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Introduction

Index theory is a branch of mathematics which aims to assign algebraic invariants to
certain topological objects, encoding more or less substantial information on the object.
The most common example is the Brouwer degree, which was established at the begin-
ning of the 20th century. It assigns an integer to continuous maps of euclidean spaces
and, roughly speaking, it is an algebraic measure of the cardinality of the preimage of a
point. There are several features which qualify such an assignment to be called an index.
Foremost, the potential index should be invariant under homotopies. This implies that
it will be locally constant, but also contains information on large perturbations in a cer-
tain way. Secondly, non-vanishing of the index should imply existence of some critical
element connected to the objects under consideration. In the case of the Brouwer degree,
its non-vanishing implies existence of zeros (or more generally, existence of points with
a certain value).

There are several generalizations in different directions. Clearly it is no problem to
define an index for maps of manifolds and counting fixed points instead of zeros, by
locally passing to the map 1 − f . In his fundamental work [Ful67], Fuller defines an
index for vector fields which counts periodic orbits of the flow instead of fixed points of
a map. There are several obstacles one has to overcome. A major problem is the period
of a given orbit, which need not be minimal. This results in the fact that the Fuller
index is a rational number rather than an integer.

Fullers original work uses differential forms and so actually de Rham cohomology.
There were several reformulations of his theory, namely an approach using bifurcation
theory, initally developed by Chow and Mallet-Paret [CMP78], and an approach using
singular homology, developed by Franzosa [Fra90]. The bifurcation theoretic approach
is of particular interest for us. It only uses the local structure of a flow around a periodic
orbit and assigns local indices to isolated periodic orbits. These indices are summed up
in a way such that the sum remains unchanged during homotopies of the vector field.
This requires a thorough understanding of bifurcations of periodic orbits. The general
idea is to use Poincaré systems and assign to a periodic orbit the fixed point index of
an associated Poincaré map.

A generalization in another direction is to take symmetries into account. That is, one
has manifolds with an action of a compact group G and looks at equivariant maps. An
equivariant Brouwer degree was defined by Ize and others, compare [IV03], [BKS06].
It counts group orbits of zeros of an equivariant map, that is, non-vanishing of certain
components of the equivariant degree implies the existence of a group orbit of zeros of a
certain symmetry. In this case, however, there is no obvious generalization to an index
counting fixed points. The reason is that counting fixed points in fact is not enough.
In the equivariant setting, one should look for fixed group orbits of a map, that is, one
seeks to solve the equation f(x) = gx for some g ∈ G. But the map g−1 ◦ f will in
general not be equivariant, so even if one can count group orbits of fixed points, it is still
not clear how to count a fixed orbit which has a non-trivial action of f on itself. In the
direction of orbits of fixed points, Lück and Rosenberg developed an invariant counting
these including symmetries, compare [LR03]. In the direction of fixed orbits, Zdzislaw
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Dzedzej in 2001 defined a local index for a fixed orbit of a G-map. Summing up the local
indices, if possible, one obtains a G-homotopy invariant counting fixed orbits. In 2003,
Chorny in [Cho03] defined an equivariant Lefschetz number that can count fixed orbits
of self-maps according to their symmetry. He also did so in a setting far more general
than group actions on topological spaces. It is to be expected that the fixed orbit index
is a local version of the equivariant Lefschetz number, though this remains to be proven.

The existence of an equivariant fixed orbit index suggests that it should be possible
to define an equivariant Fuller index, assigning to relative periodic orbits of equivari-
ant flows the orbit index of an associated equivariant Poincaré map. To the authors
knowledge, this idea has not been carried out yet, nor has any sort of equivariant Fuller
index been defined. The main goal of this work is the proof that the definition of an
equivariant Fuller index as indicated above satisfies the properties an equivariant index
should have.

The work is build up as follows. In the first chapter, we develop the theory of critical
elements of maps and vector fields without symmetries, namely, we identify certain open
and dense subsets in spaces of maps (vector fields) for which a direct assignment of an
index is possible. The theorems for maps and vector fields are well-known, the main new
feature of the presentation here is a unified treatment. This results in some modifications
of the techniques of proof. The theorems for homotopies of maps and vector fields seem
to be known as well, however, the author could not find any reference in which they
are proven. This essentially can be done by giving parametrized versions of the various
lemmas leading to the non-parametrized results.

We proceed to define the classical Fuller index in a bifurcation theoretic way and prove
its most important properties. Some of the proofs, especially the one for homotopy
invariance, are new and were constructed to be easily generalizable to systems with
symmetry. In particular, we emphasize the use of the fixed point index of Poincaré
maps.

In the second chapter, we proceed in the same way for systems with symmetry. How-
ever, the main notion of non-degeneracy in the equivariant setting is G-hyperbolicity,
and this property is not flexible enough to establish the genericity results we need. So
we begin instead with the development of a notion of equivariant non-degeneracy, which
is rooted in the theory of jet transversality, developed by Bierstone in [Bie77b]. We will
not use the full complexity of his results, since we only have to deal with zero jets. On
the other hand, we have to make a slight generalization, since we need transversality to
locally semialgebraic sets rather than submanifolds. However, this generalization comes
at almost no cost because Bierstone in fact never makes uses of the manifold struc-
ture. The equivariant Thom-Mather Theorem 2.2.3.6 related to this theory is the main
achievement here and allows to proceed further to genericity in equivariant systems.

Using the notion of equivariant non-degeneracy, we prove the genericity theorems
for equivariant systems analogous to the theorems of chapter one. Again, the theo-
rems for G-maps and G-vector fields are well-known, at least the versions involving
G-hyperbolicity. Our use of equivariant non-degeneracy simplifies some of the proofs,
but it comes to essential use only when it comes to proving the parametrized versions,
i.e. genericity theorems for equivariant homotopies.
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Finally, the third chapter is devoted to the construction of the equivariant Fuller
index, based on the fixed orbit index of Dzedzej, and the subsequent proofs of its main
properties, which are based on the genericity theorems developed in chapter two.
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1 Genericity in Non-Equivariant Dynamical Systems

The first chapter is an overview over the theory of genericity in dynamical systems.
The term genericity will be used ambiguously. Most of the time, ”generic” will simply
mean that a certain property holds in an open and dense subset of an appropriate space.
One has to be careful with the topologies, for some openness results hold in the Cr-
topology for some finite r, whereas density will usually hold in the C∞-topology. So the
various aspects of this terminology must be distinguished. However, we mostly use the
term to help the intuition and will be more precise when it comes to concrete statements.
Furthermore, the exact degree of differentiability which can be obtained is not of interest
for us and we will be satisfied if the results hold for some r > 0, possibly r =∞.

Most of the results of this chapter are well-known in one way or the other. The
main purposes to gather all of them are threefold. First of all, the results of the second
chapter heavily depend on the results of the first. Either we have to use them directly,
for example as a base for an induction, or the techniques can be generalized to systems
with symmetry. Since symmetry sometimes clouds the view on the essentials, one can
often grasp the basic ideas of proofs and constructions by going into the non-symmetric
case. Secondly, there seems to be no exhaustive treatment of genericity in our sense in
the literature, especially the genericity theorems for homotopies remain rather obscure.
So it seemed worthwhile to bring all the various results together in one place, proving
them properly and emphasizing the interplay between them. Finally, in the first chapter
we will lay the ground for all our notation and conventions, so the reader will know what
we are talking about in later chapters after having read through chapter one.

The chapter is build up as follows. We begin with a short introduction on topologies
of mapping spaces, followed by an overview of transversality theory, which will be basic
for a large part of the work. Then we give an overview of the foundations of the theory
of dynamical systems and bifurcation theory, mainly to establish a common notation.
The main new aspect of these sections is the notion of a Poincaré system, which differs
a bit from the usual one. Namely, we do not require the system to be centered at a fixed
point. This is due to the fact that we want to capture jug handle bifurcations of periodic
orbits by pushing a Poincaré system across the bifurcation parameter. But then, on one
side of the parameter we will have two fixed points, whereas on the other side there will
be none. In the classical sense, this is not possible using a Poincaré system. We will go
into detail later.

What follows are the main genericity theorems in the non-equivariant setting. We will
prove density of non-degenerate maps, vector fields and homotopies of these objects. In
most cases, openness of these sets will be proven as well. We will also sharpen some
of the theorems to the case of hyperbolic objects. This is not necessary to do generic
bifurcation theory, but when it comes to calculations, it is much easier to work with
hyperbolic objects rather than with non-degenerate ones. Also, it is not at all difficult
to extend the results to the hyperbolic case, in some cases, the proofs are even identical
besides changing some minor wording.

In the final part of the first chapter we will apply our theorems to develop the well-
known Fuller index and give a new proof of its homotopy invariance (though it is closely
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related to the proof in [CMP78]).
We will give references to literature in the respective sections. Here it shall be said

that most of the material on genericity is taken from the very readable book of Palis
and de Melo [PdM82]. That book does not deal with bifurcation theory, but one can
easily modify many of its results to parametrized versions, i.e. versions for homotopies of
the given objects. The main other source were the works of Mike Field [Fie77], [Fie80],
[Fie91], [Fie07] on equivariant bifurcation theory. For more details on this topic, see
also [CL00].

1.1 Preliminaries

As already mentioned in the introduction, in this opening section we are mainly con-
cerned with establishing a common background and notation. Some of the notions
established here will be generalized several times, e.g. the notion of transversality to a
submanifold, and it is important to keep the origin in mind. The non-standard part will
be section 1.1.4 with its definition of Poincaré systems, branches of critical elements and
some non-standard propositions.

1.1.1 Topologies on Mapping Spaces

Since we are concerned with genericity of maps between smooth manifolds, we have to
specifiy topologies on spaces of such maps which will allow us to prove openness and
density results. There are mainly two topologies on the mapping space Cr(M,N), the
space of Cr-maps between two smooth manifolds M and N . The first only uses the
structure of a manifold and therefore is the more elementary one. The second uses the
Whitney embedding theorem which allows us to assume M ⊆ Rp, N ⊆ Rq for some large
p, q where, in fact, p = 2 dimM, q = 2 dimN is possible. Luckily, we will see that these
definitions coincide in the cases of interest, so we can use both topologies, whenever
necessary.

Intuitively, Cr-maps should be close to one another if the induced maps in some chart
are close to one another for every chart of given atlasses of the manifolds. This is the idea
of the Whitney topology on Cr(M,N). Let f : M → N be a Cr-map and let (Ui, ϕi)i∈I
be a locally finite subatlas of a given maximal atlas for M , Ki ⊆ Ui compact sets such
that f(Ki) ⊆ Vi, where (Vi, ψi) is a chart of N for i ∈ I. Let εi > 0 be real numbers for
i ∈ I. We define a basic neighbourhood of f by

U(f, (Ki, Ui, φi)i∈I , (Vi, ψi)i∈I , {εi}i∈I)

=

{
g : M → N | g(Ki) ⊆ Vi,

∥∥∥ψi ◦ g∣∣Ki ◦ ϕ−1
i − ψi ◦ f

∣∣
Ki
◦ ϕ−1

i

∥∥∥
Cr(ϕ(Ki),Rn)

< εi

}
.

Then these sets, for the various choices of (Ui, ϕi), (Vi, ψi), Ki, εi form a neighbourhood
basis for f and thus constitute a topology on Cr(M,N), called the Whitney-Cr-topology
(see [PdM82], chapter 0). From the definition it is clear that Cr(M,N) ⊆ Cr−1(M,N)
as topological spaces and that the topology on C0(M,N) is the compact-open topol-
ogy. Furthermore, by taking the limit topology under the filtration C∞(M,N) ⊆ · · · ⊆
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Cr(M,N) ⊆ . . . , we also obtain a topology on the space of C∞-maps which we will call
the Whitney-C∞-topology.

We now turn to the second method of constructing topologies on Cr(M,N). We begin
by assuming M = Rp, N = Rq. Then for every compact subset K of M , we have the
norm topology on Cr(K,N). For an f ∈ Cr(M,N), K ⊆ M compact and ε > 0, we
define a basic neighbourhood

N (f,K, ε) = {g ∈ Cr(M,N) |
∥∥f ∣∣

K
− g
∣∣
K

∥∥
Cr(K,N)

< ε}.

This constitutes a topology on Cr(M,N) which we call the Cr-topology.
In the general case, let i : M → Rp, j : N → Rq be embeddings of M,N into some

euclidean spaces. Let U be a tubular neighbourhood of i(M) in Rp, r : U → i(M)
the tubular retraction. Let ρ : Rp → [0, 1] be a smooth Urysohn function such that
ρ−1(0) = Rp − U and ρ−1(1) = i(M). We define an extension of a map f : M → N to
be the map

f̃ : Rp → Rq, f̃(x) = ρ(x) · j ◦ f ◦ i−1(rx),

which we interprete as 0 if rx is not defined. Using this construction, we can view
Cr(M,N) as a subspace of Cr(Rp,Rq) and provide it with the subspace topology.

One can check that this defines a topology on Cr(M,N) which is independent of the
choices made during the construction. It is called the weak topology on Cr(M,N). It
is again obvious that Cr(M,N) ⊆ Cr−1(M,N) in these topologies, so we obtain a limit
topology on C∞(M,N).

The relationship between these two topologies is clarified by the next proposition.

Proposition 1.1.1.1 Let M,N be compact manifolds.

1. The weak topology on Cr(M,N) coincides with the Cr-Whitney topology on Cr(M,N)
for 0 ≤ r ≤ ∞.

2. Cr(M,N) becomes a separable space of second category.

3. Ck(M,N) is dense in Cr(M,N) for 0 ≤ r ≤ k ≤ ∞.

4. Cr(M,N) is a Banach manifold.

Proof. 1.-3. is established in chapter one, §2 of [PdM82]. 4. is proven in [AR67]. �

By using 4. of the last proposition, the following result is clear. We will give a different
proof, however, since this is not difficult and the Banach manifold structure is not easy
to grasp.

Lemma 1.1.1.2 Let f : M →M be a Cr-map and V a neighbourhood of f . Then there
is a neighbourhood U ⊆ V of f such that all elements of U are homotopic to f via a
homotopy not leaving U .
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Proof. Let i : M → RN be an embedding into some euclidean space RN and let
U ⊆ RN be a tubular neighbourhood of i(M), r : U → i(M) the tubular retraction. The
set

U = {g ∈ V | t · i ◦ f(x) + (1− t) · i ◦ g(x) ∈ U ∀ t ∈ [0, 1] , x ∈M}
is an open subset of V . For g ∈ U , define

Hg : M × [0, 1]→M, Hg(x, t) = i−1 ◦ r(t · i ◦ f(x) + (1− t) · i ◦ g(x)).

Then Hg is Cr and a homotopy between f and g. �

1.1.2 Transversality Theory

The notion of transversality of a map to a submanifold is fundamental to the theory
of genericity. It can be reduced to the question of general position of submanifolds, for
f : M → N is transverse to a submanifold P of N if and only if the graph of f is in
general position to the submanifold M ×P of M ×N . General position of submanifolds
is a geometric concept accessible to intuition. Take two submanifolds P,Q of some
euclidean space Rm. The manifolds are in general position, if the intersection is stable
under small perturbations. That is, if Qv is the manifold Q translated by the vector v,
the intersections P ∩ Qv are diffeomorphic for all sufficiently small v ∈ Rm. Figure 1
shows some intersections of two spheres in R3. In (a) and (c), the spheres are in general
position, in (b) they are not.

As mentioned above, transversality of a map to a submanifold could be defined using
this concept of general position. But there is also another definition, the standard
definition, doing the same, and handling more directly the concept of transversality of
a mapping.

Definition 1.1.2.1 Let M,N be arbitrary smooth manifolds, P ⊆ N a submanifold. A
smooth map f : M → N is said to be transverse to P at x ∈ M , if either f(x) /∈ P , or
else

Txf(TxM) + Tf(x)P = Tf(x)N.

It is said to be transverse to P at a subset A ⊆ M , if it is transverse to P at every
x ∈ A. If a map is transverse to P at all of M , we simply say it is transverse to P .

In view of this definition, two submanifolds P,Q ⊆ M are in general position, if the
inclusion i : P → M is transverse to Q (or vice versa). We give a useful alternative
characterization of transversality.

Lemma 1.1.2.2 Let f : M → N be a smooth map of manifolds, P ⊆ N a submanifold,
x ∈ M and f(x) ∈ P . Let U be a neighbourhood of x, ϕ : U → Rm be a chart mapping
x to zero, V ⊆ N a neighbourhood of f(x) in N , ψ : V → Rn a chart mapping f(x) to
0 and P ∩ V onto the subspace Rp × {0} ⊆ Rn, p = dimP . We can achieve f(U) ⊆ V .
Let π2 : Rn → {0} × Rn−p be the projection. Then f is transverse to P at x if and only
if π2 ◦ ψ ◦ f ◦ ϕ−1 : Rm → Rn−p has a surjective differential at 0.
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(a) transverse (b) not transverse

(c) transverse

Figure 1: Intersections of 2-spheres

Proof. Proposition 1.3.1 of [PdM82]. �

A basic feature of submanifolds in general position is that their intersection is again
a submanifold. In terms of transversality of a map, this reads as follows.

Proposition 1.1.2.3 Let f : M → N be a smooth map of smooth manifolds, dimM =
m, dimN = n, P ⊆ N a p-dimensional submanifold. If f is transverse to P , f−1(P ) is
either empty, or an m− n+ p-dimensional submanifold of M .

Proof. This is immediate from Lemma 1.1.2.2 and the regular value theorem. Locally,
f−1(P ) is the preimage of 0 under a map Rm → Rn−p which has 0 as a regular value.
Hence, this is a manifold of dimension m− n+ p. �

Proposition 1.1.2.3 provides us with an easy criterion for a map to have no values in
a given submanifold: If m − n + p < 0 and f is transverse to P , then f−1(P ) must be
empty.
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We turn to the main result in basic transversality theory, namely the transversality
theorem of Thom. It states that the set of smooth maps transverse to a given submani-
fold is generic. This allows the identification of many other generic subsets by describing
them through transversality properties.

Theorem 1.1.2.4 (Thom’s Transversality Theorem) Let M,N be smooth mani-
folds, P ⊆ N a closed submanifold. Then the set of maps f : M → N that are transverse
to P is residual in C∞(M,N), i.e. it is the countable intersection of open and dense sets.
If M is compact, this set is open.

Proof. Theorem 1.3.4 in [PdM82]. �

Note that, since C∞(M,N) is a Baire space, residual subsets are dense.

Corollary 1.1.2.5 Let K ⊆ M be a compact subset of any manifold M , P ⊆ N a
closed submanifold. Then the set of maps in C∞(M,N) that are transverse to P at K
is open and dense.

Proof. Density is clear, since already the maps transverse to P in all of M are dense.
But openness follows immediately from the characterization of transversality via surjec-
tivity of a differential in Lemma 1.1.2.2, since the set of surjective linear maps is open
and K is compact. �

The next result is important when dealing with genericity of non-bifurcation para-
meters. It relates transversality of a parametrized map to transversality of the maps
induced at a fixed parameter. We will come across similar theorems in later chapters.

If f : X × Y → Z is any map, x ∈ X, y ∈ Y , we denote by fx : Y → Z the map
y 7→ f(x, y), similarly fy : X → Z, x 7→ f(x, y). We will never use the symbols fx, fy
for partial derivatives, so no confusion should be possible.

Proposition 1.1.2.6 Let M,N,Λ be manifolds. Let P ⊆ N be a compact submanifold
and F : M × Λ→ N be transverse to P . Then the set

ΛP = {λ ∈ Λ | Fλ is transverse to P}

is open and dense in Λ.

Proof. Openness: By Thom’s Transversality Theorem, if Fλ is transverse to P for
some λ ∈ Λ, then so is every map in a neighbourhood U of Fλ. In particular, we find a
neighbourhood U ⊆ Λ of λ such that Fµ ∈ U for µ ∈ U .

Density: Since F is transverse to P , F−1(P ) is either empty, in which case we are done,
or a submanifold of M × Λ and we have

T(x,λ)F (T(x,λ)(M × Λ)) + TF (x,λ)P = TF (x,λ)N.
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Now,
T(x,λ)F (T(x,λ)(M × Λ)) = TλFx(TλΛ) + TxFλ(TxM).

By Sards theorem, the set of regular values of the map π2 : F−1(P )→ Λ is dense. Hence,
in a dense subset of Λ, either Fλ(M)∩ P = ∅, in which case Fλ is trivially transverse to
P , or else for (x, λ) ∈ F−1(P ),

T(x,λ)π2(T(x,λ)F
−1(P )) = TλΛ.

We have a splitting

T(x,λ)F
−1(P ) = T(x,λ)π1(T(x,λ)F

−1(P ))× T(x,λ)π2(T(x,λ)F
−1(P )).

This yields

TF (x,λ)P ⊇ T(x,λ)F (T(x,λ)F
−1(P ))

= T(x,λ)F
(
T(x,λ)π1(T(x,λ)F

−1(P ))× T(x,λ)π2(T(x,λ)F
−1(P ))

)
= T(x,λ)F (T(x,λ)π1(T(x,λ)F

−1(P ))× TλΛ)

⊇ T(x,λ)F ({0} × TλΛ)

= TλFx(TλΛ).

So we see that

TxFλ(TxM) + TFλ(x)P = TxFλ(TxM) + TλFx(TλΛ) + TFλ(x)P

= T(x,λ)F (T(x,λ)(M × Λ)) + TF (x,λ)P

= TF (x,λ)N,

showing transversality of Fλ. �

Note that in fact, with the above proof, we have shown that the parameters λ such that
Fλ is transverse to P are just the regular values of the projection map π : F−1(P )→ Λ.
This observation will be useful later on.

1.1.3 Discrete Semi-Dynamical Systems

The next two sections shall establish the basic notions of dynamical systems and bifur-
cation theory. There are many different ways how a dynamical system can be defined
mathematically exact, the common basis being the evolution of a state in time. Since
a large part of this work is concerned with the theory of group actions, we define a dy-
namical system to be given by an action of Z, in the disrete case, or R, in the continuous
case, on some manifold M . That is, if G is R or Z, a dynamical system on a smooth
manifold M is given by a smooth map

ϕ : M ×G→M
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satisfying ϕ(x, 0) = x, ϕ(x, a + b) = ϕ(ϕ(x, a), b). Note that a dynamical system is, in
this definition, always a right action, whereas symmetry groups usually will act on the
left. We will return to the general notion of a group action in chapter two.

The investigations of such group actions naturally focus on the points with non-trivial
stabilizers first. That is, we are looking for points being fixed by a non-trivial subgroup
of R (in the continuous case), called the stabilizer of the point. Since such a subgroup
necessarily is closed, it must be either all of R, or else it must be isomorphic to Z. In the
first case, we are dealing with fixed points of the dynamical system, while in the second
case, we have periodic orbits. The same is true in the case of discrete systems, where
the stabilizers are either all of Z, or else are given by nZ for some n ∈ N. Elements with
non-trivial stabilizers are called critical elements of the system.

One is interested in systems with two properties. Firstly, the system should have a
simple structure of critical elements, for example, just a finite number. Secondly, the
behaviour of the system locally around a critical element should be easy to understand.
In addition, one would like to know that almost all systems exhibit this simple behaviour,
e.g. systems taken from an open and dense set. To find systems having the first two
properties, the notions of non-degeneracy and hyperbolicity are introduced. As we will
see, non-degenerate systems have a finite number of critical elements, whereas hyperbolic
systems have a finite number of critical elements and a local dynamical behaviour around
these elements which is easy to understand. In the following sections, genericity of non-
degenerate and hyperbolic systems will be established, which will complete the outlined
program.

Having understood the generic structure of dynamical systems, it is natural to ask
how the system changes under large perturbations, that is, under homotopies. A major
aim of bifurcation theory is to find a way to relate the structure of an initial system
with the structure of the final system of a homotopy, possibly under some genericity
assumptions. We will see that generically, a homotopy will not change the topological
structure of the set of critical elements, except for finitely many so called bifurcations.
Together with our genericity results for fixed systems, we will see that the large picture
should be as indicated in Figure 2. At the initial parameter, we begin with finitely many
critical elements. These elements start to run through the homotopy without interfering
with each other. Then, at a first bifurcation parameter, some of these ”branches” can
merge. Whatever happens, after passing the bifurcation parameter, we end up again
with finitely many critical elements. Such bifurcations occur finitely many times until
we end up with the final system. Our aim is to show that this picture is the generic
picture for all the critical elements we will deal with, namely fixed points of maps,
periodic orbits of flows and the equivariant analoga.

Note that in many cases, we can do even better than indicated in Figure 2. The set
of critical elements will generically be a manifold of dimension one or dimension two,
according to whether we are dealing with fixed points or periodic orbits, respectively.
The situation is not as simple for equivariant critical elements and the bifurcation pattern
indicated in the figure is what we will use in proofs. So we are satisfied with this weaker
result.

We now turn our attention to the discrete time case. The objects under consideration
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Figure 2: Generic bifurcation of critical elements

are iterates of a self-map f : M → M . To be a dynamical system in the above sense,
f must be a diffeomorphism. We will be a bit more general and take f arbitrary. This
gives a semi-dynamical system, because we only have the semigroup N acting on M ,
but this generalization does not make anything harder. Critical elements of f are fixed
points , i.e. points x ∈M such that f(x) = x, or periodic points, i.e. points x ∈M such
that fn(x) = x for some n ∈ N, n > 1. We will only be interested in fixed points.

Fix a smooth manifold M and a smooth self map f : M → M . A fixed point x ∈ M
of f is called non-degenerate, if the differential Txf of f at x has not 1 as an eigenvalue.
It is called hyperbolic, if Txf has no eigenvalues of absolute value 1. The meaning of
this definition is clear. If a fixed point is non-degenerate, then the map 1 − f , defined
locally around x, has invertible derivative in x. Hence by the inverse function theorem,
x is isolated. An important observation is that non-degeneracy of a fixed point is in fact
a transversality property.

Proposition 1.1.3.1 Let f : M → M be smooth. A fixed point x ∈ M of f is non-
degenerate, if and only if the map F : M →M ×M, x 7→ (x, f(x)) is transverse to the
diagonal ∆ = ∆(M) = {(x, x) | x ∈M} at x.

Proof. The map F is transverse to ∆ in x if and only if

TxF (TxM) + T(x,x)∆ = T(x,x)M ×M.

But TxF (TxM) = {(v, Txfv) | v ∈ TxM} and T(x,x)∆ = {(w,w) | w ∈ TxM}. So F is
transverse to ∆ in x if and only if the map 1 − Txf : TxM → TxM is surjective, i.e. 1
is not an eigenvalue of Txf . �

Of course, a map f : M → M is called non-degenerate if every fixed point is non-
degenerate or, equivalently, the map F from above is transverse to ∆ (in all of M).
Non-degenerate maps have a simple fixed point structure and one would like to know
what happens if one disturbs the map slightly. In general, there can be quite unpleasant
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behaviour, like submanifolds of fixed points of positive dimension emerging from isolated
fixed points. This is a quite radical change in the structure of the fixed point set. A more
convenient phenomenon might be the change of the number of connected components
of the set of fixed points.

At any rate, the interesting parameters are those for which it is possible for the topo-
logical structure of the set of fixed points to change. These parameters of a homotopy
are called bifurcation parameters.

Definition 1.1.3.2 Let H : M × I → M be a homotopy. A parameter λ ∈ I is
called a regular parameter, if Hλ is non-degenerate. Otherwise, λ is called a bifurcation
parameter.

The question arises if it is possible to find a generic set of homotopies of maps such
that the fixed point set at every stage of the homotopy has a simple structure, even after
passing a bifurcation parameter. We will deal with this question in section 1.2. For now,
we just want to describe what happens between two bifurcation parameters. This should
be the unique continuation of the fixed point. Making this precise leads to the notion
of a branch of fixed points. Since we do not want to care about parametrizations,
we first have to define prebranches and then pass to an equivalence class, combining
all prebranches that are equal up to reparametrization. These notions are adaptions
from [MPY82].

Definition 1.1.3.3 Let H : M × I → M be a homotopy. A prebranch of fixed points
of H emanating from (x, λ) ∈ M × I is a continuous map x× µ : (0, 1) → M × I such
that x(t) is an isolated fixed point of Hµ(t), x(t)→ x for t→ 0, µ(t)→ λ for t→ 0 and
for t 6= s, if µ(t) = µ(s) then x(t) 6= x(s).

There is an equivalence relation on the set of prebranches given by reparametrization,
i.e. the prebranches x × µ : (0, 1) → M × I, y × ν : (0, 1) → M × I are equivalent, if
there is an increasing homeomorphism

ζ : (0, 1)→ (0, 1)

and ν ◦ ζ = µ, y ◦ ζ = x. An equivalence class of prebranches is called a branch of fixed
points.

We will not explicitly distinguish between a branch and a representing prebranch. The
next proposition gives the desired result that, as long as a homotopy is regular between
two bifurcation parameters, isolated fixed points lie on a unique branch connecting these
two parameters.

Proposition 1.1.3.4 Let H : M × I → M be a smooth homotopy. Let λ0 ∈ I be a
regular parameter and [λ1, λ2] ⊆ I be the maximal interval such that (λ1, λ2) consists of
regular parameters and λ0 ∈ [λ1, λ2]. Then for every fixed point x0 of Hλ0, all prebranches
x × µ : (0, 1) → M × I such that µ(t) → λ1 for t → 0, µ(t) → λ2 for t → 1 and
x × µ(t) = (x0, λ0) for some t ∈ I are equivalent, i.e. there is a unique branch of fixed
points passing through x0.
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Proof. Choose a chart neighbourhood U of x0 and a smaller neighbourhood U ′ such
that Hλ(U

′) ⊆ U for λ in a neighbourhood J = (λ0 − ε, λ0 + ε) of λ0. Let ψ : U → Rn

be a chart and ψ(x0) = 0, ψ(U ′) = B1(0). Denote

H̃λ = ψ ◦Hλ ◦ ψ−1
∣∣
B1(0)

: B1(0)→ Rn.

We obtain a map
H̃ : B1(0)× J → Rn, H̃(0, λ0) = 0

and the differential of 1 − H̃ with respect to the first variable is invertible. By the
implicit function theorem we find a neighbourhood W ⊆ B1(0) of 0, K ⊆ J of λ0 and a
smooth map ϑ : K → W such that

H̃(v, λ) = v, v ∈ W, λ ∈ K ⇐⇒ v = ϑ(λ).

We can assume that J = K. With V = ψ−1(W ), we have

H(x, λ) = x, x ∈ V, λ ∈ J ⇐⇒ x = ψ−1 ◦ ϑ(λ).

This constitutes a prebranch

J →M × I, λ 7→ (ψ−1 ◦ ϑ(λ), λ)

which is unique up to reparametrization. Clearly, ψ−1 ◦ ϑ(λ) converges to fixed points
of Hλ0±ε for λ→ λ0 ± ε and we can repeat the procedure for these fixed points and the
maps Hλ0±ε. We obtain prebranches on intervals containing λ0 ± ε and by uniqueness,
they have to coincide with the old prebranch, where this is defined. Continuing in this
fashion, we obtain a prebranch

[λ1, λ2]→M × I, λ 7→ (x(λ), λ),

x(λ0) = x0 and after reparametrizing to a prebranch defined on I, every prebranch
running through x0 is equivalent to this one. �

1.1.4 Dynamical Systems and Bifurcation Theory

We are now turning our attention to continuous dynamical systems. Beside the obvious
analoga of the definitions and results of the last chapter for periodic orbits of continuous
systems, we also want to have possibilities at hand to reduce the investigation of periodic
orbits of continuous systems to fixed points of discrete systems. This happens by means
of Poincaré systems.

Since the tangent bundle TM is a smooth manifold, we have a topology on the space
of vector fields X(M), namely the subspace topology of C∞(M,TM). The whole theory
also works in the Cr case when keeping in mind that TM is in general only Cr−1, if
M is Cr. Note that the flow of a smooth vector field ξ : M → TM , i.e. the entirety
of solution curves of the ordinary differential equation ẋ = ξ(x) on M , constitutes a
continuous dynamical system if M is compact. On the other hand, every continuous

18



dynamical system on a compact manifold comes from an ordinary differential equation
and its flow. Hence, we will not distinguish between a dynamical system and the flow of
a vector field from now on. The situation is a bit more complicated if we allow Cr-fields.
One should keep in mind that Fuller index theory deals with flows rather than vector
fields, and this distinction vanishes if everything is smooth.

Definition 1.1.4.1 Let M be a smooth compact manifold, ξ : M → TM a vector field
on M , ϕ : M × R→M its flow. A point (x, T ) ∈M × R+ is called a periodic point of
ξ or of ϕ, if ϕ(x, T ) = x. In this case, T is called a period of x. If there is a minimal
p > 0 such that ϕ(x, p) = x, p is called the minimal period of x and (x, T ) a proper
periodic point. Every period T of x is an integer multiple of p, T = k · p. k is called the
multiplicity of T .

If (x, T ) is a periodic point, then the set

γ = ϕ(x,R)× {T}

is called a periodic orbit of ξ or ϕ. The set ϕ(x,R) is called a geometric orbit of ξ (or
ϕ).

It is important for us to distinguish between geometric periodic orbits, which are
subsets of M , and periodic orbits, which are geometric orbits with a fixed period in the
parameter space R+. This distinction will sometimes make phrasing a bit harder but it
unfolds the dynamic behaviour at period multiplying bifurcations.

The problem setting in Fuller index theory is a bit different from that of fixed point
theory. In general, we are only interested in periodic orbits in a given open subset Ω of
M (we could have done this for fixed points as well). As is standard in index theory, we
have to make sure that no periodic orbits lie on the boundary of Ω. But from a more
general point of view, we should take Ω × (a, b) as a subset of M × R+ and require no
periodic points to lie on the boundary of Ω×(a, b). This means that we have no periodic
orbits of period T ∈ [a, b] on ∂Ω, and we have no periodic orbits of period a or b at all.
So our period is a priori bounded in a compact interval. We denote by X(M,Ω, a, b) the
subset of X(M) of vector fields having no periodic points on ∂(Ω× (a, b)).

In this setting it makes sense to ask when two vector fields are homotopic, because
an existing homotopy might leave the set X(M,Ω, a, b). So the following statement is
non-trivial.

Lemma 1.1.4.2 Let Ω ⊆ M be open, ξ : M → TM a vector field without critical
elements on ∂(Ω× (a, b)). Then for every neighbourhood V of ξ there is a neighbourhood
U ⊆ V of ξ such that no field in U has critical elements on ∂(Ω × (a, b)) and any two
elements of U are homotopic via a homotopy not leaving U .

Proof. Since ξ has no critical elements on ∂(Ω×(a, b)) and since this last set is compact,
the distance function d(ϕ(x, t), x) attains a positive minimum on ∂(Ω × (a, b)). Hence,
the same is true in a neighbourhood U1 of ξ and no element of U1 has a critical element

19



on ∂(Ω× (a, b)). For η ∈ U1, let Hη : M × [0, 1]→M be the convex homotopy between
ξ and η. Define

U = {η ∈ U1 | (Hη)t ∈ U1 ∀ t ∈ [0, 1]}.
Then U is open and all elements in U are homotopic to ξ. This proves the lemma. �

Our next aim is to define Poincaré systems for a given flow. As mentioned in the in-
troduction, we have to generalize the usual definition, because we want Poincaré systems
to be not necessarily centered around a periodic point. The notion of a disc transverse
to a flow is essential.

Let M be a smooth n-dimensional manifold and ψ : B1(0)→ M a diffeomorphism of
the unit ball in Rn−1 onto its image. Then D = ψ(B1(0)) is called a disc in M centered
at ψ(0). A subdisc D′ of D is the image of some disc Br(0), 0 < r < 1, under ψ in D. We
will not explicitly mention the diffeomorphism ψ and just speak of discs in M , centered
at an element x ∈M . We say that a disc is transverse to a flow ϕ : M ×R→M , if the
map ϕx : R→M is transverse to D for every x ∈ D.

The next result will help to prove the continuation lemma for Poincaré systems, com-
pare Lemma 1.1.4.5. Note that it does not follow trivially from Thom’s transversality
theorem, since discs are submanifolds with boundary. One could repair this, but we can
also give a direct proof.

Lemma 1.1.4.3 If D is a disc transverse to the flow ϕ of a vector field ξ : M → TM ,
then for every proper subdisc D′ ⊆ D there is a neighbourhood U of ξ such that D′ is
transverse to every element of U .

Proof. For x ∈ D′, ϕ̇x(0) is linearly independent to TxD. Hence, by choosing a local
trivialization of the tangent bundle of M and a norm on the tangent spaces, the function
d : Ux → R, y 7→ dist(ϕ̇y(0), TyD) is positive in a neighbourhood Ux of x and the same
holds for η in a neighbourhood Ux of ξ and the flow of η instead of ϕ. The sets Ux cover
D′, so we find a finite subcover, corresponding to points x1, . . . , xm ∈ D′. Then D′ is
transverse to every element of U = Ux1 ∩ · · · ∩ Uxm . �

Now we can give the definition of Poincaré systems, which will be crucial in many
aspects of the theory.

Definition 1.1.4.4 Let ξ : M → TM be a vector field, ϕ : M × R → M its flow. Let
x ∈ M be a point and D ⊆ M a disc centered at x transverse to the flow. Assume that
ϕ(x, T ) ∈ D for some T > 0. Then there is a subdisc D′ ⊆ D centered at x and a
continuous map t : D′ → R+ such that

P (y) = ϕ(y, t(y)) ∈ D.

(D,D′, P, t) is called a Poincaré system centered at x. P is called the Poincaré map and
t the period map of the system.
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The existence of t follows from the implicit function theorem because locally, being in
D means lying in a 1-codimensional subspace or alternatively, lying in the kernel of a
projection.

Note that, although we called t the ”period” map, we do not require x to be a periodic
point, nor do we require P to have any fixed points at all.

Obviously, Poincaré systems capture all the dynamical behaviour of a periodic orbit
of a flow and translate it into the dynamical behaviour of a fixed point. But we can also
use Poincaré systems to investigate local bifurcations of periodic orbits by investigating
the bifurcation of a fixed point. This is the continuation lemma for Poincaré systems
which is the key of our proof of homotopy invariance of the Fuller index.

Lemma 1.1.4.5 (Continuation Lemma) Let ξ0 : M → TM be a smooth vector field
and (D,D′, P0, t0) a Poincaré system for ξ0, centered at x0 ∈ M . Then, after possibly
shrinking D and D′, there is a neighbourhood U ⊆ X(M) of ξ and continuous maps
P : U → C∞(D′, D), t : U → C(D′,R+), P (ξ0) = P0, t(ξ0) = t0, such that for ξ ∈ U ,
(D,D′, P (ξ), t(ξ)) is a Poincaré system for ξ centered at x0.

Proof. After possibly shrinking D and D′, by Lemma 1.1.4.3 we find a neighbourhood
U of ξ0 such that D is transverse to all elements of U . Take ξ ∈ U and x ∈ D′, ψ the
flow of ξ. Then we find a continuous map t : D′ → R+ such that ψ(y, t(y)) ∈ D for all
y ∈ D′. If we require t(x0) to be close to t0(x0), by continuous dependence of the flow
on the vector field, t is close to t0, i.e. the map ξ 7→ t is continuous. Then clearly, the
map ξ 7→ Pξ is continuous as well, where Pξ(y) = ψ(y, t(y)). �

Of course, the structure of the set of periodic orbits of a field can be arbitrarily com-
plicated, as was the case with fixed points of maps. So we need additional requirements
which will control the periodic orbits.

Definition 1.1.4.6 If ϕ : M×R→M is a flow of a vector field ξ : M → TM , a periodic
orbit γ is called non-degenerate, if for some choice of Poincaré system (D,D′, P, t)
around some (x, T ) ∈ γ, x is a non-degenerate fixed point of the Poincaré map. Similarly,
γ is called a hyperbolic periodic orbit, if x is a hyperbolic fixed point of P .

An interesting phenomenon occurs if the Poincaré map P for a periodic orbit with its
minimal period has roots of unity as eigenvalues. If 1 is not an eigenvalue, this orbit
will be non-degenerate by definition. But if ζ is a primitive k-th root of unity and an
eigenvalue of P , then 1 is an eigenvalue of P k, and so the same orbit, now considered with
multiplicity k, will be degenerate. Hyperbolic orbits cannot exhibit a similar behaviour.

One could define non-degeneracy and hyperbolicity of periodic orbits directly, with-
out using Poincaré systems, but this is a nice example demonstrating the principle of
investigating periodic orbits through associated Poincaré maps. The price we have to
pay consists in proving the following lemma and thus is bearable to pay.

Lemma 1.1.4.7 The definition of non-degenerate and hyperbolic periodic orbits does
not depend on the choice of the Poincaré system.
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Proof. Let (D,D′, P, t) be a Poincaré system centered at x, t(x) = T , ϕ(x, T ) = x.
Let (E,E ′, Q, s) be another Poincaré system centered at y, ϕ(y, S) = y. Since both x
and y lie on the same geometric periodic orbit, s(y) = T . We have ϕ(x, r0) = y for some
minimal 0 ≤ r0 < T . The condition

ϕ(z, r(z)) ∈ E ′, r(x) = r0, r continuous,

defines a map F from a subdisc D′′ ⊆ D′ to E ′ which is clearly a diffeomorphism onto
its image. Take a subdisc D′′′ ⊆ D′′ such that Q ◦ F (D′′′) ⊆ F (D′′). Then obviously,
F ◦ P = Q ◦ F . Hence, if TxP has no eigenvalue 1, then so does

TxF ◦ TxP ◦ (TxF )−1 = TyQ

and vice versa. The hyperbolic case follows identically. �

A vector field is called non-degenerate or hyperbolic, if all its periodic orbits are
non-degenerate or hyperbolic, respectively. More generally, an element of X(M,Ω, a, b)
is called non-degenerate or hyperbolic, if all periodic orbits through periodic points in
Ω×(a, b) are non-degenerate or hyperbolic, respectively. The periodic orbits in Ω×(a, b)
will be called the essential periodic orbits of the field. Of course, when H : M×I → TM
is a homotopy of vector fields, a bifurcation parameter of H is a parameter such that
Hλ is not non-degenerate.

We will now give the notion of branches and prebranches in the context of periodic
orbits.

Definition 1.1.4.8 Let H : M × I → TM be a homotopy of vector fields, λ ∈ I any
parameter. A prebranch of periodic orbits emanating from (x, T, λ) is a continuous map

x× µ× T : (0, 1)→M × I × R+

such that (x(t), T (t)) is an isolated periodic point of Hµ(t), µ(t) → λ for t → 0,
(x(t), T (t)) → (x, T ), and for t 6= s, x(t) 6= x(s). We also say that the prebranch
emanates from (x, T ) at λ.

There is an equivalence relation on the set of prebranches given by reparametrization,
i.e. the prebranches x × µ × T : I → M × I × R+, y × ν × S : I → M × I × R+ are
equivalent, if there is an increasing homeomorphism ζ : (0, 1) → (0, 1) and y ◦ ζ ∼= x,
ν ◦ ζ = µ, S ◦ ζ = T . Here, y ◦ ζ ∼= x means that y ◦ ζ(t) and x(t) are on the same
flow-orbit for every t ∈ (0, 1). An equivalence class of prebranches is called a branch of
periodic orbits.

The uniqueness result 1.1.3.4 of branches in a region of regular parameters also holds
for branches of periodic orbits.

Proposition 1.1.4.9 Let H : M × I → TM be a smooth homotopy of vector fields. Let
λ0 ∈ I be a regular parameter and [λ1, λ2] ⊆ I be the maximal interval such that (λ1, λ2)
consists of regular parameters and λ0 ∈ [λ1, λ2]. Then for a periodic orbit γ0 through
(x0, T0) of Hλ0, all prebranches x × µ × T : (0, 1) → M × I × R+ such that µ(0) = λ1,
µ(1) = λ2 and x × µ × T (t) = (x0, λ0, T0) for some t ∈ I are equivalent, i.e. there is a
unique branch of periodic orbits passing through γ0.
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Proof. This is a trivial consequence of the result for fixed points, using Poincaré sys-
tems for γ0. �

Bifurcation theory deals with the process when a branch of critical elements runs
into a bifurcation parameter. Examples of bifurcations of fixed points where shown in
Figure 2 and by use of Poincaré systems, similar phenomena will occur when periodic
orbits bifurcate (note that, since we always assume the period to be a priori bounded in
a positive interval, we neither have Hopf bifurcations nor bifurcations into homoclinic
orbits). But in the case of periodic orbits, there is another interesting phenomenon,
namely the period multiplying bifurcation. This is a bifurcation where, in the geometric
sense, a periodic orbit whose period is an integer multiple of the period of the initial
orbit bifurcates. If we use periodic points, where we had assigned a fixed period to a
point on a geometric periodic orbit, this is nothing special, for if (x, T ) is periodic, then
so is (x, kT ) for k ∈ Z and period multiplying by k just means that the bifurcation takes
place at the periodic point (x, kT ), not at (x, T ). It is still worthwhile to say some words
about this phenomenon.

Lemma 1.1.4.10 If (xn, Tn) ∈ M × [a, b] are periodic points, 0 < a < b < ∞ and the
xn converge to a point x ∈ M such that (x, p) is a periodic point, p > 0 the minimal
period. Then for any subsequence (xnk , Tnk) such that the minimal periods of the xnk
converge to some q ∈ R, we have q = k · p for some integer k ∈ N.

Proof. Let pn be the minimal period of the point xn. We cannot have pn → 0 for
a subsequence, since then x would be a fixed point. Thus, the minimal periods are
bounded in a compact interval [c, b], c > 0, and we can assume that pn converges to
some q ∈ [c, b]. We obtain

xn = ϕ(xn, pn)→ ϕ(x, q),

hence q is a period of x, i.e. q = k · p for some k ∈ N. �

The geometric picture one should have in mind is the following.

Proposition 1.1.4.11 Let H : M × I → TM be a homotopy of vector fields, 0 an iso-
lated bifurcation parameter of H and γ0 a critical geometric periodic orbit with minimal
period p. Let x × T : (0, 1) → M × R be a branch of periodic orbits (we assume the
parameter to be t for simplicity), bifurcating from γ0, such that the minimal period of
the orbits on x × T is approximately k · p for some k ∈ N. For a fixed λ ∈ (0, 1), let
x(λ) = x1, limµ→0 x(µ) = x0 and let γλ be the geometric orbit of Hλ through x1. Define
a map

q : γλ → γ0, q(ϕλ(x1, t)) = ϕλ0(x0, t).

Then q is a k-fold covering map.

Proof. We have to check that around any point x ∈ γ0 there is a neighbourhood U ⊆ γ0

of x and a homeomorphism ψ : q−1(U)→ ∐k
j=1 U . Take x ∈ γ0, then x = ϕλ0(x0, t) for
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some t ∈ (0, p] . Let U = ϕλ0(x0, (t− ε, t+ ε)), where ε > 0 is chosen such that t−ε > 0
and t+ ε− p < t− ε. U is an open neighbourhood of x. We have

q−1(U) = {ϕλ(x1, s) | s ∈ (t− ε+ j · p, t+ ε+ j · p) for some j ∈ {0, . . . , k − 1}}.

Let js be the unique integer in {0, . . . , k − 1} such that s ∈ (t− ε+ j · p, t+ ε+ j · p)
and define

ψ : q−1(U)→
k∐
j=1

U, ψ(ϕλ(x1, s)) = (ϕλ0(x0, s), js).

ψ is obviously surjective and if ψ(ϕλ(x1, s)) = ψ(ϕλ(x1, s
′)), then js = js′ , i.e. s − s′ ∈

[−ε, ε]. But ϕλ0(x0, s) = ϕλ0(x0, s
′) implies s = s′ mod p, hence s = s′ and ψ is shown

to be injective. It is apparent that the definition of ψ defines a map in the other direction
as well which is smooth and the inverse map to ψ. Hence, ψ is a diffeomorphism. �

Figure 3 illustrates a period doubling bifurcation. The equator of a Moebius strip is a
periodic orbit from which a periodic orbit bifurcates which is given by the boundary of
the strip. This orbit has approximately twice the period of the initial one.

x y

z

(a) moebius strip

x y

z

(b) boundary and equator

Figure 3: Period doubling bifurcation

1.2 Genericity Theorems

The second main part and first non-introductory part of this work will give proofs of
genericity of the spaces of maps and vector fields defined in part 1.1. Namely, this
are the sets of non-degenerate maps, hyperbolic maps, non-degenerate vector fields and
hyperbolic vector fields. The basic tool is transversality. Thom’s theorem will play the
major rôle in the proofs of genericity for non-degenerate maps. The method to prove
genericity of hyperbolic maps is to show that hyperbolic maps are generic in the set of
non-degenerate maps. Once we know that generically there are only finitely many fixed
points, we can make these hyperbolic with an arbitrary small perturbation and take care
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that we do not generate additional fixed points elsewhere. A similar method works for
homotopies. These theorems are rather simple and the material or at least the ideas are
due to [PdM82].

For vector fields, it is more difficult, because non-degeneracy is now connected to
transversality of the flow rather than the field. This makes it difficult to use Thom’s
transversality theorem. We use direct proofs instead, inspired by [PdM82] and [Fie80], to
show that hyperbolic fields are generic. Transversality comes in when it comes to prove
openness. The homotopy case is again similar, depending on parametrized versions of
the methods used for fields.

An additional remark on smoothness conditions seems in order. Most of the results
we prove will hold for Cr-maps in the Cr-topologies, for r ≥ 1. Sometimes r ≥ 2 is
necessary. Since we are ultimately interested in doing index theory, the details of the
varying degrees of smoothness are of no interest for us. So if we do not specify the
degree of smoothness, we will implicitly assume that we are dealing with C∞-maps. In
this sense, the results are far from being sharp and one might want to read ”sufficiently
smooth” instead of ”smooth”, meaning that the result is true for Cr-maps and some r
sufficiently large, possibly r =∞.

1.2.1 Genericity in the Space of Maps

Genericity of smooth non-degenerate self maps of a smooth manifold follows almost
immediately from Thom’s Transversality Theorem, as we shall see shortly. So the
main focus of this section is on the technique of hyperbolization of non-degenerate fixed
points, which will allow to deduce genericity of hyperbolic maps from genericity of non-
degenerate ones. Our first result shows that non-degenerate fixed points are not only
isolated in the manifold M , but also remain so under perturbations of the map. This
should be no surprise, since we already know the set of regular parameters of a homotopy
to be open (Proposition 1.1.2.6), and small perturbations of a map are all homotopic
(Lemma 1.1.1.2).

Proposition 1.2.1.1 Let f0 : M → M be a Cr-map, x0 ∈ M a non-degenerate fixed
point of f0. Then there is a neighbourhood U of x0, a neighbourhood U of f0 and a
continuous map x : U → U such that x(f) is the unique fixed point of f in U and x(f)
is non-degenerate. If x0 happens to be hyperbolic, by possibly shrinking U and U one can
achieve that x(f) is hyperbolic.

Proof. Take a chart neighbourhood V of x0 such that the chart ψ maps V onto Rn,
ψ(x0) = 0. Since x0 is fixed, we find a neighbourhood V ′ ⊆ V of x0 such that f(V ′) ⊆ V
for all f in a neighbourhood U0 of f0 and we can arrange that ψ(V ′) = B1(0). 0 is a
non-degenerate fixed point of the map f̃0 = ψ ◦ f0 ◦ ψ−1 : B1(0)→ Rn.

Let X be the Banach space of bounded Cr-maps from B1(0) to Rn and define a map

F : X × B1(0)→ Rn, F (h, v) = v − h(v).

If r ≥ 1, F is differentiable and the partial derivative in (f̃0, 0) with respect to v is given
by DvF (f̃0, 0) = 1 − Df̃(0). Since 0 is non-degenerate, this operator is invertible and
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by the implicit function theorem we find neighbourhoods W ⊆ B1(0) of 0 and V ⊆ X
of f̃0 such that the equation F (h, v) = 0 is uniquely solved in V × W by a function
ϑ : V → W , i.e.

F (h, v) = 0, h ∈ V , v ∈ W ⇔ v = ϑ(h).

Let U = ψ−1(W ) and let U be the subset of maps f ∈ U0 such that ψ ◦f ◦ψ−1
∣∣
B1(0)

∈ V .

Then U is a neighbourhood of f0 and if vf is the unique fixed point of ψ ◦ f ◦ ψ−1 in
W , then ψ−1(vf ) ∈ U is a unique fixed point of f in U . Since 0 was non-degenerate
for f̃0, we can choose V and W such that vf is non-degenerate for f , since the set of
linear operators without eigenvalue 1 is open and dense in the set of linear operators.
Similarly, if 0 is hyperbolic for f̃0, we can arrange that vf is hyperbolic for f , since the
set of linear hyperbolic operators is open and dense in the set of linear operators. So
the definition x(f) = ψ−1(vf ) concludes the proof. �

Now we deal with the hyperbolization of a non-degenerate fixed point. By this, we
mean a local perturbation of a map around a non-degenerate fixed point, such that this
fixed point becomes hyperbolic and we do not obtain new fixed points by the pertur-
bation. Since non-degeneracy and hyperbolicity are characterized by the spectrum of
the differential of a map, it should be possible to prove such a result using density of
linear hyperbolic operators. Namely, if A is any operator, then A+ c1 is hyperbolic for
c > 0 sufficiently small. Furthermore, Proposition 1.2.1.1 guarantees that in a certain
neighbourhood, there will be no fixed points except the one we just made hyperbolic.
Then the following result is easy to deduce.

Lemma 1.2.1.2 Let f : M → M be Cr and x ∈ M a non-degenerate fixed point of
f . Then for any neighbourhood U of f and any sufficiently small neighbourhood U of x
there is a map f ′ ∈ U such that x is a hyperbolic fixed point of f ′, is the only fixed point
of f ′ in U and f ′ equals f outside of U .

Proof. Take a chart (ψ,U) around x such that ψ(U) = Rn and a subset U ′ ⊆ U
such that f maps U ′ into U . We can arrange that ψ(U ′) = B1(0). Furthermore, we
can choose U such that the conclusion of Proposition 1.2.1.1 is satisfied, i.e. for a
neighbourhood U1 ⊆ U , every element of U1 has a unique non-degenerate fixed point in
U . Let f̃ = ψ ◦ f ◦ ψ−1

∣∣
B1(0)

: B1(0) → Rn. Then for small c > 0, the map f̃ + c · 1
is smooth, has 0 as fixed point and its differential at 0 is hyperbolic. Take a smooth
Urysohn function ρ : B1(0) → [0, 1] that is equal to 1 on B1(0) − B 3

4
(0) and equal to 0

on B 1
4
(0). Define a map

h̃c : B1(0)→ Rn, v 7→ f̃(v) + c · (1− ρ(v)) · v.

Then h̃c is equal to f̃ near the boundary of B1(0) and equal to f̃ + c ·1 near 0. Further-
more, by choosing c sufficiently small, h̃c is arbitrarily close to f̃ . Define

hc : M →M, x 7→
{
f(x) x /∈ U ′
ψ−1 ◦ h̃c ◦ ψ(x) x ∈ U ′
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which by definition of h̃c is a smooth function. Since h̃c was arbitrarily close to f̃ , we
can choose c such that hc is an element of U1. Thus, h has a unique fixed point in U ,
which has to be x, and x is hyperbolic. �

The last two results are enough to prove genericity of hyperbolic maps from genericity
of non-degenerate ones. As already mentioned, this last result is rather trivial.

Proposition 1.2.1.3 The set of maps f : M → M such that all fixed points of f are
non-degenerate is open and dense in the set of all maps.

Proof. By Proposition 1.1.3.1, the fixed points of f are non-degenerate if and only
if the map 1 × f : M → M × M is transverse to the diagonal ∆ ⊆ M × M . By
Thom’s Transversality Theorem, the set of maps M → M ×M that are transverse to
the diagonal is open and dense. This immediately gives openness of our set. For density,
note that if F = f1 × f2 is sufficiently close to 1 × f , then f1 is a diffeomorphism. If
f1 × f2 is transverse to the diagonal, then so is 1× (f2 ◦ f−1

1 ) = (f1 × f2) ◦ f−1
1 and by

choosing f1 sufficiently close to 1, this last map is arbitrarily close to 1× f , proving the
proposition. �

This result immediately allows the proof of the next theorem.

Theorem 1.2.1.4 The set of hyperbolic maps is open and dense in the set of all maps.

Proof. For openness, take any hyperbolic map f : M →M . Using Proposition 1.2.1.1
we find a neighbourhood U0 of f and pairwise disjoint neighbourhoods U1, . . . , Um of
the finitely many fixed points x1, . . . , xm of f such that all elements of U0 have a unique
hyperbolic fixed point in Uj for 1 ≤ j ≤ m. Furthermore, f has no fixed points outside
of U = U1 ∪ · · · ∪Um, so the same is true for all maps in a neighbourhood U1 of f . Then
U0 ∩ U1 is a neighbourhood of f consisting of hyperbolic maps.

For density, by Proposition 1.2.1.3 it suffices to show that hyperbolic maps are dense
in the set of non-degenerate maps. Thus, take f : M → M non-degenerate and let
U be any neighbourhood of f in the set of non-degenerate maps. We have finitely
many fixed points x1, . . . , xm of f and, using Proposition 1.2.1.1 again, pairwise disjoint
neighbourhoods U1, . . . Um such that any element in a neighbourhood U0 of f has a
unique non-degenerate fixed point in Uj, 1 ≤ j ≤ m. Using the argument of the
proof of openness, we can assume that the elements of U0 have no fixed points outside
U = U1 ∪ · · · ∪Um. Using Lemma 1.2.1.2 repeatedly, we find a map f ′ arbitrary close to
f that is equal to f outside of U and that has the xj’s, 1 ≤ j ≤ m, as hyperbolic fixed
points. In particular we can achieve that f ′ ∈ U ∩ U0, i.e. f ′ is hyperbolic and in the
given neighbourhood U of f . This proves density of hyperbolic maps. �

1.2.2 Genericity in the Space of Homotopies

In what follows, we want to prove results similar to those of the preceeding section, but
now for homotopies. As before, the essence of these results is well-known. Most of the
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genericity theory for homotopies was established in [Bru70]. However, our emphasis is on
the bifurcation theoretic aspect and our main aim is to establish the generic bifurcation
scenario we described in the introduction. So we can skip some details of Brunovský’s
paper. For example, in the treatment of hyperbolic homotopies, we do not introduce
any eigenvalue crossing condition. Such a condition would control the eigenvalues of a
hyperbolic homotopy when they cross the unit circle during the homotopy. The standard
condition would be that the radial speed of the crossing eigenvalue is non-zero. For our
purposes, it suffices for the homotopy to be hyperbolic at all non-bifurcation parameters
and we need almost no control of the bifurcations other than non-degeneracy of the
homotopy (but compare Corollary 1.2.2.9).

We should start with a definition of non-degenerate and hyperbolic homotopies. Of
course we cannot expect the set of homotopies all of whose fibre maps Hλ are non-
degenerate to have a satisfyingly generic structure. Non-degeneracy of all these maps
would imply, by our results on the continuation of branches, that the number of fixed
points remains unchanged during the homotopy, which is clearly no generic condition.
As we will see shortly, the assumption that a homotopy has finitely many bifurcation
parameters is rooted in transversality theory and thus, a natural and generic assumption.
Since the unit interval I is a manifold with boundary, we have to be a bit technical when
defining non-degeneracy. The purpose, however, should be clear.

Definition 1.2.2.1 A homotopy H : M × I → M is called non-degenerate, if there is
an extension H̃ : M × R→M of H such that the map

FH : M × R→M ×M, (x, t) 7→ (x, H̃(x, t))

is transverse to the diagonal.

From the parametrized transversality lemma 1.1.2.6, we obtain

Proposition 1.2.2.2 A non-degenerate homotopy has finitely many bifurcation para-
meters.

Proof. Let H : M × I →M be non-degenerate and H̃ : M × R→M an extension of
H such that FH defined as above is transverse to the diagonal. By Proposition 1.1.2.6,
the set of λ ∈ R such that (FH)λ is transverse to the diagonal is open and dense, hence,
its complement is discrete and locally finite and so its intersection with I is finite. But
(FH)λ : M → M ×M is just the map x 7→ (x,Hλ(x)) for λ ∈ I, so H has only finitely
many bifurcation parameters. �

By a fixed point of a homotopy H : M × I →M , we mean a point (x, λ) ∈M × I such
that Hλ(x) = x. Using Proposition 1.1.2.3, if H : M × I → M is non-degenerate, then
either H has no fixed points at all, or the set of fixed points is a manifold of dimension
1. This could simplify some of our proofs, where we will just use the fact that we
have finitely many bifurcation points and finitely many branches connecting them. The
reason is that in the equivariant case, there is no similarly simple structure, in particular
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we do not know if generically there are only equivariant jug-handle bifurcations. Since
we are developing the non-equivariant theory in a way to have easy generalizations to
the equivariant setting, this approach seems to be reasonable.

We can also define hyperbolic homotopies. This will be homotopies that are non-
degenerate and all non-degenerate fixed points are hyperbolic. As is shown in [Bru70],
this set of homotopies will contain a generic subset. But the set itself is not open in
general. The reason is of course that we have no control of the bifurcations, so we can
approximate a hyperbolic homotopy by a non-degenerate (but not hyperbolic) homotopy,
shrinking the part where the approximating homotopy is not hyperbolic to a point (see
also the following example). Since the more special results of Brunovský are of no use
for us, we will be satisfied with our definition.

Example 1.2.2.3 For each n ∈ N let ρn : R →
[
−1,−1

2

]
be a smooth function such

that ρ−1
n (−1) =

[
1− 1

n
, 1
]

and such that the sequence of ρn converges to a function ρ
with ρ−1(−1) = {1}. Consider the homotopy

Hn(x, y, λ) = (x2 + 3 · x+
λ+ 1

2
, ρn(λ) · y).

Since ρn(λ) 6= 1, a fixed point (x, y) must satisfy y = 0 and in addition,

x2 + 2 · x+
λ+ 1

2
= 0,

giving

x = −1±
√

1− λ
2

.

This yields two fixed points for every λ < 1, the two branches merging at λ = 1. Denote
these fixed points by x−(λ) and x+(λ), corresponding to the sign.

The derivative of Hn at these fixed points is given by(
2x+ 3 0

0 ρn(λ)

)
.

2x+ 3 is one of the eigenvalues of this matrix, and substituting x = x−(λ), we obtain a
curve strictly larger than −1 for all λ ∈ I and lesser than 1 for all λ < 1, approaching
1 for λ → 1. Substituting x = x+(λ) gives a curve larger than 1, approaching 1 for
λ → 1. So all fixed points are non-degenerate for λ ∈ [0, 1). They are even hyperbolic
for λ ∈

[
0, 1− 1

n

)
and not hyperbolic for 1− 1

n
≤ λ ≤ 1 (by definition of ρn). The only

bifurcation parameter is λ = 1, meaning that for non-degeneracy of Hn, we only have
to check whether the matrix 

1 0 0 1 0
0 1 0 0 1

Hn
1 x Hn

1 y Hn
1 λ 1 0

Hn
2 x Hn

2 y Hn
2 λ 0 1
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has maximal rank in the fixed point (x−(1), 0) = (x+(1), 0) = (−1, 0). The derivative of
Hn

1 with respect to λ is just 1
2
. So we have to check the matrix

1 0 0 1 0
0 1 0 0 1
1 0 1

2
1 0

0 −1 0 0 1

 ,

which indeed has rank 4. We see that Hn is a non-degenerate homotopy. Clearly,
the sequence of the Hn converges to a homotopy H which is defined just as Hn but
exchanging ρn for ρ. By the same calculations as above, H is a non-degenerate homotopy
and at every regular parameter, Hλ is hyperbolic. We conclude that the set of hyperbolic
homotopies is not open.

To deduce genericity theorems for homotopies, we just need to prove parametrized
versions of the two crucial results concerning hyperbolization of fixed points. The first
result, the continuation of fixed points in a homotopy, is in principle already proven by
Proposition 1.2.1.1.

Proposition 1.2.2.4 Let H : M × I → M be a Cr map, x0 ∈ M a non-degenerate
fixed point of Hλ0. Then there is a neighbourhood U of x0 in M , a neighbourhood U × J
of (H,λ0) and a continuous map x : U × J → U , x(H,λ0) = x0, such that x(K,µ)
is a unique fixed point of Kµ in U and x(K,µ) is non-degenerate. If x0 happens to be
hyperbolic, by possibly shrinking U and U ×J one can achieve that x(K,µ) is hyperbolic.

Proof. By the non-parametrized version of this claim, Proposition 1.2.1.1, we find a
neighbourhood U1 of Hλ, a neighbourhood U of x0 and a continuous map x1 : U1 → U
such that for f ∈ U1, x1(f) is a unique non-degenerate fixed point of f in U . Choose a
neighbourhood U of H such that for K ∈ U , Kλ ∈ U1 for all λ ∈ [λ0 − ε, λ0 + ε] = J .
Then x1(Kλ) is a unique fixed point of Kλ in U . Define x : U × J → U, x(K,λ) =
x1(Kλ). x is obviously continuous and has all the required properties. The statement
for hyperbolicity follows in exactly the same way. �

Contrary to the continuation of fixed points of maps, the replacement of a non-
degenerate fixed point of a homotopy by a hyperbolic one does not follow trivially from
the original lemma. This is essentially because we want the homotopy to become Cr.
That is, if we excise some part of [0, 1] and replace the homotopy there with a restricted
homotopy with only hyperbolic fixed points near the non-degenerate fixed points of the
original homotopy, we have to make sure that this replacement takes place in a smooth
or, at least, Cr way. We even show a bit more, namely that we can make a given branch
of non-degenerate fixed points hyperbolic and glue the new branch into the old homotopy
without changing it outside of the interval we were replacing.

Lemma 1.2.2.5 Let H : M × I → M be Cr and xλ ∈ M a non-degenerate fixed point
of Hλ. Then for any neighbourhood U of H, any sufficiently small neighbourhood U of
xλ and any sufficiently small neighbourhood J of λ there is a homotopy K ∈ U such that
the following holds:
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1. If xµ is the unique and non-degenerate fixed point of Hµ in U (and U is chosen such
that these fixed points exist for µ ∈ J , according to Proposition 1.2.2.4), xµ is a
hyperbolic fixed point of Kµ for µ ∈ J .

2. xµ is the only fixed point of Kµ in U for all µ ∈ J .

3. Kµ equals Hµ outside of U for µ ∈ [0, 1].

4. Kµ = Hµ for µ /∈ J .

Proof. Take a chart (ψ, V ), V ⊆ U , around xλ such that Hµ maps a subset V ′ ⊆ V
into V for any µ in a neighbourhood J of λ. Furthermore, ψ(V ) = Rn, ψ(V ′) = B1(0),
ψ(xλ) = 0 and ψ(xµ) ∈ V ′ for µ ∈ J . Let

H̃µ = ψ ◦Hµ ◦ ψ−1
∣∣
B1(0)

: B1(0)→ Rn.

We can assume J = (λ− ε, λ+ ε) for some ε > 0. Let ρ be a smooth function

ρ : R→ [0, 1] , ρ(λ) = 1, ρ(µ) = 0 for µ /∈ J

and η : B1(0) → [0, 1] a smooth Urysohn function that is equal to 1 on B1(0) − B 3
4
(0)

and equal to 0 on B 1
4
(0). Define a map

K̃µ : B1(0)→ Rn, v 7→ η(v) · H̃µ + ρ(µ) · c · (1− η(v)) · v

for µ ∈ J , c > 0. By the same reasoning as in Lemma 1.2.1.2, when choosing c sufficiently
small, we obtain maps Kµ : M → M arbitrarily and uniformly close to Hµ, Kµ has xµ
as hyperbolic fixed point, no other fixed points in U and is equal to Hµ outside of U .
Since Kλ±ε = Hλ±ε and ρ runs smoothly into the constant zero function, we can extend
the Kµ to a Cr-homotopy K : M × I →M satisfying 1. to 4. �

The proof of genericity of non-degenerate homotopies is quite similar to the one for
maps and uses only Thom’s Transversality Theorem.

Proposition 1.2.2.6 The set of non-degenerate homotopies is open and dense in the
set of all homotopies.

Proof. Let H be a given non-degenerate homotopy. Then there is an extension H̃ :
M × R→M of H such that

FH : M × R→M ×M, (x, λ) 7→ (x, H̃(x, λ))

is transverse to the diagonal. By the corollary of Thom’s theorem, Corollary 1.1.2.5, the
set of maps F : M × R → M ×M transverse to the diagonal in M × [−1, 2] is open
and dense. Hence, if H ′ is sufficiently close to H, we find an extension to M × R that
is transverse to the diagonal in M × [−1, 2]. Certainly we can modify this homotopy to
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be a homotopy extending H ′ and being transverse to the diagonal on all of M × R. So
the set of non-degenerate homotopies is open.

For density, let H be an arbitrary homotopy, U a given neighbourhood of H. Let H̃
be any extension of H to M ×R. Then there is a map F : M ×R→M ×M arbitrarily
close to FH and transverse to the diagonal in M ×R, again by Corollary 1.1.2.5 and the
argument from above. Denote with π1, π2 the projections from M × R to the first and
second component, respectively. If F = (f1, f2), then f1 is close to π1, so f1× π2 is close
to the identity. We can choose F so close to FH that f1× π2 is a diffeomorphism locally
around M × I and K = f2 ◦ (f1×π2)−1

∣∣
M×I ∈ U . F ◦ (f1×π2)−1, defined locally around

M × I, is transverse to the diagonal and of the form (x, λ) 7→ (x,K(x, λ)), so K is a
non-degenerate homotopy in U . �

Again, density of hyperbolic homotopies is merely a corollary from this genericity
theorem and Lemma 1.2.2.5. As already explained, openness does not hold, at least
with our definition.

Proposition 1.2.2.7 The set of hyperbolic homotopies is dense in the set of all homo-
topies.

Proof. It suffices to show density in the set of non-degenerate homotopies. Let H :
M × I → M be any non-degenerate homotopy, λ1, . . . , λm the bifurcation parameters
of H. Choose any parameter µ1 ∈ [0, λ1]. Let I1 be the maximal connected subset
of [0, λ1] containing µ1 such that there is a homotopy K in a given neighbourhood U
of H such that Kµ is hyperbolic for µ in the interior of I1 and Kµ = Hµ for µ /∈ I1.
Assume ∂I1 6= {0, λ1}. Then ∂I1 = {µ−1 , µ+

1 } and at least one of these parameters is
non-degenerate, say, µ+

1 . Applying Lemma 1.2.2.5 to K and µ+
1 we find a homotopy

K ′ ∈ U which is hyperbolic in some interval J strictly containing I1 and equal to K,
hence to H, outside of J . This contradicts the definition of I1. We obtain a homotopy
K1 which is hyperbolic in [0, λ1) and equal to H outside of this interval. Applying the
same construction to K1 and the interval [λ1, λ2], inductively we obtain a homotopy
Km+1 ∈ U which is hyperbolic at all points different from the critical parameters of H.
This proves the claim. �

We will close this chapter with deriving one more density theorem. Although having
stated that we do not need control over the bifurcations along a hyperbolic homotopy as
long as the homotopy is non-degenerate, this is not the whole truth. We can circumvent
the usage of eigenvalue crossing conditions as in [Bru70] to find generic subsets of hy-
perbolic homotopies. But when we pass from a homotopy of vector fields to a homotopy
of Poincaré maps, to make use of index theory, we have to make sure that no fixed
points of the Poincaré maps occur on the boundary of the Poincaré discs. The solution
lies in the dimension formula for the preimage of submanifolds under a transverse map,
Proposition 1.1.2.3, which allows us to deduce that homotopies avoiding submanifolds
of codimension two are generic. Boundaries of discs in a manifold are submanifolds of
codimension two, so the index condition may be fulfilled generically.
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Proposition 1.2.2.8 Let S ⊆M be a compact submanifold of codimension c ≥ 2. Then
the set of homotopies H : M × I → M that have no fixed points in S at every stage is
open and dense.

Proof. By Thom’s Transversality Theorem, the set of maps S × I → S ×M that are
transverse to the S-diagonal {(s, s) ∈ S×M | s ∈ S} = ∆S ⊆ S×M is open and dense.
For H : M × I →M , denote the map

S × I → S ×M, (s, λ) 7→ (s,H(s, λ))

by H̃. We show that the set of homotopies H : M × I → M such that H̃ is transverse
to the S-diagonal is open and dense in the set of homotopies. In this case, H̃−1(∆S) is
a submanifold of S × I of dimension 1 − c. Since c ≥ 2, H̃−1(∆S) is empty, i.e. H has
no fixed points in S at every stage.

Openness: Let H : M × I → M be a homotopy such that H̃ is transverse to ∆S.
Then if K : M × I →M is close to H, K̃ is close to H̃, hence is transverse to ∆S.

Density: Let H : M×I →M be arbitrary and U a given neighbourhood of H. Choose
a map f = f1 × f2 : S × I → S ×M that is transverse to the diagonal. f can be chosen
arbitrarily close to H̃, so the map f1 × π2 is close to the identity and we can assume it
is a diffeomorphism. The map

f ◦ (f1 × π2)−1

will still be transverse to the S-diagonal and it is of the form

f ◦ (f1 × π2)−1(s, λ) = (s, f̃(s, λ))

for some map f̃ : S × I → M . f̃ is a homotopy arbitrarily close to H̃. So we are done
if we can show that we can extend f̃ to a map M × I →M that is an element of U .

Embed M into some euclidean space RN and let U be a tubular neighbourhood of M
in RN . Furthermore, let V be a tubular neighbourhood of S in M . Choose a smooth
Urysohn function η : M → [0, 1] with η−1(0) = S, η−1(1) = M − V . Let r : V → S be
the normal retraction, similarly R : U →M . Define a homotopy

F : M × I →M, (x, λ) 7→ R(η(x) ·H(x, λ) + (1− η(x)) · f̃(r(x), λ)).

Since η(x) = 1 if x /∈ V , this is well defined. F equals H outside of M − V and f̃ on
S. Furthermore, it is arbitrarily close to H when choosing the tubular neighbourhoods
appropriately, in particular we can achieve that F ∈ U . Hence, the set of homotopies
without fixed points in S is dense and the proposition is proven. �

Corollary 1.2.2.9 The set of non-degenerate homotopies that have no fixed points in a
given compact submanifold S ⊆ M of codimension 2 is open and dense in the set of all
homotopies.

Proof. This set is the intersection of two open and dense subsets, hence it is open and
dense. �
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1.2.3 Genericity in the Space of Vector Fields

The genericity theorems for vector fields we will present in this chapter are of a somewhat
different nature as the ones for maps. Recall the spaces X(M,Ω, a, b), introduced in the
introductory section, which consist of the smooth vector fields on M without periodic
orbits meeting ∂(Ω× (a, b)). We will prove all theorems in the spaces X(M,Ω, a, b). So
we always have a priori bounds on the periods of periodic orbits. This is in fact essential
to obtain openness. When speaking of hyperbolic or non-degenerate vector fields, we
will always mean that the essential periodic orbits are hyperbolic or non-degenerate,
respectively. We will also employ geometric techniques rather than techniques from
transversality theory. This will have the effect that we can prove the hyperbolicity
statements along the lines of the non-degeneracy statements by just substituting some
words. The reason of course is the technique of deducing the results by substitution of
fields by their Poincaré maps, and on the level of maps, we already have all genericity
results at hand. For the remainder of this section, if ξ is a vector field, ϕ will always
denote the flow of ξ without further labelling, if no confusion is possible.

The definition of non-degeneracy still depends on transversality, the reason being the
following lemma.

Lemma 1.2.3.1 Let ξ : M → TM be a vector field. A periodic orbit γ of ξ is non-
degenerate if and only if the map

Fξ : M × R→M ×M, (x, t) 7→ (x, ϕ(x, t))

is transverse to the diagonal at (x, T ), where (x, T ) is a periodic point in γ.

Proof. γ being non-degenerate means that the differential of any Poincaré map cen-
tered at x with return time T does not have 1 as an eigenvalue. Transversality of Fξ to
the diagonal means that

{(v, TxϕT (v) + λ · ξ(x)) + (w,w) | v, w ∈ TxM,λ ∈ R} = T(x,x)M ×M.

Clearly, this is equivalent to simplicity of the eigenvalue 1 of TxϕT (since ξ(x) is an
eigenvector to the eigenvalue 1). But the non-trivial eigenvalues of TxϕT are just the
eigenvalues of the Poincaré map. This proves the claim. �

So when speaking of a non-degenerate vector field in X(M,Ω, a, b), we mean a field such
that the map Fξ : M × R → M ×M, (x, t) 7→ (x, ϕ(x, t)) is transverse to the diagonal
in Ω× (a, b). The requirement that there are no periodic points on the boundary of this
set will make genericity proofs possible.

Our general strategy is to reduce questions of the dynamical behaviour of vector fields
locally around their periodic orbits to the dynamical behaviour of associated Poincaré
maps. For this cause it is important that, locally, all maps can occur as Poincaré maps
of a vector field (which is not true globally, compare [KH95]). One main idea in the
proof of genericity of vector fields will be to replace the Poincaré map of a given field by
one that is hyperbolic and arbitrarily close to the initial one. Then we want to deduce
that there is a field having this map as Poincaré map. The following lemma shows that
this approach may work. It is essentially taken from [Fie80].
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Lemma 1.2.3.2 Let γ be a periodic orbit of a vector field ξ : M → TM . Let (D,D′, P, t)
be a Poincaré system around γ centered at x0 and let V, U be open neighbourhoods of the
underlying geometric orbit of γ in M such that

U ⊆
⋃
x∈D′

ϕ(x, [0, t(x)])

and
ϕ(x, [0, t(x)]) ⊆ U

for x ∈ V ∩D′. Then there is a neighbourhood U of P in the set of maps D′ → D equal
to P outside of V ∩D′ and a continuous map χ : U → X(M), satisfying

1. For Q ∈ U , χ(Q) has Poincaré map Q.

2. For Q ∈ U , χ(Q) equals ξ outside of U .

3. χ(P ) = ξ.

Proof. Figure 4 shows the setup with the various neighbourhoods of γ. Let ϕ be the

γ

D′

D

V

U

Figure 4: Suitable tubular neighbourhoods of a periodic orbit

flow of ξ. The period map t is bounded from below on D′ by, say, τ > 0. Choose real
numbers 0 < a < b < τ . Now let Q ∈ C∞(D′, D) be any map equal to P outside of
V ∩D′. For Q close to P , P−1 ◦Q : D′ → D is close to the inclusion D′ → D. We can
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extend P−1 ◦Q to D′ by taking it to be the identity on the boundary, since Q equals P
there. But in a neighbourhood of the inclusion i : D′ → D, all maps are isotopic to i
and are embeddings, hence we find an isotopy H : D′ × [a, b]→ D joining i and P−1Q.
We extend H to a map D′× [0, ρ]→ D, where ρ is the maximum of t(x) in D′, by taking
H(x, s) to be i(x) for s < a and H(x, s) = P−1Q(x) for s > b. Certainly we can also
achieve that H is smooth by a small perturbation. Define

ψ(y, s) = ϕ(H(y, s), s), s ∈ [0, t(y)] .

Since H is close to i at any stage s, if y ∈ V ∩D′, ψ(y, s) does not meet M − U . Fur-
thermore we can achieve that ψ

∣∣
D′×[a,b]

is an embedding, because the set of embeddings

is open and ϕ
∣∣
D′×[a,b]

is an embedding. Thus, the curves ψ(y, ·) are pairwise disjoint.

Define a vector field ξ′′ on the image of ψ by setting

ξ′′(ψ(y, s)) = ψ̇(y, s).

Since the image of ψ and M−U are disjoint closed sets, we find a field ξ′ extending ξ′′ on
the image of ψ and ξ on M −U . The integral curves of ξ′ are, up to reparametrization,
just the curves ψ(y, ·). The Poincaré map of ξ′ thus is calculated by the equation

ψ(y, t′(y)) ∈ D

for some map t′ : D′ → R+ close to t. Let t′(y) = t(P−1 ◦Q(y)). Then

ψ(y, t′(y)) = ϕ(H(y, t′(y)), t′(y)) = ϕ(P−1 ◦Q(y), t′(y)) = Q(y)

by definition of P and t, i.e. Q is the Poincaré map of ξ′. Define χ(Q) = ξ′. Then all
the properties stated are obvious. �

The following result is in analogy to Proposition 1.2.1.1 and is needed to show openness
of non-degenerate or hyperbolic vector fields.

Lemma 1.2.3.3 Let ξ0 : M → TM be a vector field and γ0 a non-degenerate periodic
orbit of ξ0, (x0, T0) ∈ γ0. Then there is a neighbourhood U × J ⊆M ×R of γ0, a neigh-
bourhood U of ξ0 and a continuous map x × T : U → U × J such that (x(ξ), T (ξ)) is a
periodic point of ξ ∈ U , x(ξ0) = x0, T (ξ0) = T0, and the orbit γ(ξ) through (x(ξ), T (ξ))
is the unique periodic orbit of ξ in U × J and is non-degenerate. If γ0 happens to be hy-
perbolic, then, after possibly shrinking U×J and U , γ(ξ) is hyperbolic as well. Moreover,
a similar result holds for geometric periodic orbits, forgetting the period component.

Proof. Take a Poincaré system (D,D′, P, t) for γ0, centered at x0 ∈ γ0. Then x0 is a
non-degenerate fixed point of P . By Proposition 1.2.1.1, every map Q ∈ Cr(D′, D) in
a neighbourhood V of P has a unique non-degenerate fixed point in some open neigh-
bourhood W ⊆ D′ of x0. Let

U =
⋃
x∈W

ϕ(x, [0, t(x)])
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and U ⊆ X(M) be the subset of those vector fields whose Poincaré map is defined on
D′ and is an element of V . By Lemma 1.1.4.5, U is open. For ξ ∈ U , let P (ξ) ∈ V
be the Poincaré map of ξ on D′, obtained from P by continuation. Then P (ξ)(y) is
characterized by the property ϕξ(y, tξ(y)) ∈ D, where tξ(y) is close to t(y). Let x(ξ)
be the unique fixed point of P (ξ) in W and T (ξ) = tξ(x(ξ)). Clearly, (x(ξ), T (ξ)) is a
periodic point of ξ and its orbit is the only periodic orbit of ξ in U × J , where J is a
sufficiently small neighbourhood of T . Furthermore, since x(ξ) is a non-degenerate fixed
point of P (ξ), the corresponding periodic orbit of ξ is non-degenerate. Continuity of T
is clear and continuity of x follows from the continuous dependence of the fixed point
on P . The hyperbolicity statement follows in the same way from Proposition 1.2.1.1.
The statement for the geometric orbits follows by applying what we have shown to the
minimal period and using that the period of periodic orbits near a periodic orbit with
minimal period must be minimal as well, compare Proposition 1.1.4.11. �

Before we can proceed to the main theorem, we have to deal with the question of
the behaviour of the period of a periodic orbit under small perturbations. As already
mentioned, we want to make periodic orbits with period in a compact interval hyperbolic,
and push all other orbits into a region where their period must become large. So the
unwanted orbits should become inessential. The following lemma shows that this method
works.

Lemma 1.2.3.4 Let K ⊆ M be compact and assume that the vector field ξ has no
periodic orbits meeting K of a period in a compact interval [a, b]. Then there is a
neighbourhood U of ξ such that if a periodic orbit of η ∈ U meets K, its period does not
lie in [a, b].

Proof. Take x ∈ K. We have three possibilities.

1. The orbit through x is not periodic.

In this case there is an εx > 0 and a neighbourhood Ux of x such that ϕ(y, t) /∈ Ux
for y ∈ Ux and t ∈ [εx, b+ εx].

2. The geometric orbit through x has minimal period larger than b.

We can find neighbourhoods Ux and εx as above.

3. The geometric orbit through x has minimal period p and k · p < a < b < (k + 1) · p
for some k ∈ N.

In this case we find a neighbourhood Ux of x and εx > 0 such that ϕ(y, t) /∈ Ux for
y ∈ Ux and t ∈ [a− εx, b+ εx].

In any case we find neighbourhoods Ux of ξ such that the respective property holds
for all fields in Ux. The sets Ux cover K and we find a finite subcover, corresponding to
elements x1, . . . , xm ∈ K. Let

U = Ux1 ∩ · · · ∩ Uxm .
Then if x is a point in K, the orbit of η ∈ U through x has no period inside of [a, b]. �
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This lemma allows us to prove an openness statement for hyperbolic vector fields that
is stronger than just openness of the set of hyperbolic vector fields. We need this result
later in the proof of density.

Proposition 1.2.3.5 Let K ⊆ Ω be a compact subset and ξ ∈ X(M,Ω, a, b) such that
all essential periodic orbits of ξ in K are hyperbolic. Then the same is true for all fields
in a neighbourhood U of ξ.

Proof. Since ξ is hyperbolic in K, it is in particular non-degenerate in K, i.e. the map

Ω× (a, b)→M ×M, (x, λ) 7→ (x, ϕ(x, λ))

is transverse to the diagonal in K × [a, b]. Since the set of such maps is open in the set
of all maps by Corollary 1.1.2.5, every field in a neighbourhood U1 of ξ induces a map
that is transverse to the diagonal in K × [a, b], i.e. all fields in U1 are non-degenerate
in K. Now by Lemma 1.2.3.3, since ξ was hyperbolic, all non-degenerate fields in a
neighbourhood U ⊆ U1 of ξ are hyperbolic as well. This proves the lemma. �

We will briefly sketch the idea of the proof of the genericity theorem. Since we have
no periodic orbits on the boundary of Ω × [a, b], the union of all geometric essential
periodic orbits is compact. We cover this set by tubular neighbourhoods of the essential
orbits such that we can replace our initial field by a field that is hyperbolic in the
tubular neighbourhoods. We do this by using Lemma 1.2.3.2 and Poincaré systems. By
a compactness argument, this process will result in a field that is close to the initial
one and is hyperbolic locally in a neighbourhood of the set of essential periodic orbits
of the initial field. But we will also take care that all periodic orbits that might occur
outside of this neighbourhood are inessential, using Lemma 1.2.3.4. Then the new field
is hyperbolic. The proof presented here is a version based on methods from [Fie80]
and [PdM82]. The result itself is well-known as the Kupka-Smale theorem. This theorem
makes the even stronger statement that the stable and unstable manifolds of different
critical elements generically meet transversally. We do not need this property so we will
not consider it any further.

Theorem 1.2.3.6 The set of hyperbolic vector fields is open and dense in X(M,Ω, a, b).

Proof. Openness follows trivially from Lemma 1.2.3.5 by taking K = Ω. For the sake
of comprehensibility, we divide the proof of density into several steps. Since the proof
of the same theorem for homotopies of vector fields is very similar, this also facilitates
the comparison of the proofs.

1. Take any vector field ξ ∈ X(M,Ω, a, b) and let U be a given neighbourhood of ξ. Let
ϕ be the flow of ξ. Define

Γ = {x ∈ Ω | ϕ(x, t) = x for some t ∈ [a, b]}.

The set Γ is compact. For every essential periodic orbit γ ⊆ Γ, choose a Poincaré
system (Dγ, D

′
γ, Pγ, tγ) such that in a neighbourhood Uγ ⊆ U of ξ, all the Poincaré

maps of elements of Uγ are defined as maps D′γ → Dγ.
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2. Choose open neighbourhoods Wγ ⊆ Vγ ⊆ Uγ of the underlying geometric orbit of γ
such that W γ ⊆ Vγ and for all flows ϕ̃ of elements in Uγ, we have

Uγ ⊆
⋃
x∈D′

γ

ϕ̃(x,
[
0, t̃(x)

]
)

and
ϕ̃(x,

[
0, t̃(x)

]
) ⊆ Uγ for x ∈ V γ ∩D′γ.

3. The sets Wγ cover Γ, hence we can find a finite subcover, corresponding to orbits
γ1, . . . , γm. Let

W = Wγ1 ∪ · · · ∪Wγm , U1 = Uγ1 ∩ · · · ∩ Uγm ⊆ U .

The set K = Ω−W is compact and all periodic orbits of ξ meeting K have period not
in [a, b]. Hence, by Lemma 1.2.3.4, the same is true for all elements of a neighbourhood
U2 of ξ and we can assume U1 ⊆ U2. Every element η of U1 has the following properties:

(i) η ∈ U .

(ii) Periodic orbits of η meeting K are inessential.

(iii) Lemma 1.2.3.2 is applicable to η and all the sets Vγj , Uγj with the corresponding
Poincaré systems for j = 1, . . . ,m.

4. Assume that we have constructed a field ξk ∈ U1 that is hyperbolic in W1 ∪ · · · ∪Wk

for some 0 ≤ k ≤ m−1, where k = 0 simply means ξ0 ∈ U1. We find a neighbourhood
Wk of ξk such that every element ofWk is hyperbolic in W1 ∪ · · · ∪Wk. Apply Lemma
1.2.3.2 to the sets Vγk+1

, Uγk+1
and the corresponding Poincaré system to obtain a

neighbourhood Vk+1 of the Poincaré map Pγk+1
in the set of maps D′γk+1

→ Dγk+1

equal to Pγk+1
outside of Vγk+1

∩D′ and the map χ : Vk+1 → X(M,Ω, a, b). Now take

a hyperbolic map Wγk+1
∩D′γk+1

→ Dγk+1
so close to P

∣∣
Wγk+1

∩D′
γk+1

that there is an

extension to a map Q : D′γk+1
→ Dγk+1

equal to P outside of Vγk+1
∩D′ and Q ∈ Vk+1.

By continuity of χ, we can achieve that ξk+1 = χ(Q) ∈ U1 ∩Wk. Thus, ξk+1 has the
following properties:

- All periodic orbits of ξk+1 in Wγ1 ∪ · · · ∪Wγk+1
are hyperbolic.

- All periodic orbits of ξk+1 meeting K are inessential.

- ξk+1 ∈ U1.

5. Inductively, we find that ξm is a hyperbolic vector field in our sense, proving the
theorem.

�
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We state, for completeness, the canonical corollary that non-degenerate vector fields
are open and dense in the set of vector fields. The proof is almost trivial, since hyperbolic
fields are non-degenerate, which is the density part, and Proposition 1.2.3.5 in fact proves
openness of non-degenerate fields along its lines. We could also take the proof of Theorem
1.2.3.6 and, in the induction, take a non-degenerate map instead of a hyperbolic one.
This would yield genericity of non-degenerate vector fields instead of hyperbolic ones.

Corollary 1.2.3.7 The set of non-degenerate vector fields in X(M,Ω, a, b) is open and
dense in that set.

1.2.4 Genericity in the Space of Homotopies of Vector Fields

The final section on non-equivariant genericity theorems is at the same time the most
important one. We will prove parametrized versions of the genericity results of the
previous section, i.e. we will do generic bifurcation theory of periodic orbits with a priori
bounds. We work with non-degenerate homotopies instead of hyperbolic ones, because,
as we saw in the case of maps, we cannot expect the set of hyperbolic homotopies to be
open. Our strategy will be the same as for fields. We use geometric techniques to deduce
directly the density of non-degenerate homotopies. Transversality theory will help us
with the openness part. We begin with the definition of non-degenerate homotopies
of vector fields and the observation that, since we are dealing with vector fields, our
standing assumptions hold that all fields involved are elements of X(M,Ω, a, b) for fixed
Ω ⊆M open, 0 < a < b <∞.

Definition 1.2.4.1 Let M be a compact manifold, Ω ⊆ M an open subset, 0 < a < b
real numbers. Define the set hX(M,Ω, a, b) ⊆ hX(M) to be the set of homotopies of
vector fields on M such that any Hλ, λ ∈ I, is an element of X(M,Ω, a, b). We call the
periodic orbits in Ω of a period in [a, b] the essential periodic orbits of the homotopy.

We call H non-degenerate, if there is an extension to a homotopy H̃ : M ×R→ TM
with all maps H̃λ, λ ∈ R in X(M,Ω, a, b), such that the map

FH : Ω× (a, b)× R→M ×M, (x, t, λ) 7→ (x, ϕ̃λ(x, t))

is transverse to the diagonal. Here, ϕ̃ is the flow of H̃.

In this section, we will denote the flow of a homotopy H by ϕ, i.e. ϕ̇(x, λ) =
H(ϕ(x, λ), λ).

Non-degeneracy again implies finiteness of bifurcations, which brings us closer to our
generic bifurcation scenario for periodic orbits.

Proposition 1.2.4.2 If a homotopy H of vector fields is non-degenerate, then Hλ is
non-degenerate for all but a finite number of parameters.

Proof. Take any extension H̃ : M × R→M ×M of H such that

FH : M × R× R→M ×M, (x, t, λ) 7→ (x, ϕ̃λ(x, t))
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is transverse to the diagonal. By Proposition 1.1.2.6, the set of parameters t ∈ R such
that

(x, t) 7→ (x, ϕλ(x, t))

is transverse to the diagonal is open and dense in R, so its complement is discrete and
locally finite. Hence, the set of bifurcation parameters in I is finite. �

If γ is a periodic orbit of a homotopy at some stage λ, then, by choosing a Poincaré
system accordingly, we obtain a homotopy of Poincaré maps, locally around λ. Using
this fact, we are going to generalize Lemma 1.2.3.2 by proving that, if a homotopy is
close to the ”Poincaré homotopy” of H locally, then it is itself a Poincaré homotopy of
another homotopy of vector fields. Furthermore, if the Poincaré homotopies are close,
then so are the homotopies. It should be clear that such a result should enable us
to easily generalize the proof of density of non-degenerate vector fields to the case of
homotopies.

Lemma 1.2.4.3 Let H be a homotopy of vector fields, γλ a periodic orbit of Hλ. Choose
a Poincaré system (D,D′, Pλ, tλ) for γλ, centered at x0, such that the Poincaré maps of
all fields in a neighbourhood U1 of Hλ are defined as maps D′ → D. Let V, U be open
neighbourhoods of γλ such that

U ⊆
⋃
x∈D′

ϕµ(x, [0, tµ(x)])

and
ϕµ(x, [0, tµ(x)]) ⊆ U

for x ∈ V ∩D′ and µ in a neighbourhood of λ, say, |λ− µ| ≤ 3ε, ε > 0. The Poincaré
maps of the fields Hµ constitute a homotopy of maps

P : D′ × [λ− 3ε, λ+ 3ε]→ D.

Then there is a neighbourhood U in the set of homotopies D′ × [λ− 3ε, λ+ 3ε] → D
that are equal to P outside of V ∩D′ × [λ− 2ε, λ+ 2ε] and a continuous map χ : U →
hX(M,Ω, a, b) such that

1. for Q ∈ U , χ(Q)µ has Poincaré map Qµ for |λ− µ| ≤ ε.

2. for Q ∈ U , χ(Q) equals H outside of U × [λ− 2ε, λ+ 2ε].

3. χ(P ) = H.

Proof. Let tξ be the period map of ξ ∈ U1. Then

m = inf
x∈D′

inf
ξ∈U1

tξ(x) > 0.

Choose real numbers a, b with 0 < a < b < m. Let Q : D′× [λ− 3ε, λ+ 3ε]→ D be any
homotopy that is equal to P outside of V ∩ D′ × [λ− 2ε, λ+ 2ε]. There is an isotopy
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K : D′ × [a, b] × [λ− 2ε, λ+ 2ε] connecting the inclusion D′ × [λ− 3ε, λ+ 3ε] and the
map P−1 ◦Q. Here, P−1 is defined fibrewise and on ∂(D′× [λ− 3ε, λ+ 3ε]), P−1 ◦Q is
extended to be the identity. Define

ψ(y, s, µ) = ϕ(K(y, s, µ), s)

for y ∈ D′ und s ∈ [0, tµ(y)], where K is taken to be constant outside of [a, b].
Then ψ(y, a, µ) = ϕ(y, s, µ) for (y, µ) in a neighbourhood of the boundary of D′ ×
[λ− 3ε, λ+ 3ε]. Furthermore, by choosing Q sufficiently close to P , none of the curves
s 7→ ψ(y, s, µ) meets M − U . Since the set of embeddings is open, we can achieve in
addition that the curves s 7→ ψ(y, s, µ) for fixed µ and s ∈ [a, b] are pairwise disjoint,
since ϕµ is an embedding when restricted to [a, b]. With µ ∈ [λ− ε, λ+ ε], define a field
Ψµ on the image of ψµ by

Ψµ(ψ(y, s, µ)) =
d

dr
ψ(y, r, µ)

∣∣
r=s
.

This yields a smooth homotopy Ψ. Take Ψµ = Hµ outside of U . We can extend Ψ to a
homotopy M× [λ− 3ε, λ+ 3ε] of vector fields equal to H outside of U× [λ− 2ε, λ+ 2ε].
The integral curves of Ψµ, with |λ− µ| < ε, coincide, as sets, with the image of the curves
ψ(y, ·, µ). We calculate

ψ(y, tµ(y), µ) = ϕ(K(y, tµ(y), µ), tµ(y), µ) = ϕ(P−1
µ ◦Qµ(y), tµ(y), µ) = Qµ(y).

Hence, the Poincaré homotopy of Ψ in [λ− ε, λ+ ε] is given by Q. The definition
χ(Q) = Ψ gives the required result. �

Now we are going to deal with openness of non-degenerate homotopies, where we will
use the transversality characterization of non-degeneracy.

Lemma 1.2.4.4 Let H ∈ hX(M,Ω, a, b) and assume that H is non-degenerate in a
compact subset K × J ⊆ Ω × [0, 1]. Then there is a neighbourhood U of H such that
every element of U is non-degenerate in K × J .

Proof. The fact that H is non-degenerate translates into transversality to the diagonal
of the map

M × R× R→M ×M, (x, λ, t) 7→ (x, ϕ̃λ(x, t))

in K × J × [a, b], where ϕ̃ is the flow of an extension of H. By Corollary 1.1.2.5, the
set of maps M ×R×R→M ×M transverse to the diagonal in K × J × [a, b] is open.
Clearly, given a neighbourhood U1 of H̃ of maps such that this transversality condition is
fulfilled, we find a neighbourhood U of H such that every element in U has an extension
whose associated map lies in U1. This proves the assertion. �

The proof of the main and final theorem is now a replication of the proof of Theorem
1.2.3.6. We will use the same notation and enumeration to make the comparison of the
two easier. The recipe of proof we laid out before Theorem 1.2.3.6 can be taken as a
recipe for the following proof as well.
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Theorem 1.2.4.5 The set of non-degenerate homotopies of vector fields is open and
dense in hX(M,Ω, a, b).

Proof. Openness follows immediately by taking K × J = Ω× [0, 1] in Lemma 1.2.4.4.
For density, we now imitate the steps in the proof of Theorem 1.2.3.6.

1. Take any homotopy H ∈ hX(M,Ω, a, b) and let U be a given neighbourhood of H,
ϕ the flow of H. Define

Γ = {(x, λ) ∈ Ω× [0, 1] | ϕλ(x, t) = x for some t ∈ [a, b]}.

Γ is clearly compact. For every essential periodic orbit γ×{λ}, choose a Poincaré
system (Dγ, D

′
γ, Pγ, tγ) and a neighbourhood Uγ of H such that the Poincaré maps

of all elements of Uγ are defined as maps D′γ → Dγ. In particular, we find an
ε = ε(γ) > 0 such that the Poincaré maps of Hµ, λ− 3ε < µ < λ+ 3ε, constitute
a homotopy of maps

P : D′γ × [λ− 3ε, λ+ 3ε]→ Dγ

and the same is true for all elements of Uγ.

2. Choose open neighbourhoods Wγ ⊆ Vγ ⊆ Uγ of the underlying geometric orbit of
γ such that W γ ⊆ Vγ and we have

Uγ ⊆
⋃
x∈D′

γ

ϕ̃µ(x,
[
0, t̃µ(x)

]
)

and
ϕ̃µ(x,

[
0, t̃µ(x)

]
) ⊆ Uγ

for x ∈ Vγ ∩D′γ, ϕ̃ the flow of an element in Uγ and µ ∈ [λ− 3ε, λ+ 3ε].

3. The sets Wγ × (λ− εγ, λ+ εγ) cover Γ, so we find a finite subcover, corresponding
to orbits γ1, . . . , γm at parameters λ1, . . . , λm. Let

Wj = Wγj ×
(
λj − εγj , λj + εγj

)
,

j = 1, . . . ,m, εj = εγj . Then define

W = W1 ∪ · · · ∪Wj, U1 = Uγ1 ∩ · · · ∩ Uγm .

The set K = Ω× [0, 1]−W is compact and if a periodic orbit of Hµ meets a point
x such that (x, µ) ∈ K, the period of the orbit is not in [a, b]. Hence, the same is
true in a neighbourhood U2 of H and we can assume U1 ⊆ U2. Every homotopy
H ′ in U1 has the following properties.

a) H ′ ∈ U .

b) All periodic orbits of H ′ meeting K (in the above sense) are inessential.
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c) For j = 1, . . . ,m, Lemma 1.2.4.3 is applicable to H ′, the sets Vγj , Uγj and the
corresponding Poincaré system.

4. Assume that we have constructed a homotopy Hk for some 0 ≤ k ≤ m − 1,
such that Hk ∈ U , all periodic orbits of Hk meeting K are inessential and Hk

is non-degenerate in W1 ∪ · · · ∪Wk. Then there is a neighbourhood Wk of Hk

such that each element of Wk is non-degenerate in W1 ∪ · · · ∪Wk. Apply Lemma
1.2.4.3 to the sets Vγk+1

, Uγk+1
and the corresponding Poincaré system to obtain

the neighbourhood Vk+1 and map χk+1 : Vk+1 → hX(M,Ω, a, b) as stated in the
lemma. Take a non-degenerate homotopy

Wγk+1
∩D′γk+1

× [λk+1 − εk+1, λk+1 + εk+1]→ Dγk+1

and extend it to a homotopy

Q :
(
U(γk+1) ∩D′γk+1

)
× [λk+1 − 3εk+1, λk+1 + 3εk+1]→ Dγk+1

that is equal to P outside of
(
V (γk+1) ∩D′γk+1

)
× [λk+1 − 2εk+1, λk+1 + 2εk+1]. By

choosing the initial homotopy close enough to P , we can achieve that Q ∈ Vk+1

and Hk+1 = χk+1(Q) ∈ U1 ∩Wk. Hence, Hk+1 has the following properties.

a) Hk+1 restricted to Wk+1 is a non-degenerate homotopy.

b) All periodic orbits of Hk+1 meeting K are inessential.

c) Hk+1 ∈ U .

5. Obviously, Hm ∈ U is non-degenerate, which proves the theorem.

�

So we finally reached our generic bifurcation scenario. Generically, vector fields are
hyperbolic, and if they are homotopic (in X(M,Ω, a, b)), then they are so via a non-
degenerate homotopy. Whenever necessary, we can reduce locally to Poincaré systems
and on the level of maps, we have the same generic bifurcation behaviour of fixed points.

1.3 Fuller Index Theory

In [Ful67], Fuller constructs an index for vector fields. In his approach, the rôle of
the fixed points of self-maps is assigned to the periodic orbits of the field. Fuller uses
differential forms in his approach, but the dynamical background of his index was made
clear in the paper [CMP78] of Mallet–Paret and Chow. The general idea is to assign
to an orbit γ with minimal period the fixed point index of an associated Poincaré map.
One has to deal with several problems. First of all, it is not clear what the index of
an orbit with non-minimal period should be. Secondly, one has to verify that the local
definition yields a global object with nice properties. These questions have, of course, all
been answered by Fuller, Mallet–Paret and Chow and others. However, in view of the
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symmetry perspective, it seems useful to give a modified proof of homotopy invariance
to make it accessible to equivariant theory. It is now completely based on the use of the
fixed point index and the generic bifurcation theory developed in the preceeding section.

In the first part of this section, we will carry out the construction of the Fuller index,
using the density theorems for maps proven so far. In the second part, we will prove
its properties, mainly homotopy invariance, using the density theorems for homotopies.
The ideas will be explained as we go along.

1.3.1 Construction and Properties of the Index

The problem we want to deal with is the following. Take a vector field ξ : M → TM ,
an open subset Ω ⊆ M , 0 < a < b < ∞ and assume ξ ∈ X(M,Ω, a, b). Give an
algebraic count of the number of periodic orbits of f in Ω, counted with respect to
multiplicity, such that this number is a topological invariant, i.e. remains unchanged
under homotopies. Some other nice properties like additivity and the solution property
well-known from fixed point theory should hold as well.

When it comes to construct such a number it becomes apparent that it is not enough
to count periodic orbits with multiplicity, but we also have to take into account the
periodicity. That is, if an orbit has local index 1, then the same geometric orbit, but
run through twice, should have something like index 1

2
.

We briefly recall that the local fixed point index of a hyperbolic fixed point x of a
smooth map f is defined to be (−1)s, where s is the number of real eigenvalues of Dxf
larger than 1. By approximation and summation, this definition is extended to arbitrary
continuous maps, giving the global fixed point index. For details, see [Nus77], or [Bre93]
for its connection with the Lefschetz number.

Definition 1.3.1.1 Let ξ : M → TM be a non-degenerate vector field, γ a periodic
orbit of ξ with period k · p, p its minimal period. Choose a Poincaré system (D,D′, P, t)
for γ. The (local) index of γ is the rational number

I(γ) =
1

k
· i(P,D′)

where i(P,D′) is the fixed point index of P . The Fuller index of ξ is the sum

IF (ξ,Ω) =
∑
γ

I(γ),

which runs over the finite set of periodic orbits of ξ in Ω.

Note that we can choose as Poincaré map in the definition the map P k, where P is
a Poincaré map for γ, considered with its minimal period. We just have to take care
that all iterates P j are defined on some subdisc of D, 1 ≤ j ≤ k. The definition of the
index does not depend on the choice of Poincaré system, since any two Poincaré maps
are conjugate and the local index only depends on the eigenvalues of the Poincaré map.
For details we refer to [CMP78]. We define the Fuller index of an arbitrary vector field
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in X(M,Ω, a, b) by approximation. It is not clear that the index is well-defined. This
will follow from homotopy invariance.

We turn to some other properties of the index first. These properties are well-known
for the fixed point index and they are the very ones that justify to call this object an
index.

Proposition 1.3.1.2 The Fuller index is additive, i.e. if ξ ∈ X(M,Ω, a, b), Ω1,Ω2 ⊆ Ω,
Ω1 ∩ Ω2 = ∅ and all essential periodic orbits of ξ are contained in Ω1 ∪ Ω2, then

IF (ξ,Ω) = IF (ξ,Ω1) + IF (ξ,Ω2).

Proof. In the given situation, clearly ξ ∈ X(M,Ωi, a, b) for i = 1, 2. Assume that ξ
is non-degenerate. Let E be the set of essential periodic orbits of ξ, E1 ⊆ E the set
of essential periodic orbits contained in Ω1, E2 ⊆ E the set of essential periodic orbits
contained in Ω2. Then

IF (ξ,Ω) =
∑
γ∈E

i(γ) =
∑
γ∈E1

i(γ) +
∑
γ∈E2

i(γ) = IF (ξ,Ω1) + IF (ξ,Ω2),

since the local indices of the orbits clearly do not depend on the set they are contained
in. This proves the proposition for non-degenerate fields and extends to arbitrary fields
via approximation. �

With the next proposition, the proof of the homotopy invariance of Fullers index
begins, so we outline the course of action at this point. The first step is the most
difficult one. We show that, if two non-degenerate vector fields are homotopic via a non-
degenerate homotopy, then their Fuller indices are equal. Having established this result,
we proceed as follows. If ξ0, ξ1 are any two homotopic vector fields, we know that all
fields locally around ξ0 are homotopic. We show that being non-degenerately homotopic
is the same as being arbitrarily homotopic. Thus, all non-degenerate fields locally around
ξ0 have the same Fuller index. As a byproduct, this yields the well-definedness of the
index of an arbitrary field. Now we choose a non-degenerate homotopy H so close to
the initial homotopy between ξ0 and ξ1, such that H0 has the same index as ξ0 and H1

has the same index as ξ1. But by our first result, H0 and H1 have equal Fuller index,
which proves the invariance.

The crucial step in this plan is the invariance under non-degenerate homotopies. The
idea follows our general concept: We follow the finitely many branches of periodic orbits
along the homotopy and show that nothing happens to the index as long as we do
not reach a bifurcation parameter. Then we show that we can also cross a bifurcation
parameter without changing the index by calculating the indices of Poincaré maps on
the left and on the right of the bifurcation parameter. A main point of this argument is
the treatment of period multiplying bifurcations, which will show why we had to add the
factor 1

k
to an orbit of a period k-times its minimal period. Figure 5 indicates the central

idea of reducing a homotopy of vector fields to a Poincaré homotopy locally around a
bifurcation orbit.
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Figure 5: Pushing a Poincaré disc over a bifurcation parameter

Proposition 1.3.1.3 If ξ0, ξ1 : M → TM are two non-degenerate vector fields that are
non-degenerately homotopic, then IF (ξ0,Ω) = IF (ξ1,Ω).

Proof. Let H ∈ hX(M,Ω, a, b) be a non-degenerate homotopy joining ξ0 and ξ1. Take
any two regular parameters λ1, λ2 ∈ I. We consider two cases.

1. There are no bifurcation parameters in [λ1, λ2].

In this case, let J ⊆ [λ1, λ2] be the maximal interval containing λ1 such that the Fuller
index of Hλ, λ ∈ J , remains unchanged and let λ0 be its supremum. Let γ1, . . . , γm be
the non-degenerate periodic orbits of Hλ0 of periodicities k1, . . . , km. Choose Poincaré
systems (Dj, D

′
j, Pj, tj) around points xj on the geometric orbit corresponding to γj.

The Fuller index of Hλ is defined to be

IF (Hλ,Ω) =
m∑
j=1

1

kj
· i(Pj, D′j).

We find an ε > 0 such that each Poincaré system can be continued to a Poincaré
system for Hλ+ε. The index here is calculated as

IF (Hλ+ε,Ω) =
m∑
j=1

1

kj
· i(Pj(ε), D′j),

where Pj(ε) is the continuation of Pj. But this is just an admissible homotopy of
Pj and Pj(ε). Hence, the fixed point index does not change and so the Fuller index
does not change as well. We see that λ0 = λ2, which shows that the Fuller index is
unchanged during this part of the homotopy.

2. There is exactly one bifurcation parameter λ ∈ [λ1, λ2].
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In this case, Hλ is degenerate. Let γ be a periodic orbit of Hλ which is the limit of
a branch of periodic orbits and p be the minimal period of its underlying geometric
orbit. Let (D,D′, P, t) be a Poincaré system for γ, considered with minimal period
p. By choosing D small enough, the only fixed points of Pµ lying in D are those
on branches converging to γ if we choose, say, µ in a 2ε-neighbourhood of λ, ε > 0.
Denote the finitely many branches converging to γ from the left of λ by

µk1, . . . , µ
k
rk
,

where k runs through the integers and indicates that the minimal period of µkj ap-
proaches k · p for j = 1, . . . , rk as the branch approaches γ. Let P− = P (−ε),
P+ = P (ε). Choose small discs Mk

1 , . . . ,M
k
rk

around each orbit µk1(0), . . . , µkrk(0) and

subdiscs M ′k
1 ⊆ Mk

1 , . . . , such that P− restricts to a map Mj
k ′ → Mk

j , j = 1, . . . , rk
for all k involved, and the iterates of P− do so as well. We need only finitely many
iterates of P−, hence this condition can be fulfilled. We have a homotopy P between
P− and P+ which is non-degenerate at every stage except for the parameter λ. By
Corollary 1.2.2.9, we find a homotopy P ′ arbitrarily close to P that is non-degenerate
and has no fixed points on the union of the boundaries of the discs Mk

j . In partic-
ular, P ′− has all its fixed points inside of the discs Mk

j for the various j, k and P ′− is
admissibly homotopic to P−, i.e. their fixed point index is equal. But then, also P−
and P+ are admissibly homotopic, so we find

i(P k
−, D

′) = i(P k
+, D

′)

for all k. For simplicity, write Hλ−ε = H−, Hλ+ε = H+. We claim that the Fuller
indices are given by the sums

IF (H−,Ω) =
∑

n · p ∈ [a, b]

1

n
· i(P n

−, D
′),

IF (H+,Ω) =
∑

n · p ∈ [a, b]

1

n
· i(P n

+, D
′),

which would immediately yield equality of the two terms. We calculate

IF (H−,Ω) =
∑

j · k · p ∈ [a, b]

rjk∑
s=1

1

j
i(P jk
− ,M

k
s ).

On the other hand, to calculate the fixed point index of P n
− in D′, note that the

branches µks bifurcate with period k · p from γ, that is, a k-fold covering space of
S1 bifurcates from the geometric orbit corresponding to γ. This corresponds to a
bifurcation of k fixed points of the k-th iterate of the Poincaré map P−, all of which
have the same local index (the Poincaré systems being isotopic via the flow), namely
i(P k
−,M

k
s ). Hence we have a contribution of k · i(P k

−,M
k
s ) of these fixed points to the

fixed point index of P k
− in D′. Clearly if k divides n, then P n

− also has these fixed
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points in Mk
s , and these contribute k · i(P n

−,M
k
s ) to the index of P n

−. Summing all
these indices up, we obtain

1

n
i(P n
−, D

′) =
∑
k·j=n

rn∑
s=1

k

n
· i(P n

−,M
k
s )

=
∑
k·j=n

rjk∑
s=1

1

j
· i(P jk

− ,M
k
s )

This finally gives

∑
n · p ∈ [a, b]

1

n
i(P n
−, D

′) =
∑

j · k · p ∈ [a, b]

rjk∑
s=1

1

j
· i(P jk

− ,M
k
s ) = IF (H−,Ω).

The whole calculation did not depend on the fact that we were working with H−
instead of H+, and we get the same calculation on the right hand side, verifying
equality of both Fuller indices.

Since the Fuller index remains unchanged in both cases and we have only finitely
many bifurcation parameters, the proposition follows. �

We follow the general outline from above and establish next that non-degenerate
homotopy and homotopy give the same relation on the set of non-degenerate fields.

Lemma 1.3.1.4 If two non-degenerate vector fields ξ0, ξ1 ∈ X(M,Ω, a, b) are homo-
topic, then they are already non-degenerately homotopic.

Proof. Let U0 be a neighbourhood of ξ0 such that all elements of U0 are non-degenerate.
Using Lemma 1.1.1.2, we can furthermore achieve that all elements of U0 are pairwise
homotopic via a homotopy not leaving U0. Hence, all elements of U0 are non-degenerately
homotopic. We can find a similar neighbourhood U1 of ξ1. Now if H ∈ hX(M,Ω, a, b) is
a homotopy joining ξ0 and ξ1, by Theorem 1.2.4.5 we find a non-degenerate homotopy
K arbitrarily close to H. In particular we can find such a K so that K0 ∈ U0, K1 ∈ U1.
Pasting together K and non-degenerate homotopies joining ξ0 with K0 and K1 with ξ1,
respectively, we obtain a non-degenerate homotopy joining ξ0 and ξ1. �

The well-definedness of the Fuller index is now a byproduct.

Corollary 1.3.1.5 The Fuller index is locally constant and hence well-defined.

Proof. Any vector field ξ ∈ X(M,Ω, a, b) has a neighbourhood U such that every
element of U is homotopic to ξ. Thus, all non-degenerate elements in U are pairwise
homotopic. By the preceeding lemma, they are even non-degenerately homotopic, and
so by Proposition 1.3.1.3, any two elements of U have the same Fuller index. �

We summarize what we have done in this section in the following theorem.
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Theorem 1.3.1.6 The Fuller index is invariant under admissible homotopies.

Proof. If ξ0, ξ1 ∈ X(M,Ω, a, b) are homotopic vector fields and H ∈ hX(M,Ω, a, b) is
a homotopy between them, choose a non-degenerate homotopy K ∈ hX(M,Ω, a, b) such
that K0 is in a given neighbourhood U0 of ξ0, K1 is in a given neighbourhood U1 of ξ1.
This is possible by the density theorem 1.2.4.5. Since the Fuller index is locally constant
in ξ, the theorem follows from Proposition 1.3.1.3. �

For future reference, we list all the properties of the Fuller index that are of interest
to us in the subsequent theorem.

Theorem 1.3.1.7 The Fuller index has the following properties.

1. It is invariant under admissible homotopies, i.e. if H ∈ hX(M,Ω, a, b), then

IF (Hλ,Ω) ≡ const.

2. It is additive, i.e. if Ω1 ∩Ω2 = ∅ and all essential periodic orbits of ξ ∈ X(M,Ω, a, b)
are contained in Ω1 ∪ Ω2, then

IF (ξ,Ω) = IF (ξ,Ω1) + IF (ξ,Ω2).

3. It is normalized, i.e. if ξ has a single non-degenerate periodic orbit in Ω× (a, b), then

IF (ξ,Ω) = ±1

k
.

where k is the periodicity of the orbit.

4. It has the solution property: If IF (ξ,Ω) 6= 0, then ξ has an essential periodic orbit in
Ω.

Proof. Everything has been proven or is obvious except for 4. But 4. follows trivially
from the fact that a field without essential periodic orbits in Ω is non-degenerate and
hence has index 0. �
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2 G-Transversality and Equivariant Non-Degeneracy

The second chapter has mainly two purposes. The first is to give a notion of equivari-
ant non-degeneracy which is sufficiently generic, so we can obtain theorems similar to
those of chapter one. The second is to prove these genericity theorems and therefore to
establish a bifurcation scenario of relative critical elements that is identical to the sce-
nario we developed for fixed points and periodic orbits. Equivariant non-degeneracy will
depend on G-transversality, which was developed independently by Field and Bierstone
in various articles and later unified by Field. Foremost to mention here is his mono-
graph [Fie07]. Equivariant transversality is based on transversality to stratified sets, as
has been studied by Thom and Mather [Mat80]. We need a slight generalization, namely
we define equivariant transversality to locally semialgebraic sets. Since the established
theory just uses that the preimage of zero by a polynomial map has a canonical Whitney
stratification, the replacement of zero by a semialgebraic set is almost no problem.

The chapter is organized as follows. We begin with a basic introduction to the theory
of group actions and establish basic facts of the topological theory. Most proofs here will
be given by reference, mostly to [Bre72] and [tD87]. After a quick review of the special
features of equivariant dynamical systems, with main reference [Fie80], we investigate
the structure of homogeneous G-spaces, i.e. G-orbits, and the behaviour of smooth maps
near fixed orbits. This culminates in the proof of the important normal decomposition
lemma 2.1.3.4. This lemma is a generalization of a lemma of [Kru90], compare also
[Fie91]. In the last part of the introduction, we investigate the structure of smooth maps
between free G-manifolds and establish the covering homotopy theorem of Palais [Pal68],
which will be important in the proof of some of the genericity results.

In the second part of the chapter we develop the theory of G-transversality as is done
in [Fie07] or [Bie77a], beginning with transversality theory to stratifications. The theory
of G-transversality to an invariant semialgebraic set is of special importance and is an
adoption of techniques that appeared e.g. in [Fie07], chapter 7. Finally we prove the
Thom-Mather Theorem for G-transverse maps as is done e.g. in [Fie07] and generalize
the proof to our theory of G-transversality to semialgebraic sets.

In a short interlude, we describe the proofs of Thoms isotopy lemmas to make them
equivariant, as proposed in [Bie77a]. The main point to show is the existence of in-
variant controlled tube systems. The main reference here is [Gib76]. The equivariant
generalizations seem to be well-known but are hard to find (the author could not find
any reference here).

The Thom lemma will allow us to prove equivariant isotopy theorems for equivariantly
transverse homotopies, which is a major part of an development of a theory of equivariant
non-degeneracy of critical elements. Instead of the ordinary diagonal, we will be using
an equivariant diagonal. This is a G-subset which will in general not be a manifold
but has the structure of a locally semialgebraic set. So we have to use the theory we
developed earlier in the chapter. We will see that equivariant non-degeneracy will have
similar implications as non-equivariant non-degeneracy. We also introduce the notion
of G-hyperbolicity, so that we have two different notions of simpleness for equivariant
systems. These two will suffice to derive the structural results necessary for index theory.
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It would be interesting to know if G-hyperbolicity implies equivariant non-degeneracy.
This is unknown so far.

Finally, we prove all the equivariant analoga of the genericity theorems of chapter one
with our notion of equivariant non-degeneracy. Similar theorems may be obtained by
methods developed by Field in [Fie89]. The way we present these results is more in the
spirit of chapter one of this work.

2.1 Basic Facts on Group Actions

Naturally, the notion of a group action lies at the heart of this chapter. An action of
a group G on a set X is given by a group homomorphism G → Aut(X). Equivalently,
there is a map α : G×X → X such that the diagram

G×G×X 1G×α //

µ×1X
��

G×X
α
��

G×X α
// X

,

commutes and α(e, x) = x for all x ∈ X. Here, µ is the group multiplication on G.
This second formulation makes it easier to define group actions on sets with additional
structure. To be more precise, the diagram above defines a left action of a group. There
is the obvious concept of a right action. When we define and work with twisted products,
we will have to use both notions simultaneously. When it is not explicitly specified, an
action will always be a left action.

If X is a topological space, we require α to be continuous (G should be a topological
group). If X is a smooth manifold and G a Lie group, α should be smooth. We write
g.x or gx instead of α(g, x) and will also often regard g as an element of Aut(X). In the
special case where V is a vector space and G acts on V via linear automorphisms, we call
V a G-representation. A map that respects the group action is called equivariant. So
for an equivariant map f : X → Y , where G acts on X and Y , we have f(gx) = gf(x)
for all g ∈ G, x ∈ X. We also use the term G-map.

An action of a group divides the base space into points of several degrees of symmetry.
The intuition is that points that remain fixed under a large subgroup have a lot of
symmetry. The most symmetric points are those that are fixed under all of G. So
the subgroups of G fixing a given element are of particular interest. They are called
stabilizers or isotropy subgroups. If G acts on X and x ∈ X, denote by

Gx = {gx | g ∈ G}

the orbit of the element x and denote by

Gx = {g ∈ G | gx = x}

the isotropy subgroup of x. A well-known result is that, if G is compact, orbits are up
to G-homeomorphism just the quotients of G by the stabilizer, i.e. we have a canonical
G-homeomorphism Gx ∼= G/Gx

, mapping x to [e].
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We already gave references for the general theory of continuous group actions. The
theory of representations is developed, for instance, in [BtD03].

2.1.1 Equivariant Topology

We will recall some basic theorems on the structure of topological G-spaces, mainly
focussing on how they are build up locally and with respect to the various fixed spaces
of subgroups. At the end we will also look at some special features of G-manifolds.

Since the isotropy subgroups should indicate the symmetry of a point and points on
the same orbit intuitively have the same degree of symmetry, one should be able to
compare two points on the same orbit by means of their isotropy subgroups. However,
if G is not abelian, in general these isotropy subgroups are not equal. This leads to the
definition of the orbit type. If y = gx, then Gy = gGxg

−1. So the isotropy groups of x
and y are isomorphic and they are so in a special way, namely conjugation by an element
of G.

Definition 2.1.1.1 For closed subgroups H,K ⊆ G, denote by (H) the equivalence class
of H under conjugacy, i.e. K ∈ (H) if and only if there is a g ∈ G such that gKg−1 = H.
(H) is called the orbit type of H.

If X is a G-space, denote by OX the set of orbit types that have a representant which
is an isotropy group of a point in X. There is a canonical partial order on OX by defining
(H) ≤ (K) if and only if K is subconjugate to H. In the cases we are interested in, there
is always a maximal element of this order, called the principal orbit type (see below). We
will use this partial order to give a filtration of a G-space that allows induction proofs
on, e.g., the number of orbit types. Assume that there are only finitely many orbit types
(H1), . . . , (Hk) in a G-space X. We can assume that (Hi) ≤ (Hj) implies i ≤ j. We can
complete the partial order to a total order by saying that i ≤ j implies (Hi) ≤ (Hj) as
well. Then we can define

Xj = {x ∈ X | (Gx) ≤ (Hj)}.

Clearly, since for each x ∈ X there is a k such that (Gx) = (Hk), X1 ⊆ X2 ⊆ · · · ⊆
Xk = X.

There are more ways to decompose X in a way compatible with symmetric reasoning.
These decompositions rely on the notion of fixed subspaces of X. These are subspaces of
X consisting of points that share a common interpretation of symmetry, singling them
out against the other members of X. Let H ⊆ G be a closed subgroup. Define

XH = {x ∈ X | hx = x ∀h ∈ H}

XH = {x ∈ X | Gx = H}
X(H) = {x ∈ X | (Gx) = (H)}.

Note that in general, X(H) is the only G-invariant space of these three spaces. We will
clarify the meaning of these spaces with the next few results.
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Definition 2.1.1.2 The action of G on X is called free, if Gx = {e} for every x ∈ X.
It is called monotypic, if there is a closed subgroup H ⊆ G such that (Gx) = (H) for
every x ∈ X.

If G is abelian, the fixed space XH is G-invariant, because hgx = ghx = gx. This
clearly fails for non-abelian groups. However, if we restrict to the normalizer N(H), i.e.
the largest subgroup of G containing H as a normal subgroup, this proof still works.
Hence, N(H) is the largest subgroup of G acting on XH . H acts trivially on XH , so we
lose nothing by dividing out H and obtain an action of the group W (H) = N(H)/H
on XH . This last group is called the Weyl group of H. The action of W (H) has the
following interesting feature.

Proposition 2.1.1.3 The action of W (H) on XH and XH is well-defined. The latter
action is free.

Proof. If n ∈ N(H), then n−1hn ∈ H for all h. So if x ∈ XH , we have hnx =
nn−1hnx = nkx = nx, for k = n−1hn ∈ H. This shows nx ∈ XH . If x ∈ XH , then
Gnx = nGxn

−1 = H, hence nx ∈ XH . We conclude that N(H) acts on XH and XH .
H fixes all elements of XH and XH , so the action [n].x = nx of the Weyl group is
well-defined. If x ∈ XH and [n].x = x, we have nx = x, giving n ∈ H. This yields
[n] = e and consequently, the action is free. �

Coming back to the filtration X1 ⊆ · · · ⊆ Xk of X, we see that X1 is a monotypic
G-space, and so are all the spaces Xj+1−Xj. So a thorough understanding of monotypic
G-spaces may in some cases be enough to track down properties of arbitrary G-spaces
with finitely many orbit types, i.e. those with a finite orbit type filtration. The most
well-behaved spaces of course are the free G-spaces and they deserve a special treatment
in many aspects. We are going to take a short look at the structure of free G-spaces,
then return to show that monotypic spaces are nicely build up from their fixed spaces.

Making it still easier, if X is any topological space, then G × X is a free G-space,
where G acts on G by left translation and acts trivially on X. So it seems natural to
take a look at spaces that locally look like a product, i.e. for fibre bundles with typical
fibre G. Such bundles are called principal G-bundles.

Definition 2.1.1.4 A principal G-bundle is a map p : X → B, X,B Hausdorff spaces,
together with a collection of homeomorphisms ϕi : G × Ui → p−1(Ui), i ∈ I, for some
open sets Ui ⊆ B, such that the sets Ui cover B and the following holds.

1. The diagram

G× Ui
ϕi //

p2
##

p−1(Ui)

p
{{

Ui

commutes for all i ∈ I.
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2. If Ui ∩ Uj 6= ∅, there is a continuous map ϑ : Ui ∩ Uj → G such that

ϕi(g, u) = ϕj(g ◦ ϑ(u), u).

It is readily seen that if p : X → B is a G-principal bundle, there is a unique action
of G on X such that p becomes invariant and the charts become equivariant. Similarly,
every free G-space is in fact a G-principal bundle, taking p to be the quotient map. We
thus note

Proposition 2.1.1.5 If X is a free G-space, then the quotient map X → X/G is a
principal G-bundle and every principal G-bundle arises in this fashion.

Proof. Theorem II.5.8 of [Bre72]. �

To investigate the structure of monotypic G-spaces further, we need a basic construc-
tion of transformation group theory, namely the twisted product. We will mainly be
interested in the case where one of the participating spaces is a homogeneous space
(meaning, an orbit G/H ), but we give the construction in general.

Definition 2.1.1.6 Let H ⊆ G be a closed subgroup and Y be an H-space, X a right
H-space. The twisted product of X and Y is defined to be the G-space obtained by taking
the product X ×Y with H-action h.(x, y) = (xh−1, hy) and passing to the quotient. The
resulting space is denoted with X ×H Y . If X is also a left G-space and the actions
are compatible, i.e. (gx)h = g(xh), the twisted product becomes a G-space via g.[x, y] =
[gx, y].

A monotypic G-space X has the following nice feature. If x ∈ X, then Gx = g−1Hg
for some g ∈ G and thus, gx ∈ XH . We see that every orbit of X meets XH . So if a
W (H)-map f : XH → ZH is defined into any G-space Z, this extends uniquely to an
equivariant map f : X → Z via f(gx) = gf(x), x ∈ XH . The subspace XH can be
thought of as a kind of fundamental domain for the action. The following result makes
this precise.

Proposition 2.1.1.7 Let X be a monotypic G-space of orbit type (H), G a compact
group. Then the canonical map

G/H ×W (H) X
H → X, ([g], x) 7→ gx

is a G-homeomorphism.

Proof. Corollary II.5.11 of [Bre72]. �

So when dealing with monotypic G-spaces, when we are searching for equivariant
maps, we can restrict ourselves to the free W (H)-space XH . The W (H)-maps XH → ZH

are in 1-1-correspondence with the G-maps X → Z.
For the remainder of this introductory chapter, we will look at G-spaces with addi-

tional structure, that is, G-manifolds. This of course requires the group to have some
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smooth structure as well, leading to the notion of a Lie group which marries the struc-
ture of a group and of a manifold. So a Lie group is a group and a manifold such that
the group multiplication is a smooth map (it follows by the implicit function theorem
that inversion is smooth as well). If a group acts on a manifold M , then every element
of G induces a map Tg : TM → TM . By the chain rule, this gives a group action of G
on TM and this action clearly covers the action of G on M . Note that the tangential
space TxM is in general not a G-representation but a Gx-representation.

As one would expect, G-manifolds behave more nicely than arbitrary G-spaces. With
respect to our filtration by orbit type, the following proposition is remarkable.

Proposition 2.1.1.8 Let G be a compact Lie group. Then in every connected G-
manifold there is an orbit type (H) such that (K) ≤ (H) (with respect to the partial
order of orbit types) for every orbit type (K) of M . The set M(H) is open and dense in
M . (H) is called the principal orbit type of the action.

Proof. Theorem III.3.1 of [Bre72]. �

Of fundamental importance for the theory is the existence of tubular neighbourhoods.
When dealing with ordinary manifolds, one can reduce many local questions to charts
and thus to euclidean space. But in G-manifolds, one cannot expect charts to be in-
variant. So we need another notion of invariant neighbourhoods of group orbits that
are easy to handle. This are the so called tubular neighbourhoods, given by twisted
products of G with a representation vector space.

Proposition 2.1.1.9 If M is a compact G-manifold, G a compact Lie group, then every
orbit Gx ⊆M has an invariant neighbourhood U such that there is a Gx-representation
V and a G-diffeomorphism ϕ : G×Gx V → U , satisfying ϕ([g, 0]) = gx.

Proof. Theorem II.5.4 of [Bre72]. �

As one can show, see e.g. [tD87], every G-vector bundle over an orbit of type H has
the form G×H V → G/H for some H-representation V . Vector bundles over a point are
just euclidean spaces. This is another interpretation of tubular neighbourhoods being a
substitute for manifold charts.

We occasionally will need an auxiliary result which will make some proofs in the sequel
easier.

Proposition 2.1.1.10 Let M be a smooth G-manifold, G a compact Lie group. Then
there is a Riemannian metric on M that is invariant under the action of G on TM .
Hence, we can always assume that G acts as a group of isometries on a smooth Rieman-
nian manifold.

Proof. Just take any Riemannian metric and define a new Riemannian metric by

(v, w)x =

∫
G

〈Txgv, Txgw〉gx dg,

where we use the existence of a unique left and right invariant normalized measure on
G, called the Haar measure (compare [Bre72]). �
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With this notion, the normal representation V of a tubular neighbourhood G ×H V
of an orbit Gx can be taken to be the orthogonal complement (TxGx)⊥, after choosing
an invariant Riemannian metric.

There are many fundamental results which can be derived from the existence of tubular
neighbourhoods and invariant metrics. The former allows to do inductive proofs, either
over the dimension of the manifold or over the number of orbit types. The latter allows
to carry topological questions over into the metric setting, since, as is well known, any
smooth manifold admits a Riemannian metric. We illustrate by the following result.

Proposition 2.1.1.11 Let M be a compact G-manifold. Then M has only finitely many
different orbit types.

Proof. The statement is trivially true for finite M . Assume it to be proven for ma-
nifolds of dimension up to n. Let M be an n + 1-dimensional manifold. Cover M by
finitely many open sets of the form G×HV for closed subgroups H of G. Fix an invariant
Riemannian metric. Then the unit sphere S(V ) is a compact H-manifold of dimension
less than n + 1, hence, it has finite orbit type. But the orbit types in G ×H V are just
the orbit types in S(V ) and in addition at most (H). So there are only finitely many
orbit types meeting G×H V . The claim follows. �

2.1.2 Equivariant Dynamical Systems

We begin the study of equivariant dynamical systems with discrete systems, i.e. we
investigate iterates of an equivariant map f : M → M , where M is a compact G-
manifold. Since in the equivariant philosophy one deals with invariant objects only,
we are not looking for fixed points of f alone. An equivariant ”point” is the smallest
invariant subspace, or in other words, a G-orbit. Thus, we should look for G-orbits that
remain fixed under f . That is, we seek to solve the equation f(x) = gx, where g ∈ G
is any group element. If this is satisfied, then f(Gx) ⊆ Gx. This is a fixed orbit for f .
In general, f is not the identity map on Gx but it acts as left multiplication by some
g ∈ G. We will investigate maps between orbits in the next section.

When dealing with homotopies of equivariant maps, we cannot define bifurcation
parameters as those parameters λ where the fibre map Hλ is degenerate. We have not
developed an equivariant notion of non-degeneracy so far and the usual notion of non-
degeneracy makes no sense for equivariant maps: There is always a trivial eigenvalue 1 for
the derivative in a point on a fixed orbit, corresponding to the directions along the group
action (as long G/Gx

has positive dimension). In general, a bifurcation parameter should
be a parameter where the topological structure of the set of fixed orbits changes. We will
see later, however, that we can characterize bifurcation parameters by an equivariant
transversality condition.

The notion of a branch of fixed orbits is straight forward.

Definition 2.1.2.1 Let H : M × I →M be a G-homotopy. A prebranch of fixed orbits
emanating from Gx0 at λ is given by a continuous map

x× µ : (0, 1)→M × I
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such that Hµ(s)(x(s)) = gx(s) for some g ∈ G, µ(s) → λ, x(s) → x0 for s → 0, µ(s) is
regular and if µ(t) = µ(s), t 6= s, then Gx(s) ∩Gx(t) = ∅.

There is an equivalence relation on the set of prebranches of fixed orbits, given by
reparametrization and group multiplication. So two prebranches x× µ, y × ν are equiv-
alent, if there is an increasing homeomorphism ζ : (0, 1)→ (0, 1) and a continuous map
g : (0, 1) → G such that g(s).x ◦ ζ(s) = y(s) and µ ◦ ζ(s) = ν(s). An equivalence class
of prebranches is called a branch of fixed orbits.

We will consider questions of uniqueness of branches later, when we have equivariant
non-degeneracy at hand. Instead, we now turn to continuous dynamical systems. An
equivariant vector field ξ : M → TM is a vector field that is equivariant with respect
to the canonical action of G on the tangential bundle. So we have ξ(gx) = Txgξ(x)
for all x ∈ M , g ∈ G. An important property of an equivariant vector field is the
equivariance of its flow. This follows immediately from uniqueness of solution curves.
Another important feature is that an equivariant flow respects fixed spaces. If x ∈MH

(H)

for some closed subgroup H ⊆ G, then ϕ(x, t) ∈MH
(H) for all t ∈ R. This follows trivially,

since hϕ(x, t) = ϕ(hx, t) = ϕ(x, t) for h ∈ H and ϕt is a diffeomorphism.
The investigation of fixed points and periodic orbits was motivated by the search for

points with non-trivial stabilizers with respect to the R-action given by the flow. Having
a compact symmetry group G acting, an equivariant flow is the same as an action of the
group G×R. So we can ask instead to find points with non-compact stabilizers. Clearly
this are just the points with non-trivial stabilizers under the induced R-action on the
quotient space M/G. Since G is compact, the projection of a non-compact stabilizer
in G × R onto its second component must have non-compact image, which is a closed
subgroup of R. So the only possibilites are groups isomorphic to Z, or R itself. In the
case where this is R, the stabilizer has the form H × R for some closed subgroup H of
G. So we have a group orbit which is fixed under the flow. In the second case, we find
a smallest T > 0 such that ϕ(x, T ) = gx for some g ∈ G. The G × R-orbit through x
is called a relative periodic orbit, the point (x, T ) ∈M ×R+ is called a relative periodic
point (also if T is not minimal but a minimal positive time exists). Relative periodic
orbits are compact invariant submanifolds of M , since the canonical map

α : G× R/(G× R)x
→ (G× R)x

is a continuous bijection and thus a homeomorphism, since G× R/(G× R)x
is compact

by definition. Their quotient by G is homeomorphic to S1. But of course, if G has
positive dimension, a relative periodic orbit will carry non-trivial dynamics induced by
the flow. We will deal with this issue shortly. First we want to point out a similarity
with ordinary periodic orbits.

Proposition 2.1.2.2 If γ is a relative periodic orbit of ξ of period T and p is the
minimal period, then T = k · p for some k ∈ Z.
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Proof. Let T be any period larger than p and choose k ∈ N such that 0 ≤ T − kp < p.
Let ϕ(x, T ) = gx, ϕ(x,−kp) = hx. We have

ϕ(x, T − kp) = ϕ(ϕ(x, T ),−kp) = ϕ(gx,−kp) = ghx,

hence, T − kp is a period of x. By minimality of p, we must have T − kp = 0. �

The following proposition gives a complete classification of the dynamics on a relative
periodic orbit. Again, this comes from [Fie07].

Figure 6: The irrational torus flow is an S1-relative periodic orbit

Proposition 2.1.2.3 Let M be a monotypic G-space with quotient homeomorphic to
S1. Then there is a flow invariant foliation {Fx | x ∈M} of M such that

1. Fgx = gFx for all g ∈ G, x ∈M .

2. There is an s ∈ N (which can be specified) such that each leaf Fx is diffeomorphic
to an r-dimensional torus with 1 ≤ r ≤ s+ 1. The restriction of the flow to a leaf
is transitive and conjugate to a linear flow.

Proof. Proposition 8.5.3 of [Fie07]. �

Since fixed orbits of maps are easier to deal with than relative periodic orbits, we
will try to substitute flows by Poincaré maps, if possible. This requires the definition
of equivariant Poincaré systems. Such systems will be defined on equivariant discs in
G-manifolds, so we have to clarify what an equivariant disc should be. In the non-
equivariant case, we can interpret discs as follows. Let x ∈ S ⊆ M , where S is a
1-dimensional submanifold. Take a tubular neighbourhood of S in M . This is given by
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an embedding of the normal bundle N of S onto an open neighbourhood of S, sending
the zero section to S, i.e. a diffeomorphism ϕ : N → U ⊆M . Now we take the pullback
bundle Nx, induced by the inclusion x ↪→ S, of N . This embeds into U and its image is
a disc. We now generalize this concept taking symmetries into account.

Definition 2.1.2.4 Let M be a G-manifold, γ ⊆ M a G-orbit. γ has a tubular neigh-
bourhood U G-diffeomorphic to the space G×H V , (H) the orbit type of γ, V the normal
representation at some x ∈ γ. Assume that dimV H > 0. Let L be a 1-dimensional
subspace of V H and L⊥ an invariant orthogonal complement in V . Let p : V → L be the
orthogonal projection and π : G ×H V → G ×H L, [g, v] 7→ [g, pv]. This is well-defined
since pv ∈ V H , and we can interprete π as the bundle projection of the normal bundle
of G×H L, whose fibres are given by

π−1([g, v]) = {[g, w] | v − w ∈ L⊥}.

The image of the pullback of this bundle to the orbit G/H = G×H {0} in U is called an
equivariant disc in M , centered at γ. The image in U of the pullback of a disc subbundle
of π is called an equivariant subdisc (of the disc defined above).

As usual, we will speak of equivariant discs and subdiscs without specifying an em-
bedding.

Note that, for example, an isolated G-fixed point in M is not contained in an equiva-
riant disc, since it is not contained in a submanifold G-diffeomorphic to R. However, an
isolated G-fixed point must be a fixed point of any equivariant flow on M and we will
never deal with fixed orbits of flows. In our applications, equivariant discs always exist.

Example 2.1.2.5 1. Let Gx be an orbit in M , Gx = H. We find a tubular neigh-
bourhood G ×H V of Gx. The orbit of an equivariant flow on M through x will
stay in the set MH

(H), and MH
(H) ∩ G ×H V = G ×H V H . Hence, if Gx is not fixed

under the flow, we must have dimV H > 0. This shows that equivariant discs exist
around all G-orbits that are not fixed under an equivariant flow.

2. If G is finite, an equivariant disc around Gx is just an ordinary disc, centered at
x, normal to the group orbit, together with all its translates by a representative
system of G/H , see also Figure 7.

3. Let S1 act on the torus S1×S1 by multiplication in the first component. A tubular
neighbourhood of an S1-orbit S1 × {ψ0} is S1-diffeomorphic to S1 × R and its
normal bundle in the torus is the zero-dimensional bundle. Hence, an equivariant
disc centered at S1 × {ψ0} is just the set S1 × {ψ0} itself.

We turn to the definition of equivariant Poincaré systems, which are central to the
whole theory.

Definition 2.1.2.6 Let ξ be an equivariant vector field, ϕ its flow. Assume γ is not a
fixed orbit of the flow. Then there is an ε > 0 such that S = ϕ(γ, (−ε, ε)) is an equivari-
ant embedding of γ × (−ε, ε) into M . If (H) is the orbit type of γ, in a suitable tubular
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Figure 7: D4-equivariant discs centered at orbits of different type

neighbourhood G ×H V of γ this can be interpreted as the embedding of the subspace
G ×H L into G ×H V , where L ⊆ V H is a one-dimensional subspace (corresponding to
the direction of the flow). Let D be the equivariant disc defined by G×H V and L. Since
γ is not fixed by the flow, by shrinking D we can assume that there is a minimal T > 0
such that ϕ(γ, T ) ⊆ D and that ξ(x) /∈ TxD for all x ∈ D. By continuity of ϕ, there
is a subdisc D′ ⊆ D containing γ and a continuous invariant function t : D′ → R+,
t(γ) = T , such that ϕ(y, t(y)) ∈ D for all y ∈ D′. By the implicit function theorem, t is
smooth and thus, the map

P : D′ → D, y 7→ ϕ(y, t(y))

is a smooth equivariant embedding. The collection (D,D′, P, t) is called an equivariant
Poincaré system, centered at γ. P is the equivariant Poincaré map.

The disc in Figure 7 (a) can never occur in an equivariant Poincaré system. An
equivariant flow starting somewhere in that disc will locally remain in it for symmetric
reasons. Therefore, this disc will not be transverse to any equivariant flow. The disc in
Figure 7 (b) can arise as an equivariant Poincaré disc.

We have the expected continuation result.

Proposition 2.1.2.7 Let ξ : M → TM be an equivariant vector field, ϕ its flow, γ ⊆M
a G-orbit that is not fixed by ϕ. A Poincaré system (D,D′, P0, t0) around γ exists,
and after possibly shrinking D, there is a neighbourhood U of ξ and a continuous map
t : U → C∞G (D′,R+) such that (D,D′, P (η), t(η)) is a Poincaré system for η ∈ U ,
P (ξ) = P , t(ξ) = t0, and P (η) is defined in the obvious way.

Proof. Since ξ(x) /∈ TxD, there is a neighbourhood of ξ such that for all fields η in
this neighbourhood, η(x) /∈ TxD, after possibly passing to a subdisc. Hence, there is a
small εx > 0 such that ψ(x, t) /∈ D for 0 < t < εx and x ∈ D (ψ the flow of η). So the
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return time map t′ is well-defined by ψ(y, t′(y)) ∈ D and t′(γ) close to T . Continuous
dependence is obvious. �

When dealing with homotopies of vector fields, we should make the standing assump-
tions we already did in the case without symmetries. So let Ω ⊆M be an open invariant
subset, 0 < a < b <∞ real numbers. Denote with XG(M,Ω, a, b) the set of equivariant
vector fields that have no relative periodic orbits meeting ∂(Ω × (a, b)). This means,
there are no relative periodic points (x, T ) ∈ M × R+ such that x ∈ ∂Ω or T ∈ {a, b}.
This of course excludes the existence of fixed orbits in Ω.

We extend the notion of branches of critical elements to relative periodic orbits. The
definition of regular and bifurcation parameters of homotopies of equivariant vector fields
is done in the same way as for maps.

Definition 2.1.2.8 Let H : M × I → TM be a G-homotopy of vector fields. A pre-
branch of relative periodic orbits is a map x × µ × T : (0, 1) → M × I × R+ such that
(x(s), µ(s), T (s)) → (x0, λ, T0) for s → 0, µ(s) is a regular parameter, (x(s), T (s)) is a
relative periodic point of Hµ(s) and if s 6= t, then either µ(s) 6= µ(t) or T (s) 6= T (t) or
Gx(s) ∩Gx(t) = ∅.

There is an equivalence relation on prebranches given by reparametrization and group
multiplication as in the case of maps. An equivalence class is called a branch of relative
periodic orbits.

We will mainly use branches to strengthen the intuition, foremost by visualizing the
generic bifurcation scenario. Besides that, branches of equivariant critical elements will
play a minor role in the theory.

2.1.3 Sections and Orbits

In this section we are taking a look at the structure of maps between homogeneous
spaces, that is, orbits G/H for H ⊆ G a closed subgroup. These maps are of interest
because they describe the dynamics of a discrete dynamical system on a fixed orbit. Our
investigations will lead to a normal decomposition lemma that allows us to decompose
a map locally around an orbit γ that is mapped into a tubular neighbourhood of itself
into a normal component and a group component. We will make use of it in the next
section to prove isolatedness of G-hyperbolic fixed orbits. The material on the structure
of G-maps of homogeneous spaces can be found in [Fie91] and [Bre72]. The normal
decomposition lemma appeared in a less sharp form in [Fie91] and originally comes
from [Kru90]. Our version drops the requirement on the map to be a diffeomorphism
and also allows the orbit to be non-fixed. We will need this greater generality for the
applications we have in mind.

We begin our investigations with a simple lemma which identifies maps between ho-
mogeneous spaces as elements of a certain quotient space.

Lemma 2.1.3.1 Let H ⊆ K ⊆ G be closed subgroups of G. Then the set of smooth
maps G/H → G/K is isomorphic to the set N(H,K)/K , where

N(H,K) = {g ∈ G | g−1Hg ⊆ K}.
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Proof. A G-map f : G/H → G/K is uniquely determined by its value on [e]. But if
f([e]) = [g], then [g] = [hg] for all h ∈ H. Hence, g−1hg ∈ K for all h ∈ H. Clearly, an
element g such that g−1Hg ⊆ K determines a map of the orbits and two such maps are
equal if and only if their generating elements differ by an element of K. �

Note the special case where H = K. Then the lemma identifies the equivariant self
maps of G/H , which are necessarily diffeomorphisms, as the elements of W (H), the
Weyl group of H. The identifications have the main purpose to allow us to identify
G-homotopies of equivariant maps between orbits as paths in a certain space. If a G-
map is equivariantly homotopic to the identity, its corresponding element must lie in
the identity component of the quotient space. In case K 6= H, the role of the identity is
taken by the map [e] 7→ [e], and the component containing this map is of special interest.

Lemma 2.1.3.2 There is a neighbourhood U of e in N(H,K) such that every element
g ∈ U has the form g = ck, where c ∈ C(H), k ∈ K.

Proof. Let ϕ : N(K) → Hom(K,K) be the conjugation homomorphism ϕ(a)(k) =
aka−1. The semidirect product N(K)×ϕ K acts on G via (n, k).g = ngn−1k−1. Let Se
be a slice for this action at e. By Lemma 3.10.1 of [Fie07], there is an open neighbourhood
W of K in G and a smooth map χ : W → Se such that, for g ∈ W , gK = χ(g)K and χ
is N(K)-equivariant, where N(K) acts via conjugation. The value χ(g) is defined to be
the unique point in Se∩gK. Take any h ∈ H and g ∈ N(H,K)∩W = U . In particular,
h ∈ N(K), so by N(K)-equivariance of χ, we have

χ(hgh−1) = hχ(g)h−1.

Now g−1hgh−1 = k′ ∈ K, since g ∈ N(H,K). We obtain hgh−1 = gk′. By definition of
χ, χ(gk′) = χ(g). So we have

χ(g) = hχ(g)h−1

which yields χ(g) ∈ C(H). The equality gK = χ(g)K then gives g = χ(g)k for some
k ∈ K, proving the claim. �

Corollary 2.1.3.3 Let f : G/H → G/H be any G-map. Then there is an α > 0 such
that fα is G-homotopic to the identity and is given by fα([e]) = [c] for some c ∈ C(H).

Proof. We have f([e]) = [g] for some g ∈ N(H). The sequence {g`}`∈N has a conver-
gent subsequence, say, {gn`}`∈N. Take a neighbourhood U of e in N(H) as guaranteed
by Lemma 2.1.3.2. We find an ` > 0 such that

gn`+1 ◦ g−n` = gα

is an element of U ∩N(H)0, the lower zero indicating identity components. Hence, we
can write gα = ch with c ∈ C(H), h ∈ H. Now

fα([e]) = [gα] = [ch] = [c] �
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We can now state and prove the normal decomposition lemma, compare [Fie91] and
[Kru90].

Lemma 2.1.3.4 (Normal Decomposition) Let M be a compact G-manifold, f0 :
M → M a G-map and Gx ⊆ M a fixed orbit of f0, H = Gx. Then there is a neigh-
bourhood A ⊆ G/H of [e] and an N(H)-equivariant local section σ : A → G, tubular
neighbourhoods U ⊆ U ′ of Gx and a neighbourhood U of f0 such that for all f ∈ U , the
following holds. Let U = G×H Sx, U ′ = G×H S ′x, Sx ⊆ S ′x and for y ∈ U ′, let sy be the
unique point in Gy ∩ S ′x.

1. There is an α > 0 such that fα : Gx → Gfα(x) is equivariantly homotopic to the
map x 7→ sfα(x) and is given as fα(x) = cf .sfα(x), cf ∈ C(H).

2. c−1
f .fα(Sx) ⊆ σ(A).S ′x.

3. There are equivariant maps g : U → G, h : U → U ′, where G acts on itself via
conjugation, such that fα(y) = g(y).h(y) for all y ∈ U and h(Sx) ⊆ S ′x. g and h
depend continuously on f .

Proof. We choose suitable neighbourhoods first. Let U = G×H Sx, U ′ = G×H S ′x be
tubular neighbourhoods of Gx, Sx ⊆ S ′x normal slices at x. Since Gx is a fixed orbit of
f0, by Corollary 2.1.3.3 there is an α > 0 such that fα0

∣∣
Gx

is equivariantly homotopic to
the identity. Hence, by choosing a neighbourhood U of f0 sufficiently small, the maps
fα
∣∣
Gx

: Gx→ U ′ for f ∈ U are arbitrarily close to the map x 7→ gα0 .x, which in turn will

be homotopic to the map gα0 .sfα(x) for U properly chosen. In particular, the maps fα
∣∣
Gx

will all be equivariantly homotopic to the map x 7→ sfα(x), since the map x 7→ gα0 .x
is G-homotopic to the identity. Again by Corollary 2.1.3.3, the maps fα

∣∣
Gx

are given
as x 7→ cf .sfα(x) for some cf ∈ C(H). We chose any N(H)-equivariant local section
σ : A → G, A ⊆ G/H a neighbourhood of [e]. Then by shrinking U,U ′ and U , we
can achieve c−1

f .fα(Sx) ⊆ σ(A).S ′x for all f ∈ U . It remains to obtain the continuous
decomposition.

Take any f ∈ U and assume α = 1 for simplicity. Let c = cf . Define a map

f̃ : Sx →M, y 7→ c−1f(y).

Then for g ∈ H, f̃(gy) = c−1gf(y) = gc−1f(y) = gf̃(y), i.e., f̃ is H-equivariant. Thus,
we can extend f̃ uniquely to a G-equivariant map U → M . Then for z = g.y ∈ U ,
f(z) = gf(y) = gcg−1f̃(gy). So if we define a map g̃ : U → G, g.y 7→ gcg−1, then g̃ is
equivariant with respect to the conjugation action on G and f(z) = g̃(z).f̃(z). Let

ρσ : A× S ′x → σ(A).S ′x, (a, y) 7→ σ(a).y.

This is a diffeomorphism with inverse η = (η1, η2) and since we required that f̃(Sx) ⊆
σ(A).S ′x, we can define maps

h : Sx → S ′x, y 7→ η2 ◦ f̃(y)
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ḡ : Sx → G, ḡ(y) = σ ◦ η1 ◦ f̃(y).

Extend h and ḡ equivariantly to all of U . Then

f(y) = g̃(y)ḡ(y).h(y).

By letting g(y) = g̃(y)ḡ(y), g is equivariant and f(y) = g(y).h(y). The continuous
dependence of g and h on f is clear from the construction. �

2.1.4 Structure of Smooth Maps of Free G-Manifolds

Some of our results with symmetries will depend on the results from chapter one without
symmetries. The way to make use of these results is the technique of induction over the
orbit type. One proves a certain result for free G-manifolds and then uses the filtration
of the manifold M by orbit type to add further orbits step by step. Therefore, if a
manifold is given as the quotient of a free G-manifold by the acting group, it is important
to have knowledge of the structure of the set of those smooth maps that are induced
by equivariant maps in the overlying G-manifold. We will show that if the action of G
is free, then the relevant set of maps of the quotient space will be open and has local
sections. This is done by using Palais’ theorem on covering homotopies. Palais’ theorem
works in a more general setting, however we only need a version for free G-spaces. The
more general formulation can be found in [Bre72].

Theorem 2.1.4.1 (Covering Homotopy Theorem of Palais) Let G be a compact
Lie group and X, Y free G-spaces such that every open subset of X/G is paracompact.
Let f : X → Y be equivariant and [f ] : X/G → Y/G the induced map. Then for every
homotopy h : X/G × I → Y/G starting at [f ], there is a homotopy H : X × I → Y
inducing h and starting at f . Moreover, if K is any other homotopy with this properties,
then H = K ◦ ζ, where ζ : X × I → X × I is a G-diffeomorphism inducing the identity
on X/G × I and being the identity on X × {0}.

Proof. Theorem II.7.3 of [Bre72]. �

Now let M,N be free G-manifolds. Denote with π : CrG(M,N)→ Cr(M/G,N/G) the
projection map, i.e. π(f)[x] = [f(x)]. Using Palais’ theorem, we obtain the following
structural result for the image of π.

Proposition 2.1.4.2 The image π(CrG(M,N)) is open and π has local sections, that
is, for every [f ] = π(f) in Cr(M/G,N/G) there is a neighbourhood U of [f ] and a
continuous map σ : U → CrG(M,N) such that π ◦ σ = 1Cr(M/G,N/G).

Proof. For openness, take an element [f ] : M/G → N/G that is induced by f : M →
N . Since the quotient spaces are compact manifolds, there is a neighbourhood U of [f ]
such that every element h of U is homotopic to [f ] via a homotopy not leaving U . Now
lift such a homotopy to a homotopy H : M × I → N . The map H( · , 1) induces h, so
the image of π is open.
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For the local sections, take U as above and define a map h : M/G × U × I → N/G
such that h( · , k, t) is a homotopy joining [f ] and k. For example, we can take h to
be the composition of a fixed retraction with the convex homotopy between [f ] and k
(after embedding N/G, of course). So we can achieve that h is continuous. By Palais’
theorem, there is a lifting H : M×U×I → N inducing h (we take U as a trivial G-space
which is metric, hence paracompact). Define

σ : U → CrG(M,N), k 7→ H( · , k, 1).

Then σ is a local section. �

2.2 G-Transversality

In this section we are going to develop the theory of equivariant transversality as was
done by Bierstone and Field in [Bie77a] and [Fie77]. As non-degeneracy is a transversa-
lity property of the graph map 1× f , we can hope that equivariant transversality of the
graph map to some suitable set can serve as an equivariant non-degeneracy condition.
The complete theory of G-transversality is nicely elaborated in [Fie07]. We will never-
theless give all the necessary propositions and even proofs. We will, however, skip the
various well-definedness results, or rather prove these by reference.
G-transversality depends on the theory of transversality to stratified sets, so we start

with a review of the Thom-Mather theory of transversality to stratified sets. Then
we define G-transversality. The basic idea is to split an equivariant map between G-
representations into an invariant and an equivariant part. All the necessary informations
of the map will already be contained in the invariant part. Zeros of the initial map
will correspond to values of this invariant map in a certain algebraic subset, called
the universal variety. This comes with a canonical stratification, and we will define
equivariant transversality of f to 0 at 0 as transversality to the stratified universal
variety at 0. Note that the equivariant analogue of the surjectivity of the differential
is G-transversality of a map to 0 in 0. Since transversality can be expressed in terms
of surjectivity of the differentials alone, compare Lemma 1.1.2.2, the generalization to
equivariant transversality in manifolds is straight forward.

In the third part of this section, we will develop a theory of G-transversality to semi-
algebraic sets. Under some special assumptions, this theory can be made to work, so we
can prove equivariant versions of the Thom-Mather theorems for G-transversality and
G-transversality to semialgebraic sets in the last part.

2.2.1 Stratifications

A stratified subset X of a manifold M is a collection of pairwise disjoint submanifolds
Xα, α in some index set, such that X =

⋃
αXα. We also require the union to be locally

finite, so every element of X has a neighbourhood in M meeting only finitely many sets
Xα. The sets Xα are called the strata of X.

Usually, the strata will not be closed, so in general, the set of maps transverse to a fixed
stratum will not be generic (it will be dense, however). We are looking for conditions
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on the stratification such that simultaneous transversality to all strata will become a
generic property. These are the so called Whitney conditions. To be more precise, the
Whitney condition (a) will guarantee genericity. Condition (b) implies condition (a) and
is much stronger, guaranteeing the isotopy lemmas. We will deal with these lemmas in
a subsequent section.

Definition 2.2.1.1 Let M be a manifold, X ⊆M a stratified subset. The stratification
of X satisfies Whitneys condition (a), if the following holds. Whenever x ∈ Xα ∩Xβ,
xn ∈ Xβ is a sequence converging to x and the tangential spaces TxnXβ converge (in the
appropriate Grassmannian) to a subspace E ⊆ TxM , then TxXα ⊆ E.
X satisfies Whitneys condition (b), if the following holds. Whenever x ∈ Xα ∩ Xβ,

xn ∈ Xα, yn ∈ Xβ are sequences converging to x, the lines Ln joining xn and yn (in a
local chart) converge to a 1-dimensional subspace L ⊆ TxM and the tangential spaces
TxnXβ converge to a subspace E ⊆ TxM , then L ⊆ E.

A stratified set whose stratification fulfills the Whitney conditions is called a Whitney
stratification and will also be called Whitney regular or just regular. As has already been
said, condition (b) is stronger than condition (a).

Proposition 2.2.1.2 A stratification that is Whitney (b) regular is Whitney (a) regular.

Proof. Take x ∈ Xα ∩ Xβ. Let yn ∈ Xβ be a sequence converging to x and TynXβ

converges to E ⊆ TxM . Take any 1-dimensional subspace L of TxXα. Choose a neigh-
bourhood of x diffeomorphic to TxXα ⊕ TxX⊥α , sending x to 0 and Xα to TxXα. The
sequence yn corresponds to elements (an, bn) ∈ TxXα ⊕ TxX⊥α converging to (0, 0). We
find a sequence cn ∈ TxXα converging to 0 such that the lines joining (cn, 0) and (an, bn)
converge to L. Hence, the preimages xn ∈ Xα of (cn, 0) converge to x and by Whitneys
condition (b), L ⊆ E. Since L was arbitrary, we obtain TxXα ⊆ E. �

Transversality to a stratified set is defined in the obvious way. A function f : M → N
is transverse to the stratified set X ⊆ N , if it is transverse to every stratum of X. As
indicated, Whitney (a) regularity guarantees that being transverse to X at x is an open
condition.

Proposition 2.2.1.3 Let f : M → N be transverse to the stratified subset X ⊆ N at
x ∈M . Let the stratification of X be Whitney (a) regular. Then there is a neighbourhood
U of x such that f is transverse to X in U .

Proof. The statement is clear if f(x) = y ∈ Xα is bounded away from all other strata.
So we have to deal with the case y ∈ Xα ∩ Xβ. Let yn = f(xn) be a sequence in Xβ,
xn → x. It suffices to show that f is transverse to Xβ at xn for n sufficiently large. By
compactness of the Grassmannian, we can assume that TynXβ converges to a subspace
E ⊆ TyN . By Whitney (a) regularity, TyXα ⊆ E. Since f is transverse to Xα at x,

Txf(TxM) + TyXα = TyN,
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so
Txf(TxM) + E = TyN.

By openness of the set of linear maps with rank larger k, rank(Txnf) ≥ rank(Txf) for
n sufficiently large. Hence, Txnf(TxnM) can be assumed to converge to a subspace F
of Tf(x)N such that Txf(TxM) ⊆ F . This gives F + E = Tf(x)N , so for dimensional
reasons, there must be an N ∈ N such that

Txnf(TxnM) + Tf(xn)Xβ = Tf(xn)N

for all n ≥ N , showing transversality of f to Xβ at all these xn. �

The relevance of condition (b) will become apparent later when dealing with questions
of isotopy. For genericity, we have the following generalization of a result of Thom and
Mather, compare [Mat80].

Theorem 2.2.1.4 Let M,N be compact manifolds, X ⊆ N a closed Whitney (a) stra-
tified subset. Let U ⊆ M be an open subset. Then if f : M → N is transverse to X in
U and V ⊆M is an open subset such that V ⊆ U , there is a neighbourhood U of f such
that every element of U is transverse to X in V .

Proof. Let fn be a sequence converging to f ∈ C∞(M,N) and assume fn is not trans-
verse to X at some xn ∈ V . By various compactness arguments and since a stratification
is locally finite, we can assume that xn → x ∈ U , fn(xn)→ f(x) ∈ Xα, fn(xn) ∈ Xβ and
Tfn(xn)Xβ → E ⊆ Tf(x)N . As in the proof of the preceeding proposition, Txnfn(TxnM)
can be assumed to converge to a space F ⊆ Tf(x)N with Txf(TxM) ⊆ F . By Whitney
regularity, Tf(x)Xα ⊆ E. If f were transverse to X at x, then

Txf(TxM) + Tf(x)Xα = Tf(x)N,

implying F + E = Tf(x)N as well. But this would mean, again by dimensional reasons,
that

Txnfn(TxnM) + Tfn(xn)Xβ = Tfn(xn)N

for n sufficiently large, contradicting the assumption. Thus, f is not transverse to X at
x and the result follows. �

The original Thom-Mather Theorem is a corollary of this result.

Corollary 2.2.1.5 (Thom-Mather Theorem) Let M,N be compact manifolds, X ⊆
N a closed Whitney (a) stratified subset. Then the set of maps transverse to X is open
and residual in C∞(M,N).

Proof. For openness, we just take U = M in the theorem. Residuality follows from
Thom’s Transversality Theorem: The set of maps transverse to any stratum of X is
residual. Since the stratification is locally finite and N is compact, the stratification is
finite and the set of maps transverse to every stratum of X simultaneously is the finite
intersection of residual sets, hence residual. �

In the preceeding theorem we see that for density we do not even need a Whitney
condition on the stratification. One can also weaken the conditions on M and N , but
we will not go into detail.
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2.2.2 Equivariant Transversality

In the introduction to the chapter we indicated the idea of G-transversality. One begins
with maps between G-representations and defines transversality to 0 at 0. The gener-
alizations are then obvious. To obtain the first objective, one gives a decomposition of
the map into an equivariant and an invariant part, where the invariant part carries all
necessary information. This decomposition depends on an interplay of analysis and alge-
bra. Namely, the set C∞G (V,W ) of smooth maps between G-representations is a finitely
generated C∞G (V,R)-module. Furthermore, by the equivariant Stone-Weierstrass theo-
rem, see theorem 2.10.1 of [Fie07], generators can be assumed to be polynomial. In fact,
any generating set of equivariant polynomials, as a module over invariant polynomials,
already generates the smooth equivariant maps as a module over smooth invariants.
Details can be found in [Fie07]. This reference also uses minimal sets of homogeneous
generators in most places. This is convenient in many proofs, for example various results
concerning independence of choices. The theory, however, works with arbitrary genera-
tors, compare [Bie77a]. Thus, given a smooth equivariant map f : V → W and a set of
polynomial generators F1, . . . , Fk of C∞G (V,W ), we can write

f(v) =
k∑
i=1

fi(v) · Fi(v),

where the fi are smooth invariants. This is our desired decomposition. Define a map

ϑ : V × Rk → W, (v, t) 7→
k∑
i=1

tiFi(v).

Then we have f = ϑ ◦ Γf , where Γf (v) = (v, f1(v), . . . , fk(v)) is the graph map of f (we
somewhat ambiguously use the term ”graph map” for both the maps Γf and 1×f . The
meaning should always be clear from the context). ϑ clearly does not depend on f and
the graph map is invariant in the relevant components. The equation f(v) = 0 is solved
if and only if Γf (v) ∈ ϑ−1(0).

Since ϑ is a polynomial map, the set ϑ−1(0) = ΣG(V,W ) is an algebraic subvariety of
V × Rk. ϑ is called the universal polynomial , ΣG(V,W ) is called the universal variety .
In Figure 8, a universal variety for the canonical actions of Z2 on R and R2 is sketched.

The special importance of the choice of polynomial generators comes from the following
result.

Proposition 2.2.2.1 Let A ⊆ Rn be an algebraic variety, i.e. the zero set of a polyno-
mial map. Then A has a unique minimal Whitney regular stratification, where minimal
refers to refinement of the partition given by the stratification.

Proof. See [Mat80]. �

This result only assures existence of a minimal stratification and no method to find
it. A partial solution to this problem can be obtained as follows. Let f : Rn → Rm be
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Figure 8: The universal variety ΣZ2(R,R2)

a smooth polynomial map. Then there is a Whitney stratification of f−1(0) such that
Df has constant rank in each stratum. This result is proven e.g. in [Dur83]. So a first
indicator for a minimal Whitney stratification is the stratification of f−1(0) by the sets
of points where Df has constant rank. In general, this stratification will not be minimal,
sometimes not even regular, but very often it is both.

We can now define equivariant transversality for maps between representations.

Definition 2.2.2.2 Let V,W be G-representations, f : V → W smooth. f is said to
be G-transverse to 0 at 0, if for some choice of polynomial generators of C∞G (V,W ), the
graph map Γf is transverse to the universal variety ΣG(V,W ).

The verification that G-transversality is well-defined is not difficult but quite tedious,
so we refer to [Fie07] or [Bie77a] instead of giving a proof. We will summarize the
main results dealing with independence of choices after the general definition for G-
transversality in manifolds.

In the general setting, we have a map f : M → N between two G-manifolds and
we want to define when such a map is G-transverse in a point x ∈ M to an invariant
submanifold P ⊆ N . Of course, this is only interesting if f(x) ∈ P . First we note that,
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since Gx ⊆ Gf(x), we can view Tf(x)P as a Gx-representation. Choosing an invariant
Riemannian metric on N , we find a Gx-invariant orthogonal complement Tf(x)P

⊥ to
Tf(x)P . Furthermore, there is a neighbourhood U of f(x) Gx-diffeomorphic via a Gx-
diffeomorphism ζ to the direct sum Tf(x)P ⊕ Tf(x)P

⊥ such that f(x) maps to (0, 0) and
P ∩U maps to Tf(x)P . To get rid of the group component of f , we choose a normal slice
Sx at x and a Gx-diffeomorphism ϕ : Sx → Vx, where Vx is the normal representation
at x, i.e. Vx ∼= TxGx

⊥, such that x maps to 0. Clearly we can achieve f(Sx) ⊆ U . Now
consider the map

F = π2 ◦ ζ ◦ f ◦ ϕ−1 : Vx → Tf(x)P
⊥,

where π2 is the projection to the second component. We have F (v) = 0 if and only if
f(ϕ−1(v)) ∈ P . So it is reasonable to define G-transversality of f to P at x in terms of
G-transversality of F to 0 at 0.

Definition 2.2.2.3 Let M,N be G-manifolds, P ⊆ N an invariant submanifold. Take
x ∈ M . A G-map f : M → N is said to be G-transverse to P at x, if either f(x) /∈ P ,
or else the following holds. Choose a normal slice Sx at x and a Gx-diffeomorphism
ϕ : Sx → Vx, Vx = TxGx

⊥, ϕ(x) = 0. Find a Gx-invariant neighbourhood U of f(x) ∈ P
such that U ∼= Tf(x)P⊕Tf(x)P

⊥ as Gx-representations via an equivariant diffeomorphism
ζ, P corresponding to Tf(x)P , f(x) mapping to (0, 0). Let π2 : Tf(x)P ⊕ Tf(x)P

⊥ →
Tf(x)P

⊥ be the projection. Assume furthermore that f(Sx) ⊆ U . Then the map F =
π2 ◦ ζ ◦ f ◦ ϕ−1 is Gx-transverse to 0 at 0.

We will see in the remainder of this section, by the properties it has, that this is a
satisfying definition of G-transversality. First, we note the results on well-definedness
announced earlier.

Proposition 2.2.2.4 Let V,W be G-representations, M,N G-manifolds, P ⊆ N a
smooth invariant submanifold.

1. If f : V → W is G-transverse to 0 at 0 with a given choice of polynomial generators
of C∞G (V,W ), then f is G-transverse to 0 at 0 for any choice of generators.

2. If f : M → N is G-transverse to P at x with respect to a given choice Sx of nor-
mal slice, U of Gx-invariant neighbourhood of f(x) and the respective equivariant
diffeomorphisms, then it is G-transverse to P at x for any such choices.

3. If f : M → N is G-transverse to P at x, then it is G-transverse to P at gx for
every g ∈ G.

Proof. Proofs can be found in [Fie07] and [Bie77a]. �

Before pushing the theory further, we will look at some examples that may help
to develop an intuition for equivariant transversality and the connection to ordinary
transversality.
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Example 2.2.2.5 1. Let G be any compact Lie group acting trivially on the mani-
foldsM andN . Let P be a closed submanifold ofN and f : M → N a smooth map.
f is G-transverse to P , if at any x ∈ f−1(P ), the map π ◦ ζ ◦ f ◦ϕ−1 : Rm → Rn−p

is G-transverse to 0 at 0, where ϕ is a chart around x, mapping x to 0, ζ is a
chart around f(x), mapping P to Rp ⊆ Rn and f(x) to (0, 0), and m,n, p are
the dimensions of the respective upper case manifolds. We want to show that
G-transversality in this case is nothing else than surjectivity of the differential,
implying that f is G-transverse to P if and only if it is transverse to P . So
specialize to the case f : V → W , V,W trivial G-representations. Generators
for the equivariant maps are given by Fk(x) = ek, ek the k-th unit vector in W ,
k = 1, . . . , dimW = n. The universal variety is given as

ΣG(V,W ) = {(x, t1, . . . , tn) |
n∑
k=1

tk · ek = 0} = {(x, 0, . . . , 0) | x ∈ V },

which has only a single stratum. The graph map of f is given by

Γf (x) = (x, f1(x), . . . , fk(x)) = (x, f(x))

and Γf (0) = (0, f(0)). Transversality of Γf to Σ means that

T0Γf (V ) + V × {0} = V × Rn.

Since T0Γf (V ) = {(v, T0f(v)) | v ∈ V }, this is equivalent to T0f being surjective.

2. Let Z2 act canonically on V = R and let f : V → V be an equivariant map. A
generator for the equivariants is F1(x) = x. The universal variety is given by

Σ = {(x, t) | xt = 0},

which is stratified by {(0, 0)} and Σ− {(0, 0)}. Write f(x) = h(x2) · x, h : R→ R
a smooth map. f is Z2-transverse to 0 at 0, if the graph map

Γf (x) = (x, h(x2))

is transverse to the stratum containing (0, h(0)). Since Γf : R → R2, this is only
possible if h(0) 6= 0. In that case we have T(0,h(0))Σ = {0} × R, and so,

T0Γf (R) + {0} × R = R× {0}+ {0} × R = R2.

We see that f is transverse to 0 at 0 if and only if h(0) 6= 0 or equivalently,
f ′(0) 6= 0.

3. Let S1 act canonically on V = R2 and f : V → V be an equivariant map. Gene-
rators for the equivariants are

F1(x, y) = (x, y), F2(x, y) = (−y, x),
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so we can write f(x, y) = h(x2 + y2) · (x, y) + k(x2 + y2) · (−y, x) for smooth maps
h, k : R→ R. The universal variety is given as

Σ = ΣS1(V, V ) = {(x, y, s, t) | sx− ty = sy + tx = 0}.

The matrix (
x −y
y x

)
is regular except for x = y = 0, hence,

Σ = {(x, y, 0, 0) | (x, y) 6= (0, 0)} ∪ {(0, 0, s, t) | (s, t) 6= (0, 0)} ∪ {(0, 0, 0, 0)},

which constitutes the canonical Whitney stratification. The graph map of f is
given as

Γf (x, y) = (x, y, h(x2 + y2), k(x2 + y2))

and
Γf (0, 0) = (0, 0, h(0), k(0)).

The differential of Γf in (0, 0) is given as

T(0,0)Γf =


1 0
0 1
0 0
0 0

 .

Since this is not surjective, Γf will not be transverse to the stratum containing
Γf (0, 0) if h(0) = k(0) = 0. If either h(0) 6= 0 or k(0) 6= 0, then Γf (0, 0) ∈
{(0, 0, s, t) | (s, t) 6= (0, 0)} and the tangential space of this stratum is {(0, 0)}×R2,
so Γf is transverse to this stratum in both cases. We conclude that f is S1-
transverse to 0 at 0 if and only if h(0)2 + k(0)2 6= 0.

There are several important properties of transversality that should be retrieved for
equivariant transversality. Foremost, we want genericity of G-transverse maps. Preim-
ages under G-transverse maps should behave nicely. And finally, some minor results
such as an equivariant analogue of the parametrized transversality lemma 1.1.2.6 should
hold as well.

We begin with the following observation. Since passing to fixed spaces eliminates the
special features of a group action, one would expect G-transversality to imply stratum-
wise transversality. The latter is defined as follows. Take an isotropy subgroup H. Then
an equivariant map f : M → N induces a map fH : MH → NH . f is stratumwise
transverse to P if and only if all the maps fH are transverse to PH . One can show that
stratumwise transversality is a dense condition, but it will in general not be open.

Example 2.2.2.6 This example is taken from [Fie07]. Let V be the standard represen-
tation of Z2 on R. Then f : V → V, x 7→ x5 is equivariant and clearly is stratumwise
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transverse to the invariant submanifold {0} ⊆ V . Note that, by the calculations of
Example 3, f is not G-transverse to 0. Define

fλ(x) = x5 − 2λx3 + λ2x.

fλ is equivariant and fλ(±
√
λ) = 0, f ′λ(±

√
λ) = 0. So fλ is not stratumwise transverse

to 0 for λ > 0, but converges to f for λ→ 0. Hence, stratumwise transversality cannot
be an open condition.

We will now establish that equivariant transversality implies stratumwise transversa-
lity. The proof can also be found in [Bie77a].

Proposition 2.2.2.7 If f : M → N is G-transverse to P ⊆ N , then it is stratumwise
transverse to P .

Proof. Working locally, we see that the set MH = MH
(H) corresponds to the set SHx in

a normal slice at x. So fH : MH
(H) → NH is transverse to x ∈ PH if and only if the

map π2 ◦ ζ ◦ f ◦ ϕ−1 : SHx →
(
Tf(x)P

⊥)H is transverse to 0 at 0. Consequently, the
whole problem reduces to the following special case. Let V,W be G-representations. If
f : V → W is G-transverse to 0 at 0, then fG : V G → WG is transverse to 0 at 0.

Write V = V G ⊕ A, W = WG ⊕ B. Define Fi(v, a) = ei, i = 1, . . . , dimWG = k,
where ei is a basis for WG. Add generators Fi(v, a) = F̃i(a), i = k+ 1, . . . ,m, where the
F̃ are generators of C∞G (A,B). Then F1, . . . , Fm generates C∞G (V,W ). For this special
choice of generators,

ΣG(V,W ) = {(v, a, t) ∈ V G × A× Rm | t = (s, 0) ∈ Rm−k × Rk, (s, a) ∈ ΣG(A,B)}

which we can identify with V G × ΣG(A,B)× {0} ⊆ V G × (A× Rm−k)× Rk. The map
π ◦ Γf ◦ i is equal to fG, where i : V G → V is the inclusion, π : V × Rm−k × Rk → Rk

the projection. Since f is G-transverse to 0 at 0, we have

T0Γf (V
G) + T0Γf (A) + TΓf (0)ΣG(V,W ) = V × Rm.

But by definition of the generators, T0Γf (A) is just T0Γ
f

∣∣
A

(A) and since f
∣∣
A

is G-

transverse to 0 at 0, the latter adds up with TΓf |A (0)ΣG(A,B) to A×Rm−k. Furthermore,

TΓf (0)ΣG(V,W ) = V G × TΓf |A (0)ΣG(A,B).

Thus, G-transversality of f implies that

T0Γf (V
G) + V × Rm−k = V × Rm.

Composition with π gives

T0f
G(V G) + {0} = Rk = WG.

This is transversality of fG to 0 at 0. �
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Next we want to investigate the problem of preimages under G-transverse maps. For
ordinary transversality, the preimage of a submanifold under a transverse map is a
submanifold. For G-transverse maps, this is not true in general.

Example 2.2.2.8 Let G = Z2 × Z2 act on V = R2 as the reflections on the two
diagonals, i.e. (−1, 1).(x, y) = (y, x) and (1,−1).(x, y) = (−y,−x). G acts on W = R
as (ε1, ε2).x = ε1 · ε2 · x. The equivariant functions V → W are generated over the
invariants by F (x, y) = x2 − y2. So the universal variety Σ = ΣG(V,W ) is given as

Σ = {(x, y, t) | t(x2 − y2) = 0}.

The canonical stratification of Σ is given by the strata

Σ0 = {(0, 0, 0)}
Σ1 = {(x,±x, t) | t 6= 0, x 6= 0}
Σ2 = {(0, 0, t) | t 6= 0}
Σ3 = {(x, y, 0) | (x, y) 6= (0, 0)}.

Consider the G-map f : V → W , f = F . We claim that f is G-transverse to 0. We
check that it is G-transverse to 0 at (0, 0) first. The graph map is given by

Γf (x, y) = (x, y, 1).

We have Γf (0, 0) = (0, 0, 1) ∈ Σ2, hence, we have to check if Γf is transverse to Σ2 in
(0, 0). But

T(0,0)Γf (V ) + T(0,0,1)Σ2 =


1 0

0 1
0 0

 · (a
b

)
+

0
0
c

 | a, b, c ∈ R

 = R3.

This shows G-transversality of f to 0 at (0, 0). If f(x, y) = 0 and (x, y) 6= (0, 0), we must
have y = ±x. The isotropy of a point (x,±x) is Z2. So to check G-transversality of f
to 0 in (x,±x) amounts to checking Z2-transversality of the map h : R2 → R, h(w, z) =
f(w + x, z ± x) = w2 − z2 + 2x(w ∓ z) to 0 at 0. Here, Z2 acts on R2 as reflection on
either the diagonal or the antidiagonal {(x,−x) | x ∈ R}, depending on the sign, and
canonically on R. We will assume that (x, y) = (x, x). Obviously, the other case can be
treated identically. Thus we deal with the map h : R2 → R, h(w, z) = w2−z2+2x(w−z)
and have to check Z2-transversality to 0 at (0, 0). A generator for the equivariants is
F1(w, z) = w − z and the graph map of h is given by

Γh(w, z) = (w, z, w + z + 2x).

The universal variety is given by

Σ = ΣZ2(R2,R) = {(w, z, s) | s(w − z) = 0},
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which is stratified by Σ0 = {(w,w, 0) | w ∈ R}, Σ1 = {(w,w, s) | w ∈ R, s 6= 0} and
Σ2 = {(w, z, 0) | w 6= z}. We have Γh(0, 0) = (0, 0, 2x) ∈ Σ1, so we have to check
transversality of Γh to Σ1. We obtain

T(0,0)Γh(R2)+T(0,0,2x)Σ1 =


1 0

0 1
1 1

 · (a
b

)
+ c ·

1
1
0

+ d ·

0
0
1

 | a, b, c, d ∈ R

 = R3.

We see that h is Z2-transverse to 0 at (0, 0), implying that f is G-transverse to 0 at
(x, x). As already mentioned, the case for the points (x,−x) follows identically and we
conclude that f is G-transverse to 0. But the preimage of the manifold 0 under f is the
union of the diagonal and the antidiagonal, which is not a manifold. Obviously, however,
it has a canonical Whitney stratification.

There is a general characterization of preimages due to Bierstone. He proved that the
preimage of an invariant submanifold is the transverse intersection of an algebraic subset
A ⊆ Rn with the image of an embedding Rm ⊆ Rn, compare [Bie77a]. In particular, the
preimage has a minimal Whitney stratification. However, it seems more useful in our
setting to give a more specialized treatment under additional hypotheses on the map.

Proposition 2.2.2.9 Let f : M → N be a map G-transverse to the invariant subma-
nifold P ⊆ N and suppose Gx = Gf(x) whenever f(x) ∈ P . Then f−1(P ) is stratified by
orbit type.

Proof. By stratumwise transversality of f , the sets

f−1(PH) ∩MH
(H) = {x ∈M | f(x) ∈ P, Gx = H}

are submanifolds of MH
(H). Since Gx = Gf(x), these sets are equal to f−1(PH

(H)). Since

f−1(P )(H) is a monotypic G-space, it decomposes as

f−1(P )(H)
∼= G/H ×W (H) f

−1(P )H(H) = G/H ×W (H) f
−1(PH

(H)).

The right hand side is a monotypic G-manifold, because G/H is a W (H)-principal
bundle. This yields that f−1(P ) is stratified by orbit type. �

We want to close this introductory chapter on equivariant transversality with one
further result which is an equivariant version of Proposition 1.1.2.6 and was originally
proven by Bierstone [Bie77a].

Proposition 2.2.2.10 Let M,N,Λ be G-manifolds, Λ with trivial G-action, P ⊆ N an
invariant submanifold. Let F : Λ ×M → N be a G-map G-transverse to P . Then the
set of parameters λ ∈ Λ such that Fλ : M → N is G-transverse to P is residual in Λ. If
P in addition is compact, this set is open.
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Proof. Openness in case of compactness will follow immediately from genericity of
G-transverse maps. This result will be proven in a following section, compare Theorem
2.2.2.11. So we just show density here, where we follow [Bie77a]. We know that F−1(P )
has a minimal Whitney stratification. Let π : F−1(P ) → Λ be the projection. We will
show that Fλ is G-transverse to P if λ is a regular value for the restrictions of π to any
stratum of F−1(P ). Then Sards theorem takes care of the rest.

Clearly, if (λ, x) /∈ F−1(P ), then Fλ is G-transverse to P at x. So assume F (λ, x) ∈
P . Working locally, we can assume M = V,N = W are G-representations, Λ = R`,
F (λ, 0) = 0 and F is G-transverse to 0 at (λ, 0). We have to check in which circumstances
Fλ is G-transverse to 0 at 0. Choose generators F1, . . . , Fk of C∞G (V,W ) and write
F (λ, x) =

∑k
j=1 fj(λ, x) · Fj(x), which is possible since G acts trivially on Λ. Let Σλ be

the stratum of ΣG(V,W ) containing (0, f(λ, 0)). Then Σ = Λ × Σλ is the stratum of
ΣG(Λ×V,W ) containing (λ, 0, f(λ, 0)). By assumption, the map (µ, x) 7→ (µ, x, f(µ, x))
is transverse to Σ at (λ, 0) and we have to check under which conditions x 7→ (x, f(λ, x))
is transverse to Σλ at 0.

Assume λ is a regular value for the restrictions of the projection π : F−1(0) → Λ to
the strata of F−1(0). Since F−1(0) = Γ−1

F (ΣG(Λ × V,W )), in particular the projection
p : Γ−1

F (Σ)→ Λ has λ as a regular value, so

T(λ,0)(Λ× V ) = T(λ,0)Γ
−1
F (Σ) + T0V.

By this and transversality of ΓF to Σ at (λ, 0), we have

TΓF (λ, 0)(Λ× V × Rk) = T(λ,0)ΓF (T(λ,0)(Λ× V )) + TΓF (λ, 0)(Σ)

= T0ΓFλ(T0V ) + TΓF (λ,0)(Σ)

= T0ΓFλ(T0V ) + TλΛ + TΓFλ (0)(Σλ).

Since TΓF (λ, 0)(Λ× V × Rk) = TλΛ + TΓFλ (0)(V × Rk), we see that

TΓFλ (0)(V × Rk) = T0ΓFλ(T0V ) + TΓFλ (0)Σλ

which proves our claim. �

We close this introductory chapter by citing the equivariant Thom-Mather theorem
which is proven, for example, in [Fie07].

Theorem 2.2.2.11 Let M,N be compact G-manifolds, P ⊆ N a smooth invariant
submanifold. Then the set of G-maps G-transverse to P is residual. If P is closed, this
set is open.

Proof. Theorem 6.14.1 of [Fie07]. �
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2.2.3 Equivariant Transversality to Locally Semialgebraic Sets

Equivariant transversality, as we have established it so far, deals with equivariant trans-
versality to invariant manifolds. For our purposes, we need a more general theory of
equivariant transversality to semialgebraic subsets, which shall be developed now.

Definition 2.2.3.1 Let M be a G-manifold and X ⊆M an invariant subset. X is called
locally semialgebraic, if each point x ∈ X has a tubular neighbourhood U ∼= G×H V such
that the intersection of X with the slice e×H V is semialgebraic.

As in the case for manifolds, we begin with the definition for maps between represen-
tations.

Definition 2.2.3.2 Let V,W be G-representations, f : V → W a G-map, X ⊆ W a
locally semialgebraic, invariant set. f is said to be equivariantly transverse to X at 0,
if either f(0) /∈ X, or else the following holds. Choose polynomial generators F1, . . . , Fk
of C∞G (V,W ) and write

Γf : V → V × Rk, v 7→ (v, f1(v), . . . , fk(v)),

ϑ : V × Rk → W, (v, t) 7→
k∑
i=1

ti · Fi(v).

Then Γf is transverse to the canonical stratification of Σ = ϑ−1(X) at 0.

Standard reasoning shows that equivariant transversality to a locally semialgebraic
subset is defined independent of all choices made and is invariant under G-translations,
compare [Bie77b], [Fie07]. Of course, this is just the basis for the general definition for
G-maps of manifolds. The general setup is the following. Let M,N be G-manifolds,
f : M → N equivariant, X ⊆ N locally semialgebraic and invariant. Take x ∈ M and
f(x) = y ∈ N . Choose a Gx-diffeomorphism ϕ : Sx → Vx, where Sx is a normal slice at x
and Vx is a Gx-representation, ϕ(x) = 0. Let W be a Gx-representation and ζ : W → N
a Gx-diffeomorphism onto a neighbourhood of y, ζ(0) = y.

Definition 2.2.3.3 In the setup of above, f is said to be equivariantly transverse to X
at x, if either f(x) /∈ X, or else, the map ζ ◦ f ◦ ϕ−1 : Vx → W is Gx-transverse to the
canonical stratification of ζ−1(X) at 0.

Again it follows by the standard arguments from chapters five and six of [Bie77b] that
the definition of G-transversality does not depend on the choice of slice or equivariant
diffeomorphisms and is invariant under G-translations.

We are aiming to prove a Thom-Mather theorem in this new setting. The proof is
based on the methods of [Bie77b] as well and reduces the problem to the Thom-Mather
theorem for stratified spaces. The basic observation is that equivariant transversality
can be reduced to transversality to stratified sets not only pointwise, but locally.
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Proposition 2.2.3.4 In the setup of the definition of G-transversality to semialgebraic
sets, f is G-transverse to X at z ∈ Sx if and only if ζ ◦ f ◦ ϕ−1 is transverse to ζ−1(X)
at ϕ−1(z).

Proof. Let z ∈ Sx, ϕ−1(z) = v. Choose a small disc S in TvGxv
⊥, centered at v. For

r sufficiently small, S is a slice for the Gx-action on Vx at v. This implies that ϕ(S) is
a slice for the G-action on M at z. For F1, . . . , Fk polynomial generators of C∞Gx(Vx,W ),
the restrictions of the Fi to S generate C∞Gz(S,W ). The restriction of ϕ to S specifies a
Gz-diffeomorphism ψ : ϕ(S) → S and equivariant transversality of f at z is defined by
equivariant transversality of ζ ◦ f ◦ ψ−1 to ζ−1(X) at v. We have

ζ ◦ f ◦ ψ−1(u) = ζ ◦ f ◦ ϕ−1(u) =
k∑
i=1

fi(u) · Fi(u).

Hence, the graph map is given as

Γ′f : S → S × Rk(u) = (u, f1(u), . . . , fk(u))

and the universal polynomial is

ϑ′ : S × Rk → W, (u, t) 7→
k∑
i=1

ti · Fi(u).

We see that f is G-transverse to X at z if and only if Γ′f is transverse to Σ′ = (ζ◦ϑ′)−1(X)

at v. Since Σ′ = Σ∩(S×Rk) and by the proof of Lemma 6.13.2 of [Fie07], Γf is transverse
to Σ, if and only if Γf

∣∣
S

is transverse to Σ∩(V Gz
x ×Rk), we conclude that Γ′f is transverse

to Σ′ if and only if Γf is transverse to Σ, which finishes the proof. �

This proposition allows to translate equivariant transversality locally into transversa-
lity to stratified sets. So it is no surprise that we can deduce openness of equivariant
transversality and subsequently, an equivariant Thom-Mather theorem for semialgebraic
sets.

Proposition 2.2.3.5 Let f : M → N equivariant and X ⊆ N locally semialgebraic. If
f is equivariantly transverse to X at x ∈M , then it is equivariantly transverse to X at
y for y in a neighbourhood of x.

Proof. This follows immediately from openness of transversality to a stratified space
and Proposition 2.2.3.4. �

Theorem 2.2.3.6 If M,N are a compact G-manifold and X is a closed semialgebraic
invariant subset of N , then the set of G-maps f : M → N such that f is equivariantly
transverse to X is open and residual.
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Proof. For openness, we note that the map (f1, . . . , fk) 7→ Σk
i=1fi · Fi is open, by the

open mapping theorem in Fréchet spaces, see [Rud91]. So for every f ′ close to f , we find
coefficients such that f ′ =

∑k
i=1 f

′
i ·Fi and the f ′i are close to the fi’s. The statement then

follows from Proposition 2.2.3.5 and the openness part of the Thom-Mather theorem for
ordinary Whitney stratifications, 2.2.1.4.

The density part can be seen as follows. Let f : M → N be any G-map, x ∈ M
arbitrary and assume f(x) ∈ X. Choose a tubular neighbourhood Ux of x and an
invariant neighbourhood T of f(x) as in the definition of equivariant transversality, such
that every G-map in a neighbourhood Ux of f maps U into T . The graph map of f ,
defined with the sets U and T , need not be transverse to the universal variety Σ, but by
the Thom-Mather theorem for stratified spaces, we find a graph map arbitrarily close
that is transverse. Clearly, such a graph map comes from a G-map f ′, defined in the
neighbourhood Ux of x, and this f ′ can be extended to a map in Ux. Together with
the openness part, this shows that the set of G-maps G-transverse to X at Ux form a
residual subset. Since M is compact, we obtain that the set of G-maps G-transverse to
X at all of M is residual. �

Under some special circumstances, we still have the property that equivariant trans-
versality implies stratumwise transversality.

Proposition 2.2.3.7 Let M,N be G-manifolds, X ⊆ N a locally semialgebraic subset.

Assume that in a local slice Sx at x, X splits into X = XG⊕Y , XG ⊆ SGx , Y ⊆
(
SGx
)⊥

.
Then a map that is G-transverse to X is stratumwise transverse to X, meaning that the
map

fH : MH
(H) → NH

is transverse to the canonical stratification of XH .

Proof. In the local situation, we have to show that if f : V → W is a G-map of
representations and X ⊆ W is semialgebraic, satisfying the splitting condition, then
fG : V G → WG is transverse to XG. Split V = V G ⊕ A, W = WG ⊕ B and choose
generators for the equivariants C∞G (V,W ) as follows. For 1 ≤ i ≤ dimWG = k, Fi(v) =
ei, where the ei are a basis for WG. For k + 1 ≤ i ≤ m, Fi(v, a) = F̃i(a), where the F̃i
are generators of C∞G (A,B). For this special set of generators, if we identify WG with
Rk, we have

ϑ : V G ⊕ A× Rk × Rm−k → WG ×B, (v, a, s, t) 7→ (s,
m∑

i=k+1

tiF̃i(a)).

Pulling back X results in

ϑ−1(X) = {(v, a, s, t) | s ∈ XG,
m∑

i=k+1

F̃i(a) ∈ Y } = V G ×XG × ϑ′−1(Y ),
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where ϑ′ is the universal polynomial corresponding to A and B. G-transversality of f
to X implies that

T0ΓfG(V G) + T0Γ
f

∣∣
A

(A) + TΓf (0)ϑ
−1(X) = V × Rm.

We have
TΓf (0)ϑ

−1(X) = V G × TΓ
fG

(0)X
G × TΓ

f

∣∣
A

(0)ϑ
′−1(Y )

and the third factor of this expression sums up with T0Γf (A) to give A×Rm−k. Hence,
G-transversality of f to X implies

T0ΓfG(V G) + V G × TΓ
fG

(0)X
G = V G × Rk

or equivalently,
T0f

G(V G) + TΓ
fG

(0)X
G = WG,

where we used the fact that projecting Γf to the second component just gives the map
fG, by choice of the generators. This last equation proves our claim. �

2.3 The Equivariant Isotopy Lemmas

One of the main properties of homotopies H : M × I → N transverse to a submanifold
P ⊆ N is the invariance of preimages. If J ⊆ I is a compact interval such that for
all parameters λ ∈ J , Hλ is transverse to P , then the sets H−1

λ (P ) are isotopic for λ
varying in J . We proved a similar but substantially weaker result when we established
uniqueness of branches of critical elements.

The more general result is still true when we replace P by a Whitney stratified subset.
This is a consequence of the so called first isotopy lemma of Thom. We need an equiva-
riant version of Thom’s lemma to deduce a similar invariance result for the preimages of
the fibre maps of a G-homotopy. Bierstone indicates in [Bie77a] such that an equivariant
result should hold. However, there appears to be no proper reference where the whole
construction is carried out in detail. Due to the lack of a reference and because it is not
entirely trivial, the proof of the equivariant Thom Isotopy Lemma will be included.

We will shortly review the non-equivariant version of this result and justify the name,
which might be a bit confusing when looking at the formulation of the lemma. In
the second part, we prove the equivariant version by constructing controlled invariant
tubular neighbourhoods and lifting equivariant vector fields in the right way. This part
is a modification of [Gib76] and as mentioned above, in some cases there were just a
few words to be added to make the theory work equivariantly. One can often use the
non-equivariant results in a way to substantially shorten the presentation.

2.3.1 Thom’s First Isotopy Lemma

The Thom Isotopy Lemma deals with maps between stratifications, that is, we have a
map f : M → N , stratified sets X ⊆ M , Y ⊆ N and f maps strata of X into strata
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of Y . We will always assume that the stratifications of X and Y are Whitney regular.
The crucial condition on f to make the isotopy lemma work is that it is a submersion
when restricted to strata of X. This seems to be a quite severe condition, but it will be
sufficient. We first note the following lemma.

Lemma 2.3.1.1 Let f : M → N be transverse to the Whitney stratified subset X ⊆ N .
Then the stratification of f−1(X) by strata f−1(Xα) is a Whitney stratification.

Proof. Corollary 8.8. of [Mat80]. �

The Thom Isotopy Lemma in a general form deals with local triviality of a stratified
space. By this we mean that a stratified space locally has the structure of the product
stratification P × F , P a manifold, F a stratified space. To make this precise, let
f : N → P be a smooth map, X ⊆ N be a stratified subset. X is said to be trivial
over P , if there is a stratified space F and a homeomorphism h : X → P × F such that
f = πP ◦ h, where πP is the projection to P .

A stratified space X ⊆ N is called locally trivial over P , if every point p ∈ P has a
neighbourhood V such that the stratified space X ∩ f−1(V ) is trivial over V .

Now Thom’s lemma makes the following statement on local triviality.

Theorem 2.3.1.2 (Thom’s First Isotopy Lemma) Let N,P be compact manifolds,
X a closed Whitney stratified subset of N and f : N → P be a smooth map such that
f , restricted to each stratum, is a submersion. Then X is locally trivial over P and if
V ⊆ P is a trivializing set, the fibre space F can be taken to be f−1(v) for any v ∈ V .

Proof. Theorem 2.5.2 of [Gib76]. �

Let H : M ×R→ N be a homotopy transverse to the Whitney stratified set X ⊆ N .
The trick is now to apply the Thom lemma to the Whitney stratified set H−1(X) and
the projection map π : H−1(X)→ R. As long as the fibre maps Hλ are transverse to X,
π restricted to each stratum is a submersion (compare the proof of Proposition 1.1.2.6
or the equivariant version hereof, Proposition 2.2.2.10). So assume that every Hλ is
transverse to X for λ ∈ I. The isotopy lemma is applicable and we see that every λ in I
has an open neighbourhood J such that π−1(J) is homeomorphic to π−1(λ)× J , λ ∈ J
arbitrary. Since I is connected, we conclude that π−1(I) is homeomorphic to π−1(0)× I,
the homeomorphism h fulfilling π = π2 ◦ h. But then h is just a homeomorphism
H−1(X)→ H−1

0 (X)×I such that the fibres H−1
λ (X) are homeomorphic to H−1

0 (X)×{λ},
i.e. the fibres are pairwise isotopic.

2.3.2 Invariant Controlled Tubes and the Equivariant Isotopy Lemmas

We are now going to prove an equivariant version of Thom’s isotopy lemma. That is, we
will have an invariantly Whitney stratified subset X of N , a G-map f : N → P mapping
strata submersively to P , and we want to conclude equivariant local triviality. By this
we mean that the trivialising homeomorphism should be a G-homeomorphism and the
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fibres invariant stratifications. The key ingredient in the proof is the existence of a certain
class of invariant tubular neighbourhoods and, connected with these neighbourhoods, a
certain lifting of equivariant vector fields.

After assuming P = Rn, which is possible since everything is local in nature, we lift
the coordinate vector fields to equivariant vector fields respecting the strata of X. The
flow of these lifted fields will give the desired homeomorphism. We have to show that a
lifting to such a ”controlled” vector field, i.e. a vector field whose flow respects strata,
is possible. We begin with the notion of equivariant tubes.

Definition 2.3.2.1 Let P ⊆ M be an invariant submanifold. An equivariant tube
around P is a quadruple T = (E, π, ρ, e), where π : E → P is a smooth G-vector
bundle, ρ : E → R is the quadratic form of an invariant Riemannian metric on E and
e : E →M is an equivariant embedding commuting with the zero section ζ : P → E, i.e.
e ◦ ζ is the inclusion P ⊆ M . We define πT = π ◦ e−1 : U → X, ρT = ρ ◦ e−1 : U → R,
where U is an invariant open neighbourhood of P such that e−1 is defined on U .

If T is a tube around P and f : M → N is a smoothG-map, we say that T is compatible
with f , if there is an invariant neighbourhood V ⊆ U of P such that f

∣∣
V

= f ◦ πT
∣∣
V

.

So the values of f in the πT -fibre over x ∈ P are determined by the value of f on x.
The following theorem is basic and guarantees the existence of tubes compatible with

a given map. We can even extend an existing tube under mild assumptions.

Theorem 2.3.2.2 Let M,N be smooth G-manifolds and P ⊆ M an invariant subma-
nifold. Let f : M → N be a smooth G-map such that f

∣∣
P

is a submersion. Let P1 ⊆ P0

be open invariant subsets of P and P 1 ⊆ P0. If T0 is an equivariant tube at P0 and T0 is
compatible with f , then there is an equivariant tube T at P compatible with f such that
T
∣∣
P1

= T0

∣∣
P1

.

Proof. Let ξ : TM → T 2M be an equivariant vector field such that ξ locally is an
invariant quadratic form on M . Equivalently, if s : TM → TM is the bundle map given
by multiplication by s ∈ R in the fibres, we have ξ(sv) = Ts(sξ(v)). Such a vector field
is called an equivariant spray on M and it is well known, see for example [Lan02], that
the exponential map of ξ, restricted to a normal bundle π : E → P of P , determines a
tube around P which clearly is an equivariant tube when we choose the normal bundle
to be invariant and an invariant Riemannian metric.

Now, since f is a submersion on P , the kernel of Tf has constant rank locally around
P , so we can assume for simplicity that it has constant rank on all of M . In that case
kerTf is a G-subbundle of TM and kerTf + TP = TM . Let T0 = (E0, π0, ρ0, e0).
Since e0 is an embedding, we can identify E0 with its image in TP0M . The compatibility
condition forces E0 ⊆ kerTf

∣∣
P0

, since f is constant along fibres.

Choose an invariant Riemannian metric ρ0 on the bundle (kerTf)
∣∣
P0

such that this
bundle splits into the orthogonal sum

(kerTf)
∣∣
P0

= kerT (f
∣∣
P0

)⊕ E0.
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Clearly, by definition of P1, we find an invariant Riemannian metric ρ on (kerTf)
∣∣
P

satisfying ρ = ρ0 on P1. Take E to be the orthogonal complement under ρ of kerT (f
∣∣
P

).
By abuse of notation, we write ρ for ρ restricted to E. E is a normal bundle of P and
E ⊆ (kerTf)

∣∣
P

. Furthermore, E
∣∣
P1

= E0

∣∣
P1

. Hence, a spray ξ will define a tubular
neighbourhood as desired, if the two conditions

• ξ(kerTf) ⊆ T (kerTf)

• expξ
∣∣
E

∣∣
P1

= e0

∣∣
E

∣∣
P1

are fulfilled. It is no problem to construct any spray satisfying these properties, by doing
so locally and pasting together via a partition of unity. For details, consult chapter two
of [Gib76]. Thus, assume η : TM → T (TM) is a spray fulfilling the two properties
above. Define

ξ : TM → T (TM), ξ(v) =

∫
G

g−1.η(g.v) dg.

We check that ξ is a spray. Denote the action of an element g on TM by g̃, that is,
g̃(x, v) = (gx, Txg(v)). Equivalently, looking only at the vector part, g̃(v) = Txg(v). g̃
commutes with every map s, since

g̃ ◦ s(x, v) = Txg(gx, sv) = (gx, sTxg(v))

and
s ◦ g̃(x, v) = s(gx, Txg(v)) = (gx, sTxg(v)).

Hence, we have T g̃ ◦ Ts = Ts ◦ T g̃. Now we calculate

ξ(sv) =

∫
G

g−1.η(g.sv) dg

=

∫
G

T g̃−1(η(g̃(sv))) dg

=

∫
G

T g̃−1(η(sg̃(v))) dg

=

∫
G

T g̃−1(Ts(sη(g̃v))) dg

=

∫
G

TsT g̃−1(sη(g̃v)) dg

=

∫
G

Ts(sT g̃−1(η(g̃v))) dg

= Ts(s

∫
G

T g̃−1(η(g̃v)) dg)

= Ts(sξ(v)).

Therefore, ξ is an equivariant spray. We have to check that ξ fulfills the two properties
above. Take any w ∈ kerTf . Then η(w) ∈ T (kerTf) and since kerTf and T (kerTf) are
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invariant subbundles, g−1.η(g.w) ∈ T (kerTf) for all g ∈ G. Hence, ξ(w) ∈ T (kerTf),
implying that ξ fulfills the first condition. But the second condition is trivially satisfied:
e0 is equivariant, so expη, the exponential map of η, is equivariant when restricted to

E
∣∣
P1

. Hence, on E
∣∣
P1

, expξ = expη. We conclude that ξ is an equivariant spray on TM

whose associated tube T = (E, π, ρ, expξ) with E as above is an equivariant tube having
all the desired properties. �

Corollary 2.3.2.3 The conclusion of the theorem remains true if f is only defined on
an invariant open subset P ′ ⊆ P such that P − P1 ⊆ P ′.

Proof. Choose an invariant open subset M ′ of M such that P ′ = M ′∩P . We can apply
the theorem to M ′ instead of M , obtaining an equivariant tube at P ′ which coincides
with T0 over P1 ∩ P ′. Hence, we can extend this tube to P1 by taking it to be T0 there,
which yields a tube at P1 ∪ P ′ = P . �

Since submersiveness of the map in the last theorem was crucial, the next lemma is
interesting because it allows us to apply the theorem to the class of maps specified below.

Lemma 2.3.2.4 Let P,Q be two invariant submanifolds of M , P ∩ Q = ∅ and the
set P ∪ Q, considered as a stratified subset of M , is Whitney regular. Let U be a
neighbourhood of P . If P ∩ Q 6= ∅ and T is an equivariant tube at P , then there is a
neighbourhood U of P such that (πT , ρT )

∣∣
U∩Q : U ∩Q→ P × R is submersive.

Proof. The statement remains true when dropping all the G-modifications. Let F =
(πT , ρT ). Take x ∈ P and let yn ∈ Q be any sequence converging to x. We have to show
that F

∣∣
U∩Q is a submersion for n sufficiently large. Working locally around x, we can

assume that M = Rm, x = 0, P = Rp ⊆ Rp × Rm−p = M and U = Rp × (−1, 1). So F
is just given by

F (x1, . . . , xn) = (x1, . . . , xp, x
2
1 + · · ·+ x2

n).

F being a submersion at yn yields TynF (RM) = Rp×R. The kernel of TynF is coincides
with the orthogonal complement of Rp + 〈yn〉. Hence, TynF (Rp + 〈yn〉) = Rp × R. By
compactness we can assume that TynQ converges to a subspace E, 〈yn〉 converges to a
one-dimensional subspace L of Rm and the linear maps TynF converge to a linear map
T : Rm → Rp × R. By Whitney regularity we have Rp + L ⊆ E. Consequently,

Rp × R = TynF (Rp + 〈yn〉)→ T (Rp + L) ⊆ T (E) = limTynF (TynQ),

which shows that TynF
∣∣Q is surjective. �

We will now introduce a condition on maps between stratified subsets, similar to
the Whitney conditions for sets. A map fulfilling this condition will be called a Thom
stratified map. In principle, it is not necessary to look at Thom stratified maps to deduce
our results and it is mainly needed to state and prove the second isotopy lemma. But it
is in some cases easier to prove the results in general and then show that more special
results follow by certain choices of Thom stratified maps.
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Definition 2.3.2.5 Let M,N be compact manifolds, f : M → N a map, X ⊆ M ,
Y ⊆ N Whitney stratified subsets such that f maps strata of X submersively into strata
of Y . Assume furthermore that f has constant rank when restricted to strata. Then f
fulfills the Thom regularity condition, if for every sequence yn ∈ Xβ, converging to some
x ∈ Xα such that the spaces kerTynf

∣∣
Xβ

converge to a subspace E ⊆ TxM , we have

kerTxf
∣∣
Xα
⊆ E. In this case, (X, Y ) is called a Thom stratification for f .

Henceforth X and Y will be invariantly Whitney stratified and f will be a G-map.
Let P,Q be invariant submanifolds of M and T P , TQ be equivariant tubes around

P,Q, respectively. Denote the tubular projections by πP , πQ. Let Q′ be an invariant
submanifold of a G-manifold N and TQ

′
an equivariant tube around Q′ and f : M → N

an equivariant map such that f(Q) ⊆ Q′. Define three commutation conditions as
follows:

(Cπ) πP ◦ πQ = πP

(Cρ) ρP ◦ πQ = ρP

(Cf) f ◦ πQ = πQ
′ ◦ f,

whenever both sides are defined. We are aiming at a result similar to the submersiveness
result for the maps

(πT , ρT )
∣∣
U∩Q → P × R

given above, but this time for Thom stratified maps.
Assume we have a G-map f : M → N , invariant submanifolds P,Q ⊆ M , P ′, Q′ ⊆

N and f maps P,Q submersively into P ′, Q′, respectively. Take tubes TP , TP ′ , TQ′ at
P, P ′, Q′, respectively, such that (Cπ) holds for TP ′ , TQ′ and (Cf) holds for TP and TP ′ .
We can form the pullback

P ×P ′ Q′ = {(x, y′) ∈ P ×Q′ | f(x) = πTQ′y′}.

Since f is a submersion, the pullback is a smooth G-manifold and by the commutation
relations, the map

(πTP , πTQ′ ◦ f) : M → P ×Q′

has image in P ×P ′ Q′. We are now in the position to state:

Lemma 2.3.2.6 Let M,N,P,Q, P ′, Q′ be as above and f : M → N a G-map. If Q is
Thom regular over P with respect to f , then

(πTP , f)
∣∣
Q

: Q→ P ×P ′ Q′

is a submersion locally around P , that is, there are neighbourhoods U of P and V of Q
such that (πTP , f) is a submersion in U ∩ V .
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Proof. Assume the statement to be false. Then we find a sequence yn ∈ Q converging
to x ∈ P such that (πTP , f)

∣∣
Q

is not submersive at yn. Let xn = πTP (yn), y′n = f(yn),

x′n = f(xn). The tangent space to the pullback P ×P ′ Q′ at (xn, y
′
n) is given by

TxnP ×Tx′nP ′ Ty′nQ
′.

Since Tf
∣∣
Q

is a submersion, the map (πTP , f)
∣∣
Q

is not submersive at yn if and only if

the map
Tynπ

TP : kerTynf
∣∣
Q
→ kerTxnf

∣∣
P

is not surjective, compare the following diagram.

kerTynf
∣∣
Q

��

// TynQ

Tynπ
TP

!!

((

Tynf

++
TxnP ×Tx′nP ′ Ty′nQ

′

��

// Ty′nQ
′

��
kerTxnf

∣∣
P

// TxnP
Txnf // Tx′nP

′

By compactness of the Grassmannian, we can assume that the spaces

Tynπ
TP
(

kerTynf
∣∣
Q

)
have constant dimension and converge to a subspace S of TxP and at the same time,
the spaces kerTynf

∣∣
Q

converge to E ⊆ TxN . Since f has constant rank when restricted

to P , we must have kerTxnf
∣∣
P
→ kerTxf

∣∣
P

. Due to the lack of surjectivity of the map

Tynπ
TP ,

Txπ
Tp(T ) = S ( kerTxf

∣∣
P
.

πTP is a retraction onto P , yielding

kerTxf
∣∣
P
⊆ TxΠ

TP
(
kerTxf

∣∣
P

)
.

So we cannot have kerTxf
∣∣
P
⊆ T , contrary to the definition of Thom regularity. �

Our next aim is to lift equivariant vector fields under a given G-map such that the
flow of the lifted field respects the stratification. For this purpose, we need equivariant
tubes around each stratum and these have to be compatible in the following sense.

Definition 2.3.2.7 Let X be an invariantly Whitney stratified subset of the G-manifold
M . An equivariant tube system for X consists of equivariant tubes Tα = (Eα, πα, ρα, eα)
for every stratum Xα of X. An equivariant tube system is said to be weakly controlled,
if all pairs of tubes fulfill the commutation relation (Cπ). It is called controlled, if (Cρ)
holds in addition.
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If f : M → N is a G-map and (X, Y ) an invariant Thom stratification for f
∣∣
X

: X →
Y , an equivariant tube system {Ti} for X is said to be controlled over an equivariant
tube system {Si} for Y , if all relations (Cπ), (Cf) are satisfied and in addition, if
f(Xα)∪ f(Xβ) ⊆ Yγ for some γ, then (Cρ) is satisfied by the tubes corresponding to Xα

and Xβ.

The next theorem will guarantee the existence of an equivariant tube system on the
manifold M which will provide the controls for the flow of the vector field lifted via a
Thom stratified map f . It is the equivariant version of Theorem 2.2.6 of [Gib76], and
the proof is a minor modification of the proof given in that reference.

Theorem 2.3.2.8 Let M,N be smooth G-manifolds, f : M → N a G-map, (X, Y )
an invariant Thom stratification for f . Then for each weakly controlled equivariant
tube system {T ′β} for Y there is an equivariant tube system {Tα} for X such that T is
controlled over T ′.

Proof. To simplify matters we note that, if for two strata Xα, Xβ we have Xα∩Xβ 6= ∅,
then dimXα < dimXβ. Hence, instead of single strata, it suffices to look at the sets X i,
where X i is the union of all strata of dimension i. We are going to construct the tube
system T inductively and assume we have already constructed a tube system {T j−1} for
Xj−1 which is controlled over T ′. In the case j = 0, there is nothing to show. If j > 0,
we apply Theorem 2.3.2.2 to obtain an equivariant tube Tj at Xj satisfying condition
(Cf) with respect to T ′. We are going to modify Tj locally around Xj−1 such that all
commutation relations are satisfied.

We do this using another induction: for 0 ≤ k ≤ j let

Xj
k =

j⋃
r=k

Xr.

In particular, we have Xj
j = Xj and Xj

0 is the union of all strata of dimension less or
equal j. So we can assume inductively that the equivariant tube system {T j−1} together
with Tj is controlled over T ′ on Xj

k for some k. We have to show that we can adjust Tj
such that the induced system on Xj

k−1 is controlled over T ′ as well. Let the tubes at Xr,
k ≤ r < j, be given by Tr = (Er, πr, ρr, er) with tubular neighbourhood Ur. Define

Qr = Xj ∩ Ur.

We partition Qr further. For 0 ≤ s, t ≤ j, let Qr(s, t) be the set of y ∈ Qr with
f(y) ∈ Y t, f(πry) ∈ Y k. Finally, let

Qρ
r =

j⋃
s=0

Qr(s, s).

This gives a partition

Qr = Qρ
r ∪
⋃
s 6=t

Qr(s, t).
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Each member of this partition is an open set, since f maps strata into strata.
Now take the tubes of the system T ′, i.e. T ′r = (E ′r, π

′
r, ρ
′
r, e
′
r) with tubular neigh-

bourhoods U ′r. We can shrink the Ur and U ′r such that the following conditions are
satisfied:

(1) πr ◦ πj = πr locally around Qr for k < r < j by downward induction hypothesis.

(2) πk ◦ πr = πk locally around Qk ∩Qr for k < r < j by upward induction hypothesis.

(3) ρk ◦ πr = ρk locally around Qρ
k ∩Qr for k < r < j by upward induction hypothesis.

(4) π′s ◦ π′t = π′s locally around Y t ∩ U ′s for 0 ≤ s < t ≤ j, since T ′ is weakly controlled.

(5) Qr(s, t) = ∅ if s > t for all r for dimensional reasons (since Y is Whitney stratified).

(6) If Xα, Yβ are strata of dimension r, s, respectively, such that f(Xα) ⊆ Yβ, then f
maps the restriction of Ur to Xα into the restriction of U ′s to Yβ (by continuity of
f).

(7) f ◦ πr = π′s ◦ f locally around Qr(s, t), k ≤ r < j and 0 ≤ s ≤ t ≤ j by upward
induction hypothesis.

(8) (πk, ρk)
∣∣
Qρk

: Qρ
k → Xk × R is a submersion by Whitney regularity and Lemma

2.3.2.4.

(9) (πk, f)
∣∣
Qk(s,t)

: Qk(s, t) → Xk ×Y s (Y t ∩ U ′s) is a submersion for 0 ≤ s < t ≤ j by

Thom regularity and Lemma 2.3.2.6.

Now we apply Corollary 2.3.2.3 with

P =
⋃

k≤r<j

Qr, P0 =
⋃

k<r<j

Qr, T0 = Tj
∣∣
P0
, P ′ = Qk

and the following map h, defined locally around P ′ = Qρ
k ∪

⋃
s<tQk(s, t). Around Qρ

k,
h = (πk, ρk). Around Qk(s, t), h = (πk, π

′
t ◦ f). This is well-defined by the commutation

relations. By properties (8) and (9), h
∣∣
P ′ is a submersion. The tube T0

∣∣
P ′ is compatible

with h because for every r with k < r < j we have

πk ◦ πj = πk ◦ πr ◦ πj = πk ◦ πr = πk,

where we used (1) and (2), and

ρk ◦ πj = ρk ◦ πr ◦ πj = ρk ◦ πr = ρk,

where we used (1) and (3). Finally, Tj is compatible with f by construction.
To apply the corollary, it remains to specify a subset P1. For this purpose, we shrink

the tubes Tr, k < r < j, a bit such that the modified tubes are embedded into subsets
Vr with Vr ⊆ Ur. We define Q1

r just as Qr, but with the modified tubes. So every Q1
r
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is an open subset of Qr and we define P1 =
⋃
k<r<j Q

1
r. Clearly, P0 is a neighbourhood

of P − P ′ and P 1 ⊆ P0. We can furthermore achieve P − P ′ ⊆ P1. Thus, we can apply
corollary 2.3.2.3 and obtain an equivariant tube T = (E, π, ρ, e) at P which extends Tj

∣∣
P1

and is compatible with h. T satisfies all necessary commutation relations by construction
of h, except over the space Qρ

k. Here we have to check that (Cf) holds. But we have
Qρ
k =

⋃j
s=0 Qk(s, s) and over Qk(s, s), we have

f ◦ π = π′s ◦ f ◦ π = f ◦ πk ◦ π = f ◦ πk = π′s ◦ f,

where we applied (7) repeatedly. Finally we can extend the tube T to all of Xj, making
it compatible with f and keeping it fixed locally around Xj−1, which is possible by
Theorem 2.3.2.2. The tube we obtain has all the desired properties, which completes
the induction. �

To make precise what we mean by a vector field respecting a stratification, we make
the next definition.

Definition 2.3.2.9 Let X be an invariantly stratified subset of the G-manifold M . A
stratified equivariant vector field ξ on X is given by a, probably discontinuous, equivari-
ant vector field on each stratum Xα, giving a map ξ : X → TM such that ξ(x) ∈ TxXα

if x ∈ Xα and the restriction to a stratum of X is smooth.

Similar to maps, we have control conditions for a stratification and an equivariant
vector field.

Let {Tα} be a tube system for X. The control conditions for a stratified equivariant
vector field ξ on X are given by

(V π) Tπα ◦ ξ = ξ ◦ πα
(V ρ) Tρα ◦ ξ = 0

which are required to hold locally around each stratum Xα. f is called weakly controlled,
if (V π) holds for all strata of X. It is called controlled, if in addition (V ρ) holds for
all strata in X. Let f : M → N be a G-map of G-manifolds and (X, Y ) an invariant
stratification of f , η a stratified equivariant vector field on Y ⊆ N . Then a stratified
equivariant vector field ξ on X is said to lift η, if the condition

(V f) Tf ◦ ξ = η ◦ f

holds. Finally, we have a (V ρ)-like condition for vector fields and maps. Let Xα be a
stratum of X that is mapped to Yβ by f . Then we have the condition

(V fρ) Tρα ◦ ξ
∣∣
Uβ

= 0,

where Uβ is some invariant neighbourhood of f−1(Yβ)∩Xα. An equivariant vector field ξ
is said to be controlled over the equivariant vector field η, if all the conditions (V π), (V f)
and (V fρ) are fulfilled.
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We can now state the main auxiliary result, namely the fact that weakly controlled
stratified G-vector fields can be lifted to controlled G-vector fields under a Thom stra-
tified G-map.

Theorem 2.3.2.10 Let f : M → N be a G-map, X ⊆M , Y ⊆ N invariantly stratified
subsets such that (X, Y ) is a Thom stratification for f . Let T , T ′ be equivariant tube
systems for X and Y such that T is controlled over T ′. Then any weakly controlled
stratified equivariant vector field η on Y admits an equivariant lift ξ which is controlled
over η.

Proof. Here we can make use of the same result for non-equivariant fields. Under the
given conditions, we know by Theorem 2.3.2 of [Gib76] that there is some vector field ξ′

lifting η, not necessarily equivariant. Define

ξ(x) =

∫
G

g−1.ξ′(gx) dg.

We claim that ξ is an equivariant lift of η. First, we compute that ξ lifts η:

Tf ◦ ξ(x) = Tf(

∫
G

g−1.ξ′(gx) dg)

=

∫
G

Tf(g−1.ξ′(gx)) dg

=

∫
G

g−1.T f ◦ ξ′(gx) dg

=

∫
G

g−1.η ◦ f(gx) dg

=

∫
G

g−1g.η ◦ f(x) dg

= η ◦ f(x).

Then we look at the control conditions. We have for each stratum Xα,

Tπα ◦ ξ(x) =

∫
G

g−1.Tπα ◦ ξ′(gx) dg

=

∫
G

g−1.ξ′ ◦ πα(gx) dg

=

∫
G

g−1.ξ′(gπα(x)) dg

= ξ ◦ πα(x)

and for x in an invariant neighbourhood Uβ of f−1(Yβ) ∩Xα,

Tρα ◦ ξ(x) =

∫
G

g−1.Tρα ◦ ξ′(gx) dg

=

∫
G

g−1.0 dg

= 0.
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Hence, all control conditions are fulfilled and ξ turns out to be an equivariant lift con-
trolled over η. �

In preparation of the equivariant first isotopy lemma, the following corollary is what
we really need. The use of Thom stratifications and the much more general theorem
were just a convenient shortcut to arrive at this result.

Corollary 2.3.2.11 Let f : M → N be a G-map, X a Whitney stratified subset of M
such that f maps each stratum submersively into N . Let T be a controlled tube system
for X. Then each equivariant vector field on N can be lifted to a controlled equivariant
vector field on X.

Proof. In the preceeding theorem, take Y = N , stratified with a single stratum. This
gives an invariant Thom stratification for f . �

We have to deal with one last complication, namely, the domains of definition of
stratified vector fields. Since strata are not necessarily compact or even closed, the
usual global existence results fail, so we have to spare some thoughts here.

Let ξ be a stratified vector field on X. Then the restriction ξα to a stratum Xα defines
a flow ϕα : Dα → Xα, where Dα is the maximal domain of definition. As is well-known,
Dα is an open subset of R × Xα and contains 0 × Xα. Setting D =

⋃
αDα, we obtain

a flow ϕ : D → X of ξ. Note that this satisfies the conditions on a flow, but might be
discontinuous on the edges of the strata. In addition, D need not be open in M . We say
that ξ is locally integrable, if D contains an open neighbourhood of 0×X such that ϕ is
continuous on this neighbourhood. We say that ξ is globally integrable, if D = R×X.

The following results for flows of stratified equivariant vector fields are proven in
chapter two of [Gib76] and hold for all fields, we do not have to take symmetries into
account here.

Lemma 2.3.2.12 Let ξ be locally integrable. Then D is an open subset of R ×X and
ϕ is continuous on all of D.

Now we put together all our definitions so far to see that, given that all objects
are regularly stratified or controlled, respectively, one can obtain the same integrability
results for stratified fields as one has at hand for ordinary fields on manifolds.

Theorem 2.3.2.13 Let M,N be G-manifolds, f : M → N a G-map. Let X ⊆ M ,
Y ⊆ N be stratified subsets such that (X, Y ) is a Thom stratification for f : X → Y . Let
ξ, η be stratified equivariant vector fields on X, Y , respectively, such that ξ is controlled
over η with respect to a tube system T for X. If X is locally closed in M , then ξ is
locally integrable.

Proof. Theorem 2.4.6 of [Gib76]. �

Corollary 2.3.2.14 A controlled vector field on a locally compact stratified set is locally
integrable.
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Finally we have to pass from locally integrable fields to globally integrable fields. Yet
again, if the G-map f is proper, we will obtain global integrability of the lifted field
from global integrability of the initial one, as was to be expected. In particular, if the
participating manifolds are compact, we can conclude that globally integrable fields lift
to globally integrable fields under any Thom stratified map.

Lemma 2.3.2.15 Let f : M → N be a G-map, X, Y stratified subsets of M,N such
that (X, Y ) is a Thom stratification for f . Assume that the restriction of f to the closure
of each stratum is proper. Let ξ, η be stratified equivariant vector fields on X, Y such
that ξ lifts η and let ξ be locally integrable. Then, if η is globally integrable, so is ξ.

Proof. Lemma 2.4.8 of [Gib76]. �

We are finally in the position to prove the equivariant version of Thom’s isotopy
lemma. We just have to lift the coordinate vector fields to obtain the isotopy we need
and have to check that all this can be done equivariantly.

Theorem 2.3.2.16 (First Equivariant Isotopy Lemma) Let N be a G-manifold,
P a trivial G-manifold, f : N → P and X ⊆ N an invariantly Whitney stratified closed
subspace. Assume that f maps each stratum of X submersively to Y . Then f

∣∣
X

: X → P
is locally trivial, i.e. every t ∈ P has a neighbourhood U in P such that there is a G-space
F and a G-homeomorphism ϕ : U × F → X, making the diagram

U × F ϕ //

π1
��

X

f |X{{
U

commutative.

Proof. Working locally, we can assume that P = Rn. Choose an invariant tube system
for X, compatible with f . By Theorem 2.3.2.10, we can lift the basic vector fields
∂1, . . . , ∂n on Rn to globally integrable vector fields ξ1, . . . , ξn on X. Let ψi be the
equivariant flow of the field ξi, i = 1, . . . , n. Let F = f−1(0) ∩X and define

ϕ : F × Rn → X, ϕ(x, t) = ψ1(ψ2(. . . (ψn(x, tn)), . . . , t2), t1).

Then ϕ is a G-homeomorphism. �

Since we have gone so far using the help of Thom stratifications, we will also give a
proof of an equivariant version of Thom’s second isotopy lemma. We will not need this
result in the rest of the work, however.

Theorem 2.3.2.17 (Second Equivariant Isotopy Lemma) Let f : M → N , π :
N → P be equivariant maps of smooth compact manifolds, the action on P trivial,
X ⊆ M , Y ⊆ N invariantly Whitney stratified subsets such that (X, Y ) is an invariant
Thom stratification for f (in particular, f respects strata). Assume furthermore that
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each stratum of Y is mapped submersively by π into P . Then f is locally trivial as a
stratified map over P . By this we mean that for every point p ∈ P there is an open
invariant neighbourhood U of p and equivariant homeomorphisms

h : U × f−1(π−1(p)) ∩X → f−1(π−1(U)) ∩X, k : U × π−1(p) ∩ Y → π−1(U) ∩ Y

mapping strata into strata and making the following diagram commutative.

U × f−1(π−1(p)) ∩X 1×f //

h

��

U × π−1(p) ∩ Y

k

��

pU

&&
U

f−1(π−1(U)) ∩X f // π−1(U) ∩ Y
π

88

Proof. As in the proof of the first isotopy lemma, we can work locally and assume
P = Rn. We lift the coordinate vector fields to controlled equivariant vector fields on Y ,
using Theorem 2.3.2.10. Then using 2.3.2.10 again together with Theorem 2.3.2.8, we
can lift the vector fields on Y to controlled equivariant vector fields on X. By Lemma
2.3.2.15, we obtain a flow on X which covers the flow on Y , which in turn covers the
standard flow on P . Then we can define the G-homeomorphisms using these flows as
we did in the proof of the first isotopy lemma. �

2.4 Equivariant Critical Elements

This section will be preparatory for the genericity theorems of sets of G-maps. We will
define special types of equivariant critical elements and use the results of the preceeding
section to conclude that these notions are the right ones to obtain the generic bifurcation
scenario.

We start with the examination of the equivariant diagonal of a G-manifold. One is
tempted to think that this should be the set {(x, gx) | x ∈M, g ∈ G}, but it turns out
that this is neither philosophically the correct set to do fixed orbit theory, nor does it
have a sufficiently well behaved structure. We already noticed that if Gx is a fixed orbit
of a G-map f : M →M , then we have f(x) = gx and g is an element of the normalizer
N(Gx). So a better choice for the equivariant diagonal is the set

∆G(M) = {(x, gx) | x ∈M, g ∈ N(Gx)} = {(x, nx) | x ∈M, n ∈ W (Gx)}.

We will show that this set is indeed a locally semialgebraic set, so we can do equivariant
transversality theory with it and thus define a notion of equivariant non-degeneracy. But
before doing so, we introduce the notion of G-hyperbolicity of critical elements. This is
a more geometrically flavoured restriction on the shape of critical elements and we will
prove some results for G-hyperbolic elements which are hard to obtain for equivariantly
non-degenerate ones, for example, isolatedness. There will be sufficiently many interplay
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between these notions, by means of genericity and the equivariant isotopy lemma, to
justify the use of both concepts. However, there is neither proof nor disproof of the
fact that G-hyperbolicity implies equivariant non-degeneracy. It would be interesting to
know if the theory of G-transversality has this intuitive implication.

Finally, we will introduce the notion of equivariant non-degeneracy, which will just
be G-transversality of the graph map to the equivariant diagonal. Then we can start to
harvest the fruits of our labour by using the preceeding sections to prove that in many
fundamental aspects, equivariant non-degeneracy behaves just as non-degeneracy does
for ordinary maps. We can then proceed to proof the equivariant genericity results,
corresponding to the theorems of chapter 1. They are either corollaries of Theorem
2.2.3.6, or based on similar techniques than the non-equivariant versions.

2.4.1 The Equivariant Diagonal

We begin our investigation of the equivariant diagonal with the identification of the
strata.

Proposition 2.4.1.1 If G acts freely on M , then ∆G(M) is a manifold of dimension
dimM + dimG.

Proof. If the action is free, Gx = e, so N(Gx) = G. Let (x, gx) ∈ ∆G, (ϕ,U) a chart
around x in M , (ψ, V ) a chart around g in G. Let

W = {(y, hy) | y ∈ U, h ∈ V }.

Clearly, W is open. Define Φ : W → Rn×Rm, Φ(y, hy) = (ϕ(y), ψ(h)). Since the action
is free, Φ is well-defined. It is obviously a diffeomorphism onto its image, its inverse
given by (v, w) 7→ (ϕ−1(v), ψ−1(w).ϕ−1(v)). Hence, (Φ,W ) is a chart around (x, gx) and
so ∆G is a manifold of the stated dimension. �

Corollary 2.4.1.2 Let the action of G on M be monotypic of type (H). Then ∆G(M)
is a manifold of dimension dimM + dimW (H).

Proof. Take (x, gx) ∈ ∆G. Then G(x, gx) = {h ∈ G | hx = x, hgx = gx} = Gx ∩
gGxg

−1 = Gx, since g ∈ N(Gx). So ∆G(M) is monotypic as well. Hence, it has a
decomposition

∆G(M) = G/H ×W (H) ∆G(M)H .

We have
∆G(M)H = {(x, gx) | hx = x, hgx = gx ∀h ∈ H}

so x ∈ MH , gx ∈ MH . But N(Gx) acts on MH and this action reduces to an action of
the Weyl group W (H). We see that

∆G(M)H = ∆W (H)(M
H)
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and the right hand space is, for MH is a free W (H)-space, a manifold of dimension
dimMH + dimW (H). The twisted product

G/H ×W (H) ∆G(M)H

is a manifold, since G/H is a principal W (H)-bundle and thus has local sections. The di-
mension of the twisted product thus is calculated as dimG/N(H)+dimMH+dimW (H).

The dimension of M is given by dimM = dimG/N(H) + dimMH and we obtain

dim ∆G(M) = dimG/N(H) + dimMH + dimW (H) = dimM + dimW (H). �

Example 2.4.1.3 1. Let G act trivially. Then the equivariant diagonal is the ordi-
nary diagonal {(x, x) | x ∈M} ⊆M ×M .

2. Let M be the Stiefel manifold of 2-frames in R3, i.e.

M = {(x, y) ∈ S2 × S2 | 〈x, y〉 = 0}.

As is well-known (see e.g. [Swi02]), M is diffeomorphic to O(3)/O(1)
∼= SO(3),

so M is a 3-dimensional compact manifold. We have the canonical action of O(3)
on M , given by A.(x, y) = (Ax,Ay) and M is a monotypic O(3)-manifold of orbit
type (O(1)). The normalizer of O(1) in O(3) is given as Z2×O(2), identifying the
Weyl group as W (O(1)) ∼= SO(2). For the special choice (x, y) = (e2, e3),

O(3)(e2, e3) =


±1 0 0

0 1 0
0 0 1


and the normalizer hereof is

N =

{(
±1 0
0 C

)
| C ∈ O(2)

}
.

Since the action of O(3) on M is doubly transitive, this suffices to describe the
equivariant diagonal: it is given as the set{

A.(e2, e3, Be2, Be3) | A ∈ O(3), B =

(
±1 0
0 C

)
, C ∈ O(2)

}
,

where O(3) acts diagonally, and is a compact O(3)-manifold of dimension 4.

Denote with ∆o
G(M) the equivariant diagonal where we do not take the closure, that is,

∆o
G(M) = {(x, gx) | x ∈M, g ∈ N(Gx)}. The next result shows that the decomposition

of ∆o
G(M,N) into normal orbit strata is Whitney regular. Once we know that the

equivariant diagonal is locally semialgebraic, this relates the canonical stratification
and the stratification by orbit type. Recall that two points x, y in a G-manifold M
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have the same normal orbit type, if (Gx) = (Gy) and in addition, there is a z ∈ Gy
such that Gz = Gx and the normal representations TxGx

⊥, TzGz
⊥ are isomorphic as

Gx-representations for some invariant Riemannian metric on M . If C is a connected
component of M(H), then the normal orbit type in G(C) is constant, see Lemma 3.8.1
of [Fie07].

We need a simple lemma concerning the interaction of the equivariant diagonal and
trivial subspaces.

Lemma 2.4.1.4 Let V be an H-representation, V = W ⊕ V H , WH = {0}. The equi-
variant diagonal of G×H V is given as

∆G(G×H V ) = {([g, v], [hg, v]) | g ∈ G, v ∈ V, h ∈ gN(Hv)g
−1}

and we have
∆G(G×H V ) ∼= ∆G(G×H W )× V H .

Proof. An easy computation yields G[g,v] = gHvg
−1 and N(gHg−1) = gN(H)g−1,

showing that the equivariant diagonal has the given form. So define a map

∆G(G×W )× V H → ∆G(G×H V ), ([g, w], [hg, w], v) 7→ ([g, w + v], [hg, w + v]).

Since Hw+v = Hw for v ∈ V H , this is well-defined and obviously surjective. For injectiv-
ity, assume

[g, w + v] = [g′, w′ + v′], [hg, w + v] = [h′g′, w′ + v′].

There is a j ∈ H such that gj−1 = g′ and j(w+ v) = w′ + v′. Since v ∈ V H , j(w+ v) =
jw + v, so v′ − v = jw − w′ ∈ W ∩ V H = {0}. We obtain v = v′ and jw = w′, i.e.

[g, w] = [gj−1, jw] = [g′, w′].

Furthermore, there is an ` ∈ H such that hg`−1 = h′g′, `(w+ v) = w′+ v′. Substituting
what we found so far, we have h′ = hg`−1jg−1, `w = jw. This gives

[h′g′, w′] = [hg`−1jg−1gj−1, `w] = [hg`−1, `w] = [hg, w].

Our map is injective and the claim follows. �

An auxiliary result will allow us to skip trivial components from consideration, which
will come in handy in reducing the complexity of the upcoming statement.

Lemma 2.4.1.5 Let X ⊆ M be a Whitney stratified subset of a smooth manifold M .
Then X × Rk with strata Xα × Rk is a Whitney stratified subset of M × Rk.

Proof. Lemma 3.9.1 of [Fie07]. �

Proposition 2.4.1.6 Let M be a G-manifold, ∆o
G(M) = {(x, gx) | x ∈ M, g ∈

W (Gx)}. The stratification of ∆o
G(M) by normal orbit type is Whitney regular.
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Proof. Take an element (x, gx) ∈ ∆o
G(M). Since the Whitney conditions are local in

nature, do not depend on the G-action, and x and gx have the same normal orbit type,
we can assume M = G×H V , H = Gx, V an H-representation, and x = [e, 0], g = e. So
we have to check the Whitney conditions for the stratification of the set

∆o
G(G×H V ) = {[g, v], [kg, v] | g ∈ G, v ∈ V, k ∈ gN(Hv)g

−1}

with strata ∆o
G(G×H V(K)). By Lemmas 2.4.1.4 and 2.4.1.5, we can assume V H = {0}.

Finally, we can assume that V has only two orbit types, namely (H), the orbit type of
0, and (K), the orbit type of all other elements.

We want to reduce the problem to checking Whitney conditions in equivariant diag-
onals of representations. For this purpose, let Rk ∼= A ⊆ G/H be a chart neighbour-
hood of [e] such that there is a local section σ : A → G. Similarly, let Rj ∼= B ⊆
N(K)/N(K) ∩H be a chart neighbourhood of [e] and τ : B → N(K) a local section.

In a neighbourhood U of 0 ∈ V , we find a smooth map U − {0} → H, v 7→ hv, such
that hvHvh

−1
v = K. For the sake of simplicity, we assume that this map is defined on

all of V(K) = V − {0}. So we can define a map

Φ : A×B ×∆H(V )→ G×H V ×G×H V, (s, t, v, hv) 7→ ([σ(s), v], [σ(s)h−1
v τ(t)hvh, v])

with the obvious adjustments for v = 0. Φ is well-defined since h ∈ H. We claim that
this map is injective and its image is a neighbourhood in ∆G(G ×H V ) of ([e, 0], [e, 0]).
To see this, we define an inverse map for Φ. Take an element ([g, v], [gk, v]) of the
equivariant diagonal such that [g] ∈ A. Then g` = σ([g]) for some ` ∈ H. Let w = `−1v.
The additional requirement that hw`

−1k`h−1
w maps to B under the canonical projection

constitutes a neighbourhood W of ([e, 0], [e, 0]) in ∆o
G(M).

The map
B ×N(K) ∩H → N(K), (b, k) 7→ τ(b)k

is an isomorphism onto its image, so we find a unique b ∈ B and j ∈ N(K) ∩ H such
that

hw`
−1k`h−1

w = τ(b)j.

Let h = h−1
w jhw ∈ N(Hw) and define a map

Ψ : W → A×B ×∆H(V ), ([g, v], [gk, v]) 7→ ([g], b, w, hw).

This is well-defined. Indeed, w is uniquely determined through g and σ and so it remains
to check that ([g, v], [gkh, v]) has the same image as ([g, v], [gk, v]), where h ∈ Hv. But
we have

hw`
−1kh`h−1

w = τ(b)jhw`
−1h`h−1

w .

Denoting jhw`
−1h`h−1

w by j̃ and letting h̃ = h−1
w j̃hw, Ψ maps ([g, v], [gk, v]) to the
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element

([g], b, w, h̃w) = ([g], b, w, h−1
w j̃hww)

= ([g], b, w, h−1
w jhw`

−1h`h−1
w hww)

= ([g], b, w, h−1
w jhw`

−1h``−1v)

= ([g], b, w, h−1
w jhw`

−1v)

= ([g], b, w, hw),

where we used h ∈ Hv. We conclude that Ψ is well-defined. With the notation from
above, we calculate

Φ ◦Ψ([g, v], [gk, v]) = Φ([g], b, w, hw)

= ([σ([g]), w], [σ([g])h−1
w τ(b)hwh,w])

= ([g`, `−1v], [g`h−1
w τ(b)hwh

−1
w jhw, w])

= ([g, v], [g`h−1
w τ(b)jhw, w])

= ([g, v], [g``−1k`, `−1v])

= ([g, v], [gk, v])

and
Ψ ◦ Φ(s, t, v, hv) = Ψ([σ(s), v], [σ(s)h−1

v τ(t)hvh, v]).

Using again the notation of above, we have ` = e, w = v, k = h−1
v τ(t)hvh. Thus,

hv`
−1k`h−1

v = τ(t)hvhh
−1
v .

By definition of Ψ, we obtain

Ψ([σ(s), v], [σ(s)h−1
v τ(t)hvh, v]) = ([g], t, v, hv).

Consequently, Φ and Ψ are inverse to each other and they are smooth when restricted
to a stratum. Hence, they constitute stratumwise diffeomorphisms and we can locally
identify the equivariant diagonal with the stratified set Rk × Rj × ∆H(V ), the strata
given by the strata of ∆H(V ) multiplied with the trivial representation Rk × Rj.

This identification together with the conclusion of Lemma 2.4.1.5 shows that it suffices
to prove the initial assertion for H-representations V with V H = {0} and a single non-
trivial stratum. But this can be done almost in the same way as Whitney regularity of
the stratification of a G-manifold by normal orbit type is proven (compare [Fie07]). Take
a sequence yn ∈ ∆H(V(K)), (K) being the non-trivial orbit type, such that yn → (0, 0)
and Tyn∆H(V(K)) converges to a subspace E ⊆ V ×V . Define wn = yn/ ‖yn‖ ∈ S(V ×V ),
the unit sphere of V ×V . By compactness of S(V ×V ), we can assume that wn converges
to a point w ∈ S(V × V ). For Whitney (b) regularity, we have to show w ∈ E. The
curve γn : (−1, 1) → ∆H(V(K)), γn(t) = (t + 1)wn defines an element of Twn∆G(V(K)),
namely the element wn. So we can split the tangential space as

Twn∆H(V(K)) = Twn
(
S(V × V ) ∩∆H(V(K))

)
⊕ 〈wn〉 .
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Clearly, Twn∆H(V(K)) = Tyn∆H(V(K)). The left hand side of the above equation con-
verges to E, the right hand side converges to E ∩ TwS(V × V ) ⊕ 〈w〉. So we see that
w ∈ E, which finishes the proof. �

Example 2.4.1.7 1. Let Z2 act on R canonically. The equivariant diagonal is given
by {(x,±x) | x ∈ R}, the union of the diagonal and the antidiagonal. It is stratified
by the orbit strata {(0, 0)} and ∆Z2(R)− {(0, 0)}.

y

x

z

(a) t = 0

y

x

z

(b) t 6= 0

Figure 9: Projections of the equivariant diagonal ∆D4(R2,R2)

2. Let D4 be the dihedral group, generated by τ, σ, τ 2 = e, σ4 = e, τστ = σ3. Let D4

act on R2 by letting τ be the reflection at the y-axis, σ the (clockwise) rotation
by π

2
. Points in R2 are divided by isotropy into six classes: The origin, the y-axis,

the diagonal, the x-axis, the anti-diagonal and all other points. The isotropies are
D4, 〈τ〉, 〈στ〉, 〈σ2τ〉, 〈σ3τ〉 and {e}, respectively. The normalizer of 〈τ〉 in D4 is
Nτ = 〈τ, σ2〉. Similarly, we have

Nστ =
〈
στ, σ2

〉
, Nσ2τ =

〈
τ, σ2

〉
, Nσ3τ =

〈
στ, σ2

〉
.

There are four orbit types, (e), (〈τ〉), (〈στ〉) and (D4). The corresponding strata
of the equivariant diagonal are given by

ΣD4 = {(0, 0, 0, 0)}
Σ〈τ〉 = {(0, x, 0,±x) | x 6= 0} ∪ {(x, 0,±x, 0) | x 6= 0}

Σ〈στ〉 = {(x, x,±x,±x) | x 6= 0} ∪ {(x,−x,±x,∓x) | x 6= 0}.
and

Σe = {(x, y, ε1x, ε2y) | ε1, ε2 ∈ {±1}, xy 6= 0, x 6= ±y}
∪ {(x, y, ε1y, ε2x) | ε1, ε2 ∈ {±1}, xy 6= 0, x 6= ±y}
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We note that, for example, the point (1, 1,−1, 1) is not contained in the equivariant
diagonal, although τ.(1, 1) = (−1, 1). τ is not in the normalizer of the isotropy
group of (1, 1). Figure 9 shows the projections of the equivariant D4-diagonal to
its last three components, the first component being equal to t ∈ R.

We finally need a lemma that allows us to identify preimages of the equivariant di-
agonal under polynomial maps as being canonically stratified spaces. We essentially
need the identification of the equivariant diagonal locally, which was part of the proof
of Proposition 2.4.1.6.

Lemma 2.4.1.8 The equivariant diagonal is a locally semialgebraic set.

Proof. By the structural results obtained in the proof of Proposition 2.4.1.6, we just
have to show that the set ∆H(V ) is algebraic, where V is an H-representation. Let
p1, . . . , p` be a minimal set of polynomial generators for the invariants V → R and
let F1, . . . , Fk be a set of polynomial generators for the C∞G (V )-algebra C∞G (V, V ). Let
P = (p1, . . . , p`) and ϑ be the universal polynomial. Define

Σ∗ = {(v, w, t) ∈ V × V × Rk | P (v) = P ◦ ϑ(v, t), ϑ(v, t) = w}.

As the intersection of two algebraic sets, this set is algebraic. Furthermore, since P (v) =
P (ϑ(v, t)), v = g.ϑ(v, t) for some g ∈ G and hence, by the usual reasoning, g ∈ N(Hv).
Projecting to the first two variables gives

π12(Σ∗) = {(v, gv) ∈ V × V | g ∈ N(Gv)},

since clearly for every v ∈ V and g ∈ N(Hv) there is a t ∈ Rk such that ϑ(v, t) = gv.
The image of an algebraic set under a polynomial map is semialgebraic by the Tarski-
Seidenberg theorem. Since semialgebraicity is preserved under taking closures, its closure
is semialgebraic as well, and this is the equivariant diagonal. �

2.4.2 G-Hyperbolicity

In this section we will define G-hyperbolic critical elements as is done in [Fie07] and
other works. G-hyperbolic critical elements have the advantage of a simple local dy-
namical behaviour. In addition, G-hyperbolicity implies isolatedness. However, the
role G-hyperbolicity plays is different from the one of ordinary hyperbolicity. Since the
question whether G-hyperbolicity implies equivariant non-degeneracy is open, the hy-
perbolicity results to be obtained later are not tightenings of the non-degeneracy results.
Nonetheless, G-hyperbolicity plays an important role in the theory, also concerning im-
plications on non-degenerate elements, as we shall see soon.

For the moment, we just develop the theory of G-hyperbolic elements, which can also
be called the theory of normal hyperbolicity. Roughly, one decomposes the dynamics
near a critical element into a direction normal to the element and tangential to the group
orbit. G-hyperbolicity is the hyperbolicity of the normal part of this decomposition.
Field proves in [Fie91] that a fixed G-orbit Gx is G-hyperbolic if and only if the normal
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component of the differential of g−1 ◦ f in x has no eigenvalues of absolute value 1, so
this is the interpretation one should keep in mind.

The following definition comes from [HPS77] and defines normally hyperbolic elements
in a much more general way than just for group actions. We specialize afterwards.

Definition 2.4.2.1 Let M be a compact manifold, f : M → M a map and N ⊆ M an
f -invariant compact submanifold. N is said to be hyperbolic, if there is a Tf -invariant
splitting of the tangential bundle

TNM = TN ⊕ Eu ⊕ Es,

where, after fixing a Riemannian metric on M ,

inf
x∈N

m(Eu
xf) > sup

x∈N

∥∥∥Txf ∣∣TxN∥∥∥ , sup
x∈N
‖Es

xf‖ < inf
x∈N

m(Txf
∣∣
TxN

),

with m(A) = inf{‖Ax‖ | ‖x‖ = 1}.
If, in particular, M is a G-manifold, f a G-map and N = Gx is a G-orbit, Gx is called

G-hyperbolic, if it is hyperbolic in the above sense, where the splitting is G-invariant as
well as the Riemannian metric.

A relative periodic orbit is G-hyperbolic, if the corresponding fixed orbit of an associ-
ated equivariant Poincaré map is G-hyperbolic.

We note that by our standing assumption that G acts via isometries, the expressions
in the definition of normal hyperbolicity concerning the direction of the group orbit are
equal to 1. So locally around a point on a G-hyperbolic fixed orbit, we have three direc-
tions. One the trivial direction along the group orbit, complemented by an expanding
and a contracting direction, varying compatible and uniformly with the point on the
orbit.

Next we will prove the fundamental fact that G-hyperbolic G-orbits are isolated fixed
orbits. We will need the normal decomposition lemma of section 2.1.3 in the proof.

Proposition 2.4.2.2 Let f0 : M →M be equivariant and Gx ⊆M a G-hyperbolic fixed
orbit of f0 of type (H). Then there is an invariant neighbourhood U of Gx such that U
contains no other fixed orbits of f0. Furthermore, there is a neighbourhood U of f0 such
that every element f ∈ U has a unique G-hyperbolic fixed orbit of type (H) in U which
depends continuously on f .

Proof. Let (H) = (Gx) be the orbit type of Gx and assume G acts by isometries.
Since Gx is fixed under f0, we find tubular neighbourhoods U ⊆ U ′ of Gx such that
f(U) ⊆ U ′ for all f in a neighbourhood U1 of f0. Let U = G ×H Sx, U

′ = G ×H S ′x,
where we can assume Sx ⊆ S ′x, normal slices at x. Since Gx is a fixed orbit, by Corollary
2.1.3.3 we find an α > 0 such that f0

∣∣α
Gx

is equivariantly homotopic to the identity map
and is given by x 7→ cx for a c ∈ C(Gx). We find a neighbourhood U2 ⊆ U1 of f0 such
that fα is homotopic to the map x 7→ sf = Gf(x) ∩Sx and fα(x) = cfsf , cf ∈ C(Gx) for
all f ∈ U2. For simplicity, we assume α = 1. This is possible since a fixed G-orbit of f
is G-hyperbolic for f if and only if it is G-hyperbolic for fk and some k ∈ N.
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We have f0(x) = cx, so c−1f0(x) = x ∈ S ′x. By shrinking Sx, for all sufficiently small
neighbourhoods A of [e] ∈ G/H we can achieve c−1

f f(Sx) ⊆ π−1(A).S ′x for all f in a
neighbourhood U3 ⊆ U2 of f0. In particular, this holds for small A, where A is the
domain of an N(H)-equivariant local section σ : A → G. So we are in the position
to apply the normal decomposition lemma 2.1.3.4 to f0 and U3, and we obtain maps
g : U → G, h : U → U ′ such that f(y) = g(y).h(y) for all y ∈ U and h(Sy) ⊆ S ′y for all
y ∈ Gx, where Sgx = g.Sx.

In particular we have f0 = g0.h0 and h0

∣∣
Sx

: Sx → S ′x is an H-map which, since Gx is

G-hyperbolic for f0, has x as an H-hyperbolic fixed orbit of type (H). For simplicity, we
can assume that h0 : B1(0) → V is a self-map of an H-representation V and h0(0) = 0
is an H-hyperbolic fixed orbit. But since 0 is a group fixed point, H-hyperbolicity of
0 is nothing else than ordinary hyperbolicity of h0, so the differential of h at 0 has no
eigenvalue of absolute value 1. This implies that the differential of h0−k at 0 is invertible
for all k ∈ H, since H acts via isometries. Thus, in a neighbourhood of 0, the equation
h0(v) = kv is uniquely solved by v = 0. By eventually shrinking this neighbourhood, we
can assume that this property holds in a neighbourhood of k as well, and by compactness
of H we find a neighbourhood of 0 such that h(v) = kv is uniquely solved by v = 0 for
every k ∈ H. But solutions of h0(v) = kv correspond to fixed orbits of h0 in V and
hence to fixed orbits of f0 in U . So Gx is an isolated fixed orbit for f0.

If h is the corresponding map in the normal decomposition of an f ∈ U3, then h is
close to h0, so in a neighbourhood of 0 ∈ V , there is a unique solution v to the equation
h(v) = kv for every k ∈ H. h− k induces a map on V H and the same reasoning yields
a unique v ∈ V H such that h(v) = kv = v. v corresponds to a unique H-fixed point of
h near 0 and this corresponds to a unique fixed orbit of f of type (H). �

This result shows that G-hyperbolic fixed orbits cannot bifurcate in the usual sense,
but also that there cannot be a symmetry breaking bifurcation, since the orbit type
remains constant.

We will further need the result that, if f has no fixed orbits in a compact subset of
M , then no map in a neighbourhood of f has a fixed orbit in that compact set.

Proposition 2.4.2.3 Let K ⊆ M be an invariant compact subset and assume that f
has no fixed orbit in K. Then there is a neighbourhood U of f such that no element of
U has a fixed orbit in K.

Proof. After fixing an invariant Riemannian metric on M and taking d to be the
Riemannian distance, we have d(f(x), gx) > 0 for all x ∈ K, g ∈ G. By compactness of
K and G, we find ε > 0 such that d(f(x), gx) > ε for all x ∈ K, g ∈ G. Clearly, if f ′ is
close to f , this inequality remains true, so f ′ has no fixed orbits in K. �

There are many other things to say about G-hyperbolicity, for example the whole
theory of equivariant eigenvalues mentioned above. In addition, eigenvalue results are
available containing the dimension of the orbits. Since we will not make use of these,
we refer to [Fie07] and [Fie80] for an exhaustive treatment of G-hyperbolicity. We only
need two additional facts, the first being taken from [Fie80], the second being a lemma
handling the case where the action is free.
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Lemma 2.4.2.4 Let Gx be a fixed orbit of f : M → M and U any invariant neigh-
bourhood of Gx. Then for every neighbourhood U of f there is h ∈ U such that h = f
outside of U and Gx is a G-hyperbolic fixed orbit of h.

Proof. Lemma 6.A of [Fie80]. �

Lemma 2.4.2.5 Let G act freely on M and let f : M →M be a G-map. Then Gx is a
G-hyperbolic fixed orbit of f if and only if [x] is a hyperbolic fixed point for [f ] : M/G →
M/G.

Proof. Since free G-spaces are G-principal bundles, we can work locally and assume
M = G ×M/G, G acting by left translations. Now if G × {x} is a G-hyperbolic fixed
orbit of f , we have a Tf -invariant splitting

TG×{x}M ∼= TG⊕ Eu ⊕ Es ∼= TG⊕ TxM/G

satisfying the hyperbolicity inequalities. The above isomorphism induces a T [f ]-invari-
ant splitting of TxM/G into Eu, Es. The differential of f on Eu ⊕ Es reduces to the
differential of [f ]. Since G acts via isometries, the inequalities for G-hyperbolicity imply
in particular that the eigenvalues of Tx[f ] in Eu have absolute value larger 1, whereas
the eigenvalues in Es have absolute value less than 1, so hyperbolicity of x in M/G
follows. The other direction follows by the same reasoning. �

2.4.3 Equivariant Non-Degeneracy

We are now in the position to define equivariant non-degeneracy and prove its most
important properties. We will deal with maps and vector fields simultaneously. Once
again, we start with the definition of critical elements.

Definition 2.4.3.1 Let M be a smooth G-manifold.

• Let f : M → M be a G-map. A fixed orbit Gx of f is called equivariantly non-
degenerate, if the map

F : M →M ×M, F (y) = (y, f(y))

is G-transverse to the equivariant diagonal ∆G(M) at x (and thus at gx for all
g ∈ G).

• Let H : M × I → M be a G-homotopy. An orbit Gx × {λ} ⊆ M × I is called
equivariantly non-degenerate for H, if the map

M × I →M ×M, (y, µ) 7→ (y,H(y, µ))

is G-transverse to the equivariant diagonal at (x, λ) (if λ ∈ {0, 1}, we require the
existence of an extension of H to M × R satisfying the above property).
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• Let ξ : M → TM be an equivariant vector field. A relative periodic orbit through
the periodic point (x, T ) of ξ is called equivariantly non-degenerate, if the map

F : M × R→M ×M, (y, t) 7→ (y, ϕ(y, t))

is G-transverse to equivariant diagonal at (x, T ), where ϕ is the flow of ξ.

• Let H : M × I → TM be a homotopy of equivariant vector fields. A relative
periodic orbit γ×{T} of Hλ is called equivariantly non-degenerate, if for the flow
ϕ of H, the map

M × R× I →M ×M, (y, t, µ) 7→ (y, ϕµ(y, t))

is G-transverse to the equivariant diagonal at some point (x, T, λ) with (x, T ) ∈
γ × {T} (as above, if λ ∈ {0, 1}, we require existence of an extension).

Naturally, we define equivariantly non-degenerate maps, vector fields or homotopies
thereof by the requirement that the corresponding graph maps indicated above are G-
transverse to the equivariant diagonal on the whole base space, where we use extensions
of the homotopies to M × R.

As already mentioned, it is unclear whether G-hyperbolicity of a critical element
implies its non-degeneracy. However, we can still draw conclusions on the structure
of the set of non-degenerate critical elements by knowledge of the set of G-hyperbolic
critical elements. This depends on the following lemma.

Lemma 2.4.3.2 Let f : M → N be a G-map of G-manifolds. Then there is a neigh-
bourhood U of f such that all elements of U are equivariantly homotopic to f via a homo-
topy not leaving U . A similar result holds for equivariant vector fields in XG(M,Ω, a, b).

Proof. The proof is the same as in Lemma 1.1.1.2, we just use equivariant embeddings
and invariant tubular neighbourhoods. �

The remainder of this section is devoted to an example of an equivariant non-degenera-
cy condition. For the sake of simplicity, we work on representations rather than mani-
folds.

Example 2.4.3.3 Denote with V the canonical representation of Z2 on R and let f :
V → V be a Z2-map. We have f(x) = x · h(x) for some invariant h : V → R. The
equivariant diagonal in V × V is given as ∆Z2(V ) = {(t,±t) | t ∈ V }. Generators for
CZ2(V, V × V ) are given by

F1(x) = (x, 0), F2(x) = (0, x),

the universal polynomial is given by

ϑ(x, s, t) = (s · x, t · x).
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Hence, the preimage of the equivariant diagonal under ϑ is

Σ = ϑ−1(X) = {(x, s, t) | s · x = ±t · x},

which is canonically stratified by the strata

Σ0 = {(0, 0, 0)} Σ0++ = {(0, s, t) | s 6= ±t}
Σ0− = {(0, t,−t) | t 6= 0} Σ0+ = {(0, t, t) | t 6= 0}
Σ−0 = {(x, 0, 0) | x < 0} Σ+0 = {(x, 0, 0) | x > 0}
Σ++ = {(x, t, t) | x > 0, t 6= 0} Σ−− = {(x, t,−t) | x < 0, t 6= 0}
Σ+− = {(x, t,−t) | x > 0, t 6= 0} Σ−+ = {(x, t, t) | x < 0, t 6= 0}

.

Let F = 1 × f . We have ΓF (x) = (x, 1, h(x)) and ΓF (0) = (0, 1, h(0)). Assume
h(0) 6= ±1, then ΓF (0) ∈ Σ0++. So we have

T0ΓF (V ) + TΓF (0)Σ0++ = {(a, 0, h′(0) · a) + (0, b, c) | a, b, c ∈ R} = V × R2,

so ΓF is transverse to Σ at 0. Now assume h(0) = ±1, then either ΓF (0) ∈ Σ0+ or
ΓF (0) ∈ Σ0−. We calculate

T0ΓF (V ) + TΓF (0)Σ0± = {(a, 0, h′(0) · a) + (0, b,±b) | a, b ∈ R} 6= V × R2.

So in this case, ΓF is not transverse to Σ at 0. Clearly, for fixed orbits of f different
from 0, equivariant non-degeneracy is just ordinary non-degeneracy, so we must have
f ′(x) 6= 1 if f(x) = x, or f ′(x) 6= −1 if f(x) = −x. The condition h(0) 6= ±1 is
equivalent to f ′(0) 6= ±1, so the global equivariant non-degeneracy condition for maps
V → V is f ′(x) 6= 1 if f(x) = x and f ′(x) 6= −1 if f(x) = −x.

2.4.4 The Equivariant Isotopy Theorems

Before turning to equivariant genericity theorems, we establish the isotopy theorems for
equivariantly transverse maps, which allow us to conclude isolatedness of equivariantly
non-degenerate critical elements and also to establish the generic bifurcation picture in
this setting, this last bit in conjuction with the genericity theorems of the next section.

Proposition 2.4.4.1 If f : M → N is equivariantly transverse to an invariant algebraic
subset X ⊆ N , then f−1(X) is Whitney stratified.

Proof. The definition of equivariant transversality to X factorizes the map f into
the graph map and the universal polynomial (up to localizing diffeomorphisms). The
preimage of X under f is thus, locally, given by the preimage under the graph map of
the algebraic variety given by the preimage of the set X under the universal polynomial.
Since the graph map, by definition, is transverse to that Whitney stratified set, its
preimage is Whitney stratified as well (compare [Mat80], chapter 8.) Thus, f−1(X) is
locally Whitney stratified and hence, Whitney stratified. �

We note another version of the parametrized transversality theorem 1.1.2.6.
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Proposition 2.4.4.2 Let M be a compact G-manifold, Λ a trivial G-manifold, H :
M × Λ→ N and assume that H is equivariantly transverse to the locally semialgebraic
subset X of N . Then the set of parameters λ ∈ Λ such that Hλ is equivariantly transverse
to X is open and residual. More precisely, it is given by the intersection of the sets of
regular values of the restrictions of the projection map p2 : H−1(X)→ Λ to the various
strata.

Proof. This is essentially the same proof as for Proposition 2.2.2.10, compare [Bie77a],
[Bie77b], chapter 7. �

The preceeding result allows an easy deduction of the isotopy theorem using the
equivariant isotopy lemma.

Proposition 2.4.4.3 Let M be a compact G-manifold and H : M×Λ→ N a G-map, Λ
a trivial connected G-manifold. Assume that Hλ is equivariantly transverse to the closed
semialgebraic subset X ⊆ N for every λ ∈ Λ. Then every two preimages H−1

µ (X),
H−1
ν (X) with µ, ν ∈ Λ are equivariantly isotopic. In particular, if Λ = [0, 1], then any

two preimages of X under the fibre maps are pairwise isotopic.

Proof. We just apply the equivariant isotopy lemma 2.3.2.16 to the projection map
p2 : H−1(X) → Λ. The lemma applies by the preceeding proposition, and we conclude
that this map is locally trivial. By connectedness of Λ, it is globally trivial, which yields
our claim. �

2.5 Equivariant Genericity Theorems

The upcoming section is devoted to the proofs of the equivariant genericity theorems.
The techniques vary substantially and unify many of the work we have done so far. For
genericity of equivariantly non-degenerate G-maps and G-homotopies, we use stratified
G-transversality theory. For genericity of G-hyperbolic maps and vector fields, we use
induction techniques which use the genericity theorems of chapter one. Finally, for G-
homotopies of vector fields, we adopt the geometric techniques we used in chapter one
and make them work with symmetries. The inductive proofs for maps seem not to work
in the parametrized case, so we really have to rely on the geometric method.

2.5.1 Genericity in the Space of G-Maps

The first genericity theorems for equivariant maps are not much harder to prove than
the ones for arbitrary maps. They depend on the equivariant Thom-Mather Theorem
for locally semialgebraic sets just as the latters depended on the Thom Transversality
Theorem.

Theorem 2.5.1.1 Let M be a compact G-manifold. Then the set of equivariantly non-
degenerate maps f : M →M is open and dense in the set of all G-maps.
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Proof. By the equivariant Thom-Mather Theorem 2.2.3.6, the set of maps M →
M × M G-transverse to the equivariant diagonal is open and dense. This immedi-
ately yields the openness part. For density, let f : M →M be any G-map and U be any
neighbourhood of f . Take any map F : M → M ×M G-transverse to the equivariant
diagonal. By choosing F sufficiently close to 1× f , we can achieve that F1 = π1 ◦ F is
arbitrarily close to the identity, in particular we can take it to be an equivariant diffeo-
morphism. Furthermore, the map F ◦ F−1

1 is close to F and satisfies π1 ◦ F ◦ F−1
1 = 1.

Altogether, we see that the map π2◦F ◦F−1
1 : M →M is arbitrarily close to f , so by the

right choice of F , it will be an element of U . The associated graph map is G-transverse
to the equivariant diagonal, which proves the theorem. �

We already mentioned in the introduction to this section that we will use the technique
of induction on orbit types to prove density of G-hyperbolic maps. It should be possible
to derive this result using the last one by making equivariantly non-degenerate fixed
orbits G-hyperbolic. But as we do not have such a result at hand, we instead make use
of the results of chapter one.

Genericity of G-hyperbolic diffeomorphisms was initially proven in [Fie80]. Field in
fact only proves the theorem for vector fields and asserts that the proof for diffeomor-
phisms is similar (which indeed is the case). We will include both proofs. The following
theorem is a bit more general in the sense that it deals with arbitrary G-maps, not
necessarily diffeomorphisms.

Theorem 2.5.1.2 The set of G-hyperbolic maps is open and dense in the set of smooth
equivariant maps.

Proof. Openness: Let f be a G-hyperbolic map. Then f has only finitely many G-
hyperbolic fixed orbits in M and there are invariant isolating neighbourhoods U1, . . . , Um
of these orbits. By Proposition 2.4.2.2, there are neighbourhoods U1, . . . ,Um of f such
that each element of Uj has a unique G-hyperbolic fixed orbit in Uj, j = 1, . . . ,m. The
set U = U1 ∪ · · · ∪ Um is open, so K = M \ U is compact and f has no fixed orbits in
K. So the same is true in a neighbourhood U0 of f . Let U = U0 ∩ · · · ∩ Um. Then every
element of U is G-hyperbolic.
Density: We begin by proving the theorem for free G-actions. By Lemma 2.4.2.5, a
fixed orbit of a map f : M → M of a free G-manifold is G-hyperbolic if and only if its
image in M/G is hyperbolic for [f ]. By Theorem 1.2.1.4, the set of hyperbolic maps
M/G →M/G is open and dense, since M/G is a smooth manifold. Let

X1 = {f : M →M | [f ] hyperbolic }.

Then X1 is the preimage of the open subset of hyperbolic self maps of M/G under the
continuous projection π (see Theorem 2.1.4.1). Hence, X1 is open. But again by 2.1.4.1,
π has local sections, so if f : M → M is any map and U a given neighbourhood of f ,
we find a neighbourhood V of [f ] and a section mapping V into U . Thus, we find a
G-hyperbolic map in U . This shows density of X1.

If the action is monotypic, we have the decomposition M = G/H ×W (H) M
H , where

MH is a free W (H)-manifold. Clearly, f : M → M is G-hyperbolic if and only if the
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induced W (H)-map MH → MH is W (H)-hyperbolic. Since W (H)-maps MH → MH

are in 1-1–correspondence with G-maps M → M , openness and density of the set of
G-hyperbolic G-maps follows from the openness and density of W (H)-hyperbolic W (H)-
maps, which is already proven.

Finally let G act with arbitrarily many orbit types. By Proposition 2.1.1.11, the
number of orbit types is finite and we have the orbit filtration M1 ⊆M2 ⊆ · · · ⊆Mm =
M , where M1 is a monotypic G-manifold. We can conclude that the set

X2 = {f : M →M | f
∣∣
M1

G-hyperbolic }

is open and dense. Thus, if f ∈ X2, f has only finitely many fixed orbits of type (H1),
say, γ1, . . . , γm. We find small isolating neighbourhoods V1, . . . , Vm ⊆M1 of these orbits
such that every map M1 →M1 in a neighbourhood U1 of f

∣∣
M1

has a unique G-hyperbolic
fixed orbit in each Vj and no other fixed orbits. We also find a neighbourhood U of f
such that the restriction of elements of U to M1 is in U1. In particular, we can apply
Lemma 2.4.2.4 to find a map f̃ ∈ U having γ1, . . . , γm as G-hyperbolic fixed orbits. Since
f̃
∣∣
M1
∈ U1, f̃ has no other fixed orbits of orbit type (H1). We thus have shown density

of the set

X1
3 = {f : M →M | all fixed orbits in M1 are G-hyperbolic}.

If f ∈ X1
3, there are finitely many isolated fixed orbits δ1, . . . , δn of type less than (H2).

Let U1, . . . , Un be isolating neighbourhoods. We find a neighbourhood U of Mk such
that all fixed orbits of f in U are already contained in Mk and a neighbourhood U0 of
f such that no element of U0 has fixed orbits in U − (U1 ∪ · · · ∪ Un). By Proposition
2.4.2.2, we find neighbourhoods U1 . . . ,Un of f such that each element of Uj has a unique
G-hyperbolic fixed orbit in Uj. Hence, every element of U0 ∩ U1 ∩ · · · ∩ Un is an element
of X1

3. We conclude that this set is open and dense.
Assume we have shown that the set Xk

3, consisting of G-maps all of whose fixed
orbits in Mk are G-hyperbolic, is open and dense. Let f0 ∈ Xk

3. We find an invariant
neighbourhood Wk of Mk such that all fixed orbits of f0 in Wk are already contained in
Mk. Furthermore, we can assume that the boundary of Wk is smooth and contains no
fixed orbits of f0. Thus, Mk+1−Wk is a compact monotypic G-manifold with boundary.
Carrying out the first step of the proof, we see that

X4 = {f : M →M | all fixed orbits in Mk+1 −Wk are G-hyperbolic,

f has no fixed orbits on ∂(Mk+1 −Wk)}

is dense, so we find an element in X4 ∩ Xk
3 arbitrarily close to f0. This shows density of

Xk+1
3 . Openness follows as for X1

3. This finishes the proof by induction. �

2.5.2 Genericity in the Space of G-Homotopies

It is clear that equivariantly non-degenerate homotopies exhibit the bifurcation be-
haviour we are aiming at and we can immediately proceed to show genericity of this
set.
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Theorem 2.5.2.1 The subset of equivariantly non-degenerate homotopies is open and
dense in the set of G-homotopies.

Proof. It follows from the equivariant Thom-Mather Theorem for locally semialgebraic
2.2.3.6 that the set of G-maps M×R→M×M G-transverse to the equivariant diagonal
in any compact set K ⊆M × R is open and dense.

To prove openness of our set, let H : M × I → M be a given non-degenerate G-
homotopy and H̃ : M × R → M an extension as in the definition. Then there is a
neighbourhood U1 of H̃ such that all elements of U1 are equivariantly non-degenerate
in M × [−1, 2]. Clearly we find a neighbourhood U of H such that any K ∈ U has an
element of U1 as an extension. We can assume that this extension is G-transverse to the
diagonal on all of M × R which finishes this part of the proof.

To prove density, let H : M × I →M be any G-homotopy and H̃ : M ×R→M any
equivariant extension, FH̃ : M × R→M ×M the associated graph map. We find a G-
map F : M ×R→M ×M arbitrarily close to FH̃ which is equivariantly non-degenerate
in M × [−1, 2] and as above, we can assume that it is so on all of M × R. The first
component of F is close to the projection on the first factor, thus, F1×π2 is close to the
identity. In particular it will ultimately be an equivariant diffeomorphism close to the
identity. Then F ◦ (F1 × π2)−1 is equivariantly non-degenerate and it is the graph map
of a G-homotopy arbitrarily close to H. �

Turning to G-hyperbolic homotopies, we mention that the proof of genericity of G-
hyperbolic G-maps cannot be modified (at least not trivially) to a working proof for
G-homotopies. This is due to the fact that in the induction step, we cannot modify
homotopies whose restriction to the set Mk is G-hyperbolic to a homotopy being G-
hyperbolic locally around Mk. The bifurcation parameters prevent this method from
working. One might expect that, using equivariant non-degeneracy, the proof of Propo-
sition 1.2.2.7 can be made to work here as well. But there are still some issues concerning
the relationship of equivariantly non-degenerate fixed orbits and G-hyperbolic ones and
there is no equivariant version of Proposition 1.2.2.4, which would be needed to make
the proof work.

So we will not prove any genericity theorem for G-hyperbolic homotopies. Anyhow,
since openness failed in the case G = {e}, we could at most have expected density to
hold. Moreover, genericity of equivariantly non-degenerate homotopies is enough to do
equivariant index theory. It is also enough to prove the following result, which is the
equivariant analogue to Proposition 1.2.2.8. We need a more special result later, which
will be stated subsequently.

Theorem 2.5.2.2 Let S ⊆M be a compact invariant submanifold such that

dimS(H) + 1 + dimW (H) < dimMH

for every isotropy group H. Then the set of equivariantly non-degenerate G-homotopies
having no fixed orbits in S is open and dense.
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Proof. We again exploit the trick to look at the maps S × I → S × M . By the
equivariant Thom-Mather Theorem, the set of G-homotopies S × I → S ×M that are
G-transverse to the set

{(s, gs) | s ∈ S, g ∈ W (Gs)} ⊆ S × S

is open and dense. Let H : M × I →M be any G-homotopy. Define

HS : S × I → S ×M, (s, t) 7→ (s,H(s, t)).

Fix a stratum ∆G(S(H)) of the S-diagonal. If a map F : S× I → S×M is G-transverse
to the S-diagonal, it is stratumwise transverse to every set ∆G(S(H)). This follows by
2.2.3.7, since diagonals satisfy the assumptions made there. Consequently, for every
isotropy subgroup K with (H) ≤ (K), the map

FK
(K) : (S × I)K(K) → (S ×M)K

is transverse to the set ∆G(S(H))
K . Hence, the preimage of this set under FK

(K) is either
empty, or a submanifold of dimension

dimSK(K) + 1− dimSK − dimMK + dim ∆G(SK(H))

= dimSK(K) + 1− dimSK − dimMK + dimSK(H) + dimW (H).

We estimate

dimSK(K) + 1− dimSK − dimMK + dimSK(H) + dimW (H)

≤ 1− dimMK + dimSK(H) + dimW (H)

≤ 1− dimMH + dimSK(H) + dimW (H)

≤ 1− dimMH + dimS(H) + dimW (H).

So under the assumption of the lemma, this value is smaller than zero, i.e. the preimages
are empty in any case. We see that G-transversality of HS to ∆G(S) implies that H
has no fixed orbits in S. The theorem thus will be proven if we show that the set of
H : M × I →M such that HS is G-transverse to the S-diagonal is open and dense.

Openness: If K is close to H, KS is close to HS, hence by the equivariant Thom-
Mather Theorem, KS will be G-transverse to the S-diagonal if HS is.

Density: Let U be a given neighbourhood of H : M × I → M . We find a map F :
S×I → S×M G-transverse to ∆G(S) and arbitrarily close to HS. In particular, the first
component F1 will be close to π1, hence we can achieve that F1×π2 is a G-diffeomorphism
close to the identity. The map F ◦ (F1 × π2)−1 is of the form (s, t) 7→ (s, k(s, t)) and
we have to show that k can be extended to a map K : M × I → M that is contained
in U . But this is done exactly in the same way as non-equivariantly (compare the
proof of Proposition 1.2.2.8), choosing equivariant embeddings and invariant Urysohn
functions. �
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Proposition 2.5.2.3 Let S be the boundary of an equivariant disc in M . Then the set
of G-homotopies without fixed orbits in S is open and dense.

Proof. Let π1 : S ×M → S be the projection and consider the set of G-maps

M = {F : S × I → S ×M | π1 ◦ F (S(H) × I) ⊆ S(H) ∀H}.

Let S be the boundary of the equivariant disc D, where D is centered around an orbit
of type (H). Working locally, we can assume that M = G ×H V and D is the ball in
e ×H L⊥, where L ⊆ V H is a one-dimensional subspace. By definition of equivariant
discs, such an L exists. Hence, S = e×H S(L⊥), the sphere in L⊥. We have

dimS(H) = dimG/N(H) + dimSH(H)

= dimG− dimN(H) + dimSH(H)

= dimG/H − dimW (H) + dimSH(H).

In particular, we obtain dimS(H) + 1 + dimW (H) = 1 + dimG/H + dimSH(H). But

dimSH(H) = dimS(L⊥)H(H) = dimV H − 2, which yields

dimS(H) + 1 + dimW (H) = dimG/H + dimV H − 1

= dim(G×H V )H − 1

< dim(G×H V )H

= dimMH .

So the condition of Theorem 2.5.2.2 is fulfilled at least for the orbit type (H). But if we
take a map F ∈ M, we have F−1(∆G(SK(H))) ∩ (S × I)K(K) = ∅ for all orbit types (K)

properly larger than (H). So G-transversality of an element F of M to the S-diagonal
implies that F has no fixed orbits in S. Clearly, every map (x, λ) 7→ (x,H(x, λ)) induces
an element of M. But the proof that G-homotopies inducing maps S × I → S ×M
G-transverse to the S-diagonal form an open and dense subset did not depend on the
dimension condition. So we can conclude that G-homotopies H such that π1 ×H is G-
transverse to the S-diagonal form an open and dense subset in the space of G-homotopies
and such a homotopy has no fixed orbits in S. �

Corollary 2.5.2.4 Let M be a compact G-manifold, S the boundary of an equivariant
disc in M . Then the set of equivariantly non-degenerate homotopies without fixed orbits
on S is open and dense.

Proof. Follows immediately from Theorem 2.5.2.1 and Proposition 2.5.2.3. �

2.5.3 Genericity in the Space of G-Vector Fields

The proof of genericity of G-hyperbolic vector fields depends mainly on three lemmas.
The first lemma will ensure that, if a G-vector field has no essential relative periodic
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orbits in a compact set, then there is a neighbourhood in the set of G-vector fields having
the same property. The second lemma will be the equivalent of Proposition 2.4.2.2 for
vector fields. It will show that if γ is a G-hyperbolic relative periodic orbit of a field ξ,
then there is a neighbourhood U of ξ and an invariant neighbourhood U of γ such that
every element η ∈ U has a unique essential relative periodic orbit contained in U . The
final lemma is an equivariant analogue of Lemma 1.2.3.2 and will guarantee that we can
make a relative periodic orbit G-hyperbolic by slightly changing the vector field.

These are the lemmas 7.D, 5.C and 6.C of [Fie80], respectively. The proof of the
second lemma is contained in [Fie80] and makes use of the theory of equivariant stable
and unstable manifolds. It will also follow from Proposition 2.4.2.2 using equivariant
Poincaré systems. The first lemma, however, is easy to deduce.

Lemma 2.5.3.1 Let ξ ∈ XG(M,Ω, a, b) be a G-vector field such that ξ has no essential
relative periodic orbits in the compact set K ⊆ M . Then there is a neighbourhood U of
ξ such that every element of U has the same property.

Proof. Fix an invariant Riemannian metric on M and let d be the Riemannian distance
function. Let ϕ be the flow of ξ and let x ∈ K be given. By assumption we have

inf
g∈G, t∈[a,b]

d(ϕ(x, t), gx) > 0

and this condition clearly holds with ϕ replaced by the flow of a field in a neighbourhood
Ux of ξ and x replaced by an element y in a neighbourhood Ux of x. The sets Ux
cover K and we find a finite subcover U1, . . . , Um. Let U1, . . . ,Um be the corresponding
neighbourhoods of ξ, then U = U1 ∩ · · · ∩ Um is a neighbourhood of ξ fulfilling all
requirements. �

Lemma 2.5.3.2 Let γ be an essential G-hyperbolic relative periodic orbit of a G-vector
field ξ. Then there are neighbourhoods U of ξ and U of γ such that every element η in
U has a unique essential relative periodic orbit in U which is G-hyperbolic.

Proof. As mentioned above, this follows from Proposition 2.4.2.2, since if two G-vector
fields are close, their equivariant Poincaré maps are close as well. �

The next lemma is an equivariant version of Lemma 1.2.3.2 and the proof is almost
identical and very similar to the one for Lemma 6.C of [Fie80]. We include it for
completeness.

Lemma 2.5.3.3 Let γ be a relative periodic orbit of ξ ∈ XG(M,Ω, a, b) and (D,D′, P, t)
an equivariant Poincaré system for γ. Let V, U be invariant neighbourhoods of γ such
that

U ⊆
⋃
x∈D′

ϕ([0, t(x)]),

and
ϕ(x, [0, t(x)]) ⊆ U, x ∈ V ∩D′,
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ϕ the flow of ξ. Then there is an open neighbourhood V of P in the set of maps in
CrG(D′, D) equal to P outside of V ∩ D′ and a continuous map χ : V → XG(M,Ω, a, b)
such that

1. χ(Q) has Poincaré map Q ∈ V.

2. χ(Q) = ξ outside of U .

3. χ(P ) = ξ.

Proof. We have
t0 = inf

x∈D′
t(x) > 0,

since D′ is part of an equivariant Poincaré system. Choose real numbers r, s such that
0 < r < s < t0. Take any equivariant map Q ∈ CrG(D′, D) equal to P outside of V ∩D′.
We can define a smooth map P−1Q : D′ → D by taking it to be the identity close to
∂D. The resulting map will be arbitrarily close to the inclusion D′ ↪→ D by choosing Q
close to P and extending appropriately. In particular, we can achieve that there is an
equivariant isotopy

K : D′ × [r, s]→ D

between the inclusion and P−1Q. Extend K to an equivariant isotopy D′ × [0, t0]→ D
such that K0 = Kr, Ks = Kt0 and every Kt is equal to the inclusion close to ∂D′. Define

ψy(t) = ϕ(Kt(y), t)

for y ∈ D′, t ∈ [0, t(y)]. By definition of K, ψy(t) = ϕy(t) for y close to ∂D′. Again by
choosing Q close enough to P , none of the curves t 7→ ψy(t) will meet M−U . Moreover,
by openness of the set of equivariant embeddings, ψ

∣∣
D′×[r,s]

will be an embedding and

so these curves will be pairwise disjoint. Thus, we can define a vector field

η(ψy(t)) = ψ̇y(t)

which we can extend smoothly to a vector field which is equal to ξ in M − U and
arbitrarily close to ξ. The integral curves of η meeting D′ are the curves t 7→ ψy(t) up
to reparametrization. The calculation

ψy(t(y)) = ϕ(Kt(t(y)), t(y)) = ϕ(P−1Q(y), t(y)) = Q(y)

shows that Q is the Poincaré map of η. Clearly, all the extension processes can be carried
out continuously in Q, hence, the assignment χ(Q) = η gives the desired result. �

When inspecting the inductive proof of genericity of G-hyperbolic G-maps, the main
ingredients to make it work were analoga of the three preceeding lemmas for fixed orbits.
Thus we can expect that a very similar proof will work in the case of vector fields as
well.
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Theorem 2.5.3.4 The set of G-hyperbolic vector fields is open and dense in the set
XG(M,Ω, a, b).

Proof. Openness: Let ξ : M → TM be any G-hyperbolic vector field in XG(M,Ω, a, b).
Let γ ⊆ Ω be a relative periodic orbit of ξ. By Lemma 2.5.3.2 we find a neighbourhood
Uγ ⊆ Ω × (a, b) of γ and a neighbourhood Uγ of f such that every element of Uγ has a
unique relative periodic orbit in Uγ which is G-hyperbolic. Furthermore, there are only
finitely many essential relative periodic orbits of ξ in Ω, so we find a neighbourhood
U ⊆ Ω × (a, b) and a neighbourhood U of ξ such that each element of U has finitely
many G-hyperbolic relative periodic orbits in U . The complement Ω× (a, b) − U is
compact, so by Lemma 2.5.3.1, we find a neighbourhood V of ξ such that no element of
V has relative periodic orbits in Ω× (a, b)− U . Clearly, U ∩ V is a neighbourhood of ξ
consisting of G-hyperbolic vector fields.

Density: For density, we use induction on the orbit types as in Theorem 2.5.1.2.
Assume first that the action is free. Let ξ : M → TM be an equivariant vector field,
ϕ its flow. Then G-hyperbolic relative periodic orbits of ξ correspond to hyperbolic
periodic orbits of the induced field ξ̃ : M/G → TM/G. Since the set of induced maps
M/G → TM/G is open and the projection map has local sections (see Proposition
2.1.4.2), we can conclude that the set of G-hyperbolic vector fields is open and dense,
by genericity of hyperbolic vector fields on the compact manifold M/G. By the same
reasoning and reduction of the G-action to a W (H)-action, we conclude that genericity
holds on monotypic G-manifolds.

Thus, let M be arbitrary and M1 ⊆ M2 ⊆ · · · ⊆ Mk = M be the filtration by orbit
type. M1 is a compact monotypic manifold. So we see that the set

X1 = {ξ ∈ XG(M,Ω, a, b) | ξ
∣∣
M1
G− hyperbolic}

is open and dense. An element of X1 has finitely many G-hyperbolic relative periodic
orbits γ1, . . . , γm. We choose small neighbourhoods U1, . . . , Um ⊆ M1 × [a, b] around
these orbits such that in a neighbourhood Uj of ξ

∣∣
M1

, every element of Uj has a unique
G-hyperbolic relative periodic orbit in Uj, j = 1, . . . ,m. This can be done by Lemma
2.5.3.2. We use Lemma 2.5.3.3 to replace an element ξ ∈ X1 by an element ξ1 arbitrarily
close to ξ, ξ1

∣∣
M1

equal to ξ
∣∣
M1

outside of U = U1 ∪ · · · ∪ Um and γ1, . . . , γm are unique
G-hyperbolic relative periodic orbits of ξ1 in U . In particular, ξ1 has no other relative
periodic orbits of type (H1) in Ω× (a, b). This shows that the set

X1
1 = {ξ ∈ XG(M,Ω, a, b) | relative periodic orbits in (M1 ∩ Ω)× [a, b] G-hyperbolic}

is dense. It is also clear that this set is open, we just argue in the same way as in the
openness part of this proof. Now assume by induction that the set Xk

1 of equivariant
vector fields with only G-hyperbolic relative periodic orbits in (Mk ∩ Ω)× [a, b] is open
and dense. Take ξ ∈ Xk

1. We find an invariant neighbourhood Uk of Mk× [a, b] such that
all relative periodic orbits of f in Uk are contained in Mk× [a, b] and we can achieve that
Uk has a smooth boundary containing no relative periodic orbits. Thus, Mk+1×[a, b]−Uk
is a smooth invariant manifold with boundary and it is monotypic. So we can carry out
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the first step of the induction (the boundary does not matter, since there are no critical
elements on it) to conclude that the set of G-maps with only G-hyperbolic relative
periodic orbits in Mk+1 − Uk and no relative periodic orbits on the boundary is dense.
Consequently, we find an element in this set, arbitrarily close to ξ. This shows density
of the set Xk+1

1 . Openness of Xk+1
1 follows as in the two cases above. This proves the

theorem by induction. �

Note that in the statement of Theorem 2.5.3.4, we can replace the property ”G-
hyperbolic” by ”equivariantly non-degenerate”. The proof only made use of the iso-
latedness property of G-hyperbolic relative periodic orbits, and this is also valid for
equivariantly non-degenerate relative periodic orbits.

2.5.4 Genericity in the Space of Homotopies of G-Vector Fields

The last genericity theorem is the genericity of equivariantly non-degenerate homotopies
of G-vector fields. The proof depends on the geometric construction we already used for
vector fields and homotopies thereof and is a parametrized version of Lemma 2.5.3.3.

Lemma 2.5.4.1 Let H ∈ hXG(M,Ω, a, b) and γλ an essential relative periodic orbit of
Hλ. Choose a Poincaré system (D,D′, Pλ, tλ) for γλ such that the Poincaré maps of all
fields in a neighbourhood U1 of Hλ are defined as maps D′ → D. Let V, U be invariant
open neighbourhoods of γλ such that

U ⊆
⋃
x∈D′

ϕµ([0, tµ(x)])

and
ϕµ([0, tµ(x)]) ⊆ U

for x ∈ V ∩D′ and µ in a neighbourhood of λ, say, if |λ− µ| < 3ε, ε > 0. Let P be the
Poincaré homotopy

P : D′ × [λ− 3ε, λ+ 3ε]→ D

given by the Poincaré maps of the Hµ, µ ∈ [λ− 3ε, λ+ 3ε]. Then there is a neigh-
bourhood U in the set of G-homotopies D′ × [λ− 3ε, λ+ 3ε]→ D equal to P outside of
V ∩D × [λ− 2ε, λ+ 2ε] and a continuous map χ : U → hXG(M,Ω, a, b) such that

1. for Q ∈ U , χ(Q)µ has Poincaré map Qµ for |λ− µ| < ε.

2. for Q ∈ U , χ(Q) equals H outside of U × [λ− 2ε, λ+ 2ε].

3. χ(P ) = H.

Proof. The proof is once again a careful rework of the proof of Lemma 1.2.4.3. We
just have to check that we can add equivariance wherever it is needed.
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Let tξ be the period map of an element ξ of U1, i.e. tξ is the minimal t ∈ R>0 such that
ϕξ(x, tξ(x)) ∈ D. Since γλ is a relative periodic orbit and by definition of an equivariant
Poincaré system, we have

t0 = inf
x∈D′

inf
ξ∈U1

tξ(x) > 0.

Choose real numbers r, s with 0 < r < s < t0. Let Q : D′× [λ− 3ε, λ+ 3ε]→ D be any
G-homotopy equal to P outside of V ∩D′× [λ− 2ε, λ+ 2ε]. By choosing Q close enough
to P , we can assume that P−1 ◦Q (where P−1 is to be taken fibrewise) is a G-embedding
that is equivariantly isotopic to the inclusion D′×[λ− 3ε, λ+ 3ε] ↪→ D×[λ− 3ε, λ+ 3ε].
Let

K : D′ × [λ− 3ε, λ+ 3ε]× [r, s]→ D × [λ− 3ε, λ+ 3ε]

be an isotopy joining the two maps. For the flow ϕ of H, define

ψ(y, µ, t) = ϕ(K(y, µ, t), t)

for y ∈ D′, µ ∈ [λ− 3ε, λ+ 3ε], t ∈ [0, tµ(y)], where we extend K smoothly to the
interval [0, t0] such that K0 = Kr, Ks = Kt0 and every Kt is equal to the inclusion close
to the boundary of D′ × (λ− 3ε, λ+ 3ε). We have ψ ≡ ϕ in a neighbourhood of the
boundary of D′× [λ− 3ε, λ+ 3ε]. By choosing Q sufficiently close to P , we can achieve
that none of the curves t 7→ ψ(y, µ, t) meets M − U . Now ϕµ is an embedding when
restricted to the interval [r, s] and the set of embeddings is open. Thus, ψµ can be made
an embedding, too. Take µ ∈ [λ− ε, λ+ ε] and define

ηµ(ψ(y, µ, t)) =
d

ds
ψ(y, µ, s)

∣∣
s=t
.

ηµ is a G-vector field defined on the image of ψµ. Extend η to a homotopy on M ×
[λ− 3ε, λ+ 3ε] such that ηµ = Hµ outside of U× [λ− 2ε, λ+ 2ε]. Clearly, this extension
can be done continuously in Q. The integral curves of η for |λ− µ| < ε are, up to
reparametrization, just the curves t 7→ ψ(y, µ, t) and we calculate

ψ(y, µ, tµ(y)) = ϕ(K(y, µ, tµ(y)), µ, tµ(y)) = ϕ(P−1
µ ◦Qµ(y), µ, tµ(y)) = Qµ(y).

So the Poincaré homotopy induced by η in [λ− ε, λ+ ε] is given by Q. The definition
χ(Q) = η gives the desired result. �

Next we prove openness of equivariantly non-degenerate homotopies and a slightly
more general result we will need in the proof of the upcoming genericity theorem.

Proposition 2.5.4.2 Let H ∈ hXG(M,Ω, a, b) and H is equivariantly non-degenerate
in the compact subset K × J ⊆ Ω× I. Then there is a neighbourhood U of H such that
every element of U is equivariantly non-degenerate in K × J .

Proof. Since H is equivariantly non-degenerate, we have that for some extension H̃ :
M × R→M , the map

F : Ω× R× [a, b] −→M ×M, (x, t, λ) 7−→ (x, ϕ̃λ(x, t))
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is G-transverse to the equivariant diagonal in K × J × [a, b]. By openness of G-
transversality, we find a neighbourhood U1 of F such that all elements of U1 are G-
transverse to the diagonal in K × J × [a, b]. Clearly, if H ′ is close to H, the associated
map F ′ is close to F , so we find a neighbourhood U of H of equivariantly non-degenerate
maps in K×J× [a, b], i.e. all essential relative periodic orbits in K×J are equivariantly
non-degenerate. �

With these two auxiliary results at hand, we can prove genericity of equivariantly non-
degenerate homotopies of vector fields. The proof is another replication of the methods
used for Theorem 1.2.3.6 and Theorem 1.2.4.5. We will see that there are no obstacles
induced by symmetry.

Theorem 2.5.4.3 The subset of hXG(M,Ω, a, b) consisting of equivariantly non-degene-
rate G-homotopies is open and dense.

Proof. Openness is a trivial corollary of the preceeding proposition. It therefore re-
mains to prove density. We proceed in the 5-step system that worked for Theorem
1.2.4.5.

1. Take a homotopy H ∈ hXG(M,Ω, a, b) and let U be any neighbourhood of H. Let
Γ ⊆ Ω × (a, b) be the set of essential relative geometric periodic points of H, i.e.
(x, λ) ∈ Γ if and only if there is a t ∈ [a, b] such that ϕλ(x, t) ∈ Gx. By assumption,
Γ is compact. Choose an equivariant Poincaré system (Dγ, D

′
γ, pγ, tγ) for every

essential relative periodic orbit γ of H in such a way that in a neighbourhood Uγ
of H, all the Poincaré maps of elements of Uγ are defined as maps D′γ → Dγ. If γ
is a relative periodic orbit of Hλ, we find an εγ > 0 such that the Poincaré maps
of Hµ for |λ− µ| ≤ 3εγ constitute a Poincaré homotopy

P : D′γ × [λ− 3εγ, λ+ 3εγ]→ Dγ

and so do all elements of Uγ.

2. Choose open invariant neighbourhoods Wγ ⊆ Vγ ⊆ Uγ of the underlying geometric
orbit of γ such that W γ ⊆ Vγ and

Uγ ⊆
⋃
x∈D′

γ

ϕ̃µ(
[
0, t̃µ(x)

]
),

ϕ̃µ(x,
[
0, t̃µ(x)

]
) ⊆ Uγ

for all flows ϕ̃ of elements in Uγ and all x ∈ V γ ∩D′γ, µ ∈ [λ− 3εγ, λ+ 3εγ].

3. The sets Wγ×(λ− εγ, λ+ εγ) cover Γ and we find a finite subcover, corresponding
to orbits γ1, . . . , γm at parameters λ1, . . . , λm. For simplicity, let

Wj = Wγj ×
(
λj − 3εγj , λj + 3εγj

)
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and εj = εγj , j = 1, . . . ,m. Define W = W1 ∪ · · · ∪Wm and U1 = Uγ1 ∩ · · · ∩ Uγm .

Then K = Ω × I − W is compact and all periodic orbits of H meeting K are
inessential. So the same holds in a neighbourhood of H which we can assume to
contain U1. We conclude that every G-homotopy H ′ in U1 satisfies

- H ′ ∈ U .

- All relative periodic orbits of H ′ meeting K are inessential.

- Lemma 2.5.4.1 is applicable to H ′, the sets Vγj , Uγj and the Poincaré system
(Dγj , D

′
γj
, p′γj , t

′
γj

).

4. Assume that we have constructed aG-homotopyHk, 0 ≤ k ≤ m−1, such thatHk ∈
U , all relative periodic orbits meeting K are inessential and Hk is equivariantly
non-degenerate in W1 ∪ · · · ∪Wk. We find a neighbourhood Wk of Hk such that
every element of Wk is equivariantly non-degenerate in W1 ∪ · · · ∪Wk. Now we
apply Lemma 2.5.4.1 to Hk, the sets Vγk+1

, Uγk+1
and the corresponding Poincaré

system. We find a neighbourhood Vk+1 of the induced Poincaré homotopy and a
map χk+1 : Vk+1 → hXG(M,Ω, a, b) with the properties stated in the lemma. So
we can use the genericity results for equivariantly non-degenerate homotopies of
maps. Choose an equivariantly non-degenerate homotopy

Wγk+1
∩D′γk+1

× [λk+1 − εk+1, λk+1 + εk+1]→ Dγk+1

and extend it to a G-homotopy

Q : (Uγk+1
∩D′γk+1

)× [λk+1 − 3εk+1, λk+1 + 3εk+1]→ Dγk+1

that is equal to the Poincaré homotopy of Hk outside of

Vγk+1
∩D′γk+1

× [λk+1 − 2εk+1, λk+1 + 2εk+1] .

By choosing the initial homotopy close to the Poincaré homotopy, we can achieve
that Q ∈ Vk+1 and χ(Q) ∈ Wk ∩ U1. Define Hk+1 = χ(Q). By construction, Hk+1

is equivariantly non-degenerate on Wk+1. Since Hk+1 ∈ Wk, Hk+1 is equivariantly
non-degenerate on W1 ∩ · · · ∩Wk+1. Since Hk+1 ∈ U1, Hk+1 ∈ U and all relative
periodic orbits meeting K are inessential.

5. Arriving at Hm, this homotopy is an element in U , equivariantly non-degenerate
in W1 ∪ · · · ∪Wm ⊇ Ω × I − K and all relative periodic orbits meeting K are
inessential. So Hm is equivariantly non-degenerate, proving our claim. �
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3 Equivariant Index Theory

To adopt the construction of the Fuller index from chapter one, we need a sort of
equivariant fixed point index. As mentioned in the introduction, most efforts in this
direction were aimed at counting group orbits of fixed points rather than fixed orbits.
An equivariant Lefschetz number was constructed by Chorny in [Cho03], but it is still
not exactly what we need. Chornys Lefschetz number is a homotopy invariant for self
maps, whereas we want to assign such an invariant to Poincaré maps, which are maps
D′ → D, D′ ⊆ D. There is no simple way to adjust the equivariant Lefschetz number to
be applicable to this setting. But it is possible to assign a local index to isolated fixed
orbits of equivariant maps, a so called fixed orbit index, defined by Dzedzej in [Dze01].
This index is exactly what we need to do equivariant Fuller index theory. The fixed orbit
index gives a global homotopy invariant as well, but the exact interplay between this
index and the equivariant Lefschetz number is unclear. A sort of equivariant Lefschetz-
Hopf theorem can be expected to hold, though there seem to be no results pointing
in that direction. An indication may be the work of Goncalves and Weber [GW07],
who gave an axiomatized treatment of an equivariant Lefschetz number for discrete
groups, taking values in the Burnside ring of G. It seems possible to give a similar
axiomatization of the equivariant Lefschetz number of Chorny. Then one just has to
check that the global orbit index satisfies the axioms. But we will not investigate this
problem any further in this work.

In the first part of the chapter we will give the definition of Dzedzejs fixed orbit index,
starting with a discourse on the theory of equivariant absolute neighbourhood retracts,
G-ANRs for short. This is necessary because the main idea of the fixed orbit index
is that, while for a G-manifold M , M/G is rarely a manifold, it is still an absolute
neighbourhood retract. Fixed point indices exist on absolute neighbourhood retracts,
so we can work in the quotient to do index theory in the manifold itself. Using this
procedure, we define the fixed orbit index and prove its elementary properties as well.

In the second part, we put everything together to define an equivariant Fuller index for
G-vector fields, assigning the local orbit indices of Poincaré maps to periodic orbits and
making the necessary adaptions coming from period space phenomena. The main result
is the homotopy invariance of the equivariant Fuller index, which uses the methods of
proof we already used in the case without symmetries. As stated there, the proof was
developed to obtain the equivariant analog without major adjustments.

We close with some examples of calculations of fixed orbit indices, which easily extend
to calculations of the equivariant Fuller index.

3.1 The Fixed Orbit Index

In classical fixed point theory, the extension of the fixed point index from self maps
of manifolds to maps between absolute neighbourhood retracts, ANRs for short, is a
generalization which makes it possible to do index theory in infinite dimensions. From
the theoretical point of view, it is completely satisfactory to have knowledge of the local
fixed point indices which can be taken ultimately to be calculated for maps in some
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euclidean space.
In the equivariant theory, it is essential to work with the much more general G-ANR

spaces. We indicated in the introduction to the chapter that quotients of G-manifolds
by the G-action are always ANRs, so it is possible to do index theory in them. By
carefully exploiting the stratified structure of the quotients, it thus is possible to obtain
a well-defined G-homotopy invariant on the manifold itself. The idea is to assign to a
fixed orbit type (H) the difference between the fixed point index of the map induced
by a G-map on the quotient of points of orbit type less or equal to (H), and the fixed
point index of the induced map on the quotient of points of type strictly lesser than (H).
Intuitively, this difference counts the orbits genuinely coming from the orbit type (H).
Note that we can not just go into the quotient of points of type (H) directly, for on the
one hand we would miss symmetry breaking bifurcation phenomena, on the other hand,
this manifold is in general not compact, adding a huge amount of new obstacles.

3.1.1 G-ANRs

We quickly run through the basic definitions of the theory of ANRs and add the sym-
metries subsequently. Most results will be proven by reference, since details would lead
us too far afield. The main reference for the theory of ANRs might still be the classical
monograph of Borsuk, [Bor67]. In the equivariant direction, we mainly have to mention
Murayamas work, [Mur83].

Definition 3.1.1.1 A metric space X is said to be an absolute neighbourhood retract
(in the category of metric spaces), if it satisfies the following universal property. When-
ever M is a metric space and i : X → M is an isometric embedding of X as a closed
subset, there is a neighbourhood U ⊆M of i(X) and a retraction r : U → X. We write
ANR for the notion of an absolute neighbourhood retract.

It is well-known, compare e.g. [Bor67], that manifolds (with boundary) are ANRs.
This is essentially the tubular neighbourhood theorem. Therefore, ANRs have many
properties which resemble properites of manifolds, as long as these are somehow con-
nected to the existence of tubular neighbourhoods. For example, maps into an ANR
can be extended to be defined on a neighbourhood of the initial domain under mild
assumptions. We do not need these properties in the following.

There is the obvious notion of a G-ANR for a compact Lie group G. One just takes all
involved spaces and maps in the definition of an ANR to be G-spaces and equivariant,
respectively. Since manifolds are ANRs, G-manifolds are G-ANRs. We need a general
result which identifies the usual invariant fix spaces of a G-ANR as G-ANRs as well. We
denote

X≤(H) = {x ∈ X | (Gx) ≤ (H)}
X<(H) = {x ∈ X≤(H) | (Gx) 6= (H)}.

Then the following is true.
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Proposition 3.1.1.2 Let H be a closed subgroup of G and let X be a G-ANR. Then
the spaces X(H), X≤(H) and X<(H) are G-ANRs and the quotient X/G is an ordinary
ANR.

Proof. This is proven in [Mur83]. �

3.1.2 Definition of the Fixed Orbit Index

We illustrate the intuitive reason why index theory on ANRs is possible by taking ma-
nifolds with boundary as an example. Even more specifically, we can take closures of
open subsets of Rn. Then we have to deal with maps possibly having fixed points on
the boundary. The way to solve this problem is to embed the ANR isometrically into a
normed vector space. This is always possible since an ANR is metric by definition. The
image will have a neighbourhood retracting onto it. Composing the map in question
with this retraction, the resulting map clearly does not have fixed points on the boun-
dary, so the fixed point index of this map is defined. One just has to go through all the
problems of well-definedness to see that this defines an index for self maps of ANRs.

We come to the concrete definition of the fixed point index on ANRs. Let X ⊆ U
be a pair of ANRs, f : X → U a continuous map having no fixed points on ∂X. For
simplicity we assume that U can be embedded into Rn via an embedding i : U → Rn,
otherwise we had to put some compactness assumption on f . Now i embeds X as well
and so we find a neighbourhood V of i(X) and a retraction r : V → i(X). The map
i ◦ f ◦ i−1 ◦ r : V → V is well-defined and has no fixed points outside of i(X). Hence,
its fixed point index is well-defined and we write i(f,X, U) for this number. It is shown
in [Nus77] that this index is well-defined and enjoys all the usual properties an index
should have.

Now take X ⊆ U to be a pair of G-ANRs, f : X → U a G-map. Since X/G and

U/G are ANRs, the fixed point index of the induced map f : X/G → U/G is defined

and so are the various indices of the induced maps f≤(H) : X≤(H)/G → U≤(H)/G and

f<(H) : X<(H)/G → U<(H)/G for closed subgroups H ⊆ G. So to each orbit type (H) of
X, we can assign the integer

i(H)(f,X, U) = i(f≤(H), X≤(H)/G,U≤(H)/G)− i(f<(H), X<(H)/G,U<(H)/G).

To assemble all these values in a single object, we recall the definition of the tom Dieck
ring UG of a compact Lie group G. This is the free abelian group generated by the orbit
types of closed subgroups of G, i.e.

UG =
⊕
(H)

Z · (H).

The ring structure is of no particular interest for our purposes at this moment, roughly,
it is induced by cartesian product of orbits.

Assume X ⊆ U are G-ANRs with finite orbit type. Then the fixed orbit index of f is
defined to be the element

iG(f,X, U) =
∑
(H)

i(H)(f) · (H) ∈ UG,
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In particular, if X = U is a compact G-manifold, the fixed orbit index of a G-map
f : X → X is defined.

We have augmentation maps ε(H) = UG → Z, ε(H)(a) =
∑

(K)≤(H) π(K)(a), where

π(K) : UG → Z is the projection onto the (K)-th summand. Thus, ε(H) takes all the
coefficients of orbit types less or equal to (H) and sums them up.

We summarize the most important properties of the index.

Theorem 3.1.2.1 Let X ⊆ U be G-ANRs of finite orbit type, f : X → U a G-map
such that f has no fixed orbits on the boundary of X. Then

1. If V ⊆ U is a G-ANR such that f(X) ⊆ V , then iG(f,X, U) = iG(f,X, V ).

2. If X0 ⊆ X is a G-ANR such that f has no fixed orbits in X −X0,

iG(f,X, U) = iG(f,X0, U).

3. If X0, X1 ⊆ X are G-ANRs such that X0 ∩ X1 = ∅ and f has no fixed orbits in
X −X0 ∪X1, then

iG(f,X, U) = iG(f,X0, U) + iG(f,X1, U).

4. If H : X × I → U is a G-homotopy such that Ht has no fixed orbit on ∂X for all
t ∈ I, then

iG(Ht, X, U) = iG(H0, X, U).

5. ε(H)(iG(f,X, U)) = i(f≤(H), X≤(H)/G,U≤(H)/G).

6. If ε(H)(iG(f,X, U)) 6= 0, then f has a fixed orbit of orbit type at most (H).

Proof. 1. - 4. and 6. follow immediately from the corresponding properties of the
ordinary fixed point index, 5. is a direct consequence of the definition of ε(H). �

Assume that M is a G-manifold and f : M → M a G-map with finitely many fixed
orbits. By the properties of the fixed orbit index it is clear that the orbit index of f is
the sum of local orbit indices, computed as follows. Take a fix orbit γ of f . Since γ is
isolated, there is a pair of tubular neighbourhoods Uγ ⊆ U ′γ such that γ is the unique

fixed orbit of f in U ′γ and f(Uγ) ⊆ U ′γ. The local fixed orbit index of f is the value

iG(f, Uγ, U
′
γ) ∈ UG.

We have
iG(f,M,M) =

∑
γ

iG(f, Uγ, U
′
γ),

the sum ranging over the finitely many fixed orbits of f . It is also evident, using G-
homotopy invariance of the orbit index, that for generalG-maps, the fixed orbit index can
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be retrieved via approximation. The results of chapter two show that an approximation
by maps with finitely many fixed orbits is possible.

We postpone examples to the end of chapter three, where we will calculate some fixed
orbit indices and equivariant Fuller indices. Instead, we turn to the normalization of the
fixed orbit index. This is an important feature that will guarantee computability and
non-triviality of the index. Unfortunately, there is no completely satisfying formulation
yet. The one given below is, however, a step in the proper direction.

Proposition 3.1.2.2 Let M be a G-manifold and f : M → M a G-map, mapping all
of M into a single orbit of type (H). Then the fixed orbit index of f is given as

iG(f,M,M) = (H).

Proof. By Theorem 3.1.2.1, we can assume thatM = G×HB, where B is the closed unit
ball in some H-representation V . Clearly, all the numbers i(K)(f,G×H V,G×H V ) are
zero for (K) < (H), since the induced map has no fixed points in the respective sets. So
we have to compute the index i(H)(f,G×HV,G×HV ). We have (G×HB)≤(H) = G×HB,
G×H B/G ∼= B/H and f induces the constant zero map. But for self maps of compact
ANRs, the fixed point index coincides with the Lefschetz number ( [Fdl02] chapter 10.5),
and the Lefschetz number of a constant map is 1. So we see that our index is just 1 · (H)
as claimed. �

It would be interesting to compute the local index of a G-hyperbolic fixed orbit, but
this seems rather difficult due to the general nature of the quotient spaces V/H for
H-representations V.

3.2 The Equivariant Fuller Index

This section contains the main result of the work, which is the construction of an equiva-
riant Fuller index, algebraically counting relative periodic orbits, distinguished by their
orbit type. As before, we have a distinction of the development in two parts. In the
first part we will define local indices for isolated relative periodic orbits and use them to
define a global equivariant Fuller index.

In the second part, we will prove the main properties of the obtained equivariant
Fuller index, foremost invariance under equivariant homotopies, but also additivity. As
indicated several times, the layout of the section will strongly resemble the layout in the
non-equivariant case, because it was our intention to find a method of construction that
can be generalized by not much more than adding the equivariant labels.

3.2.1 Definition of the Equivariant Fuller Index

The general setup is as follows. Let M be a compact G-manifold, Ω ⊆ M an invari-
ant open subset, 0 < a < b < ∞ real numbers. Let ξ be a smooth vector field in
XG(M,Ω, a, b). So there are no relative periodic points on the boundary of Ω × (a, b).
We want to assign an algebraic homotopy invariant to ξ. Assume γ ⊆ M × R is an
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isolated relative periodic orbit of ξ. Choose an isolating equivariant Poincaré system
(D,D′, P, t), centered at any point (x, T ) in γ, where T is the period of γ. Let p be the
minimal period, so that T = k · p for some k ∈ N. Define the local index of γ as

IG(γ) =
1

k
⊗ iG(P,D′, D) ∈ Q⊗ UG,

where UG is the tom Dieck ring

UG =
⊕
(H)

Z,

(H) running through the orbit types of M . Note that, in principal, iG(P,D′, D) lives in
the tom Dieck ring associated with D instead of M . But we can naturally extend to the
larger ring UG. The local index thus lives in the abelian group⊕

(H)

Q.

We will maintain the expression via the tensor product.
Assume that ξ has finitely many isolated essential relative periodic orbits γ1, . . . , γn.

Let p1, . . . , pn be their minimal periods, T1, . . . , Tn ∈ [a, b] their periods, such that Tj =
kj · pj for some kj ∈ N and every j ∈ {1, . . . , n}. Choose equivariant Poincaré systems
(Dj, D

′
j, Pj, tj) around any point on γj for each j. The equivariant Fuller index is defined

to be

IGF (ξ,Ω) =
n∑
j=1

IG(γj) =
n∑
j=1

1

kj
iG(Pj, D

′
j, Dj).

Clearly, the equivariant Fuller index does not depend on the choice of Poincaré system,
because any two of these for the same orbit are joined by an equivariant isotopy (namely
the flow of ξ). For arbitrary G-vector fields ξ ∈ XG(M,Ω, a, b), we define the equivariant
Fuller index to be the limit of the Fuller indices of a sequence of equivariantly non-
degenerate fields converging to ξ. We will see in the next section that this is well-defined.

3.2.2 Properties of the Index

We will now derive the three main properties one would expect of an index. Firstly,
we will show additivity of the index. In principle, we just show additivity on the set
of equivariantly non-degenerate fields. The general result is immediate once we have
well-definedness. Secondly, we show that the index is invariant under G-homotopies.
This is the hardest part and requires a careful generalization of the various lemmas used
for the same result non-equivariantly. Homotopy invariance will yield well-definedness
of the index, so we can proceed to prove the solution property of the index. This of
course is very easy to deduce, provided the well-definedness result.

Proposition 3.2.2.1 The equivariant Fuller index is additive, that is, if Ω1,Ω2 are
disjoint, invariant, open subsets of Ω such that all essential relative periodic orbits of
ξ ∈ XG(M,Ω, a, b) are contained in (Ω1 ∪ Ω2)× (a, b), then

IGF (ξ,Ω) = IGF (ξ,Ω1) + IGF (ξ,Ω2).
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Proof. Assume ξ to be equivariantly non-degenerate and partition the set E of essential
non-degenerate relative periodic orbits of ξ into E1, corresponding to orbits in Ω1, and
E2, corresponding to orbits in Ω2. Then

IGF (ξ,Ω) =
∑
γ∈E

IG(γ) =
∑
γ∈E1

IG(γ) +
∑
γ∈E2

IG(γ) = IGF (ξ,Ω1) + IGF (ξ,Ω2).

The general case follows by approximation. �

The idea to prove invariance under G-homotopies is the same as before: We reduce
the question to invariance of the fixed orbit index under G-homotopies of maps. If
H : M × I → M is any equivariantly non-degenerate homotopy, we have finitely many
bifurcation parameters. Let λ be such a bifurcation parameter, then we call the relative
periodic orbits of Hλ which are the limit of a sequence of relative periodic orbits γn of
Hλn , λn → λ, λn 6= λ, the limit periodic orbits ofHλ. We will choose equivariant Poincaré
systems around these orbits and vary them slightly to obtain Poincaré homotopies.

Proposition 3.2.2.2 Let ξ0, ξ1 be two equivariantly non-degenerate G-vector fields that
are G-homotopic via an equivariantly non-degenerate homotopy. Then their equivariant
Fuller indices are equal.

Proof. Since the fields are equivariantly non-degenerately homotopic, we can distin-
guish between two cases.

1. There are no bifurcation parameters in the interval [λ1, λ2].

Choose disjoint equivariant Poincaré systems around the finitely many relative peri-
odic orbits of Hλ1 . These systems will be Poincaré systems around the relative peri-
odic orbits for λ1 + ε for ε > 0 small. The Poincaré maps induce a non-degenerate
homotopy of Poincaré maps, so the local fixed orbit indices of the fixed orbits corre-
sponding to relative periodic orbits do not change. By compactness of [λ1, λ2], the
equivariant Fuller index does not change during this part of the homotopy.

2. There is precisely one bifurcation parameter λ ∈ (λ1, λ2).

In this case, Hλ is degenerate. Let γ be a limit relative periodic orbit of Hλ and
p be its minimal period. Let (D,D′, P, t) be an equivariant Poincaré system for γ,
considered with minimal period p. By choosing D small enough, there is an extension
of P to an equivariant Poincaré homotopy, again denoted by P , for µ ∈ [λ− ε, λ+ ε]
and some ε > 0, and we can achieve that the only fixed orbits of Pµ lying in D are
those on branches converging to γ. Denote the finitely many branches converging to
γ from the left of λ by

νk1 , . . . , ν
k
rk
,

where k runs through the integers and indicates that the minimal period of νkj ap-
proaches k · p for j = 1, . . . , rk as the branch approaches γ. Let P− = P (−ε),
P+ = P (ε). We choose small equivariant discs Mk

1 , . . . ,M
k
rk

, centered at the fixed

126



orbits of P− corresponding to the geometric orbits νk1 (−ε), . . . , νkrk(−ε). Further-

more, we choose equivariant subdiscs M ′k
1 ⊆Mk

1 , . . . , such that P− restricts to a map
M ′

j
k →Mk

j , j = 1, . . . , rk, for all k involved, and the iterates of P− do so as well. We
need only finitely many iterates of P−, hence this condition can be fulfilled. We have
a homotopy P between P− and P+ which is equivariantly non-degenerate at every
stage except for the parameter λ. By Proposition 2.5.2.3, we find a homotopy P ′

arbitrarily close to P that is non-degenerate and has no fixed orbits on the union of
the boundaries of the discs M ′k

j . In particular, P ′− has all its fixed orbits inside of the

discs M ′k
j for the various j, k and P ′− is admissibly homotopic to P−, i.e. their fixed

orbit indices are equal. But then, also P− and P+ are admissibly homotopic, so we
find

iG(P k
−, D

′, D) = iG(P k
+, D

′, D)

for all k. For simplicity, write Hλ−ε = H−, Hλ+ε = H+. We claim that the equivariant
Fuller indices are given by the sums

IGF (H−,Ω) =
∑

n · p ∈ [a, b]

1

n
· iG(P n

−, D
′),

IGF (H+,Ω) =
∑

n · p ∈ [a, b]

1

n
· iG(P n

+, D
′),

which would immediately yield equality of the two terms.

We calculate

IGF (H−,Ω) =
∑

j · k · p ∈ [a, b]

rjk∑
s=1

1

j
iG(P jk

− ,M
k
s ).

On the other hand, to calculate the fixed orbit index of P n
− in D′, note that the

branches νks bifurcate with period k · p from γ. It is clear that Proposition 1.1.4.11
can be modified to see that such a bifurcation induces the bifurcation of a k-fold
covering space in the group quotient. That is, we have k fixed orbits of the k-th
iterate of the Poincaré map P− bifurcating, all of which have the same local index,
since their Poincaré systems are equivariantly isotopic via the flow. Their index is
given by iG(P k

−,M
k
s ). Hence, we have a contribution of k · iG(P k

−,M
k
s ) of these fixed

orbits to the fixed orbit index of P k
− in D′. Clearly, if k divides n, then P n

− has these
fixed orbits in Mk

s as well, and these contribute k · iG(P n
−,M

k
s ) to the index of P n

−.
Summing all these indices up, we obtain

1

n
iG(P n

−, D
′) =

∑
k·j=n

rn∑
s=1

k

n
· iG(P n

−,M
k
s )

=
∑
k·j=n

rjk∑
s=1

1

j
· iG(P jk

− ,M
k
s ).
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This finally gives

∑
n · p ∈ [a, b]

1

n
iG(P n

−, D
′) =

∑
j · k · p ∈ [a, b]

rjk∑
s=1

1

j
· iG(P jk

− ,M
k
s ) = IGF (H−,Ω).

The whole calculation did not depend on the fact that we were working with H−
instead of H+, and we get the same calculation on the right hand side, verifying
equality of both equivariant Fuller indices.

Since the equivariant Fuller index remains unchanged in both cases and we have only
finitely many bifurcation parameters, the proposition follows. �

This was the hard part of the invariance theorem. The rest follows easily by standard
methods.

Lemma 3.2.2.3 If two equivariantly non-degenerate vector fields ξ0, ξ1 ∈ XG(M,Ω, a, b)
are homotopic, then they are already equivariantly non-degenerately homotopic.

Proof. Let U0 be a neighbourhood of ξ0 such that all elements of U0 are equivariantly
non-degenerate. Using the equivariant version of Lemma 1.1.1.2, we can furthermore
achieve that all elements of U0 are pairwise homotopic via a homotopy not leaving U0.
Hence, all elements of U0 are equivariantly non-degenerately homotopic. We can find a
similar neighbourhood U1 of ξ1. Now if H ∈ hXG(M,Ω, a, b) is a homotopy joining ξ0

and ξ1, we find an equivariantly non-degenerate homotopy K arbitrarily close to H. In
particular we can find such a K so that K0 ∈ U0, K1 ∈ U1. Pasting together K and
equivariantly non-degenerate homotopies joining ξ0 with K0 and K1 with ξ1, respectively,
we obtain an equivariantly non-degenerate homotopy joining ξ0 and ξ1. �

As before, being a homotopy invariant implies that the index is locally constant in
the set of equivariantly non-degenerate fields, so it is well-defined for arbitrary G-vector
fields by approximation.

Corollary 3.2.2.4 The equivariant Fuller index is locally constant and hence well-
defined.

Proof. Any equivariant vector field ξ ∈ XG(M,Ω, a, b) has a neighbourhood U such
that every element of U is G-homotopic to ξ. Thus, all equivariantly non-degenerate
elements in U are pairwise homotopic. By the preceeding lemma they are even non-
degenerately homotopic, and so by Proposition 3.2.2.2, any two elements of U have the
same equivariant Fuller index. �

We have finally arrived at the result that the equivariant Fuller index is a G-homotopy
invariant.

Theorem 3.2.2.5 The Fuller index is invariant under admissible G-homotopies.
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Proof. If ξ0, ξ1 ∈ XG(M,Ω, a, b) are homotopic equivariant vector fields and H ∈
hXG(M,Ω, a, b) is a G-homotopy between them, choose an equivariantly non-degenerate
homotopy K ∈ hXG(M,Ω, a, b) such that K0 is in a given neighbourhood U0 of ξ0, K1

is in a given neighbourhood U1 of ξ1. Since the Fuller index is locally constant in ξ, the
theorem follows from Proposition 3.2.2.2. �

We summarize all the properties of the equivariant Fuller index established so far.
The normalization result is a bit unsatisfactory, since it reduces to the normalization of
the fixed orbit index, which is not completely clarified.

Theorem 3.2.2.6 The equivariant Fuller index has the following properties.

1. It is invariant under admissible G-homotopies, i.e. if H ∈ hXG(M,Ω, a, b), then

IGF (Ht,Ω) ≡ const.

2. It is additive, i.e. if Ω1,Ω2 are disjoint invariant open subsets of Ω and all essential
relative periodic orbits of ξ ∈ XG(M,Ω, a, b) are contained in Ω1 ∪ Ω2, then

IGF (ξ,Ω) = iGF (ξ,Ω1) + IGF (ξ,Ω2).

3. It is normalized. If ξ has a single relative periodic orbit in Ω× (a, b) of periodicity k
and (P,D′, D, t) is an equivariant Poincaré system for the orbit, then

IGF (ξ,Ω) =
1

k
⊗ iG(P,D′, D).

4. It has the solution property. If the projection π(H) to the (H)-component of Q⊗UG of
IGF (ξ,Ω) is not zero, then ξ has an essential periodic orbit in Ω of type at least (H).

Proof. All statements are obvious, the last one being a trivial consequence of the
corresponding result for the fixed orbit index. �

3.3 Some Calculations

As is easily tested, computations of the equivariant Fuller index tend to drown in the
enormous complexity provided by the interplay of the various isotropies. So we restrict
our calculations to very simple cases with groups acting with few orbit types. In the case
a group acts trivially, we obtain the classical Fuller index. In the case of free actions,
we can give a general result.

Example 3.3.1 Let M be a free G-manifold, Ω ⊆ M open and invariant and let ξ ∈
XG(M,Ω, a, b) be an equivariant vector field. Let ξ be the field induced on the quotient
manifold M/G. Then

IGF (ξ,Ω) = IF (ξ,Ω/G) · (e).
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Indeed, we can assume that ξ is equivariantly non-degenerate. We choose disjoint equi-
variant Poincaré systems around the finitely many essential relative periodic orbits of ξ.
The equivariant discs in this case are of the form G×D, where D is an ordinary disc of
the proper dimension. So our Poincaré maps are given as G-maps P : G×D′ → G×D.
The fixed orbit index of such a map is calculated to be

iG(P,G×D′, G×D) = i(e)(P ,G×D′/G,G×D/G) · (e)

and the index i(e)(P ,G×D′/G,G×D/G) is just the ordinary fixed point index of the

quotient map P : D′ → D. But it is obvious that, if (P,G × D,G × D′, t) is an
equivariant Poincaré system for ξ, then (P ,D,D′, t) is an ordinary Poincaré system for
ξ. This implies the result.

Finally, we will present a non-trivial and very concrete example.

Example 3.3.2 We take the manifold S1 with acting group Z2, acting as reflection at
the y-axis. If we embed S1 ⊆ C, then the action is given as z 7→ −z. The canonical
maps to investigate on S1 are the maps z 7→ zn. To be equivariant under the Z2-
action requires n to be odd. So we want to calculate the fixed orbit index of the maps
p2n+1 : S1 → S1, z 7→ z2n+1, n = 0, 1, . . . .

• There are two orbit types in S1, namely the orbit type (Z2) of the points i and −i,
and the orbit type (e) of all other points. We have

S1
≤(Z2) = {i,−i} S1

≤(e) = S1

S1
<(Z2) = ∅ S1

<(e) = S1
(Z2) = {i,−i}

• We have to calculate the numbers

i(H)(f, S1,S1) = i(H)(f) = i(f,S1
≤(H)/G,S

1
≤(H)/G)− i(f,S1

<(H)/G, S
1
<(H)/G)

for (H) ∈ {(e), (Z2)}. The case (H) = (Z2) is simple. The second summand is
necessarily zero, and the first summand is the index of a map on the two point
space {i,−i}. Our maps p2n+1 either fix both points or switch them, according to
n being even or odd, respectively. If n is even, the fixed point index of the induced
map is 2, if n is odd, the fixed point index is 0. We note

i(Z2)(p2n+1) =

{
2 if n even

0 if n odd.

• For the index i(e)(p2n+1), we have to go into the quotient S1/Z2
, which can be iden-

tified with the interval [−1, 1]. A homeomorphism is given by S1 → [−1, 1] , (x +
iy) 7→ y. We can embed this interval into [−2, 2] and take r : [−2, 2]→ [−1, 1] to
be the obvious retraction.
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A fixed orbit of p2n+1 is the orbit of an element z ∈ S1 such that z2n+1 = z or
z2n+1 = −z, that is, z is either a 2n-th root of unity or a (2n + 2)-th root of −1.
p2n+1 induces a polynomial map q2n+1 : [−1, 1] → [−1, 1] of degree 2n + 1 which
has 2n+ 1 pairwise distinct fixed points. The leading coefficient of q2n+1 is easily
seen, using the binomial theorem, to be

n∑
k=0

(−1)n
(

2n+ 1
2k + 1

)
= (−1)n22n.

The sign of the derivative of 1− q2n+1 in the fixed points changes from each fixed
point to the consecutive one. If n is odd, i and −i are no fixed orbits of p2n+1, hence
−1 and 1 are no fixed points of q2n+1. Since the leading coefficient of 1− q2n+1 is
positive, we start with a fixed point with index 1 so that the fixed point index of
q2n+1 will be 1.

If n is even, i and −i are fixed orbits of p2n+1 and −1 and 1 are fixed points of q2n+1.
To calculate the fixed point index of this map, concatenated with the retraction
r, we have to approximate it by a smooth map. As is indicated in Figure 10, the
indices of the fixed points −1 and 1 resolve to 0 during this approximation. But
the leading coefficient of 1 − q2n+1 is now negative and since we have to discard
the first and the last fixed point, the rest sums up to 1 again.

We conclude that

i(e)(p2n+1) = i(q2n+1, [−1, 1] , [−2, 2])− i(Z2)(p2n+1) =

{
−1 if n even

1 if n odd.

• We put the results together to obtain the global fixed orbit index of the map p2n+1

to be

iG(p2n+1, S1,S1) =

{
−1 · (e) + 2 · (Z2) if n even

(e) if n odd.
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Figure 10: The extensions of the functions 1− q2n+1
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4 Prospects and Comments

The work shall close with a short summary of what we have done and, in particular,
what we have not done. Our aim was to construct a G-homotopy invariant, giving
information on the relative periodic orbits of an equivariant vector field. We used a
bifurcation theoretic approach to solve this problem. That is, we defined the invariant
only for maps with finitely many critical elements, assigned a local index to each critical
element, and summed them up to obtain the global invariant. The main difficulty was to
prove that this definition could be extended to all maps via approximation. The solution
came in two ways. First, we developed the theory of equivariant transversality to locally
semialgebraic sets to obtain a notion of equivariant non-degeneracy. This allowed us to
deduce that the classes we defined our invariant on are indeed generic. Then we proved
homotopy invariance of the index, showing that it is well-defined through approximation.
In some cases, we just merely managed to solve the underlying problems, where a more
general solution is desirable and most probably true. The parts of the work where
generalizations seem possible or other general comments seem in order will be sketched
below.

1. Non-equivariantly, hyperbolicity is a stronger form of non-degeneracy, giving in-
formation on the dynamics around a critical element as well. As indicated several
times, it is unclear whether G-hyperbolic critical elements are equivariantly non-
degenerate. Such a result might help to a deeper geometric understanding of
equivariant transversality.

2. Since it was not necessary, we did not contemplate long on genericity properties of
hyperbolic homotopies. Using eigenvalue crossing conditions it is possible to show
that the set of hyperbolic homotopies contains an open and dense subset, as is
done in [Bru70]. Does a similar result hold true for G-hyperbolic homotopies? Can
appropriate conditions be formulated using the reduced spectrum and equivariant
eigenvalues of [Fie80]?

3. We still lack a proper normalization result for the fixed orbit index in the sense
that we do not know the local index of an arbitrary G-hyperbolic fixed orbit. It
might be conjectured that we should obtain something like (−1)s · (H) if the orbit
is of type (H), where s is the number of real eigenvalues larger one of the normal
map, induced on the component of the tangential bundle normal to the group
orbit. There is some, evidence for this fact by calculating simple examples.

4. The gap between the fixed orbit index and the equivariant Lefschetz number was
already mentioned. The conjecture that, for self maps of compact G-manifolds,
the global fixed orbit index and the equivariant Lefschetz number coincide is sup-
ported by examples, but remains to be proven. An approach using an axiomatic
description of the equivariant Lefschetz number might work.

5. We defined the equivariant Fuller index in purely bifurcation theoretic terms. The
non-equivariant Fuller index can be defined in homological terms, or rather there
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is an even stronger invariant, a homological Fuller index, projecting to the usual
one under an augmentation map, see [Fra90]. The construction of the homological
index relies on intersection theoretic arguments and fundamentally on Poincaré
duality. The equivariant cellular homology theories we studied do not exhibit
Poincaré duality, so a generalization of the homological index to the case with
symmetries seems hard in these theories. There is, however, a very interesting ap-
proach due to Costenoble, Waner and others, see [CW07], who defined non-integer
graded equivariant homology and cohomology theories which restore Poincaré du-
ality. These theories are hard to work with, especially since one has to deal with
four theories instead of two: There are two dual theories, namely dual homology
and dual cohomology, associated with the ordinary theories. A naive approach to
an equivariant Lefschetz number would locate it in a dual homology group, and
these seem very hard to compute.

6. Fuller index theory has long been applied to infinite dimensional dynamical sys-
tems, e.g. in [CMP78], as well as systems less regular than smooth flows on
manifolds, e.g. in [Fen03]. It is highly expectable that similar generalizations of
the equivariant Fuller index should be possible without further ado.
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