the ingredients to describe @?
E.g. Is it true that @ must be 1-affine complete, or both @
and the kernel have to be 1-affine complete? Some case-
by-case study? How about in C?)

« Planar nearrings

« Design theory

« Difference families (sets)
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Can one use the techniques or results in one area to apply
to the others? E.g. building nearring structures (e.g. ideals,
radicals) in the process of constructing planar nearrings from
Ferrero pairs using the choices of subgroups for building A
and the right units.

(8) Structure of planar nearrings

v What we have known: (left) ideals, radicals, IFP = integral.
« Generators (of planar nearrings, or modules)?
 Next? Tame? Planar nearring modules (can we describe
them?)
(9) v Representations of planar nearrings—nearring of functions

on what modules?
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(10) What is the variety generated by all planar nearrings, or all
circular planar nearrings?

(11) v’ The graphs of El's. Are they Cayley graphs? (They are
subgraphs of Cayley graphs!)
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Some open problems related to planar near-rings
Group Discussions - Linz - 07.08.2003

Problems suggested by Tim Boykett:

1. Loop nearrings. Using ideas similar to Silvia Pianta’s,
are there ways of using loop nearrings, or more generally,
difference families on loops (or quasigroups), to generate
designs? Quick results suggest that with a simple requirement,
the definition of a difference family in quasigroups could make

sense. Problems:

 find some quasigroups that are not loops that are difference

49



families

« find some quasigroups that allow a Ferrero pair type
construction

 if these exist, then see whether at least some of the

constructions can be generalised.

2. Sub Difference Families. It is often the case in the DFs
constructed from Ferrero pairs using the B* construction that
there are several sub DFs. That is, subsets of the base blocks
that form a DF, but with smaller A. Thus the parameters that
we obtain are not the only possible useful results. Comment

from Ke at Hamburg emphasises that smaller A values are of
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Interest. Thus these might be important. Problems:

check subDFs for small examples

« collect any small results (there are some nonexistence
results)

« what connections between subDF structure and Ferrero pair

structure exist?

e are we obtaining new parameters?

3. Generation. What are the subnearrings generated by one
element of a planar nearring? By two elements? How general
can the generated nearrings be, when are they planar, when

do we obtain the whole original nearring? These questions
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4.

arose (for me) from a series of thoughts about when the

syntactic nearring of a group automaton would be planar.

Visualisation. Are there any nice visualisation techniques?
Can we make any pretty pictures from these structures?
Possible connection between the plane of the complex
numbers and the graphs of the designs, relating to finite groups
and their designs: e.g. the prime fields’ graphs converge
(in some well-defined sense) to the complex plane graphs.
Getting some nice pictures (See “Not Knot” from the Geometry
Center) http://www.geom.uiuc.edu/video/NotKnot/ is always a

bit sexy and sort of useless.
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Problems suggested by Weng-Fong Ke:

1. Topological planar nearrings

(a) The complex plane case: Classify the topological planar
nearrings generated by Ferrero pairs (€, @) where @& is a
subgroup of the multiplicative group of ¢* = € \ {0}.

(b) In general, it may be useful to use centralizer sandwich

nearrings for studying topological planar nearrings.

2. Designs: Compare the designs which are planar nearring
generated and the designs that have been studied in

combinatorial design theory.
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(a) Are there designs in the combinatorial design theory which
can also be obtained using planar nearrings?
(b) Are there designs from planar nearrings which have not

been studied in combinatorial design theory?

3. Nonisomorphic planar nearrings.

(@) Take small (N, @), compute A, ,(®) and compare
nonisomorphic planar nearrings to find properties that make
the individual planar nearrings unique.

Note. There is a complete characterization of (N, &) with
abelian N. (See Frobenius groups and classical maximal

orders by Ron Brown, Memoirs 717; or Characterization of
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some finite Ferrero pairs by Ke and Kiechle, Fredericton
Near-rings and near-fields Proceedigns, for elementary

abelian and cyclic N with cyclic @).

4. Matrix nearrings of planar nearrings.

(a) Does the matrix nearring M, (N), where N = (C, +, *.),
have nice properties (eg. behave like a generalization of n
dimensional vector spaces)?

(b) In general, study matrix nearrings of planar nearrings. Do

they possess good properties?
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Problems suggested by Peter Mayr:

1. Varieties. Which varieties generated by the following classes

of near-rings are equal and which are distinct?

A ... class of finite near-fields,

B ... class of zero-symmetric near-rings with abelian additive
group,

C ... class of finite integral planar near-rings,

D ... class of finite zero-symmetric integral near-rings,

E ... class of finite zero-symmetric near-rings satisfying x" = x
for some natural number n,

F ... class of zero-symmetric near-rings.
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Note that D ¢ E, and that the subdirectly irreducible elements
of E are in D. Thus the varieties generated by D and by E are

equal.

. Related to the previous question: We know that the class of
finite Frobenius kernels generates the variety of all groups,
since each finite p-group can be embedded into a Frobenius

kernel.

(a) Does the class of Frobenius complements of Frobenius
groups also generate the variety of all groups?
(b) Determine the variety generated by the multiplicative semi-

groups of (finite) planar near-rings.
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3. Near-fields. Is there an infinite near-field whose multiplicative
group has finite exponent? (There is none with exponent

3, 6, 12, or 2" for any natural number n.)
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Problems suggested by Gerhard Wendt:

1. Regularity. Study the connection between 2-primitive near-
rings and regularity. Regularity of elements (defined in the
usual sense for semigroups) seem to play a very vital role
In the structure of 2-primitive ner-rings. For example, every
minimal left ideal of a 2-primitive near-ring is planar and
hence “very” regular, in particular, the regular elements form
a (multiplicative) subsemigroup there. Does the same hold
for a 2-primitive near-ring, do the regular elements form a
subsemigroup? It seems to be the case that 2-primitive near-

rings with identity (which basically are centralizer near-rings of
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the form M;(T), G fixedpointfree on T') are regular near-rings.

This also has not been worked out yet properly.

. Referring to the first item, if there can be said something about
2-primitive near-rings then it should also be possible to get

results on 2-semisimple near-rings.

. Planar subnear-rings. Planar substructures or at least planar
like structures arise naturally in 2- and 1-primitive near-rings.
What about O-primitive near-rings or near-rings which may
be seen very primitive like (e.g put conditions on near-ring

modules).
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4. K-loops. Is there something to say about possible
connections between K-loops and planar near-rings? Do
techniques for studying planar near-rings carry over to K-

loops.

5. Planar quotients. If one needs still a problem, study quotients

of near-rings and determine when they are planar.
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