Exercise Sheet 1 Transformation Groups

Exercise 1: Let G_i be topological groups for *i* in some index set *I*. Show that

$\prod_{i\in I}G_i$

is a topological group with componentwise multiplication and the product topology.

Exercise 2:

- (i) Let \mathcal{HAUS} be the category of Hausdorff spaces and continuous maps. Let Y be a Hausdorff space, let $\bullet \times Y : \mathcal{HAUS} \to \mathcal{HAUS}, X \mapsto X \times Y$ be the functor sending $f: X \to Z$ to the map $f \times \operatorname{id}_Y : X \times Y \to Z \times Y, (x, y) \mapsto (f(x), y)$ and let $\mathcal{HAUS}(Y, \bullet) : \mathcal{HAUS} \to \mathcal{HAUS}, Z \mapsto \mathcal{HAUS}(Y, Z)$ be the functor sending $f: X \to Z$ to the map $\mathcal{HAUS}(Y, f) : \mathcal{HAUS}(Y, X) \to \mathcal{HAUS}(Y, Z), g \mapsto f \circ g$. Show that if Y is locally compact, then $\bullet \times Y$ is left adjoint to $\mathcal{HAUS}(Y, \bullet)$. Here and in the following, function spaces carry the compact-open topology.
- (ii) Under the assumptions of (i), prove that evaluation

 $\mathcal{HAUS}(X,Y) \times X \to Y, \ (f,x) \mapsto f(x)$

is continuous.

(iii) Assume in addition to the assumptions of (i) that X is locally compact as well. Prove that composition

$$\mathcal{HAUS}(Y,Z) \times \mathcal{HAUS}(X,Y) \to \mathcal{HAUS}(X,Z), \ (f,g) \mapsto f \circ g$$

is continuous.

Exercise 3: Let X be a compact Hausdorff space. Prove that Homeo(X) with the compact-open topology is a topological group.

Handing in: 10.11.11 in exercise class.

Action of the Week

Group:	O(n)
Space:	\mathbb{S}^{n-1}
Action:	$(A, x) \mapsto A \cdot x$
Isotropies:	O(n-1)
Further properties:	transitive, monotypic