Exercise Sheet 6 Transformation Groups

Exercise 1: Let G be a compact Lie group and H a closed subgroup of G. Show that there exists a representation V of G and a point $v \in V$ with $G_v = H$. Hint: Use 4.7.3 and the proof of 4.7.5.

Exercise 2: Let G be a compact Lie group and H a closed subgroup. Let U be any neighbourhood of e. Show that there is a neighbourhood $W \subseteq U$ of e such that, whenever K is a subgroup contained in WH, then K is subconjugate to H via an element of U, i.e. $uKu^{-1} \subseteq H$ for some $u \in U$. Hint: Action of the Week.

Exercise 3: Let G be a compact Lie group and $K \subseteq H$ subgroups. The normalizer N(K) acts on the fixed space $(G/H)^{K}$. Use Exercise 2 to show that the orbit space of this action is finite.

Handing in: 02.02.12 in exercise class.

Action of the Week

Group:	Any Lie group G
Space:	$X(H) = \{A \mid A \subseteq G/_H \text{ closed}\}$
Action:	$G \times X(H) \to X(H), \ (g,A) \mapsto gA$
Isotropies:	
Further properties	X(H) is a metric space with the Haus

Further properties: X(H) is a metric space with the Hausdorff metric induced from G (which is a manifold, hence metric)