
1 Categorical Background

1.1 Categories and Functors

Definition 1.1.1 A category C is given by a class of objects, often denoted by ob C, and
for any two objects A,B of C a proper set of morphisms C(A,B), such that

1. there is an associative composition of morphisms

◦ : C(A,B)× C(B,C)→ C(A,C), (f, g) 7→ g ◦ f

2. for any object A of C, there is an identity morphism idA ∈ C(A,A) which is a unit
for the composition law.

A subcategory C′ of C consists of a subclass of objects of C, for every A,B ∈ ob C′ we
have C′(A,B) ⊆ C(A,B), and composition law and identity element are inherited from
C.

This definition comprises the basic mathematical philosophy that mathematical ob-
jects can be understood by investigating their transformations. Almost every mathemat-
ical structure a student will encounter during his first years will be rooted in a category.
Some examples are given below.

1. The category SET of sets, together with maps between sets as morphisms. This
category is of particular importance, since many categories are defined by adding
extra structure to sets and morphisms of sets.

2. The category VECTk of vector spaces and linear maps between vector spaces as
morphisms. More generally, for a ring R, there is the category R − MOD of
modules over R together with R-linear maps as morphisms.

3. The category T OP of topological spaces and continuous maps as morphisms. This
is one of the main categories we will be working with.

4. The category hT OP of topological spaces and homotopy classes of continuous
maps between them as morphisms. That is, for any two topological spaces X,Y ,
a morphism [f ] ∈ hT OP(X,Y ) is an equivalence class of continuous maps from X
to Y , where two such maps f0, f1 are equivalent, if there is a continuous homotopy
H : X × [0, 1] → Y such that H0 = f0, H1 = f1. This is the first example of a
category whose morphisms are not given as concrete maps.

5. A group G can be regarded as a category with a single object G with morphisms
the elements of G.

Applying the basic philosophy to the definition of a category itself, we have to specify
morphisms of categories. These are so called functors.

Definition 1.1.2 Let C,D be categories. A functor F : C → D is given by
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(i) a map ob C → obD (denoted by F as well)

(ii) for any pair A,B of objects of C a map

C(A,B)→ D(F (A), F (B))

(again denoted by F ).

Furthermore, the map on morphism level is required to be compatible with identity and
composition, that is, F (idA) = idF (A) and F (f ◦ g) = F (f) ◦ F (g).

Again there are many examples that will be well known to the student, whereas the
abstract interpretation may be unfamiliar.

Example 1.1.3 1. The functor P : SET → SET assigns to a set X its power set
P(X). On morphisms, if f : X → Y is a map, P(f) : P(X) → P(Y ) maps a
subset A ⊆ X to the subset f(A) ⊆ Y .

2. The functor T : MAN → MAN of the category of (smooth) manifolds assigns
to a manifold M its tangential bundle TM . For a smooth map f : M → N , Tf is
the usual tangential map.

3. The functor π0 : T OP → SET assigns to a topological space X the set π0(X)
of its connected components. For a continuous map f : X → Y , π0(f) maps a
connected component C of X to the connected component of Y which contains
f(C) (since images of connected subsets are connected, this is well defined).

A functor is called faithful, if the induced map C(A,B)→ D(F (A), F (B)) is injective
for all objects A,B of C. It is called full, if this map is surjective and fully faithful, if
it is bijective. In the above examples, the power set functor is faithful, but not full. A
map P(X) → P(Y ) having as value on a one-point set a more-point set can not lie in
the image of the functor. The tangential bundle functor similarly is faithful but not full.
A tangential map projects to its underlying map via the bundle projection, hence, the
functor is faithfull. But a tangential map is always linear when restricted to tangential
spaces, so it can not be full. Finally, the π0-functor is full but not faithful. Any map
π0(X)→ π0(Y ) can be realized as a map of spaces by taking maps that are constant on
connected components. And obviously, any continuous map of connected spaces induces
the same map in π0.

One can carry on and ask for transformations of functors and transformations of these
transformations etc. We will only need the concept of a natural transformation between
functors.

Definition 1.1.4 Let C,D be categories and F,G : C → D functors. A natural trans-
formation η : F → G is defined by a collection of morphisms ηA : F (A) → G(A) for
every object A of C such that the diagram

F (A)
F (f) //

ηA
��

F (B)

ηB
��

G(A)
G(f) // G(B)
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commutes for any two objects A,B of C and every morphism f : A→ B.

Example 1.1.5 The above definition clarifies the meaning of the word natural in many
mathematical contexts. As an example, let V be a k-vector space and let V ′′ be its
second dual space. This specifies a functor

D : VECTk → VECTk, V 7→ V ′′, (f : V →W ) 7→ (f ′′ : V ′′ →W ′′).

Recall that the dual map of f : V →W is defined by f ′ : W ′ → V ′, f ′(w′)(v) = w′(f(v)),
so the double dual is defined as f ′′ : V ′′ →W ′′, f ′′(v′′)(w′) = v′′(f ′(w′)). We now define
a natural transformation between the identity functor and D, namely we define

ηV : V → V ′′, v 7→ (v′ 7→ v′(v)).

It is easy to see that the diagram

V
f //

ηV
��

W

ηW
��

V ′′
f ′′ //W ′′

commutes, so indeed η is a natural transformation. It is well-known that ηV is a bijection
if and only if V is finite dimensional.

1.2 Adjoint Functors

When one is interested in a certain functor F : C → D between two categories, from an
abstract point of view there is not much else one can do than to investigate the morphism
sets D(F (A), B) for objects A of C and B of D. Under this aspect it is often extremely
useful, and in general has severe implications on the structure of the functor, that this
morphism set can be identified with a morphism set C(A,G(B)), where G : D → C is
another functor. This amounts to the following definition.

Definition 1.2.1 Let C,D be categories and let F : C → D and G : D → C be functors.
If there is a natural equivalence

C(G(A), B)→ D(A,F (B))

for any objects A of D, B of C, then F is called a right adjoint functor of G and G is
called a left adjoint functor of F .

As we already pointed out, being an adjoint functor has severe categorical implications,
but it would lead us too much afar to discuss these here. Instead, we will give some
examples.
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Definition 1.2.2 1. A very important case of adjoint functors arises in connec-
tion with forgetful functors. A forgetful functor is a functor f : C → D which,
rather imprecisely, “forgets” some of the structure of the category C. The functor
F : T OP → SET , assigning to a topological space its underlying set and to a
continuous map its underlying set map is a typical example of a forgetful func-
tor. Similar examples arise as forgetful functors VECTk → SET , MAN → SET ,
MAN → T OP.

We claim that the functor F : T OP → SET has a right adjoint i : SET → T OP,
assinging to the set X the topological space X with the discrete topology. Indeed,
if we define

η : T OP(i(X), Y )→ SET (X,F (Y )), f 7→ f,

this is a natural equivalence. Every set map X → F (Y ) is continuous when X
carries the discrete topology, no matter which topology is imposed on F (Y ).

There is also a right adjoint funtor for the forgetful functor F : VECTk → SET .
For a set X, we define i(X) to be the free vector space with basis X, that is,

i(X) = {
∑
i∈I

λixi | I finite, λi ∈ k, xi ∈ X}.

For a map f : X → Y , we define

i(f) : i(X)→ i(Y ),
∑

λixi 7→
∑

λif(xi),

which is obviously well-defined and linear. To see that this functor is right adjoint
to F , we define

η : SET (X,F (V ))→ VECTk(i(X), V ), f 7→
(∑

λixi 7→
∑

λif(xi)
)
.

This is a natural equivalence, since every linear map i(X) → V is completely
determined by the images of a base of i(X), which is X, and the images of elements
of the base carry no further restriction.

2. To see that adjoint functors can also occur in different contexts than with forgetful
functors, we give another example. For a set X, consider the functor

SET (X, ·) : SET → SET , Y 7→ SET (X,Y ).

For a morphism f : Y → Z, we define

SET (X, f) : SET (X,Y )→ SET (X,Z), h 7→ f ◦ h.

We claim that this functor has a left adjoint, namely the functor

· ×X : SET → SET , Y 7→ Y ×X
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and for f : Y → Z,

f ×X : Y ×X → Z ×X, (y, x) 7→ (f(y), x).

We define a map

η : SET (Y,SET (X,Z))→ SET (Y ×X,Z), η(f)(y, x) = f(y)(x).

This map has an inverse, assigning to g : Y × X → Z the map ĝ such that
ĝ(y)(x) = g(y, x), hence, η is bijective. Naturality is easily checked, so the two
functors are indeed adjoints.

1.3 Monoidal Categories

In this section we want to introduce an additional structure on a category. The basic
idea is that we want to add structure to morphism sets. For example, in the category of
topological space, we want a topology on sets of continuous maps. To be able to do so in
a not completely arbitrary way, we first need the notion of a monoidal category. This is,
roughly speaking, a category together with a functor from the category of pairs to the
category itself, satisfying properties similar to those of a monoid, as in linear algebra.

Definition 1.3.1 A monoidal category is a category M together with an object I of
M and a functor ⊗ :M×M→M, such that the following axioms are satsified.

1. There is a natural equivalence α between the functors (⊗, idM) : M3 → M and
(idM,⊗) :M3 →M such that the diagram

((A⊗B)⊗ C)⊗D
αA,B,C⊗idD //

αA⊗B,C,D
��

A⊗ (B ⊗ C)⊗D

idA⊗αB,C,D
��

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D // A⊗ (B ⊗ (C ⊗D)))

commutes.

2. There are natural equivalences λ and ρ between the functors A 7→ I ⊗ A and the
identity and I ⊗A 7→ A and the identity, respectively, such that the diagram

(A⊗ I)⊗B α //

ρ⊗idB &&

A⊗ (I ⊗B)

idA⊗λxx
A⊗B

commutes.

One should think of the functor ⊗ as an associative, unital product on the category
M. There are many examples for monoidal categories.
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Example 1.3.2 1. The category SET together with the cartesian product and the
one point set as unit is a monoidal category.

2. More generally, the categories of topological spaces, topological Hausdorff spaces
or smooth manifolds are monoidal categories with the cartesian product and the
one point space as unit.

3. The category VECTk is a monoidal category with the tensor product as monoidal
product and k as unit.

4. The category T OP∗ of pointed topological spaces is a monoidal category with
product the smash product and unit the zero sphere S0.

5. Every monoid M is a monoidal category when considered as a category with a
single object M and morphisms the elements of M .

When dealing with monoidal categories, we should also specify functors that preserve
the monoidal structure

Definition 1.3.3 Let C, D be two monoidal categories and F : C → D a functor. F is
called a monoidal functor, if there is a natural equivalence

F (A⊗B) ∼= F (A)⊗ F (B)

and an isomorphism
F (IC) ∼= ID.

We can now try to put the structure of objects of a monoidal category on the morphism
sets of an arbitrary category C.

Definition 1.3.4 Let D be a monoidal category. A D-category or a category over D is
a monoidal category C together with a functor F : C → D such that the following holds.

1. F is monoidal.

2. F is faithful.

3. For every object A of C, the functor • ⊗ F (A) : D → D has a right adjoint,
denoted by CF (A, • ). Thus, for objects X,Y of D there is a natural isomorphism

D(X, CF (A, Y )) ∼= D(X ⊗ F (A), Y ).

4. For any two objects A,B of C, there is the image ε = εAB of the identity under
the adjunction

D(CF (A,B), CF (A,B)) ∼= D(CF (A,B)⊗A,B).

For three objects A,B,C of C, the image of εBC ◦ (id⊗εAB) under the adjunction

D(CF (B,C)⊗ CF (A,B)⊗A,C) ∼= D(CF (B,C)⊗ CF (A,B), CF (A,C))
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is called the composition morphism, denoted ◦, and is required to make the dia-
gram

(CF (C,D)⊗ CF (B,C))⊗ CF (A,B)
α //

◦⊗id

��

CF (C,D)⊗ (CF (B,C)⊗ CF (A,B))

id⊗◦

��
CF (B,D)⊗ CF (A,B)

◦

��
CF (B,D)⊗ CF (A,B)

◦ // CF (A,D)

commutative.

5. For any object C of C, the image of the identity idC under the equivalences
D(C,C) ∼= D(I⊗C,C) ∼= D(I, CF (C,C)), denoted by 1C , fits into the commutative
diagram

I ⊗ CF (B,C)
1C⊗id //

λ
��

CF (C,C)⊗ CF (B,C)

◦

tt
CF (B,C)

.

By definition, if C is a category over D, the map C(A,B)→ D(F (A), F (B)), f 7→ F (f)
is injective. Therefore we can regard C(A,B) as a subset of D(F (A), F (B)). So it makes
sense to require a D-morphism F (A)→ F (B) to be a C-morphism.

Note also that we have written CF (B,C) with objects B,C of C, whereas it should be
CF (B,F (C)) by definition. However, the short-hand notation is much more convenient.

We provide some examples for categories over another category.

i) The category SET is a category over itself. The functor F is taken to be the
identity. The adjoint functor of • ×X is SET (X, • ), therefore composition and
unit morphism are induced by the composition law and the identity morphisms in
SET .

ii) Similarly, every monoidal category where the monoidal product is the usual cartesian
product, such as T OP,MAN , or suitable subcategories of these, is a category over
SET . The functor F is the forgetful functor assigning to a space, manifold etc. its
underlying set. The adjoint is given as in i) and composition and unit are again
coming from actual composition.

iii) The category VECTk is not a category over SET , since the obvious forgetful functor
is not monoidal. But even better, VECTk is a category over itself. Every set L(V,W )
carries the obvious structure of a k-vector space and the functor L(V, • ) is a right
adjoint to the functor • ⊗V . Composition is induced by actual composition. Note
that the composition map L(V,W )×L(U, V )→ L(U,W ) is not linear, but bilinear.
However, × is not the monoidal product in VECTk, but ⊗ is.
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iv) The category LCH of locally compact Hausdorff spaces is a category over HAUS,
the category of Hausdorff spaces. The functor F is the obvious forgetful functor.
Sets C(X,Y ) of continuous maps are provided with the compact open topology.
We will investigate this topology in detail in a subsequent chapter. The adjoint
of the functor • × X is the functor C(X, • ), composition is induced by actual
composition.

v) Similarly, the category hLCH∗ of pointed locally compact Hausdorff spaces with
homotopy classes of maps as morphisms is a category over hHAUS∗. The functor
F is again the obvious forgetful functor. The adjoint functor of •∧X is the functor
hT OP∗(X, • ), composition is induced by actual composition.

In all the above examples, the composition morphism came from actual composition
of maps. This is indeed alwas true in the cases we will consider, and examples violating
this rule are rather artificial.

1.4 C-Groups

Another important feature of monoidal categories is that we can define group objects in
a monoidal category. For this, we recall that a group in the classical sense is completely
determined by a multiplication map, an inversion map and the inclusion of a unit ele-
ment, satsifying certain conditions. In a monoidal category, we can require similar maps
to exist and call the resulting object a group object.

Definition 1.4.1 Let D be a monoidal category. A D-monoid or a monoid object in D
is an object G of D together with two morphisms

µ : G⊗G→ G, η : I → G,

such that the two diagrams

G⊗G⊗G µ⊗idG //

idG⊗µ
��

G⊗G
µ

��
G⊗G µ // G

and

I ⊗G λG //

η⊗idG
��

G

idG
��

G⊗ IρGoo

idG⊗η
��

G⊗G µ // G G⊗Gµoo

commute. µ is called the multiplication and η is called the unit of G.
A D-group is a D-monoid together with three additional morphisms

∆ : G→ G⊗G, ε : G→ I, i : G→ G
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such that the diagram
G

∆

{{

∆

##
ε
��

G⊗G
idG⊗i

��

I

η

��

G⊗G
i⊗idG
��

G⊗G µ // G G⊗Gµoo

commutes. ∆ is called the comultiplication, ε is called the counit and i is called the
inversion of G.

The abundance of morphisms involved in the definition may look frightening at first
sight. Therefore it is essential to keep the most common examples in mind and to know
where the respective morphisms have their theoretical origin.

1. If G is a group in the sense of algebra, we can identify G with a SET -group. µ
and i are multiplication and inversion, η is the inclusion of the identity element, ε
is the unique map into the one-point space and ∆ is the diagonal map g 7→ (g, g).

2. In the category of topological spaces, a T OP-group is specified by the same maps
as a SET -group. The additional requirement is that all the involved maps are
continuous. Since ∆, η and ε are automatically continuous, this amounts to check
multiplication and inversion for continuity.

3. In the category of smooth manifolds, again aMAN -group is specified by the same
maps as a SET -group, now required to be smooth. Again, the maps ∆, η and ε
are automatically smooth. In addition one can show, using the implicit function
theorem, that smoothness of µ implies smoothness of i. Hence now we just have
to check that µ is smooth. A MAN -group is usually called a Lie-group.

4. In the category VECTk of k-vector spaces, the definition of VECTk-groups is a bit
more involved. The product in VECTk is the actual tensor product of vector spaces.
Let G be an ordinary group and let kG be the free k-vector space with basis G.
We define the following maps.

µ : kG⊗ kG→ kG, g ⊗ h 7→ g ◦ h, ∆ : kG→ kG⊗ kG, g 7→ g ⊗ g
ε : kG→ k, g 7→ 1, η : k → kG, λ 7→ λe

i : kG→ kG, g 7→ g−1

We extend these maps linearly, where necessary. One checks readily that these
maps indeed define the structure of a VECTk-group on kG.

5. As a final example, consider the category hT OP∗ of pointed topological spaces
with pointed homotopy classes of G-maps as morphisms. The monoidal product
is the smash product. We have the obvious comultiplication, unit and counit as in
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the category of topological spaces. Therefore, the structure of an hT OP∗-group is
completely determined by continuous maps

µ : G ∧G→ G, i : G→ G

such that the diagrams from the definition commute “up to homotopy”.

Part 4 of the preceeding examples is of particular interest. We have already defined
the functor SET → VECTk, mapping a set to the free vector space with basis X and
we see that a SET -group is mapped to a VECTk-group by this functor. This is true in
general.

Proposition 1.4.2 Let C, D be monoidal categories and F : C → D be a monoidal
functor. If G is a C-group, then F (G) is a D-group.

Proof. There is almost nothing to prove. We define the structural morphism for F (G)
by the image of the respective morphisms for G under F . Since F is monoidal, all
the diagrams involved in the definition are preserved by F , showing that F (G) indeed
becomes a D-group. 2

It is obvious that the C-groups in a category C form a category themselves. Morphisms
are taken to be C-group homomorphisms. These are C-morphisms compatible with all
possible structure maps. To be precise, we have a C-morphism ϕ : G → H between
C-groups G,H, and the following diagrams commute.

G⊗G µG //

ϕ⊗ϕ
��

G

ϕ

��

G⊗G
ϕ⊗ϕ

��

G
∆G

oo

ϕ

��
H ⊗H µG // H H ⊗H H

∆H

oo

I
ηG //

ηH ��

G

ϕ

��

G
εG //

ϕ

��

I

H H

εH

??

G
iG //

ϕ

��

G

ϕ

��
H

iH // H

.

In practice, G will often be a group in the ordinary sense and checking for a C-group
homomorphism will just amount to checking whether a given group homomorphism is a
morphism in C.

We close this section with an important class of examples of D-monoids, rather than
D-groups. Let C be a category over D. Then the composition law restricts to a D-
morphism

CF (C,C)⊗ CF (C,C)→ CF (C,C)

and the axioms ensure that this map, together with the unit morphism I → CF (C,C),
determine the structure of a D-monoid on CF (C,C).
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2 Basic Theory of Transformation Groups

2.1 Definition and Examples of Group Actions

In the literature there are several ways to define a group action and our aim is to give
a unified treatment. This is the reason why it was necessary to introduce monoidal
categories, D-categories and group objects in the first place.

Definition 2.1.1 Let D be a monoidal category, let C be a category over D and G be
a C-group. An action of G on an object C of C is given by a D-monoid homomorphism

ρ : F (G)→ CF (C,C)

such that the adjoint morphism α : G⊗ C → C is a C-morphism. ρ is called the action
homomorphism. The triple (G,C, ρ) is called a G-object of C, and if no confusion is
possible, we speak of C as a G-object.

Of course, if C is a specific category, we will speak of G-spaces, G-sets or G-vector
spaces, according to the given situation.

Translating the property that ρ is a monoid homomorphism into properties of its
adjoint α yields that the diagrams

G⊗G⊗ C idG⊗α //

µ⊗idC
��

G⊗ C
α
��

I ⊗ C
λ

''

η⊗idC
��

G⊗ C α // G G⊗ C α // C

commute, where µ is the group multiplication and η : I → G the unit morphism of G.
On the other hand, any morphism α : G⊗C → C fitting in two commutative diagrams
as above specifies a monoid homomorphism ρ : F (G) → CF (C,C) via the exponential
law. We will therefore not distinguish whether an action is given by ρ or by its adjoint
α and we will call ρ the action homomorphism, whereas α is called the action map.

We can now define the category of symmetric objects in a category C.

Definition 2.1.2 Let C be a category over D. The category SymD C has as objects
triples (G,A, ρ), where G is a C-group and ρ an action of G on A. A morphism between
(G,A, ρ) and (H,B, σ) is given by a pair (ϕ, f), with a C-group homomorphism ϕ :
G → H and a morphism f : A → B. These morphisms are required to fit into the
commutative diagram

G⊗A α //

ϕ⊗f
��

A

f
��

H ⊗B β // B

,

where α, β are the adjoints of ρ, σ, respectively. We have the subcategory of Sym C of
G-objects in C, objects being triples (G,A, ρ) as above with G fixed and morphisms of
the form (idG, f). In this case, the morphism f : A→ B is called G-equivariant.
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Sometimes one does not want a C-group to act on an object C of C, but rather a
C′-group for some other category C′. This can be done via a monoidal functor i : C′ → C,
because, as we have seen, i(G) is a C-group if G is a C′-group. An action of G on C is
then an action of i(G) on C.

Example 2.1.3 1. Let V be a k-vector space. Finding a subgroup of the linear
automorphisms of V amounts to specifying a group homomorphism G→ GLk(V ).
Let i : SET → VECTk be the induction functor. Then an action of the VECTk-
group kG on V is a monoid homomorphism kG → L(V, V ) (we take VECTk as a
category over itself via the identity functor). Every element g ∈ G must map to
an automorphism of V , since i(µ)(g⊗ g−1) = e and e maps to 1V under the action
map. Hence we see that the actions of kG on L(V ) are in one-to-one correspondence
with the group homomorphisms G→ GLk(V ).

2. Let X be a topological space and G a topological group. There is the obvious
forgetful functor T OP → SET and it is monoidal. It turns T OP into a category
over SET . An action of G on X is a monoid homomorphism

ρ : G→ T OP(X,X)

such that the adjoint map G × X → X is continuous. T OP(X,X) in this case
is equipped with the compact open topology. Details are postponed to the next
section. Note that, since G is a group, the image of ρ must necessarily be contained
in the set of self-homeomorphisms of X.

3. Let X be a topological space and G a group. The functor i from sets to T OP
assigning the discrete topology to a set is monoidal. Hence, an action of G on X
is defined as a continuous monoid homomorphism

ρ : i(G)→ T OP(X,X)

such that the adjoint map i(G)×X → X is continuous.

4. Let M be a manifold, G a Lie group. We have the obvious forgetful functor
MAN → SET , which is monoidal. Therefore, an action of G on M is defined as
a monoid homomorphism

G→ C∞(M,M)

such that the adjoint map G×M →M is smooth.

5. Let X be a locally compact pointed Hausdorff space and G a hLCH∗-group.
There is the forgetful functor from the category hLCH∗ to the category hHAUS∗.
The functor • ∧ X for X locally compact Hausdorff has as adjoint the functor
HAUS∗(X, • ). So an action of G on a pointed locally compact Hausdorff space
is given by a homotopy class of a continuous map

G→ HAUS∗(X,X).
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The requirement that the adjoint is a hLCH∗-morphism is fulfilled automatically,
because it is just the homotopy class of a continuous pointed map. Altogether
we see that an action of G on X is determined by a continuous pointed map
α : G ∧X → X such that the diagrams

G ∧G ∧X idG ∧α //

α∧idX
��

G ∧X
α
��

S0 ∧X

##
η∧idX

��
G ∧X α // X G ∧X α // X

are commutative up to pointed homotopy, where η is the unit of G.
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