Infinite-dimensional calculus with a view towards Lie theory

Helge Glöckner (Universität Paderborn)

Hamburg, February 16, 2015

Overview

- $\S1$ Basics of infinite-dimensional calculus
- $\S2$ Inverse functions and implicit functions
- $\S 3$ Exponential laws for function spaces
- §4 Non-linear maps on locally convex direct limits
- $\S 5$ Measurable regularity and applications

$\S1$ Basics of ∞ -dim calculus

Defn. E, F locally convex spaces, $U \subseteq E$ open. A map $f: U \to F$ is called C^1 if it is continuous, the directional derivatives

$$df(x,y) := (D_y f)(x) = \frac{d}{dt}\Big|_{t=0} f(x+ty)$$

exist for all $x \in U$, $y \in E$, and the map

$$df \colon U \times E \to F$$

is continuous. The map f is called C^k with $k \in \mathbb{N}_0 \cup \{\infty\}$ if the iterated directional derivatives

$$d^j f(x, y_1, \dots, y_j) := (D_{y_j} \cdots D_{y_1} f)(x)$$

exist for all $j \in \mathbb{N}_0$ such that $j \leq k$ and define continuous functions

$$d^j f \colon U \times E^j \to F.$$

Rem f is C^{k+1} iff f is C^1 and $df: U \times E \to F$ is C^k .

 C^{∞} -maps are also called *smooth*.

Basic facts

(a) $df(x, .) \colon E \to F$ is linear

(b) The Chain Rule holds: If $f: U \to V$ and $g: V \to F$ are C^k , then also $g \circ f: U \to F$ is C^k , with

 $d(g \circ f)(x, y) = dg(f(x), df(x, y)).$

Defn. Smooth manifolds modelled on locally convex TVS E are defined as usual:

Hausdorff topological space M with an atlas of homeomorphisms $\phi: M \supseteq U \rightarrow V \subseteq E$ ("charts") between open sets such that the chart changes are smooth.

Defn. Lie group = group G, equipped with a smooth manifold structure modelled on a locally convex space such that the group operations are smooth maps.

 $L(G) := T_eG$, with Lie bracket arising from the identification of $y \in L(G)$ with the corresponding left invariant vector field.

Comparison with other approaches to differential calculus

The approach to ∞ -dimensional calculus presented here goes back to A. Bastiani and is also known under the name of *Keller's* C_c^k -theory.

Classical calculus in Banach spaces

A map $f: E \supseteq U \rightarrow F$ between Banach spaces is called *continuously Fréchet differentiable* (FC^1) if it is totally differentiable and

$$f' \colon U \to (\mathcal{L}(E, F), \|.\|_{op})$$

is continuous. If f is FC^1 and f' is FC^k , then f is called FC^{k+1} .

Fact: f is $C^{k+1} \Rightarrow f$ is $FC^k \Rightarrow f$ is C^k

Convenient differential calculus

If E is a Fréchet space, then a map $f: E \supseteq U \to F$ is C^{∞} iff $f \circ \gamma \colon \mathbb{R} \to F$ is C^{∞} for each C^{∞} -curve $\gamma \colon \mathbb{R} \to U$, i.e., iff f is smooth in the sense of the convenient differential calculus (developed by Frölicher, Kriegl and Michor).

Likewise if *E* is a *Silva space* (or (DFS)-space), i.e., a locally convex direct limit

$$E = \lim E_n$$

of Banach spaces $E_1 \subseteq E_2 \subseteq \cdots$ such that all inclusion maps $E_n \rightarrow E_{n+1}$ are compact operators.

Beyond metrizable or Silva domains, the smooth maps of convenient differential calculus need not be C^{∞} in the sense used here (they need not even be continuous).

Diffeological spaces

If E is a Fréchet space or a Silva space, then a map $f: E \supseteq U \to F$ is C^{∞} if and only if $f \circ \gamma: \mathbb{R}^n \to F$ is C^{∞} for each $n \in \mathbb{N}$ and C^{∞} map $\gamma: \mathbb{R}^n \to U$ (and it suffices to take n = 1as already mentioned).

Main classes of ∞ -dim Lie groups

Linear Lie groups

 $G \le A^{\times}$

Mapping groups Diffeomorphism groups

e.g. $C^{\infty}(M, H)$ Diff(M) M compact

Direct limit groups

 $G = \bigcup_n G_n$ with $G_1 \leq G_2 \leq \cdots$ fin-dim

Here A is a Banach algebra or a *continuous* inverse algebra (CIA)

 A^{\times} is open and $A^{\times} \to A$, $x \mapsto x^{-1}$ is continuous

Elementary facts for $f: E \supseteq U \to F$.

- (a) If $f(U) \subseteq F_0$ for a closed vector subspace $F_0 \subseteq F$, then f is C^k iff $f|_{F_0}$ is C^k
- (b) If $F = \prod_{j \in J} F_j$, then f is C^k iff each of its components f_j is C^k .
- (c) If $F = \lim_{\leftarrow} F_n$ for a projective sequence

 $\cdots \to F_2 \to F_1,$

then f is C^k iff $\pi_n \circ f$ is C^k for each $n \in \mathbb{N}$, where $\pi_n \colon F \to F_n$ is the limit map.

E.g.
$$C^{\infty}([0,1],\mathbb{R}) = \lim_{\leftarrow} C^n([0,1],\mathbb{R})$$
 for $n \in \mathbb{N}$;
 $C^{k+1}([0,1],\mathbb{R}) \to C([0,1],\mathbb{R}) \times C^k([0,1],E),$
 $\gamma \mapsto (\gamma, \gamma')$

linear topological embedding, closed image.

Hence a map f to $C^{\infty}([0, 1], \mathbb{R})$ is smooth iff it is smooth as a map to $C^k([0, 1], \mathbb{R})$ for each finite k.

A map to $C^{k+1}([0,1],\mathbb{R})$ is smooth iff it is smooth as a map to $C([0,1],\mathbb{R})$ and $x \mapsto f(x)'$ is smooth as a map to $C^k([0,1],\mathbb{R})$

 ${\sim}{\rightarrow}{\rm simple}$ inductive proofs for smoothness of maps to function spaces

Mean Value Theorem. If $f \colon E \supseteq U \to F$ is C^1 and $x, y \in U$ such that $x + [0, 1](y - x) \subseteq U$, then

$$f(y) - f(x) = \int_0^1 df(x + t(y - x), y - x) dt.$$

Defn. Let *E* be a locally convex space. A (nec. unique) element $z \in E$ is called the *weak integral* of a continuous path $\gamma: [a, b] \to E$ if

$$\lambda(z) = \int_a^b \lambda(\gamma(t)) dt$$
 for all $\lambda \in E'$.

Write $\int_a^b \gamma(t) dt := z$.

Mappings on non-open sets: Let $U \subseteq E$ be a subset with dense interior which is *locally convex*, i.e., each $x \in U$ has a relatively open, convex neighbourhood in U. Say that a continuous map $f: U \to F$ is C^k if $f|_{U^0}$ is C^k and

$$d^{j}(f|_{U^{0}}) \colon U^{0} \times E^{j} \to F$$

extends to a continuous map $d^j f \colon U \times E^j \to F$ for each $j \in \mathbb{N}$ such that $j \leq k$. If $f: E \supseteq U \to F$, then the directional difference quotients $\underline{f(x+ty) - f(x)}$

make sense for all (x, y, t) in the set

 $U^{[1]} := \{(x, y, t) \in U \times E \times \mathbb{R} \colon x + ty \in U\}$ such that $t \neq 0$.

Fact. A continuous map f is C^1 if and only if there is a continuous map $f^{[1]}: U^{[1]} \to F$ with

$$f^{[1]}(x, y, t) = \frac{f(x + ty) - f(x)}{t}$$

or all $(x, y, t) \in U^{[1]}$ such that $t \neq 0$.

Indeed, $df(x,y) = \lim_{t\to 0} f^{[1]}(x,y,t) = f^{[1]}(x,y,0)$ in this case and thus f is C^1 . If f is C^1 , define

$$f^{[1]}(x, y, t) := \begin{cases} \frac{f(x+ty)-f(x)}{t} & \text{if } t \neq 0; \\ df(x, y) & \text{if } t = 0. \end{cases}$$

By the Mean Value Theorem, for |t| small have

$$f^{[1]}(x, y, t) = \int_0^1 df(x + sty, y) \, ds.$$

Since weak integrals depend continuously on parameters, $f^{[1]}$ is continuous.

First application of $f^{[1]}$: Very easy proof of the Chain Rule.

Another application, with a view towards the commutator formula:

If G is a Lie group and $\gamma_1, \gamma_2 \in C^1([0,r],G)$ with $\gamma_1(0) = \gamma_2(0) = e$, then $\eta \colon [0,r^2] \to G$,

 $\eta(t) := \gamma_1(\sqrt{t})\gamma_2(\sqrt{t})\gamma_1(\sqrt{t})^{-1}\gamma_2(\sqrt{t})^{-1}$ is C^1 .

Proof. η is C^1 on $]0, r^2]$. We show $(\eta|_{]0, r^2]})'$ has a continuous extension to $[0, r^2]$.

Let $U \subseteq G$, $V \subseteq U$ be open identity neighbourhoods with $VVV^{-1}V^{-1} \subseteq U$. Identify U with an open set in E using a chart, such that e = 0. The map

 $f: V \times V \to U, \quad f(x,y) := xyx^{-1}y^{-1}$

is smooth with df(0,0,v,w) = 0 and

$$d^{2}f(0,0;x,y;x,y) = 2[x,y].$$

The assertion now follows with a lemma by K.-H. Neeb:

Lemma If $U \subseteq E$ is open, $\gamma: [0,1] \to U$ is C^1 and $f: U \to F$ a C^2 -map with $df(\gamma(0),.) = 0$, then

$$\eta \colon [0,1] \to U, \quad t \mapsto f(\gamma(\sqrt{t}))$$

is C^1 with $\eta'(0) = \frac{1}{2}d^2f(\gamma(0),\gamma'(0),\gamma'(0)).$

Proof: We may assume that $\gamma(0) = 0$ and f(0) = 0. Noting that

$$\gamma(\sqrt{t}) = \sqrt{t} \frac{\gamma(\sqrt{t}) - \widetilde{\gamma(\sqrt{0})}}{\sqrt{t}} = \sqrt{t} \gamma^{[1]}(0, 1, \sqrt{t}),$$

we get for t > 0

$$\eta'(t) = \frac{1}{2\sqrt{t}} df(\gamma(\sqrt{t}); \gamma'(\sqrt{t})) \underbrace{-\frac{1}{2\sqrt{t}} df(0, \gamma'(\sqrt{t}))}_{=0}}_{=0}$$
$$= \frac{1}{2} (df)^{[1]}(0, \gamma'(\sqrt{t}); \gamma^{[1]}(0, 1, \sqrt{t}), 0; \sqrt{t})$$

The right-hand-side makes sense also for t = 0and is continuous on [0, 1]. Hence η is C^1 , with

$$\eta'(0) = \frac{1}{2} (df)^{[1]}(0, \gamma'(0); \gamma'(0), 0; 0)$$
$$= \frac{1}{2} d^2 f(0, \gamma'(0), \gamma'(0)).$$

Literature for §1:

- A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie, 1964.
- W. Bertram, HG, and K.-H. Neeb, *Differential calculus over general base fields and rings*, 2004.
- Cartan, H., "Calcul différentiel," 1967.
- HG, Infinite-dimensional Lie groups without completeness restrictions, 2002.
- HG and K.-H. Neeb, "Infinite-Dimensional Lie Groups," book in preparation.
- H. H. Keller, "Differential Calculus in Locally Convex Spaces," 1974.
- A. Kriegl and P.W. Michor, "The Convenient Setting of Global Analysis," 1997.
- J. Milnor, *Remarks on infinite-dimensional Lie groups*, 1984.
- K.-H. Neeb, *Towards a Lie theory of locally convex groups*, 2006.

\S 2 Inverse functions and implicit functions

Implicit Function Theorem (HG'05) Let *E* be a locally convex space, *F* be a Banach space, $G \subseteq E \times F$ be open, $(p_0, y_0) \in G$ and

 $f \colon G \to F$

be a C^k -map such that $f(p_0, y_0) = 0$ and

 f_{p_0} : $y \mapsto f(p_0, y)$

has invertible differential at y_0 . If F has finite dimension, assume $k \ge 1$; otherwise, assume that $k \ge 2$. Then there exist open neighbourhood $P \subseteq E$ of p_0 and $V \subseteq F$ of y_0 such that

 $\{(p,y) \in P \times V \colon f(p,y) = 0\} = graph(\phi)$ for a C^k -function $\phi \colon P \to V$.

(Compare Hiltunen 1999, Teichmann 2001 for related results in other settings of ∞ -dim calculus)

Some ideas of the proof.

Let *E* be a locally convex space, (F, ||.||) be a Banach space, $P \subseteq E$ and $V \subseteq F$ be open sets. We say that a map

$$f\colon P\times V\to F$$

defines a *uniform family of contractions* if there is $\theta \in [0, 1[$ such that

 $||f(p, y_2) - f(p, y_1)|| \le \theta ||y_2 - y_1||$

for all $p \in P$, $y_1, y_2 \in V$.

Fact (HG'05) If $f: U \times V \to F$ is C^k and defines a uniform family of contractions, then the set Q of all $p \in P$ such that $f(p, .): V \to F$ has a fixed point y_p is open in P, and the map

$$Q \to V, \qquad p \mapsto y_p$$

is C^k .

This implies:

Inverse Functions with Parameters (HG'05) Let *E* be a locally convex space, *F* be a Banach space, $P \subseteq E$ and $V \subseteq F$ be open sets, $p_0 \in P$ and $f: P \times V \to F$ be a C^k -map such that

$$f_{p_0} := f(p_0, .) \colon V \to F$$

has invertible differential at some $y_0 \in V$. If F has finite dimension, assume $k \ge 1$; otherwise, assume that $k \ge 2$. Then, after shrinking P and V if necessary, we may assume that, for each $p \in P$,

 $f_p\colon V\to f_p(V)$

has open image and is a C^k -diffeomorphism. Moreover, the map

$$\theta \colon P \times V \to \bigcup_{p \in P} \{p\} \times f_p(V), \ (p, y) \mapsto (p, f_p(y))$$

is a C^k -diffeomorphism onto an open set Ω .

The inverse map is $\Omega \to P \times V$, $(p, z) \mapsto (p, f_p^{-1}(z))$. Thus $(p, z) \mapsto (f_p)^{-1}(z)$ is defined on an open set and is C^k .

Application: Submersions, regular value theorem, pre-images of submanifolds etc (Neeb and Wagemann 2008, HG 2015).

Another application:

Stimulated by related work by Hiltunen (2000) and Teichmann (2001), Eyni recently used the inverse function theorem with parameters to obtain **Frobenius theorems** on the integrability of vector distributions $(D_p)_{p\in M}$ on infinite dimensional manifolds M (see Eyni 2014 and the references therein). Three cases were discussed:

- Finite-dimensional vector spaces $D_p \subseteq T_p M$;
- Banach spaces $D_p \subseteq T_p M$;
- D_p is complemented in T_pM and T_pM/D_p is a Banach space.

As a consequence, a Lie subalgebra $\mathfrak{h} \subseteq L(G)$ integrates to an immersed Lie subgroup of a Lie grop G if \mathfrak{h} is co-Banach or \mathfrak{h} is Banach and G has (at least on \mathfrak{h}) a smooth exponential function. That is, there is a smooth function

$$\exp_G \colon \mathfrak{h} \to G$$

such that $t \mapsto \exp_G(ty)$ is a one-parameter group with derivative y at t = 0 in G (Eyni'14).

Eyni actually constructs foliated charts around each point, which shows that H locally has a smooth transversal. As a consequence,

G/H

is a manifold whenever the leaf H just described is a submanifold of G (see HG'15)

Literature on §2

- J. M. Eyni, The Frobenius theorem for Banach distributions on infinite dimensional manifolds and applications in infinite dimensional Lie theory, preprint, 2014; arXiv:1407.3166.
- HG, Finite order differentiability properties, fixed points and implicit functions over valued fields, preprint, 2005; arXiv:math/0511218. Improves:
- HG, Implicit functions from topological vector spaces to Banach spaces, 2006.
- HG, Fundamentals of submersions and immersions between infinite-dimensional manifolds, preprint, 2015; arXiv:1502.05795.
- S. Hiltunen, *Implicit functions from locally convex spaces to Banach spaces*, 1999.

- S. Hiltunen, A Frobenius theorem for locally convex global analysis, 2000.
- K.-H. Neeb and F. Wagemann, *Lie group* structures on groups of smooth and analytic maps on non-compact manifolds, 2008
- J. Teichmann, A Frobenius theorem on convenient manifolds, 2001.

$\S{\bf 3}$ Exponential laws for function spaces

Following Alzaareer 2013, we consider functions on products with different orders of differentiability in the two factors:

Defn. Let E_1 , E_2 , F be locally convex, $U \subseteq E_1$ and $V \subseteq E_2$ be open, and $r, s \in \mathbb{N}_0 \cup \{\infty\}$. A map $f: U \times V \to F$ is called $C^{r,s}$ if the iterated directional derivatives

$$d^{i,j}f(x,y_1,\ldots,y_i,w_1,\ldots,w_j) :=$$

 $(D_{(y_i,0)}\cdots D_{(y_1,0)}D_{(0,w_j)}\cdots D_{(0,w_1)}f)(u,v)$

exist for all $i, j \in \mathbb{N}_0$ such that $i \leq r$, $j \leq s$ and define continuous functions

$$d^{i,j}f \colon U \times E_1^i \times E_2^j \to F.$$

If U, V are locally convex with dense interior, again use continuous extensions of differentials.

Endow $C^{r,s}(U \times V, F)$ with the initial topology with respect to the maps

 $C^{r,s}(U \times V, F) \to C(U \times V \times E_1^i \times E_2^j)_{c.o.}, f \mapsto d^{i,j}f.$

Exponential law (Alzaareer 2013). If $f \in C^{r,s}(U \times V, F)$, then the map

 $f^{\vee} \colon U \to C^s(V, F), \quad f^{\vee}(x)(y) \coloneqq f(x, y)$ is C^r and the map

 $\Phi: C^{r,s}(U \times V, F) \to C^r(U, C^s(V, F)), f \mapsto f^{\vee}$ is a linear topological embedding. If $U \times V \times E_1 \times E_2$ is a k-space or V is locally compact, then Φ is an isomorphism of topological vector spaces.

Recall that a Hausdorff space X is called a k-space if a subset $A \subseteq X$ is closed iff $A \cap K$ is closed for each compact subset $K \subseteq X$. For example, every metrizable topological space is a k-space, as well as every locally compact topological space.

For an application to ODE's with $C^{r,s}$ right hand sides, see Alzaareer und Schmeding 2013

Application: regularity of mapping groups

If G is a Lie group modelled on a locally convex space, then we obtain a smooth action

$$G \times TG \to TG$$
, $(g, v) \mapsto g.v := T\lambda_g(v)$,

using the left translation $\lambda_g \colon G \to G$, $x \mapsto gx$ by g. Abbreviate $\mathfrak{g} := L(G)$.

Defn. Let $k \in \mathbb{N}_0 \cup \{\infty\}$. The Lie group G is called C^k -semiregular if, for each $\gamma \in C^k([0,1],\mathfrak{g})$, there exists a (necessarily unique) $Evol(\gamma) := \eta \in C^{k+1}([0,1],G)$ such that

 $\eta'(t) = \eta(t).\gamma(t)$ and $\eta(0) = e$.

If, moreover, Evol: $C^k([0,1],\mathfrak{g}) \rightarrow C^{k+1}([0,1],G)$ [or, equivalently, the map

evol: $C^k([0,1],\mathfrak{g}) \to G$, $\gamma \mapsto \text{Evol}(\gamma)(1)$] is smooth, then G is called C^k -regular. If G is C^∞ -regular, then G is called regular (cf. Milnor 1984). This is the weakest regularity property: If G is C^k -regular and $\ell \ge k$, then G is also C^ℓ regular. Regularity is important to retain familiar facts in infinite dimensions. E.g.

Theorem. (Milnor 1984). Let G be a 1connected Lie group and H be a regular Lie group (modelled on locally convex spaces). If $\phi: L(G) \rightarrow L(H)$ is a continuous Lie algebra homomorphism, then there is a unique smooth group homomorphism $\psi: G \rightarrow H$ with $L(\psi) = \phi$.

If both U and V are locally compact (e.g.), then the exponential law entails that

 $C^{r}(U, C^{s}(V, F)) \cong C^{s}(V, C^{r}(U, F)).$

The isomorphism is the composition

 $C^{r}(U, C^{s}(V, F)) \rightarrow C^{r,s}(U \times V, F)$

 $\rightarrow C^{s,r}(V \times U, F) \rightarrow C^{s}(V, C^{r}(U, F))$

of isomorphisms.

Here is a typical application of the exponential law:

Prop. Let $r, s \in \mathbb{N}_0 \cup \{\infty\}$. If H is a C^r -regular Lie group and M a compact smooth manifold, then also the mapping group $G := C^s(M, H)$ is C^r -regular.

Sketch. Identify $\mathfrak{g} := L(G)$ with $C^s(M, \mathfrak{h})$, where $\mathfrak{h} := L(H)$. The main point is to get a candiate for $\text{Evol}(\gamma)$ if $\gamma \in C^r([0, 1], \mathfrak{g}) = C^r([0, 1], C^s(M, \mathfrak{h}))$. We try to construct the evolution pointwise:

 $\mathsf{Evol}(\gamma)(t)(x) := \mathsf{Evol}_H(s \mapsto \gamma(s)(x))(t).$

Let us write $\Psi(\gamma)$ for the right-hand-side. We can obtain Ψ as the composition of isomorphisms and the smooth map $f \mapsto \text{Evol}_H \circ f$:

 $C^{r}([0,1], C^{s}(M,\mathfrak{h})) \rightarrow C^{s}(M, C^{r}([0,1],\mathfrak{h}))$

 $\rightarrow C^{s}(M, C^{r+1}([0, 1], H)) \rightarrow C^{r+1}([0, 1], C^{s}(M, H)).$

Thus Ψ takes its values in the desired Lie group and is smooth. Testing with point evaluations (which are smooth group homomorphisms and separate points), we see that $\Psi(\gamma)$ is the evolution Evol(γ). **Rem.** In particular, exponential laws for spaces of smooth functions are available (as $C^{\infty,\infty}$ maps on products coincide with C^{∞} -mps). This special case was known longer. Moreover, exponential laws in the sense of **bornological** isomorphisms play a key role in the Convenient Differential Calculus of Frölicher, Kriegl and Michor.

References for $\S3$:

- H. Alzaareer, "Lie Groups of Mappings on Non-Compact Spaces and Manifolds," Ph.D.thesis, Paderborn 2013.
- H. Alzaareer and A. Schmeding, Differentiable mappings on products with different degrees of differentiability in the two factors, 2013, to appear in Expo. Math.; arXiv:1208.6510.
- HG, Regularity properties of infinite-dimensional Lie groups, and semiregularity, preprint, 2015; arXiv:1208.0715.

§4 Non-linear mappings on locally convex direct limits

For example, consider the space $E := C_c^{\infty}(\mathbb{R})$ of real-valued test functions. Then

$$E = \bigcup_{n \in \mathbb{N}} E_n$$

with the Fréchet spaces $E_n := C_{[-n,n]}^{\infty}(\mathbb{R})$ of smooth functions supported in [-n,n]. Thus

$$E_1 \subseteq E_2 \subseteq \cdots$$

Moreover, $E = \lim_{\to} E_n$ as a locally convex space. Hence a linear map

 $f \colon E \to F$

is continuous if and only if each restriction $f|_{E_n}$ is continuous. What about non-linear maps:

If $f: E \to F$ is a map such that $f|_{E_n}$ is C^k for each $n \in \mathbb{N}$, will f be C^k ?

The answer is **no** in general. For example,

 $f: C_c^{\infty}(\mathbb{R}) \to C_c^{\infty}(\mathbb{R} \times \mathbb{R}), \quad f(\gamma)(x, y) := \gamma(x)\gamma(y)$

is discontinuous although $f|_{E_n}$ is a continuous quadratic polynomial for all n (cf. Hirai et al'01)

Well-behaved situations:

(a) (HG'02+04) If $f: C_c^{\infty}(\mathbb{R}) \to C_c^{\infty}(\mathbb{R})$ is C^k on each of the spaces $C_{[-m,m]}^{\infty}(\mathbb{R})$ and fis *local* in the sense that $f(\gamma)(x)$ only depends on the germ of γ at x, then f is C^k .

Likewise if f is **almost local**, and for maps between spaces of sections in vector bundles

 \rightsquigarrow group operations on $\text{Diff}_c(M)$ are C^{∞} for σ -compact M.

Follows from:

(b) (HG'03) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of C^k maps $f_n \colon E_n \supseteq U_n \to F_n$ on open 0-neighbourhoods with $f_n(0) = 0$, then also the map

$$\bigoplus_{n\in\mathbb{N}}f_n\colon\bigoplus_{n\in\mathbb{N}}U_n\to\bigoplus_{n\in\mathbb{N}}F_n$$

 $(x_n)_{n\in\mathbb{N}}\mapsto (f_n(x_n))_{n\in\mathbb{N}}$ is C^k .

(c) If each E_n is a complex Banach space, the inclusion maps do not increase norms and $f|_{B_r^{E_n}(0)} : B_r^{E_n}(0) \to F$ is complex analytic and bounded for all $n \in \mathbb{N}$, then

$$f: \bigcup_{n \in \mathbb{N}} B_r^{E_n}(\mathbf{0}) \to F$$

is complex analytic (Dahmen 2011).

 \sim Lie group structures on unions of Banach-Lie groups

- (d) Let $E = \bigcup_{n \in \mathbb{N}} E_n$ be a Silva space (i.e., each E_n is a Banach space and the inclusion map $E_n \to E_{n+1}$ is a compact operator for each $n \in \mathbb{N}$). Then $f: E \to F$ is C^k iff $f|_{E_n}$ is C^k for each $n \in \mathbb{N}$ (see. e.g., HG'07).
- (e) If E is a Silva space and $k \in \mathbb{N}_0$, then

$$C^{k}([0,1],E) = \bigcup_{n \in \mathbb{N}} C^{k}([0,1],E_n)$$

with the direct limit topology by Mujica's Theorem.

However, the path space is **not** a Silva space. One can show:

If $f: C^k([0,1], E) \to F$ restricts to a C^{ℓ} -map on each $C^k([0,1], E_n)$, then

 $f|_{C^{k+1}([0,1],E)}$

is C^{ℓ} (HG'15).

 \rightarrow Diff_{C^{\u03cd}}(M) is C¹-regular for each compact real analytic manifold M.

A typical application of (b) (see, e.g., HG'15)

Prop. If M is a σ -compact smooth manifold and H a C^r -regular Lie group for some $r \in \mathbb{N}_0$, then also $C_c^s(M, H)$ is C^r -regular for each $s \in \mathbb{N}_0 \cup \{\infty\}$.

Sketch. Let $(M_n)_{n \in \mathbb{N}}$ be a locally finite sequence of compact submanifolds of M whose interiors cover M. We know that $G_n := C^s(M_n, H)$ is C^r -regular for each n. Now the map

$$C_c^s(M,H) \to \bigoplus_{n \in \mathbb{N}} C^s(M_n,H), \ \gamma \mapsto (\gamma|_{M_n})_{n \in \mathbb{N}}$$

co-restricts to an isomorphism onto the Lie subgroup

 $\{(\gamma_n)_{n\in\mathbb{N}}: (\forall x\in M_n\cap M_m) \ \gamma_n(x)=\gamma_m(x)\}$

of the weak direct product G on the right. As this subgroup is an equalizer of smooth group homomorphisms, we need only show that the weak direct product is C^r -regular. This is true since evol_G can be identified with $\bigoplus_{n \in \mathbb{N}} \operatorname{evol}_{G_n}$: $\bigoplus_{n \in \mathbb{N}} C^r([0, 1], L(G_n)) = C^r([0, 1], \bigoplus_{n \in \mathbb{N}} L(G_n))$ $\to \bigoplus_{n \in \mathbb{N}} G_n = G.$

References on $\S4$

- R. Dahmen, *Direct limit constructions in infinite-dimensional Lie theory*, Ph.D. thesis, Paderborn, 2011.
- HG, Patched locally convex spaces, almost local mappings and diffeomorphism groups of non-compact manifolds, manuscript, 2002.
- HG, Lie groups of measurable mappings, 2003.
- HG, Lie groups over non-discrete topological fields, preprint, 2004; arXiv:math/0408008.
- HG, $Diff(\mathbb{R}^n)$ as a Milnor-Lie group, 2005.
- HG, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, 2007.
- HG, Regularity properties of infinite-dimensional Lie groups, and semiregularity, preprint, 2015; arXiv:1208.0715.
- T. Hirai, H. Shimomura, N. Tatsuuma and E. Hirai, *Inductive limits of topologies, their direct products, and problems related to algebraic structures*, 2001.

§5 Measurable regularity properties of infinitedimensional Lie groups

Defn. If *F* is a Fréchet space, let $L^1([a, b], F)$ be the space of equivalence classes of absolutely integrable measurable mappings $\gamma \colon [a, b] \to$ *F* with separable image.

Continuous paths $\eta \colon [a, b] \to F$ of the form

$$\eta(t) := \int_a^t \gamma(s) \, ds$$

with $\gamma \in L^1([a, b], F)$ are called absolutely continuous.

Defn. Let F be a Fréchet space, $G \subseteq \mathbb{R} \times F$ and $(t_0, y_0) \in G$. A map $\eta \colon I \to F$ on an interval containing t_0 is called a **Caratheodory solution** to

 $y' = f(t, y), y(t_0) = y_0$

if graph $(\eta) \subseteq G$, the map $t \mapsto f(t, \eta(t))$ is in L^1 and

$$\eta(t) = y_0 + \int_{t_0}^t f(s, \eta(s)) \, ds$$
 for all $t \in I$.

Rem. If η is absolutely continuous and ϕ is smooth, then $\phi \circ \eta$ is absolutely continuous. Hence absolutely continuous mappings to manifolds can be defined. Moreover,

AC([0, 1], G)

is a Lie group for each Fréchet-Lie group G.

Defn. G is called L^1 -regular if a Caratheodory solution $Evol(\gamma) \in AC([0, 1], G)$ exists to

$$y'(t) = y(t).\gamma(t), \quad y(0) = e$$

and Evol: $L^1([0,1],\mathfrak{g}) \to AC([0,1],G)$ is smooth.

Rem. (a) Replacing L^1 with L^p yields L^{p-1} regular Fréchet-Lie groups.

(b) $L_{rc}^{\infty}([a,b], E)$ (γ has metrizable compact closure) and $AC_{L_{rc}^{\infty}}([a,b], E)$ even works for arbitrary locally convex spaces E which are integral complete in the sense that each continuous curve has a weak integral. In there have space R([a,b], E) of classes of regulated functions. Then L^1 -regularity is the strongest notion of measurable regularity, regulated regularity the weakest:

 L^p -regularity implies L^q - regularity for all $q\geq p$ L^∞ -regularity implies L^∞_{rc} -regularity, which im-

plies regulated regularity.

Theorem. (HG) Every Banach-Lie group is L^1 -regular.

Theorem. (HG) $\text{Diff}_c(M)$ is L_{rc}^{∞} -regular for each paracompact finite-dimensional smooth manifold M.

Following a suggestion by K.-H. Neeb:

Theorem If G is regulated regular, then G has the strong Trotter property, i.e.

 $(\gamma(t/n))^n \to \exp_G(t\gamma'(0))$ as $n \to \infty$ for each C^1 -map $\gamma \colon [0,1] \to G$, uniformly for tin compact sets. **Prop.** If G has the strong Trotter property, then G also has the strong commutator property, i.e.,

$$\left(\gamma_1(\sqrt{t}/n)\gamma_2(\sqrt{t}/n)\gamma_1(\sqrt{t}/n)^{-1}\gamma_2(\sqrt{t}/n)^{-1}\right)^{n^2}$$
$$\rightarrow \exp_G(t[\gamma_1'(0),\gamma_2'(0)])$$

uniformly for t in compact sets.

Proof. Apply the n^2 -subsequence of the Trotter formula to the C^1 -map

 $\gamma(t) := \gamma_1(\sqrt{t})\gamma_2(\sqrt{t})\gamma_1(\sqrt{t})^{-1}\gamma_2(\sqrt{t})^{-1}.$

Rem. (a) $L^p([a, b], E)$ can be defined not only for Fréchet spaces, but at least for some more general locally convex spaces, including spaces of compactly supported smooth vector fields. Diff_c(M) actually is L^1 -regular.

(b) This section compiles material from HG 2015b.

(c) L_{rc}^{∞} -regularity of Banach-Lie groups was first announced in HG 2013; the L_{rc}^{∞} -regularity of diffeomorphism groups was conjectured there.

(d) That evol: $C^0([0,1],\mathfrak{g}) \to G$ is smooth with respect to the L^1 topology on $C^0([0,1],\mathfrak{g})$ for each Banach-Lie group G was already shown in HG 2015a.

Literature on §5.

- HG, Lie groups of measurable mappings, 2003.
- HG, Regularity properties of infinite-dimensional Lie groups, Oberwolfach Reports 13 (2013), 791–794.
- HG, Regularity properties of infinite-dimensional Lie groups, and semiregularity, preprint, 2015a, arXiv:1208.0715.
- HG, Measurable regularity properties of infinitedimensional Lie groups, 2015b, in preparation (will be placed in the arXiv in February/March 2015).