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HIGHER GAUGE THEORY AND DIFFERENTIAL COHOMOLOGY

In recent years, my research focussed on the mathematical foundations of abelian higher
gauge theories and their quantization. In joint work with C. Bär, A. Schenkel and R. Szabo,
we investigate various aspects of differential cohomology, using the original Cheeger-Simons
model of differential characters [8] and its relative version [5].

This work culminated in a Lecture Notes volume [2] on Differential Characters. The book
covers both classical and new results. Especially we prove existence and uniqueness of fiber
integration by geometric methods. Moreover, we study relative differential cohomology, a dif-
ferential refinement of relative or mapping cone cohomology. We prove that it is endowed with
a unique natural structure of a module over the absolute differential cohomology ring.

Relative differential characters are best understood as a generalization of bundle gerbes [11]
and bundle 2-gerbes [14] to arbitrary degree. In [2], [3] we show that bundle (2-)gerbes with
connection over a fixed submersion π : Y → X are classified up to isomorphism (preserving
π : Y → X) by relative characters in Ĥn(π;Z), where n = 3,4.

We construct explicit examples of relative differential characters, which we call Cheeger-
Chern-Simons characters [3]. They combine well-known differential characteristic classes [8]
with the corresponding Chern-Simons forms [9]. Cheeger-Chern-Simons characters generalize
the so-called Chern-Simons bundle 2-gerbe [7] to arbitrary degree. We use Cheeger-Chern-
Simons characters in [3] to derive a notion of higher degree analogues of differential String
classes [15, 16] – differential trivializations of arbitary universal characteristic classes. We re-
cover the canonical 3-forms [13] that are present in differential String classes.

Moreover we investigate in [3] the differential cohomology of (compact, connected) Lie
groups. We derive splitting results for the differential cohomogies of G and BG and obtain a
Hopf theorem in differential cohomology. We also establish explicit descriptions of transgres-
sion maps and a differential cohomology version of Borel transgression theorem.

Another application of ordinary differential cohomology is to the quantization of abelian
(higher) gauge theories. In [4] we construct from the differential cohomology on globally hyper-
bolic Lorentzian manifolds an algebraic quantum field theory, more precisely: a locally covariant
quantum field theory [6]. Actually, our functor only satisfies the causality and time slice axioms,
but violates the locality axiom.

In the near future, we plan to systematically investigate (jointly with K. Waldorf) the differ-
ential cohomology of étale or Lie groupoids. These allow to treat the geometry and differential
topology of group actions, orbifolds and foliations on equal footing. We expect that most of the
above mentioned results generalize to this setting.



INFINITE DIMENSIONAL GEOMETRY

Currently, I am working on particular problems in infinite dimensional geometry: the geo-
metry of principal String bundles. The String group is a 3-connected cover of the Spin group
(resp. of a compact, simple, simply connected Lie group). It can be realized as an infinite
dimensional Fréchet Lie group [12].

In work in progress, joint with C. Wockel, we study so-called String structues, i.e. lifts of
the structure group in principal bundles from Spin to String. We construct connections on String
structures, using the so-called Caloron correspondence, due to Hekmati-Murray-Vozzo [10]. We
aim at a correspondence between String structures with connections (together with additional
data), and String connections in the sense of K. Waldorf [15]. Moreover, we try to construct the
corresponding Chern-weil and Chern-Simons forms in the spirit of S. Rosenberg & Co.

CLASSICAL ABELIAN GAUGE THEORIES

In less recent years, my work centered around classical abelian gauge theories, notably
Seiberg-Witten theory – a nonlinear U(1) gauge theory. I studied the geometry of the Seiberg-
Witten moduli space in the natural L2-metric [1]. Similar research for Yang-Mills moduli spaces
was undertaken by Groisser-Parker, L. Habermann, Hitchin, and others.

We intend to undertake a new approach to classical nonlinear abelian gauge theories in the
near future.
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NILPOTENT LIE GROUPS AND UNITARY GROUPS

DANIEL BELTIŢĂ

My research interests belong to finite- and infinite-dimensional Lie theory and
representation theory. I am currently interested particularly in: 1. nilpotent Lie
groups, and 2. unitary groups of operator algebras. Both of them share some
features with the compact Lie groups. Here are some recent references on these
topics:

1. Representations of nilpotent Lie groups and algebras

1.1. Topology of unitary dual spaces of nilpotent Lie groups

[1] I. Beltiţă, D. Beltiţă, J. Ludwig, Fourier transforms of C∗-algebras of nilpotent Lie groups.

Preprint arXiv:1411.3254 [math.OA].

[2] I. Beltiţă, D. Beltiţă, Coadjoint orbits of stepwise square integrable representations.
Preprint arXiv:1408.1857 [math.RT].

1.2. Structure of nilpotent Lie algebras

[1] I. Beltiţă, D. Beltiţă, On Kirillov’s lemma for nilpotent Lie algebras. J. Algebra 427

(2015), 85–103.
[2] I. Beltiţă, D. Beltiţă, Faithful representations of infinite-dimensional nilpotent Lie alge-

bras. Forum Math. 27 (2015), no. 1, 255–267.

1.3. Pseudo-differential Weyl calculus on coadjoint orbits

[1] I. Beltiţă, D. Beltiţă, Boundedness for Weyl-Pedersen calculus on flat coadjoint orbits.

Int. Math. Res. Not. IMRN (to appear).
[2] I. Beltiţă, D. Beltiţă, Algebras of symbols associated with the Weyl calculus for Lie group

representations. Monatsh. Math. 167 (2012), no. 1, 13–33.

[3] I. Beltiţă, D. Beltiţă, Modulation spaces of symbols for representations of nilpotent Lie
groups. J. Fourier Anal. Appl. 17 (2011), no. 2, 290319.

[4] I. Beltiţă, D. Beltiţă, Continuity of magnetic Weyl calculus. J. Funct. Anal. 260 (2011),

no. 7, 1944–1968.

2. Representations of unitary groups of operator algebras

2.1 Classification of representations

[1] D. Beltiţă, K.-H. Neeb, Nonlinear completely positive maps and dilation theory for real

involutive algebras. Preprint arXiv:1411.6398 [math.OA].
[2] D. Beltiţă, K.-H. Neeb, Schur-Weyl Theory for C∗-algebras. Math. Nachr. 285 (2012),

no. 10, 1170–1198.
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2.2. Geometric realizations of representations

[1] D. Beltiţă, J.E. Galé, Linear connections for reproducing kernels on vector bundles. Math.

Z. 277 (2014), no. 1–2, 29–62.
[2] D. Beltiţă, J.E. Galé, Universal objects in categories of reproducing kernels. Rev. Mat.

Iberoam. 27 (2011), no. 1, 123–179.
[3] D. Beltiţă, J.E. Galé, Holomorphic geometric models for representations of C∗-algebras.

J. Funct. Anal. 255 (2008), no. 10, 2888–2932.

[4] D. Beltiţă, B. Prunaru, Amenability, completely bounded projections, dynamical systems
and smooth orbits. Integral Equations Operator Theory 57 (2007), no. 1, 1–17.

[5] D. Beltiţă, T.S. Ratiu, Geometric representation theory for unitary groups of operator

algebras. Adv. Math. 208 (2007), no. 1, 299-317.

2.2. Classical groups related to operator ideals

[1] D. Beltiţă, S. Patnaik, G. Weiss, Cartan subalgebras of operator ideals. Preprint arXiv:
1408.4897 [math.OA].

[2] D. Beltiţă, Iwasawa decompositions of some infinite-dimensional Lie groups. Trans. Amer.

Math. Soc. 361 (2009), no. 12, 6613–6644.
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Singular Symplectic Fréchet Reduction
of Yang-Mills theory

Tobias Diez

Keywords: Symplectic Geometry, Global Analysis, Gauge Theory, Mathematical Physics

Background

Actions of infinite-dimensional Lie groups on infinite-dimensional manifolds occur everywhere
in global analysis. For example, the diffeomorphism group of a finite-dimensional manifold acts
on the space of Riemannian metrics or on the space of vector fields. Such group actions are not
just interesting and natural from a mathematical point of view, but also have diverse application in
physics ranging from fluid mechanics to shape analysis. Gauge theory provides a further example.
There, the group of gauge transformations acts on the space of connections. While the general
theory of infinite-dimensional locally convex Lie groups is rather well-understood (see for example
the review [Nee06]), very little is known about their actions on infinite-dimensional manifolds
beyond a case-by-case study. I am interested in the geometric and topological structure of the orbit
space of an infinite-dimensional Lie group action. In particular, I would like to better understand
the case where the action is not free and thus the orbit space is not a smoothmanifold, but a stratified
space. So far the physical effects caused by these singularities are not well understood. In the case of
Yang–Mills theory, recent research [Hei+90; RSV02; HRS09] suggests that the singular structure is
closely related to non-perturbative phenomenons like quark confinement.

Slice Theorem for Fréchet Lie Group Actions

Slices provide a valuable tool to investigate group actions. They reduce a 𝐺-action on a manifold 𝑀
to an action of the stabilizer subgroup on some invariant submanifold. In particular, the existence
of a slice at every point of 𝑀 guarantees that the orbit space 𝑀/𝐺 is stratified by smooth manifolds.
So, in this case, the quotient 𝑀/𝐺 is a collection of manifolds that fit nicely together. As such, a
slice yields a concrete description of the singular strata.

A slice theorem for Fréchet Lie group actions has been known for some time in special cases. So,
for example, the action of gauge transformations on the space of connections [ACM89] as well as
the action of the diffeomorphism group on the space of Riemannian metrics [Bou75] admits slices.
First approaches towards a more general study were made by Subramaniam [Sub84]. In my Master
thesis [Die13], I generalized the aforementioned works and expanded them to a systematic study of
Fréchet Lie group actions. With the help of the Nash–Moser theorem, I was able to generalize the
finite-dimensional result of Palais [Pal61] under some extra assumptions to a general slice theorem
in the Fréchet context.



Singular Symplectic Fréchet Reduction

Consider a finite-dimensional symplectic manifold (𝑀, 𝜔) acted upon by a Lie group 𝐺. Symplectic
reduction provides a way to pass to a suitable quotient space so that the quotient inherits a symplectic
structure. If the reduction is carried out at regular values of themomentummap 𝐽 , then the quotient
𝐽 −1(0) / 𝐺 is a smooth symplectic manifold. However, often the group action is not free and thus
the quotient is only a stratified symplectic space.

Many examples from global analysis naturally fit into this general framework. For instance, the
space of connections of a principal bundle carries a symplectic structure, which is invariant under
the action of gauge transformations. In this case, the momentum map is given by the curvature of
a connection and thus the symplectic quotient 𝐽 −1(0) / 𝐺 coincides with the space of equivalence
classes of flat connections. Atiyah and Bott [AB83] studied this moduli space over a Riemann
surface by formally using ideas from symplectic geometry. It is, therefore, of interest to generalize
the symplectic reduction scheme to the infinite-dimensional Fréchet setting. To do this in a rigorous
and not just formal way is the final goal of my PhD project.
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Research summary
Nora Ganter

This program is about categorical groups, a.k.a. 2-groups or group-like categories. The
notion of categorical group is a refinement of the notion of group, in which the symmetries
themselves are related by symmetries. A number of important groups naturally occur in the
form of 2-groups, and we plan to show that studying their previously ignored categorical
aspects leads to simplification of some important and difficult mathematics. Preliminary
work suggests that our program leads to an entirely new and illuminating development of
the representations of affine Lie algebras, and we also propose to give a simple construction
of the conjectural Monster 2-group, which sheds light on the most difficult aspects of the
Monster, including triality.

We judge our success by how simple and natural we can keep our constructions: in the
ideal scenario, we would like them to turn out simpler than their known, non-categorical
counterparts. We are guided by the philosophy that, just as a group is often best understood
as the symmetries of a naturally occuring object, a categorical group is often best understood
as the refined symmetries of a higher categorical object, i.e., an object whose symmetries
have symmetries of their own.

The program falls into two parts: 1. constructing categorical groups and 2. studying their
actions as refined symmetries.

(1) We plan to give new constructions of some prominent categorical groups. Our ap-
proach is constructive, low-tech, and deliberately avoids obstruction theoretic argu-
ments. Projects:
(a) Construct the String 2-groups as the refined symmetries of string theories, namely

of the Wess-Zumino-Witten models. This is mostly done, there is a pre-release
preprint, joint with Matthew Ando. Our methodology is different from Fiorenza,
Rogers and Schreiber’s. The most important idea is the thin bordism chain
complex of a smooth manifold M , providing a strikingly simple model for the
cobordism 2-groupoid of an extended sigma-model with target space M .

(b) In recent work, available online, we gave a very simple, hands-on construction
of 2-group extensions of tori.

(c) Give a simple construction of the conjectural Monster 2-group as a refined sym-
metry group. In previous work, we encountered strong empirical evidence for
this conjecture of Mason’s. Work in progress constructs such a refinement of
21+24 ·Co0 as the symmetries of a representation involving the categorical Leech
torus, see Point 2(a).

(2) We plan to systematically develop the representation and character theory of cat-
egorical groups. Others have attempted to approach this question via loop group
representations. We emphasise that our formalism is quite simple and works without
ever referring to loops or infinite dimensional manifolds. In fact,

our preliminary results strongly suggest that the representation theory of Lie 2-
groups gives an entirely new geometric counterpart to the representation theory of
affine Lie algebras, which is analytically much less intricate than loop group repre-
sentations.
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(a) Representations of categorical tori. In work in progress, I show that categorical
tori are realized quite naturally as functors and natural transformations action
on CohTC , the category of coherent sheaves on the complexified torus. If T is the
categorical Leech torus, then one can make sense of the basic representation of
T and of the semidirect product T o{pm1}, Point 1(c) refers to the symmetries
of this basic representation. This will be the topic of my talk.

(b) Categorical class functions of categorical tori. Preliminary results: starting only
from the idea of examining what a class function (in the sense of Bartlett-Ganter-
Kapranov-Willerton) of a torus 2-group looks like, we recover key features of the
representation theory of loop groups, namely the Looijenga line bundle, the
theta function formalism and, conjectureally, the Verlinde fusion product. Their
derivation is straigh-forward from our results in 1.(b).

(c) Representation and character theory of finite categorical groups. This was the
subject of the 2013 Masters thesis of Ganter’s student Robert Usher. In joint
work with Usher, we are planning to further develop this theory and to study
applications, e.g., to generalized moonshine.

(d) Weyl 2-groups and the characters of general Lie 2-groups. Planning stage. We
have the relevant definitions in place. There is a straight-forward approach to
analyzing these objects, building on our results in Part 1(b). This project is likely
to have applications to Kapranov’s conjectural super-duper symmetry formalism.

Long-term interests include the categorical aspects of McKay correspondence.
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1 Research summary for Hendrik Grundling

My research is mainly in Mathematical Physics, centered on mathematical problems which
originate in Quantum Field Theory. I have worked on quantum constraints, obstructions to
quantization, quantum gauge theory and the C*-algebras required to model quantum field theo-
ries. However, the strand of research which brings me to this workshop is a sequence of projects
to analyze & construct group C*-algebras for groups which are not locally compact, and crossed
products for singular actions of topological groups on C*-algebras, i.e. where the actions are
not strongly continuous, or the groups are not locally compact. These are joint projects with
Karl-Hermann Neeb.
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Research Summary

Florian Hanisch, fhanisch@uni-potsdam.de
Institut für Mathematik, Universität Potsdam

My interest in infinite-dimensional structures / geometry focusses on mapping “spaces” in
supergeometry and their applications to (classical and quantum) field theory, PDE-theory for
fermionic quantities and possible applications to geometry.

In [4], we construct an object representing the “space” SC∞(X,Y ) of all “morphism”
X → Y between arbitrary, finite-dimensional supermanifolds X,Y within the functorial ap-
proach to supergeometry ([7],[9]), which has already been successfully applied to construct dif-
feomorphism supergroups [10]. This object is a functor from the category of (finite-dimensional)
Grassmann algebras into a suitable category of (possibly infinite-dimensional) manifolds, which
is defined by an exponential-law-type relation. Remarkably, the resulting structure turns out
to be “only” a locally affine (in the sense of Michor [6]) supermanifold in case X is not com-
pact. This somewhat unsatisfactory feature emerges from a conflict between the functoriality
requirement and the standard construction of manifolds of mappings, modelled on spaces of
compactly supported sections. Since all reasonable (super-)spacetimes in physical theories are
non-compact, this problem will be addressed again in future research.
Equivalently, the structure of SC∞(X,Y ) can be characterised making use of a component-
field-type decomposition of its elements, thus basically reducing the problem to one of ordinary
∞-dim. geometry (in preparation).

In joint work with T.P.Hack and A.Schenkel ([3]), we have applied super mapping spaces
to construct (free) supersymmetric field theories in the locally covariant sense ([1]), i.e. a
functor from a certain category of super spacetimes to a category of algebras of observables.
As was to be expected from results in the physics literature, the commonly used concept of
morphisms between supermanifolds proves insufficient to capture supersymmetry transforma-
tions and hence to describe supersymmetric field theories. We show that an enrichment of
the category of super spacetimes, over the category of functors from Grassmann algebras to
sets, resolves the issue. In essence, we replace the morphism sets by the larger mapping space
objects discussed above, which are functors of the aforementioned type. Even though we do
not yet make use of any notion of smoothness on SC∞(X,Y ) in [3], we expect that this extra
structure (esp. generalizations of micro-local analytic concepts) will give some insight in the
finiteness properties of supersymmetric QFTs.

In current work in progress, joint with I.Khavkine, we try to understand fermionic or mixed
classical field theories within the framework of covariant phase space (see e.g. [5] and references
given there). Roughly speaking, the phase space P is given by the (∞-dim.) space of solu-
tions of classical equations of motion and symplectic/Poisson structures are obtained through
Peierl’s construction ([8]). Thus, our goal is to understand fermionic (quasilinear) hyperbolic
PDE and their spaces of solutions in terms of ∞-dim. supergeometry and give a rigorous
construction of the symplectic structure, which is usually only described in a formal way in
the physics literature. We believe that this possible at least in the purely fermionic situation,
the presence of non-linear Bosonic contributions and/or gauge degrees of freedom clearly pre-
senting additional difficulties. Eventually, we also hope to clarify the relation of the induced
Poisson algebra structure on C∞(P) to the one obtained from the “off-shell” formalism (see
e.g. [2]). In the latter approach, an algebra structure is constructed on C∞(allclassicalfields)

1



(i.e. “off-shell”) at the first place and the equations of motion are taken into account in a
second step, by dividing by the ideal generated by them.

To give a brief perspective on possible future research: It should be interesting to relate
parts of the results described above to the construction of (supersymmetric) path integrals and
also to constructions in Batalin-Vilkovisky formalism. Moreover, algebraic structures arising
during the construction of super mapping spaces may be related to structures appearing in
theory of renormalisation.
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THE ATIYAH ALGEBROID OF THE CHERN-SIMONS
BUNDLE 2-GERBE

PEDRAM HEKMATI

Let P → M be a principal circle bundle. The automorphisms of P are
the diffeomorphisms of P that commute with the action of the circle group
T. We have a short exact sequence of Fréchet Lie groups,

(0.1) 1→ C∞(M,T)→ Aut(P )→ DiffP (M)→ 1

where DiffP (M) denotes the subgroup of diffeomorphisms of M that pre-
serve the isomorphism class of P .

At the Lie algebra level, (0.1) corresponds to the functor C∞(M, ·) applied
to the Atiyah sequence,

0→M × R→ TP/T→ TM → 0

Next, let G be a bundle gerbe on M . For each φ ∈ Diff(M), an auto-

morphism of G is defined as a stable isomorphism φ̂ : G → φ∗G that lifts
φ. In arXiv:1108.1525, it is shown that the collection of all such lifts is a
coherent 2-group Aut(G) and we have an exact sequence of 2-groups,

(0.2) 1→ Pic(M)→ Aut(G)→ Diff(M)→ 1

Using a Čech approach, the infinitesimal version of (0.2) can be described
as a strict extension of Lie 2-algebras, where the middle term is isomorphic
to an exact Courant algebroid. In this sense, the latter plays the role of the
Atiyah algebroid for gerbes.

Problems:

(1) Elucidate the relation between the above-described ‘higher’ Atiyah
algebroid and the one appearing in arXiv:1009.2975.

(2) Describe the Atiyah algebroid of the Chern-Simons bundle 2-gerbe
(see arXiv:math/0004117) using heterotic Courant algebroids, in-
troduced in arXiv:1308.5159 (and discussed in my talk).
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Research

Bas Janssens

Gauge groups arise as transformations of gauge theories, such as (Q)ED, (Q)CD and
WZW-models. Over the last years, I have studied several aspects of their representation the-
ory: I classified their bounded unitary representations (with K.-H. Neeb), I classified their
central extensions (with C. Wockel), and I studied the technically challenging, but much more
relevant, theory of unbounded projective unitary representations of general infinite dimensional
Lie groups (also with K.-H. Neeb). Building on these results, I plan to bring more structure to
the representation theory of gauge groups, enriching a field that is known for its many scattered
examples with a more systematic approach. Together with K.H. Neeb, I have just obtained
the first success in this direction: classifying of the unbounded projective unitary representa-
tions which are of positive energy. This extends the classification of unitary highest weight
representations of affine Kac-Moody algebras, which are, roughly, gauge groups over the circle.

Historically, String geometry emerged from the work of Killingback and Witten on in-
tegrality properties of what is now called the Witten genus. Recently, Waldorf has managed
to define a fusion structure on a certain U(1)-bundle over the frame bundle of loop space. I
plan to develop a conformal net model of the string 2-group, and use this to extend the fusion
structure to the spinor bundle over loop space. Such a fusion structure is believed to be con-
nected to Diff(S1)-equivariance of Witten’s ‘Dirac operator on loop space’. I have given several
presentations about these ideas in conferences (Bonn, Greifswald), but also in meetings of the
String Geometry Network, of which I am a member.

Lie algebra sheaves (LAS) are the protagonists in Singer-Sternberg’s interpretation of
the foundational work of Lie and Cartan. Their work is devoted to the ‘transitive case’ (in
the sense that the corresponding pseudogroup induces only one orbit), which is a quite severe
restriction, because many interesting examples are not transitive. There is some literature in the
‘intransitive case’, but only some very mild intransitivity is allowed (one requires that the orbits
are the fibers of a submersion!), so that even very simple examples are excluded. Together with
M. Crainic, I aim to provide a theory of LAS that is fully adapted to the non-transitive case.
At the same time, I plan to develop a suitable cohomology theory in this more general context,
based on ideas from my work with Wockel on cohomology of gauge algebras (these are examples
of LAS!), combined with Lie pseudogroup techniques (Spencer cohomology). The motivation
comes from the relevance of LA cohomology in geometry and mathematical physics, and there
is a large list of examples and possible applications, such as gauge algebras, Lie algebras of
vector fields, sections of Lie algebroids, and infinitesimal symmetries of G-structures.
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Ralf Meyer

Summary of current research interests:

• K-theory and KK-theory for C⇤-algebras

• bicategories of C⇤-algebras with homomorphisms or correspon-
dences as arrows, actions of groups, crossed modules, etc., on
C⇤-algebras and crossed modules for those

• analysis and homological algebra for bornological algebras and
modules
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Research Interests
Professor Michael Murray

• The general caloron correspondence Pedram Hekmati, Michael K. Murray and Raymond F. Vozzo. Journal of
Geometry and Physics 62(2), (2012), 224–241. arXiv:1105.0805

In its original form the caloron correspondence related instantons on R3 × S1 to Bogomolny monopoles on R3.
This can be generalised to describe a correspondence between G bundles on M × S1 and LG bundles on M where
LG is the loop group of smooth maps from S1 into G. In this paper we describe the most general version of
this correspondence which relates particular G bundles on the total space of a fibration Y → M with fibre X to
infinite-dimensional bundles on M whose structure group is the gauge group of a particular G bundle on X. These
results are used to define characteristic classes of gauge group bundles. Explicit but complicated differential form
representatives are computed in terms of a connection and Higgs field.

• On the existence of bibundles. Michael Murray, David Michael Roberts and Danny Stevenson. Proceedings of
the London Mathematical Society, 105(6), (2012), 1290–1314. arXiv:1102.4388

This paper concerns bibundles which are principal right G bundles with a commuting left G action. (We actually
consider a slightly more complicated situation using crossed-modules.) Such a bundle has a so-called type map
φ : M → Out(G) which is a rigid invariant of the bundle in the sense that isomorphic bibundles have the same
type maps. This is an important constraint on the existence of bibundles which we explain and also feeds into the
classifying theory of bibundles which we describe. There are close relationships with loop group bundles.

• The Faddeev-Mickelsson-Shatashvili anomaly and lifting bundle gerbes. Pedram Hekmati, Michael K. Murray,
Danny Stevenson and Raymond F. Vozzo, Communications in Mathematical Physics, 319(2), (2013), 379–393.
arXiv:1112.1752

In unpublished work I have been thinking about bundles and bundle gerbes where the group that acts changes
isomorphically from fibre to fibre. This is closely related to groupoids. In this paper we use this theory and that
of the caloron transform to study the Faddeev-Mickelsson-Shatashvili (FSM) anomaly. In gauge theory, the FSM
anomaly arises as a prolongation problem for the action of the gauge group on a bundle of projective Fock spaces.
We study this anomaly from the point of view of bundle gerbes and give several equivalent descriptions of the
obstruction. These include lifting bundle gerbes with non-trivial structure group bundle and bundle gerbes related
to the caloron correspondence.

• A Geometric Model for Odd Differential K-theory P. Hekmati, M.K. Murray, V. Schlegel and R.F. Vozzo,
arXiv/1309.2834.

Odd K-theory has the interesting property that it admits an infinite number of nonequivalent differential re-
finements. In this paper we provide a bundle theoretic model for odd differential K-theory using the caloron
correspondence and prove that this refinement is unique up to a unique natural isomorphism. We characterise
the odd Chern character and its transgression form in terms of a connection and Higgs field and discuss some
applications. Our model can be seen as the odd counterpart to the Simons-Sullivan construction of even differential
K-theory.

You can find links to all my publications at http://www.maths.adelaide.edu.au/michael.murray/publications.
html.
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Lie’s Third Theorem for infinite-dimensional
Lie superalgebras

This text summarizes the main results of my thesis [Ohr15]. Following a construction of
Molotkov [Mol84], we can define a supermanifold M ∈ GrTop as a functor from the category
of finite-dimensional Grassmann algebras Gr to the category of topological spaces, satisfying
certain conditions. The underlying picture is the well-known functor of points [DK99] with Gr
substituting the opposite category of supermanifolds SManop in the Yoneda lemma. This is
possible since Gr turns out to be equivalent to the separating family of superpoints SPoint ⊂
SMan. The above construction can be seen as a generalization of the classical definition of a
supermanifold (see [DK99], for instance) allowing for infinite-dimensional super vector spaces
as local models. As usual, a Lie supergroup is then defined as a group object in the category of
supermanifolds. In analogy to Lie’s Third Theorem for locally convex Lie algebras (see [Nee06]
for a very general treatment), we prove the following statement:

Theorem 1
Let g = g0⊕g1 be a locally convex Mackey-complete Lie superalgebra, such that the underlying
Lie algebra g with [g1, g1] := 0 is locally exponential. If the period group Π(g0) is discrete,
then there is a Lie supergroup G, such that L(G) = g.

There is strong evidence that the requirement for Π(g) to be discrete is also a necessary
condition, since this is the case for ordinary Lie algebras. The main proof idea is to reduce
the integration of the Lie superalgebra g1 ⊕ g0 to the integration of the Lie algebra g0, which
is a well-understood problem in Lie theory ([Nee06], Thm. VI.1.6). To this end, we use the
possibility of splitting up a Lie supergroup G into its underlying Lie group G0 and a nilpotent
factor Gnil acting on G0 via a natural transformation ρ : G0 × Gnil → Gnil (see [SW11]) and
show that even more is true: If the local model of G is Mackey-complete and G0 is locally
exponential, it is possible to define a Lie supergroup as such a triple (G0,Gnil, ρ), which we
refer to as a super Harish-Chandra pair :

Theorem 2
Let Grp(SMan) be the category of Lie supergroups modelled on Mackey-complete locally convex
spaces for which the underlying Lie group is locally exponential. Then the category of super
Harish-Chandra pairs is equivalent to Grp(SMan).

The above equivalence has not been proven in this generality since most constructions of
supercharts, serving as a super-analogue of ordinary charts, out of a super Harish-Chandra
pair fail to be supersmooth (see [Sac07], for instance). Indeed, the construction of supercharts
turns out to be the main obstacle in the proof of the above theorem. We trace this back
to the problem of endowing an ordinary manifold with a supermanifold structure, which is
no longer straight-forward in the infinite-dimensional setting. However, based on the finite-
dimensional construction we state a sufficient condition for a manifold to allow such a structure,
called functorizability. In their book [KM97], Kriegl and Michor treat a very similar problem
and show implicitly that functorizability is always fulfilled for the case of manifolds that are
modelled on convenient, i.e. Mackey-complete locally convex spaces.
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Higher Categories, Localizations and Orbifolds
Dorette Pronk

Dalhousie University

My current research interests are mainly in higher category theory and orbifolds
with a view to further develop the interaction between higher category theory and
homotopy theory.

Weak Higher Categories. There are several different models for weak higher
categories and there are various open questions about how they are related. With
Simona Paoli (University of Leicester) I am developing a new model for weak n-
categories which based on (strict) n-fold categories with some special properties
(with pseudo maps between them). We call these n-fold categories weakly globular,
because one of the ideas behind this definition is to weaken the notion of globularity
(the fact that we have sets of objects, arrows etc.) instead of weakening the notions
of units and associativity. We have published our work for the case n = 2 [11]
and are currently working on the details for higher n. The fact that the n-fold
categories used are strict themselves makes it easier to work with them, and we are
also working on describing the connections between our new model and the existing
models.

Besides working on the details of what the higher dimensional structures look
like, we have also started developing analogues of various categorical constructions,
such as the category of fractions in this context to illustrate how these n-fold cate-
gories model weak n-structures [10]. Because of the strictness in the weakly globular
n-fold categories it will be easier to give the description for the weak n-category of
fractions in this context than in the other models that are currently used for weak
n-categories.

We hope to be able to use this to further explore the connections between
higher category theory and higher homotopy theory.

Localizations. In homotopy theory one often consider the homotopy category
obtained by adding inverses to a certain class of arrows (the weak equivalences)
subject to some universal property. The simplest way to do this is by adding
the reverse arrows and then taking a category of equivalences of zig-zag paths as
described by Gabriel and Zisman [7]. This has the disadvantage that it is hard to
decide whether any two such paths are equivalent and there is no a priori guarantee
that the resulting hom-sets will be small. When the class of arrows to be inverted
satisfies certain conditions we can take the category of fractions which means that
it is sufficient to take paths of length 2 and equality becomes decidable. However,
this does not solve any smallness-issues. Quillen model structures are needed to
solve those.

In my research I have been considering generalizations of these localizations in
which we don’t add strict inverses but rather equivalences (this gives the bicategory
of fractions [12]) or just right adjoints. The latter can be done using the Π2

construction in [4] and subject to some further conditions can also be done using
spans [5]. The span construction has shown its use in various contexts and Robert
Dawson (Saint Mary’s University), Bob Paré (Dalhousie University) and I continue
to study this construction further in the context of double categories [3]. Currently
we continue to work out details to place this in the context of oplax/virtual double
categories and one of our goals is to use this to explain the relationship between
the hammock localization [6] and the Π2 construction [4].
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Orbifolds. My research on orbifolds and more general, orbispaces is done
mostly together with Laura Scull (Fort Lewis College, USA). One of our overarch-
ing goals is to understand the commonalities and differences between equivariant
homotopy theory and orbifold homotopy theory. We have shown how Bredon co-
homology with constant coefficients can be applied to orbifolds. We are currently
completing the project on mapping spaces for orbispaces I am speaking about this
week. We are also working (with Matteo Tommasini and Alanod Sibih) on a new
atlas definition for ineffective orbispaces. From the groupoid point of view it is
fairly clear how the effective orbifolds from Satake can be generalized to ineffective
orbifolds (where the structure groups of the charts are not required to act effec-
tively). However, finding the corresponding atlas definition requires more subtlety
and it turns out that there is more than one way to describe the new atlasses and
although they are equivalent, they suggest different notions of morphisms between
the resulting orbifolds.

In [8] Marco Grandis introduced the manifold construction to describe the local
to global process from charts to manifolds. Part of what his construction does is
to formalize how one can use partially defined maps in order to be able to describe
smooth maps between any two manifolds with their given atlases without needing
to change the domain or codomain atlases. This construction was made a bit more
transparent by its translation into the language of restriction categories by Robin
Cockett and Geoff Cruttwell [2]. Together with Cocket I am considering ways to
describe orbifolds in the language of restriction categories.

Finally I am quite interested in the orbifold construction for bicategories as
used in the study of quantum field theory [1], and how this relates to classical
orbifolds. I expect that at least one of our new definitions for an orbifold atlas will
shine some new light on this question.
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Where does higher geometry come from?
(and other questions)

David Roberts

A lot of my research is aimed at finding examples of higher geometric struc-
tures. In particular, the structures that are categorifications of bundles and re-
lated data. The theory of such objects has been known rather well for a decade,
and the approach via ∞-categories the most encompassing, but this does not
supply ready-made examples. This is especially true when one wishes to apply
the tools of analysis to higher geometry, where one would like to emulate the
successes of gauge theory in ordinary differential geometry.

In my work I’ve been moderately successful in thinking about the historical
origins of the theory of bundles, and what the analogues should be for higher
geometry. Natural questions one might ask, and which for me go back to the
start of my PhD studies, is whether there is an analogue of the BPST instanton
(a certain connection with decay conditions on an SU(2)-bundle on R4) in higher
geometry? Is there some sort of action functional one might want to study for
which this is an input? Given such a thing, what higher connective structure
gives a minimum for this functional? It is not obvious what such an ‘action’
would be, and even if it should be valued in the usual field of scalars.

I prefer to work with very concrete presentations, though I know that these
are merely representatives for objects and maps in a more abstract setting, such
as that of ∞-stacks. In particular, I believe that if one can find a presentation
of a stack, then this information is more useful that knowing just the stack, even
if one wishes to prove things in a presentation independent way.

I also believe that higher representation theory will be much intertwined
with higher geometry, in particular on higher vector bundles. Exactly what
these are is still a little bit mysterious, since one needs to find good analogues
of 2-vector spaces (and higher up the ladder).

On a completely different matter, I’m very much interested in how one ap-
proaches class forcing using categorical techniques. This is a technique, in ma-
terial set theory, for building new models of ZF(C) from old, where one wants
to influence a proper class of sets. One instance is setting the continuum func-
tion κ 7→ 2κ at all regular cardinals κ. Forcing using sets is well-known to be
equivalent to taking sheaves on a site, for small sites, but class forcing manages
to do something similar using large sites; in the example above one gets a site
as big as the collection of all ordinals. The theory does not extend näıvely from
the set forcing case, and so presents an intriguing puzzle, especially as the story
is completely unknown if one wants to work in an constructive/intuitionistic
setting.
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THE GROUP OF HAMILTONIAN HOMEOMORPHISMS

AS A TOPOLOGICAL GROUP WITH EVOLUTION OPERATOR

(work in progress)

by Tomasz Rybicki

The group of Hamiltonian diffeomorphisms Ham(M,ω) of a symplectic manifold

(M,ω) consists of the time-one symplectomorphisms of (compactly supported) Hamil-

tonian isotopies. It is known that Ham(M,ω) is a Lie group, and that Ham(M,ω) is sim-

ple iff M is compact. Y.G. Oh and S. Müller [OM] introduced a topological Hamiltonian

dynamics of a smooth symplectic manifold (M,ω) by means of topological Hamiltonian

isotopies. In the definition of topological Hamiltonian isotopy it was used simultaneously

both the C0-convergence on the homeomorphism group of M and the L(1,∞)-convergence

on the space of Hamiltonian functions. As a result the group of Hamiltonian homeomor-

phisms Hameo(M,ω) of (M,ω) is defined. The whole thing relies on the phenomenon of

the C0-symplectic rigidity discovered by M. Gromov and Y. Eliashberg.

It is interesting that such a C0-rigidity still holds in the contact category. In view of

this observation, recently S. Müller and P. Spaeth in [MS] introduced a topological contact

dynamics.

In the paper [BS] L. Buhovsky and S. Seyfaddini established a one-to-one correspon-

dence between topological Hamiltonian isotopies and t-dependent continuous Hamiltonian

functions on (M,ω) (by improving an earlier theorem by C. Viterbo). This is a kind of

regularity theorem for the group Hameo(M,ω). Analogous result has been obtained in

the contact category. These theorems constitute milestones in the development of C0-

symplectic and C0-contact dynamics.

Our aim is to look at the group Hameo(M,ω from the Lie-theoretic point of view (in

the wider sense). A very deep and interesting question seems to be whether Hameo(M,ω)

admits a structure of a topological group with Lie algebra (cf. [HM]), and if this depends

on the symplectic manifold (M,ω). However, there is another general class of topologi-

cal groups with some Lie-theoretic features, namely topological groups with evolution

operator. This concept exploits the regularity of Lie groups. A rough exposition of the
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category of topological groups with evolution operator has been presented in [LR]. Con-

cerning Hameo(M,ω) we stated that this group fulfills the definition of topological gro-

ups with evolution operator. Several problems concerning further properties of the group

Hameo(M,ω) arise. Similar facts and questions concern the group of contact homeomor-

phisms.
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Research Summary

Hadi Salmasian

University of Ottawa, Canada

My current research interests include the following:

1. Unitary representations of infinite dimensional Lie groups. This is a project
with Karl–Hermann Neeb. In recent papers [4], [5], we have studied analytic
aspects of unitary representations of infinite dimensional Lie groups. In [4] we
showed that if a Lie group G satisfies the Trotter property, then the space of
smooth vectors is equal to the common domain of the unbounded operators
coming from the action of the universal enveloping algebra. This result has
applications in the representation theory of Lie supergroups (see below) and
also Nelson–like characterization of smooth vectors of positive energy represen-
tations. This is a forthcoming paper together with Karl–Hermann Neeb and
Christoph Zellner.

2. Spectrum of differential operators on supersymmetric spaces and shifted su-
per jack polynomials. This is a project with Siddhartha Sahi. In a forthcoming
paper we prove that the spectrum of invariant differential operators on the super-
symmetric space GL(m, 2n)/OSp(m, 2n) is described by a family of polynomials
whose top homogeneous parts are spherical vectors in polynomial representa-
tions of GL(m, 2n). We prove that after a suitable change of coordinates to
Frobenius coordinates, our polynomials become identical to the shifted super
Jack polynomials of Sergeev and Veselov [7]. The latter polynomials describe
eigenvalues of “quantum integrals” of the deformed Calogero-Moser-Sutherland
system.

3. Unitary representations of Lie supergroups and C∗-algebras. The category of
Lie supergroups is isomorphic to the category of Harish–Chandra pairs (G, g),
where G is a Lie group and g is a Lie superalgebra. Using this correspondence, a
notion of unitary representation was defined in [1] for Lie supergroups/Harish–
Chandra pairs. In [6], I proved that Kirillov’s classical results on the method of
orbits extend to nilpotent Lie supergroups. In [3], Karl–Hermann Neeb and my-
self characterized all simple Lie supergroups which can have nontrivial unitary
representations. In a forthcoming paper with Karl–Hermann Neeb, we intro-
duce C∗-algebras for Lie supergroups and prove direct integral decompositions
for their unitary representations.
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4. Local and global Weyl modules. This is a project with Nathan Manning and
Erhard Neher. We generalize the theory of local Weyl modules of [2] to root
graded Lie algebras, and connect our category of modules to the category of
representations of an algebra introduced by Seligman in the study of admissible
modules.
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Infinite-dimensional Lie theory, Higher Structures and Application
Alexander Schmeding

My research is inspired by questions from infinite-dimensional Lie theory and its
application. Concretely, these questions are connected to three main topics:

1. Lie group structures for groups of diffeomorphisms and differentiable structures
on spaces of (differentiable) maps.

2. Connections of infinite-dimensional Lie theory to higher categories, in particular
to Lie Groupoids and Lie Algebroids.

3. Infinite-dimensional structures arising in applications in numerical analysis and
physics.

Let me briefly illustrate these points with some further comments:

Prime examples of infinite-dimensional Lie groups are the diffeomorphism groups
Diff(K), where K is a smooth and compact manifold. If K is a three dimensional
torus, the group Diff(K) arises naturally in fluid mechanics. The motion of a particle
in the fluid corresponds, under periodic boundary conditions, to a curve in Diff(K).
Moreover, it is possible to construct Lie group structures for diffeomorphism groups

of manifolds with “mild singularities”, i.e. for diffeomorphisms of orbifolds. However, in
studying these infinite-dimensional Lie groups one often discovers natural connections
to higher structures in differential geometry, e.g. Lie groupoids and Lie algebroids.
Here are two examples for this:

• To deal with morphisms of orbifolds, one should identify orbifolds with (Morita
equivalence classes of) certain Lie groupoids. Hence Lie groupoids and their
morphisms are naturally connected to the Lie group of orbifold diffeomorphisms.

• To every Lie groupoid G one can associate its group of bisections Bis(G). Under
mild assumptions on G the group Bis(G) turns out to be an infinite-dimensional
Lie group. As a consequence one obtains an interesting connection between the
Lie theory of Lie groupoids and Lie algebroids and the Lie theory of infinite-
dimensional Lie groups and Lie algebras.

The rich interplay of higher structures and infinite-dimensional Lie theory is one of
my research interests.

Finally, I am also interested in infinite-dimensional structures arising in applica-
tions in numerical analysis and physics. In numerical analysis infinite-dimensional
structures arise naturally in the study of numerical integration schemes and the asso-
ciated backward-error analysis. For example ,the so called Butcher group is an infinite-
dimensional Lie group. It is closely related to a certain Hopf algebra which appears
in renormalisation of quantum field theories in physics. These infinite-dimensional
structures are often studied from the algebraic point of view to avoid the technical
difficulties of infinite-dimensional calculus. My goal is to remedy this situation and
bring topology, (infinite-dimensional) analysis and Lie theory back into the picture.





Research Interests

Kay Schwieger (University of Helsinki)

Quantum Markov Process

One of my main research focus are quantumMarkov processes. From the point of geometry,
these processes typically arise from possibly irreversible actions on non-commutative
spaces. My master studies were about generalized Brownian motions introduced by
M. Bożejko and R. Speicher. But a maybe more prominent example of quantum Markov
processes are convolution processes of (quantum) groups or Lévy processes.

My current particular interest are relations between stochastic processes and the geometry
of the underlying space. For example, in recent years D. Goshwami et al. have introduced
the quantum isometry group of a non-commutative manifold. I would be eager to learn
more about the connection of this quantum group with the differential structure of the
manifold.

Interesting problems concern the dilation theory of quantumMarkov processes. In a simple
form, a dilation can be treated similar to classical coding theory. This interpretation was
a key motivation for the coupling method I developed in my Ph.D. thesis. It seems that
couplings could also be interesting from the perspective of quantum information theory,
but that is maybe another story . . .

Beyond mathematical relevance, quantum Markov processes show up in physics as a
model of open quantum systems. Currently, I collaborate with a group of experimentalists
at Aalto University to refine their model of continuous measurements of a quantum
system.

1 Control Theory

In recent years, I have become interested in control theory. In a collaboration with
P. Muratore-Ginnaneschi I studied optimal control of the Kramers-Langevin equation, a
stochastic differential equation that describes small particles in a noisy environment. For
such systems we analyzed and resolved the boundary singularities for minimizing the
heat realease.

2 Group Actions on C∗-Algebras

Besides my mainly stochasticly motivated research, I currently collaborate with Ste-
fan Wagner for a project that aims to classify free group actions on general C∗-algebras.
If you are interested, you are most welcome to listen to Stefan Wagner’s the talk at the
workshop about some parts of this project.





Research Interests

Raymond Vozzo

I am interested broadly in bundle gerbes and related structures, as well as the geom-
etry of infinite-dimensional objects such as loop groups and other mapping spaces, and
the string group of a compact Lie group.

My main contributions have been surrounding the caloron correspondence and its
applications. The caloron correspondence was first described as a relationship between
instantons on R3 × S1 to monopoles on R3 with structure group the loop group (these
are called calorons). Later it was realised by Murray and Stevenson that it could be
restated as a correspondence between and LG-bundles over a manifold M and G-
bundles over M × S1. Together with Murray, I have studied the geometry of this
correspondence and used it to calculate characteristic classes of loop group bundles
in ‘The caloron correspondence and higher string classes for loop groups’ (J. Geom.
Phys., 60(9) (2010)/arXiv: 0911.3464) and also of certain bundle gerbes in ‘Circle ac-
tions, central extensions and string structures’ (Int. J. Geom. Methods Mod. Phys., 7(6)
(2010)/arXiv:1004.0779). Together with Murray and Hekmati in ‘The general caloron
correspondence’ (J. Geom. Phys., 62(2) (2012)/arXiv:1105.0805) we generalised this
correspondence to groups of maps X → G for X not necessarily equal to S1. We used
this general correspondence in ‘The Faddeev-Mickelsson-Shatashvili anomaly and lifting
bundle gerbes’ (Comm. Math. Phys. 319(2) (2013)/arXiv:1112.1752) with Stevenson to
provide an alternative description of the FMS anomaly in quantum field theory using
bundle gerbes.

The key point that features in these works, as mentioned above, is that the caloron
correspondence can be extended to include the geometry of infinite-dimensional bun-
dles. Recently with Murray, Hekmati and Schlegel we exploited this description of the
geometry of loop group bundles to give a bundle-theoretic model for odd differential K-
theory, along the same lines as Simon–Sullivan (‘A geometric model for odd differential
K-theory’ To appear in Diff. Geom. Appl./arXiv:1309.2834).

Recently, I have been interested in constructions with groupoids and bundle gerbes.
In some work in progress, D. Roberts and I have constructed the groupoid of smooth
loops in a Lie groupoid, extending the established constructions of topological loop
groupoids (and forming the first step in a program to extend the caloron correspon-
dence to Lie groupoids and objects such as bundle gerbes and orbifolds). We have also
constructed explicit examples of string structures using trivialisations of bundle 2-gerbes.
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1. Lie 2-algebras and crossed modules One direction of my research is
the interest in categorified Lie algebras, i.e. Lie 2-algebras. Crossed modules
of Lie algebras constitute an easy way of categorifying Lie algebras, because
crossed modules of Lie algebras are in bijection to strict Lie 2-algebras. One can
construct representatives µ : h → g of each equivalence class of a crossed module
of Lie algebras such that h is abelian, which we call “abelian representatives”.
This leads to many simplifications when working with crossed modules of Lie
algebras, for example, this makes it possible in our joint work with H. Abbaspour
(Nantes) to define a higher Hochschild cocycle representing the holonomy of a
2-bundle, see arXiv:1202.2292.

Furthermore, my thesis student Salim Rivière found an explicit inverse (as
a map defined on cochain level) of the antisymmetrisation map

HH∗(Ug,M) → H∗(g,Mad).

This extension of Lie algebra cocycles to Hochschild cocycles is quite compli-
cated and involves a detailed knowledge of Ug (Eulerian idempotents). The
exact translation of crossed modules of g into crossed modules of Ug remains to
be explored.

Concerning crossed modules, there are also still many open questions. For
example, we have linked explicitely crossed modules of Lie algebras to crossed
modules of Hopf algebras. Thus there is the question of how crossed modules
of associative algebras (or coassociative coalgebras) are linked to those of Hopf
algebras. Another question concerns the construction of 3-cohomology classes
(in which cohomology theory ?) associated to crossed modules of Hopf algebras.

The association of a crossed module of Hopf algebras to a crossed module of
Lie algebras may be used to define some sort of an enveloping 2-algebra for the
string Lie algebra. Which representation-theoretic content has this enveloping
2-algebra ?
2. Leibniz algebras and racks

Recall that a rack X is a set with a binary operation (x, y) 7→ x ⊲ y such
that for all x ∈ X , the map x ⊲− : X → X is bijective and for three elements
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x, y, z ∈ X , we have the auto-distributivity relation:

x⊲ (y ⊲ z) = (x⊲ y)⊲ (x ⊲ z).

Racks are thus algebraic structures generalizing the conjugation operation in a
group.

In work together with B. Dhérin (Berkeley), we transpose a deformation
quantization scheme (based on explicit Fourier integral operators involving a
generating function for some symplectic micromorphism) which works for the
Poisson manifolds given by the duals of Lie algebras to duals of Leibniz algebras.
The construction uses the integration of a Leibniz algebra h into a Lie rack by
the formula

X ⊲ Y := eadX (Y ),

for all X,Y ∈ h. We can then explicitly describe which bracket on the dual of
h we are quantizing. The properties of this bracket should give a new notion of
“generalized Poisson manifold”.

In work with C. Alexandre (Strasbourg), M. Bordemann (Mulhouse) and
S. Rivière (Nantes), we define a geometric model of the enveloping algebra of
a Leibniz algebra using distributions on the local Lie rack associated to the
Leibniz algebra. This leads to the notion of a rack bialgebra. We end up in this
framework with a purely algebraic construction of deformation quantization of
Leibniz algebras.
3. Lie rackoids I am thinking with C. Laurent-Gengoux (Metz) on the
structure which should integrate Leibniz algebroids. We called this structure Lie
rackoids. We have already established some basic properties of these objects.

We have a certain stock of natural examples of rackoids, let me explain one
of them to you. Let M be a manifold. Let us define a precategory structure
on Γ := T ∗M ×M by defining for an element (α, n) ∈ T ∗

mM ×M the source
map by s(α, n) = m, the target map by t(α, n) = n and identities by ǫ(m) =
(0m,m). One easily computes that the local bisections of this precategory are
pairs (ω, φ) where ω is a differential 1-form on an open set U and φ : V → U

is a diffeomorphism. One defines a rack structure (i.e. bisections acting on
elements) by

(ω, φ)⊲ (α, n) := (φ∗α, φ−1(n)).

This gives a natural rackoid structure on the precategory Γ. One computes
easily that the infinitesimal Leibniz algebroid corresponding to it is given by
T ∗M ⊕ TM with the Leibniz bracket

[(X,α), (Y, β)] = ([X,Y ], LXβ).

It is obvious that this Leibniz algebroid is close to the standard Courant
algebroid. While the integration of Courant algebroids has been approached by
methods from graded geometry by several research teams, we think about the
integration into Lie rackoids. They should have the advantage of being geo-
metrically easier to understand than the constructions involving graded mani-
folds.

2



Konrad Waldorf – Research interests
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My research areas are the differential geometry of higher-categorical structures, and mathemat-

ical aspects of classical and quantum field theories. I am also interested in the geometry of loop

spaces, Lie theory, and homotopy theory.

Central in my research is the notion of a gerbe: a generalization of a fibre bundle over a

manifold to a structure whose fibres are categories. Gerbes form a higher-categorical structure

und yet allow to study classical differential-geometric aspects such as connections, curvature, and

holonomy. Applications of gerbes in the area of 2-dimensional field theories arise because their

holonomy can be understood as a coupling between higher-dimensional elementary particles (string)

to a gauge field. Their relation to the geometry of loop spaces is established by a procedure called

transgression, which transforms higher-categorical geometry over a manifold into ordinary geometry

over mapping spaces.

An interesting aspect of the theory of gerbes is that often Lie-theoretical problems arise. This

comes essentially from the fact that compact Lie groups carry canonical gerbes, which encode part

of the geometry and representation theory of the group. Homotopy theory is relevant because

higher-categorical structures can be seen as an instance of infinity-categorical structures, which in

turn constitute an algebraic formulation of topology.

Below I outline some of my research interests in more detail. For more details, links, and references,

please visit my homepage under

waldorf.math-inf.uni-greifswald.de

Multiplicative gerbes and Lie groups

Multiplicative gerbes are gerbes over Lie groups that are compatible with the group structure.

They provide a geometric realization of the cohomology of the classifying space of the Lie group.

Moreover, connections on multiplicative gerbes provide a geometrical realization of its differential

refinement.

In my research I try to extend the general theory of multiplicative gerbes with connections,

and I pursue essentially the following two applications. The first application is to Chern-Simons

theories; these are 3-dimensional topological field theories of great importance in Mathematics and
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Physics. Multiplicative gerbes can help to understand Chern-Simons theories with very general

gauge groups, in particular non-simply connected ones. In this context the gerbe generalizes the

so-called ”level” of the Chern-Simons theory.

The second application is about transgression to the loop group of the underlying Lie group.

Under transgression, a multiplicative gerbe with connection becomes a central extension of the loop

group. Multiplicative gerbes thus allow a finite-dimensional, higher-categorical perspective on the

infinite-dimensional geometry of these central extensions.

String geometry

String geometry is a relatively new research area on the intersection between Algebraic Topology,

Differential Geometry, and Homotopy Theory. It provides a mathematical basis for the description

of supersymmetry in two-dimensional quantum field theories; from this point of view string geometry

is for string theory as spin geometry is for quantum mechanics.

There are essentially two approaches to string geometry: infinite-dimensional analysis on the

configuration space of the strings, or higher-categorical analysis on the target space of the strings.

The configuration space is the loop space of the target space, and both approaches should be related

by a transgression process.

Infinite-dimensional analysis on the loop space leads to long open questions such that how to

define a Dirac operator on the loop space, and on which kind of representation this operator could

act on. In my work I try to understand these questions via higher-categorical geometry on the

target space under transgression.

Transgression to loop spaces

Transgression transforms a gerbe with connection over a manifold M into a line bundle with connec-

tion over the free loop space LM , and so establishes a functorial relation between higher-categorical

geometry on M and ordinary geometry on LM . In 2-dimensional field theories, for which connec-

tions on gerbes represent the gauge fields, the corresponding line bundles play the role of prequantum

line bundles, and let us look at the loop space as a kind of symplectic manifold.

For my research the most interesting aspect of transgression is that all line bundles in the image

of transgression carry interesting additional structure: so-called fusion products, and equivariance

under thin homotopies between loops. These additional structures remember information of the

given gerbe that would be lost upon looking at the line bundle alone. Among other things, they

admit to invert transgression, and so to go back from infinite-dimensional geometry of LM to

higher-categorical geometry over M .
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CALCULUS BEYOND MANIFOLDS � JORDAN WATTS
2015/02/05

Introduction. Hamiltonian group actions provide a convenient language for describing clas-
sical physical systems using symplectic geometry. For example, they provide tools to study
the structure of a Hamiltonian system in a neighbourhood of a periodic �ow, and allow one
to deduce information about the �ow. A couple of methods are readily available, known as
symplectic reduction and Poisson reduction, which decrease the number of degrees of free-
dom of the system, simplifying calculations. However, Poisson reduction requires having a
smooth structure on the orbit space of a Lie group action, and symplectic reduction requires
a smooth structure on the quotient of a subset of a manifold. None of these quotients are
necessarily manifolds themselves, and so what type of smooth structure to equip them with
is a priori not clear.

One structure that has been developed is that of a (Sikorski) di�erential structure. Ba-
sically, this is a sheaf of �smooth� real-valued functions on a set, and sets equipped with
such structures form a category which admits subsets and quotients. These have been used
by Schwarz and Bierstone to study orbit spaces of compact Lie group actions. �niatycki
uses this theory to extend the Nagano-Sussmann theorem of control theory to locally closed
subsets of Rn and to study reduction of symmetry problems. I currently am writing up a
result which shows that there is an essentially injective functor from orbifolds into di�erential
spaces.

A di�erent approach to these singular spaces is the notion of a di�eology. A di�eology is a
family of �smooth� maps into a set. These structures encode rich information on spaces such
as the irrational torus, and have been used to extend Chern-Weil theory from integral closed
2-forms to arbitrary closed 2-forms. They are excellent for working with quotient spaces,
but also in�nite-dimensional spaces. In our paper [3], Li and I show that the orientation-
preserving di�eomorphism group of S2 has a di�eologically smooth strong deformation retract
onto SO(3). This generalises Smale's continuous result, but removes a lot of functional
analysis that one might be required to use otherwise.

This idea of using di�eology instead of functional analysis has inspired a few projects in the
�in�nite-dimensional� realm, including work in progress with Jean-Pierre Magnot in which
we are constructing classifying spaces for di�eological groups. Another result is on the space
of di�erential forms of a di�eological space. A result from my PhD thesis [6] shows that the
de Rham complex (in the di�eological sense) on an orbit space of a compact Lie group action
is isomorphic to the complex of �basic� forms on the original manifold, generalising the known
result for compact free Lie group actions. This has since been extended by Karshon and
myself [2] to Lie group actions in which the identity component acts properly, in which we
show that this isomorphism is also a di�eological di�eomorphism as well. Work in progress
with Karshon has the goal of constructing an isomorphism of complexes between di�eological
forms on a symplectic quotient with a de Rham complex de�ned by Sjamaar . Partial results
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for this appear in my PhD thesis [6]. In a di�erent direction, I show a similar di�eomorphic
isomorphism between the complex on the orbit space of a proper Lie groupoid, and the basic
forms of the groupoid [7].

I have work in progress with Derek Krepski in which we try to understand geometric
prequantisation from the di�eological point of view. However, we have found an obstruction
to this: the lack of a theory of vector �elds for di�eological spaces. And so a current project
of mine is to develop this. The �rst step is to de�ne a tangent bundle for di�eological spaces,
which I have done. For orbit spaces, this matches the so-called strati�ed tangent bundle,
and it matches the classical tangent bundle for path spaces. Another step is to compare this
with other de�nitions by Christensen-Wu and Hector.

Di�erential structures and di�eology turn out to be �dual� to each other (essentially, one is
a family of maps into a set, whereas the other is a family of maps out of it). This is studied,
with many examples, in my paper with Batubenge, Iglesias-Zemmour, and Karshon [1]. This
is important for understanding how to generalise calculus from manifolds, and how various
spaces (e.g. singular varieties, orbit spaces, in�nite dimensional spaces, etc.) relate to one
another. However, both of these structures ignore isotropy. Indeed, while di�eology often
remembers information about an equivalence relation on a set, it cannot tell the di�erence
between two Lie group actions (for example) if they induce the same equivalence relation. To
capture the missing isotropy information, one must go to Lie groupoids and stacks. Wolbert
and I in [8] show that a stack has an �underlying di�eological structure�, only depending
on the isomorphism class of the stack, and in the case of a stack representing a Lie group
action, this di�eology is exactly the quotient di�eology on the orbit space. Hence we have
developed a functor that forgets the isotropy information, leaving behind the information
gained from the equivalence relation alone.
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Christoph Wockel

My research interests roughly divide into three areas:

Topological group cohomology

Topological group cohomology is the cohomology theory of topological and Lie groups that captures
simultaneously the algebraic and topological properties of a given such group. At the moment, I am
working on establishing links of topological group cohomology with the following closely related subjects:

• Chern-Weil Theory of compact symmetric spaces

• Lie groupoid cohomology

• bounded continuous (and smooth) cohomology

Lie groupoids and their bisections

(with Alexander Schmeding) Lie groupoids and infinite-dimensional Lie groups are both generalisations
of finite-dimensional Lie groups. However, these two subjects have in the past been studied mostly
simultaneously. The aim of my work in this direction is to establish a close link between these two subjects
by the functor that assigns to each Lie groupoid its (Lie) group of bisections. One crucial observation
here is that one can view each Lie groupoid as a quotient of an action groupoid for the natural action of
the bisections on the objects. Interesting questions and applications of this perspective should arise from

• the cohomology of Lie groupoids and infinite-dimensional Lie groups,

• integrability questions of Lie algebroids and their Lie algebras of sections and

• implications of the relation of the integrability obstructions on low-dimensional homotopy groups
of diffeomorphism groups.

String Geometry

(in parts with Christian Becker, Michael Murray and David Roberts) One perspective to string geometry
is that it is the vertical categorification of spin geometry. Categorification amounts here to a shift in the
cohomological dimension, so it is consistent with many observations and constructions in string theory.
Questions that I am particularly interested in this subject are the following.

• constructing, understanding and classifying models for the string 2-group

• representations of Lie 2-groups, and in particular of the string 2-group

• geometric string structures and string connections
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Research Summary

Chenchang Zhu

Higher categorical structures attract much attention in various areas in mathematics. My current research
focuses on higher categorical structures in differential geometry. In a certain sense, my projects can be viewed as
providing “categorification” of various classical problems. The categorified results have the advantage of being
either conceptually complete (giving solutions to unsolvable problems which were unsolvable beforehand), or
structurally richer (discovering new properties).

More concretely, I’m interested in
(1) higher Lie theory studying infinitesimal and global symmetries.
(2) higher categories of higher groupoids.
(3) Courant algebroids.
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